量子力学基础简答题(经典)【精选】
量子力学基础试题及答案
量子力学基础试题及答案一、单项选择题(每题2分,共10分)1. 量子力学中,物质的波粒二象性是由哪位科学家提出的?A. 爱因斯坦B. 普朗克C. 德布罗意D. 海森堡答案:C2. 量子力学的基本原理之一是不确定性原理,该原理是由哪位科学家提出的?A. 玻尔B. 薛定谔C. 海森堡D. 狄拉克答案:C3. 量子力学中,描述粒子状态的数学对象是:A. 波函数B. 概率密度C. 动量D. 能量答案:A4. 量子力学中,哪个方程是描述粒子的波动性质的基本方程?A. 薛定谔方程B. 麦克斯韦方程C. 牛顿第二定律D. 相对论方程答案:A5. 量子力学中,哪个原理说明了粒子的波函数在测量后会坍缩到一个特定的状态?A. 叠加原理B. 波函数坍缩原理C. 不确定性原理D. 泡利不相容原理答案:B二、填空题(每题3分,共15分)1. 在量子力学中,粒子的动量和位置不能同时被精确测量,这一现象被称为______。
答案:不确定性原理2. 量子力学中的波函数必须满足______条件,以确保物理量的概率解释是合理的。
答案:归一化3. 量子力学中的粒子状态可以用______来描述,它是一个复数函数。
答案:波函数4. 量子力学中的______方程是描述非相对论性粒子的波函数随时间演化的基本方程。
答案:薛定谔5. 量子力学中的______原理表明,不可能同时精确地知道粒子的位置和动量。
答案:不确定性三、简答题(每题5分,共20分)1. 简述量子力学与经典力学的主要区别。
答案:量子力学与经典力学的主要区别在于,量子力学描述的是微观粒子的行为,它引入了波粒二象性、不确定性原理和量子叠加等概念,而经典力学主要描述宏观物体的运动,遵循牛顿力学的确定性规律。
2. 描述量子力学中的波函数坍缩现象。
答案:波函数坍缩是指在量子力学中,当对一个量子系统进行测量时,系统的波函数会从一个叠加态突然转变到一个特定的本征态,这个过程是不可逆的,并且与测量过程有关。
量子力学试题及答案
量子力学试题及答案一、选择题(每题2分,共20分)1. 量子力学的基本原理之一是:A. 牛顿运动定律B. 薛定谔方程C. 麦克斯韦方程组D. 热力学第二定律2. 波函数的绝对值平方代表:A. 粒子的动量B. 粒子的能量C. 粒子在某一位置的概率密度D. 粒子的波长3. 以下哪个不是量子力学中的守恒定律?A. 能量守恒B. 动量守恒C. 角动量守恒D. 电荷守恒4. 量子力学中的不确定性原理是由哪位物理学家提出的?A. 爱因斯坦B. 波尔C. 海森堡D. 薛定谔5. 在量子力学中,一个粒子的波函数可以表示为:B. 一个复数C. 一个向量D. 一个矩阵二、简答题(每题10分,共30分)1. 简述海森堡不确定性原理,并解释其在量子力学中的意义。
2. 解释什么是量子纠缠,并给出一个量子纠缠的例子。
3. 描述量子隧道效应,并解释它在实际应用中的重要性。
三、计算题(每题25分,共50分)1. 假设一个粒子在一维无限深势阱中,其波函数为ψ(x) = A *sin(kx),其中A是归一化常数。
求该粒子的能量E。
2. 考虑一个二维电子在x-y平面上的波函数ψ(x, y) = A * e^(-αx) * cos(βy),其中A是归一化常数。
求该电子的动量分布。
答案一、选择题1. B. 薛定谔方程2. C. 粒子在某一位置的概率密度3. D. 电荷守恒4. C. 海森堡二、简答题1. 海森堡不确定性原理指出,粒子的位置和动量不能同时被精确测量,其不确定性关系为Δx * Δp ≥ ħ/2,其中ħ是约化普朗克常数。
这一原理揭示了量子世界的基本特性,即粒子的行为具有概率性而非确定性。
2. 量子纠缠是指两个或多个量子系统的状态不能独立于彼此存在,即使它们相隔很远。
例如,两个纠缠的电子,无论它们相隔多远,测量其中一个电子的自旋状态会即刻影响到另一个电子的自旋状态。
3. 量子隧道效应是指粒子在经典物理中无法穿越的势垒,在量子物理中却有一定概率能够穿越。
量子力学复习提纲
量子力学复习提纲一、简答题1、什么是黑体?答:在任何温度下,对入射的任何波长的辐射全部吸收的物体。
2、简述光的波粒二象性。
答:吸收、发射以微粒形式,传播 c 。
描述波动性的力学量λν,与描述粒子的力学量p E ,之间的联系为νh E =,λhp =。
3、试简述Bohr 的量子理论。
答:(1)定态假设:电子只能在一组特殊的轨道上运动,在这组轨道上电子处于稳定状态,简称定态。
(2)频率条件:当电子从一个定态跃迁到另一个定态时,吸收或发射的辐射频率满足:νh E E n m =- 。
(3)量子化条件:电子在轨道上运动时,其角动量必须是h 的整数倍。
4、简述德布罗意假设。
答:具有能量E 和动量P的自由粒子与一个频率为ν、波长为λ的平面波相联系。
νh E =,λhp =。
5、粒子的德布罗意波长是否可以比其本身线度长或短?答:由基本假设ph =λ,波长仅取决于粒子的动量而与粒子本身线度无必然联系。
6、波函数模的平方()2,t rψ的物理意义是什么?答:()2,t r ψ表示在t 时刻r点附近单位体积中粒子出现的概率,即概率密度。
7、按照波函数的统计解释,试给出波函数应满足的条件。
答:波函数应满足的条件是:连续,有限,单值。
8、简述态叠加原理。
答:若n ψψψ,,,21 是体系的可能状态,则n n C C C ψψψψ+++= 2211也是体系的可能状态。
这一结论称为态叠加原理。
9.何谓定态?答:能量具有确定值的状态称为定态。
它用定态波函数()()iEt er t r -=ψψ,描写。
10、简述定态的特性。
答:定态的特性有:①能量具有确定值。
②几率密度及几率流密度不随t 变化。
③任何力学量(不含t )的平均值不随t 变化。
④任何力学量(不含t )取各种可能测量值的几率分布不随t 变化。
11、简要解释一维线性谐振子的零点能。
答:一维线性谐振子的零点能为ω210=E ,它是谐振子基态的能量,是一种量子效应,是测不准关系所要求的最小能量,是粒子具有波粒二象性的具体体现,谐振子永远不会静止。
《量子力学》题库
《量子力学》题库一、简答题1 试写了德布罗意公式或德布罗意关系式,简述其物理意义 答:微观粒子的能量和动量分别表示为: ων ==h Ek n h p ==ˆλ其物理意义是把微观粒子的波动性和粒子性联系起来.等式左边的能量和动量是描述粒子性的;而等式右边的频率和波长则是描述波的特性的量.2 简述玻恩关于波函数的统计解释,按这种解释,描写粒子的波是什么波?答:波函数的统计解释是:波函数在空间中某一点的强度(振幅绝对值的平方)和在该点找到粒子的几率成正比。
按这种解释,描写粒子的波是几率波。
3 根据量子力学中波函数的几率解释,说明量子力学中的波函数与描述声波、光波等其它波动过程的波函数的区别。
答:根据量子力学中波函数的几率解释,因为粒子必定要在空间某一点出现,所以粒子在空间各点出现的几率总和为1,因而粒子在空间各点出现的几率只决定于波函数在空间各点的相对强度而不决定于强度的绝对大小;因而将波函数乘上一个常数后,所描写的粒子状态不变,这是其他波动过程所没有的。
4 设描写粒子状态的函数ψ可以写成2211ϕϕψc c +=,其中1c 和2c 为复数,1ϕ和2ϕ为粒子的分别属于能量1E 和2E 的构成完备系的能量本征态。
试说明式子2211ϕϕψc c +=的含义,并指出在状态ψ中测量体系的能量的可能值及其几率。
答:2211ϕϕψc c +=的含义是:当粒子处于1ϕ和2ϕ的线性叠加态ψ时,粒子是既处于1ϕ态,又处于2ϕ态。
或者说,当1ϕ和2ϕ是体系可能的状态时,它们的线性叠加态ψ也是体系一个可能的状态;或者说,当体系处在态ψ时,体系部分地处于态1ϕ、2ϕ中.在状态ψ中测量体系的能量的可能值为1E 和2E ,各自出现的几率为21c 和22c 。
5 什么是定态?定态有什么性质?答:定态是指体系的能量有确定值的态。
在定态中,所有不显含时间的力学量的几率密度及向率流密度都不随时间变化。
6 什么是全同性原理和泡利不相容原理?两者的关系是什么? 答:全同性原理是指由全同粒子组成的体系中,两全同粒子相互代换不引起物理状态的改变。
量子力学练习答案
《量子力学》试题(A) 答案及评分标准一、简答题(30分,每小题5分) 1.何谓势垒贯穿?是举例说明。
答:微观粒子在能量E 小于势垒高度时仍能贯穿势垒的现象,称为势垒贯穿。
它是一种量子效应,是微观粒子波粒二象性的体现。
例如金属电子冷发射、α衰变等现象都是由隧道效应产生的,利用微观粒子势垒贯穿效应的特性制造了隧道二极管。
2.波函数()t r ,ψ是应该满足什么样的自然条件?()2,t r ψ的物理含义是什么? 答:波函数是用来描述体系的状态的复函数,除了应满足平方可积的条件之外,它还应该是单值、有限和连续的。
()2,t r ψ表示在t 时刻r 附近τd 体积元中粒子出现的几率密度。
3.分别说明什么样的状态是束缚态、简并态、正宇称态和负宇称态?答:当粒子的坐标趋向无穷远时,波函数趋向零,称之为粒子处于束缚态。
若一个本征值对应一个以上的本征态,则称该本征值是简并的,所对应的本征态即为简并态,本征态的个数就是本征值相应的简并度。
将波函数中的坐标变量改变一个负号,若新波函数与原波函数一样,则称其为正宇称态;将波函数中的坐标变量改变一个负号,若新波函数与原波函数相差一个负号,则称其为负宇称态。
4.物理上可观测量应该对应什么样的算符?为什么?答:物理上可观测量对应线性厄米算符。
线性是状态叠加原理要求的,厄米算符的本征值是实数,可与观测值比较。
5.坐标x 分量算符与动量x 分量算符x pˆ的对易关系是什么?并写出两者满足的测不准关系。
答:对易关系为[] i ˆ,=x px ,测不准关系为2≥∆⋅∆x p x 6.厄米算符F ˆ的本征值nλ与本征矢n 分别具有什么性质? 答:本征值为实数,本征矢为正交、归一和完备的函数系二、证明题:(10分,每小题5分)(1)证明:i z y x =σσσˆˆˆ 证明:由对易关系z x y y x i σσσσσˆ2ˆˆˆˆ=-及反对易关系0ˆˆˆˆ=+x y y x σσσσ ,得z y x i σσσˆˆˆ=上式两边乘z σˆ,得2ˆˆˆˆz z y x i σσσσ= ∵ 1ˆ2=z σ ∴ i z y x =σσσˆˆˆ (2)证明幺正变换不改变矩阵的本征值。
量子力学经典八十题(推荐版本)【含答案】
ψ
nxnynz
(x,
y,
z)
=
⎧ ⎪ ⎨ ⎪⎩0
8 abc ,
sin
nxπx a
sin
nyπ b
y
sin
nzπ c
z
, 0 < x < a,0 其余区域
<
y
<
b
,
0
<
z
<
c
n = 1, 2,3,""
9. 粒子在一维 δ 势阱
V (x) = −γ δ (x) (γ > 0)
中运动,波函数为ψ (x) ,写出ψ ′(x) 的跃变条件。
2
量子力学复习题答案(安徽大学)
( ) 解: L2 , L z 的共同本征函数是球谐函数Ylm (θ ,ϕ) 。
L2Ylm (θ ,ϕ) = l(l + 1)= 2Ylm (θ ,ϕ ) , LzYlm (θ ,ϕ ) = m=Ylm (θ ,ϕ)
15. 写出电子自旋 s z 的二本征态和本征值。
V (x)
=
−
n= 2 mx0 x
+
=2 2m
n (n −1) x2
10. 一 个 质 量 为 m 的 粒 子 在 势 V (x) 作 用 下 作 一 维 运 动 。 假 定 它 处 在 E = =2α 2 的 能 量 本 征 态 2m
ψ
(
x)
=
⎛ ⎜ ⎝
α2 π
⎞1/ ⎟
4
e−γ
2x2
⎠
2,
( a )求粒子的平均位置; ( b )求粒子的平均动量;
22. 使用定态微扰论时,对哈密顿量 H 有什么样的要求?
(完整word版)量子力学所有简答题答案
简答题1.什么是光电效应?光电效应有什么规律?爱因斯坦是如何解释光电效应的?答:光照射到某些物质上,引起物质的电性质发生变化,也就是光能量转换成电能。
这类光致电变的现象被人们统称为光电效应。
或光照射到金属上,引起物质的电性质发生变化。
这类光变致电的现象被人们统称为光电效应。
光电效应规律如下:1.每一种金属在产生光电效应时都存在一极限频率(或称截止频率),即照射光的频率不能低于某一临界值。
当入射光的频率低于极限频率时,无论多强的光都无法使电子逸出。
2.光电效应中产生的光电子的速度与光的频率有关,而与光强无关。
3.光电效应的瞬时性。
实验发现,只要光的频率高于金属的极限频率,光的亮度无论强弱,光子的产生都几乎是瞬时的。
4.入射光的强度只影响光电流的强弱,即只影响在单位时间内由单位面积是逸出的光电子数目。
爱因斯坦认为:(1)电磁波能量被集中在光子身上,而不是象波那样散布在空间中,所以电子可以集中地、一次性地吸收光子能量,所以对应弛豫时间应很短,是瞬间完成的。
(2)所有同频率光子具有相同能量,光强则对应于光子的数目,光强越大,光子数目越多,所以遏止电压与光强无关,饱和电流与光强成正比。
(3)光子能量与其频率成正比,频率越高,对应光子能量越大,所以光电效应也容易发生,光子能量小于逸出功时,则无法激发光电子。
逸出电子的动能、光子能量和逸出功之间的关系可以表示成:221mv A h +=ν这就是爱因斯坦光电效应方程。
其中,h 是普朗克常数;f 是入射光子的频率。
2.写出德布罗意假设和德布罗意公式。
德布罗意假设:实物粒子具有波粒二象性。
德布罗意公式:νωh E == λhk P ==3.简述波函数的统计解释,为什么说波函数可以完全描述微观体系的状态。
几率波满足的条件。
波函数在空间中某一点的强度和在该点找到粒子的几率成正比。
因为它能根据现在的状态预知未来的状态。
波函数满足归一化条件。
4.以微观粒子的双缝干涉实验为例,说明态的叠加原理。
量子力学试题含答案
量子力学试题含答案1. 选择题a) 以下哪个说法正确?A. 量子力学只适用于微观领域B. 量子力学只适用于宏观领域C. 量子力学适用于微观和宏观领域D. 量子力学不适用于任何领域答案:A. 量子力学只适用于微观领域b) 以下哪个量不是量子力学的基本量?A. 质量B. 电荷C. 动量D. 能量答案:D. 能量c) 下面哪个原理是量子力学的基础?A. 相对论B. Newton力学定律C. 不确定性原理D. 统计力学答案:C. 不确定性原理2. 填空题a) 波粒二象性指的是在特定条件下,微观粒子既可表现出波动性,又可以表现出粒子性。
这种相互转化的现象称为________。
答案:波粒二象性的相互转化b) ____________________是描述微观粒子运动的方程。
答案:薛定谔方程c) Ψ(x, t)代表粒子的波函数,那么|Ψ(x, t)|^2表示__________________。
答案:粒子在坐标x处被测量到的概率密度3. 简答题a) 请简要说明波粒二象性的原理和实验观察。
答案:波粒二象性原理指出,微观粒子既可表现出波动性,又可以表现出粒子性。
这意味着微观粒子的行为既可以用波动的方式来描述(例如干涉和衍射现象),也可以用粒子的方式来描述(例如在特定的位置进行观测)。
实验观察可以通过使用干涉仪和双缝实验等经典实验来验证波动性质。
当光或电子通过干涉仪或双缝实验时,会出现干涉和衍射现象,这表明了粒子具有波动性。
同时,通过探测器对光或电子的位置进行测量,可以观察到粒子的粒子性。
b) 请解释量子力学中的不确定性原理及其意义。
答案:不确定性原理是由德国物理学家海森伯提出的,它指出在测量某个粒子的某个物理量的同时,不可避免地会对另一个物理量的测量结果带来不确定性。
不确定性原理的意义在于限制了我们对微观世界的认知。
它告诉我们,粒子的位置和动量无法同时被精确地确定。
这是由于测量过程中的不可避免的干扰和相互关联性导致的。
量子力学基础简答题(经典)
量子力学基础简答题1、简述波函数的统计解释;2、对“轨道”和“电子云”的概念,量子力学的解释是什么3、力学量Gˆ在自身表象中的矩阵表示有何特点 4、简述能量的测不准关系;5、电子在位置和自旋z S ˆ表象下,波函数⎪⎪⎭⎫ ⎝⎛=ψ),,(),,(21z y x z y x ψψ如何归一化解释各项的几率意义。
6、何为束缚态7、当体系处于归一化波函数ψ(,) r t 所描述的状态时,简述在ψ(,)r t 状态中测量力学量F 的可能值及其几率的方法。
8、设粒子在位置表象中处于态),(t rψ,采用Dirac 符号时,若将ψ(,)r t 改写为ψ(,)r t 有何不妥采用Dirac 符号时,位置表象中的波函数应如何表示9、简述定态微扰理论。
10、Stern —Gerlach 实验证实了什么 11、一个物理体系存在束缚态的条件是什么 12、两个对易的力学量是否一定同时确定为什么 13、测不准关系是否与表象有关14、在简并定态微扰论中,如 ()H 0的某一能级)0(n E ,对应f 个正交归一本征函数i φ(i =1,2,…,f ),为什么一般地i φ不能直接作为()H H H'+=ˆˆˆ0的零级近似波函数15、在自旋态χ12()s z 中, S x 和 S y的测不准关系( )( )∆∆S S x y 22•是多少 16、在定态问题中,不同能量所对应的态的迭加是否为定态Schrodinger 方程的解同一能量对应的各简并态的迭加是否仍为定态Schrodinger 方程的解17、两个不对易的算符所表示的力学量是否一定不能同时确定举例说明。
18说明厄米矩阵的对角元素是实的,关于对角线对称的元素互相共轭。
19何谓选择定则。
20、能否由Schrodinger 方程直接导出自旋21、叙述量子力学的态迭加原理。
22、厄米算符是如何定义的23、据[aˆ,+a ˆ]=1,a a N ˆˆˆ+=,n n n N =ˆ,证明:1ˆ-=n n n a 。
量子力学简答题
量子力学简答题1.哪些实验表明电子具有自旋现象?举例说明电子具有自旋。
电子的自旋是在实验事实的基础上以假设方式提出的。
实验事实:①原子的精细结构②塞曼效应③斯特恩-盖拉赫实验——3分斯特恩-革拉赫实验:现象:K射出的处于S态的氢原子束通过狭缝BB和不均匀磁场,最后射到照相片PP上,实验结果是照片上出现两条分立线。
——2分解释:对于基态氢原子,l0,没轨道角动量,因此与磁矩无相互作用,应连续变化,照片上应是一连续带,但实验结果只有两条,说明Mz是空间量子化的,只有两个取向co1,所以原子所具有的磁矩是电子固有磁矩,即自旋磁矩。
——2分2.为什么说轨道角动量具有空间量子化现象?画出l=3时角动量空间量子化分布图。
因为轨道角动量及其分量是取分离值,而不能取任意值。
——3分——4分1.解释斯特恩-革拉赫实验。
答:斯特恩-革拉赫实验能够说明电子具有自旋角动量:基态氢原子束通过不均匀磁场时,射到照相片,出现两条分立线。
——3分如磁矩M在空间可取任何方向,照片上应是一连续带,但实验结果只有两条,说明Mz是空间量子化的,只有两个取向co1,对S态,l0,没轨道角动量,所以原子所具有的磁矩是电子固有磁矩,即自旋磁矩。
——4分2.解释隧道贯穿现象(要求画出图形),该现象说明微观粒子具有什么性质?EU0时,电子也有可能穿越势垒的可能,这表明电子具有波粒二象性。
——3分——4分1.态叠加原理:如果1和2是体系可能的状态,那么,它们的线性迭加c11c22(c1,c2是复数)也是这个体系的一个可能状态。
2.波函数的统计解释及波函数的标准条件波函数的统计解释:波函数在空间某一点的强度(振幅绝对值的平方)和在该点找到粒子的几率成正比。
波函数的标准条件:单值性,有限性,连续性3.全同性原理:在全同粒子组成的体系中,两全同粒子相互代换不引起物理状态的改变。
泡利不相容原理:不能有两个或两个以上的费米子处于同一状态。
4.量子力学五个基本假设是什么?(1)微观体系的状态可以用一个波函数完全描述,从这个波函数可以得出体系的所有性质。
量子力学试题及答案
量子力学试题及答案一、选择题(每题4分,共40分)1. 在量子力学中,一个粒子的状态用波函数表示。
波函数的物理意义是:A. 粒子的位置概率分布B. 粒子的运动速度C. 粒子的自旋状态D. 粒子的能量2. 量子力学的基本假设之一是:A. 粒子的能量是离散的B. 粒子在空间中的轨道是连续的C. 粒子的位置可以同时确定D. 粒子的自旋是固定的3. 哪个原理用于解释原子光谱的发射和吸收现象?A. 波粒二象性原理B. 测不准原理C. 泡利不相容原理D. 量子力学随机性原理4. 薛定谔方程描述了:A. 粒子的位置和动量之间的关系B. 粒子在空间中的运动轨迹C. 粒子的能量和自旋状态D. 粒子波函数随时间的演化5. 量子力学波函数的归一化条件是:A. Ψ(x, t)在全空间上的模长平方的积分等于1B. Ψ(x, t)在全空间上的模长平方的积分等于0C. Ψ(x, t)在无限远处趋于零D. Ψ(x, t)的真实部分等于虚部的共轭6. 两个可观测量的对易关系表示为:[A, B] = AB - BA = 0其中[A, B]表示两个算符的对易子。
这意味着:A. A和B的本征态可以同时存在B. A和B的本征值可以同时测量得到C. A和B的测量结果彼此独立D. A和B的测量结果存在不确定性7. 量子力学中的不确定性原理指出,以下哪一对物理量不能同时精确确定:A. 位置和动量B. 能量和时间C. 自旋在X方向和自旋在Y方向D. 角动量在X方向和角动量在Y方向8. 箱中有一自由粒子,其波函数为:Ψ(x) = A sin(kx)其中A和k为常数,该波函数代表:A. 粒子在箱中处于能量本征态B. 粒子在箱中处于动量本征态C. 粒子在箱中处于位置本征态D. 粒子在箱中处于叠加态9. 双缝干涉实验中,当缝宽减小时,干涉图案的特征是:A. 条纹的间距增大B. 条纹的间距减小C. 条纹的亮度增强D. 条纹的亮度减弱10. 量子隧穿现象解释了:A. 电子在金属中的传导现象B. 光子在光学纤维中的传播现象C. 电子在势垒中的穿透现象D. 光子在介质中的反射现象二、填空题(每题6分,共30分)1. 德布罗意波假设将粒子的运动与________联系起来。
量子力学简答100题及答案1概述
量子力学简答100题及答案1概述1、简述波函数的统计解释;2、对“轨道”和“电子云”的概念,量子力学的解释是什么?3、力学量G在自身表象中的矩阵表示有何特点?4、简述能量的测不准关系;5、电子在位置和自旋z S ?表象下,波函数=ψ),,(),,(21z y x z y x ψψ如何归一化?解释各项的几率意义。
6、何为束缚态?7、当体系处于归一化波函数ψ(,) r t 所描述的状态时,简述在ψ(,)r t 状态中测量力学量F 的可能值及其几率的方法。
8、设粒子在位置表象中处于态),(t rψ,采用Dirac 符号时,若将ψ(,) r t 改写为ψ(,)r t 有何不妥?采用Dirac 符号时,位置表象中的波函数应如何表示? 9、简述定态微扰理论。
10、Stern —Gerlach 实验证实了什么? 11、一个物理体系存在束缚态的条件是什么?12、两个对易的力学量是否一定同时确定?为什么? 13、测不准关系是否与表象有关?14、在简并定态微扰论中,如 ()H0的某一能级)0(n E ,对应f 个正交归一本征函数i φ(i =1,2,…,f ),为什么一般地i φ不能直接作为()H HH'+=0的零级近似波函数? 15、在自旋态χ12()s z 中, S x 和 S y的测不准关系( )( )??S S x y 22?是多少? 16、在定态问题中,不同能量所对应的态的迭加是否为定态Schrodinger 方程的解?同一能量对应的各简并态的迭加是否仍为定态Schrodinger 方程的解?17、两个不对易的算符所表示的力学量是否一定不能同时确定?举例说明。
18说明厄米矩阵的对角元素是实的,关于对角线对称的元素互相共轭。
19何谓选择定则。
20、能否由Schrodinger 方程直接导出自旋?21、叙述量子力学的态迭加原理。
22、厄米算符是如何定义的?23、据[a,+a ?]=1,a a N+=,n n n N =?,证明:1-=n n n a 。
量子力学基础简答题
量子力学基础简答题一、量子力学中,描述微观粒子状态的数学工具是什么?A. 经典力学方程B. 概率分布函数C. 波函数(答案)D. 矩阵运算二、在量子力学中,哪个原理表明微观粒子的状态无法同时被精确测量?A. 不确定性原理(答案)B. 能量守恒原理C. 动量守恒原理D. 角动量守恒原理三、下列哪个实验是量子力学诞生的重要标志之一?A. 迈克尔逊-莫雷实验B. 双缝干涉实验C. 薛定谔的猫实验D. 康普顿散射实验(答案)四、在量子力学中,粒子在被观测之前的存在状态被称为什么?A. 实在状态B. 叠加状态(答案)C. 虚拟状态D. 混沌状态五、量子力学中的“波粒二象性”是指什么?A. 粒子同时具有波动性和粒子性(答案)B. 粒子在不同状态下可以转化为波或粒子C. 粒子总是以波的形式存在D. 粒子总是以粒子的形式存在六、下列哪位科学家提出了量子力学的波函数理论?A. 牛顿B. 爱因斯坦C. 薛定谔(答案)D. 玻尔七、在量子力学中,描述粒子可能状态的数学表达式称为什么?A. 状态方程B. 概率方程C. 波函数方程(答案)D. 能量方程八、量子力学中的“量子纠缠”现象指的是什么?A. 两个粒子之间的相互作用B. 两个粒子之间的状态相互依赖(答案)C. 两个粒子之间的能量交换D. 两个粒子之间的动量守恒九、下列哪个概念是量子力学中特有的,而经典力学中没有的?A. 力B. 质量C. 自旋(答案)D. 动量十、在量子力学中,描述粒子状态的波函数需要满足什么条件?A. 连续性B. 可导性C. 归一化条件(答案)D. 周期性。
量子力学简答题(知识要点)
量子力学简答题(知识要点)1.试写了德布罗意公式或德布罗意关系式,简述其物理意义 答:微观粒子的能量和动量分别表示为:ων ==h E k n h p ==ˆλ其物理意义是把微观粒子的波动性和粒子性联系起来。
等式左边的能量和动量是描述粒子性的;而等式右边的频率和波长则是描述波的特性的量。
2.简述玻恩关于波函数的统计解释,按这种解释,描写粒子的波是什么波?答:波函数的统计解释是:波函数在空间中某一点的强度(振幅绝对值的平方)和在该点找到粒子的几率成正比。
按这种解释,描写粒子的波是几率波。
3.根据量子力学中波函数的几率解释,说明量子力学中的波函数与描述声波、光波等其它波动过程的波函数的区别。
答:根据量子力学中波函数的几率解释,因为粒子必定要在空间某一点出现,所以粒子在空间各点出现的几率总和为1,因而粒子在空间各点出现的几率只决定于波函数在空间各点的相对强度而不决定于强度的绝对大小;因而将波函数乘上一个常数后,所描写的粒子状态不变,这是其他波动过程所没有的。
4.设描写粒子状态的函数ψ可以写成2211ϕϕψc c +=,其中1c 和2c 为复数,1ϕ和2ϕ为粒子的分别属于能量1E 和2E 的构成完备系的能量本征态。
试说明式子2211ϕϕψc c +=的含义,并指出在状态ψ中测量体系的能量的可能值及其几率。
答:2211ϕϕψc c +=的含义是:当粒子处于1ϕ和2ϕ的线性叠加态ψ时,粒子是既处于1ϕ态,又处于2ϕ态。
或者说,当1ϕ和2ϕ是体系可能的状态时,它们的线性叠加态ψ也是体系一个可能的状态;或者说,当体系处在态ψ时,体系部分地处于态1ϕ、2ϕ中。
在状态ψ中测量体系的能量的可能值为1E 和2E ,各自出现的几率为21c 和22c 。
5.什么是定态?定态有什么性质?答:定态是指体系的能量有确定值的态。
在定态中,所有不显含时间的力学量的几率密度及向率流密度都不随时间变化。
6.什么是全同性原理和泡利不相容原理?两者的关系是什么?答:全同性原理是指由全同粒子组成的体系中,两全同粒子相互代换不引起物理状态的改变。
量子力学简答
1试写了德布罗意公式或德布罗意关系式,简述其物理意义 答:微观粒子的能量和动量分别表示为:ων ==h Ek n hp ==ˆλ其物理意义是把微观粒子的波动性和粒子性联系起来。
等式左边的能量和动量是描述粒子性的;而等式右边的频率和波长则是描述波的特性的量。
2波函数的统计解释是:波函数在空间中某一点的强度(振幅绝对值的平方)和在该点找到粒子的几率成正比。
按这种解释,描写粒子的波是几率波。
3试说明式子2211ϕϕψc c +=的含义,并指出在状态ψ中测量体系的能量的可能值及其几率。
答:2211ϕϕψc c +=的含义是:当粒子处于1ϕ和2ϕ的线性叠加态ψ时,粒子是既处于1ϕ态,又处于2ϕ态。
或者说,当1ϕ和2ϕ是体系可能的状态时,它们的线性叠加态ψ也是体系一个可能的状态;或者说,当体系处在态ψ时,体系部分地处于态1ϕ、2ϕ中。
在状态ψ中测量体系的能量的可能值为1E 和2E ,各自出现的几率为21c 和22c 。
4什么是定态?定态有什么性质?答:定态是指体系的能量有确定值的态。
在定态中,所有不显含时间的力学量的几率密度及向率流密度都不随时间变化。
5 什么是全同性原理和泡利不相容原理?两者的关系是什么?答:全同性原理是指由全同粒子组成的体系中,两全同粒子相互代换不引起物理状态的改变。
泡利不相容原理是指不能有两个或两个以上的费米子处于同一状态。
两者的关系是由全同性原理出发,推论出全同粒子体系的波函数有确定的交换对称性,将这一性质应用到费米子组成的全同粒子体系,必然推出费米不相容原理。
6 为什么表示力学量的算符必须是厄米算符?答:因为所有力学量的数值都是实数。
而表示力学量的算符的本征值是这个力学量的可能值,所以表示力学量的算符的本征值必须是实数。
厄米算符的本征值必定是实数。
所以表示力学量的算符必须是厄米算符。
7 简述费米子的自旋值及其全同粒子体系波函数的特点,这种粒子所遵循的统计规律是什么? 答:由电子、质子、中子这些自旋为2的粒子以及自旋为2的奇数倍的粒子组成的全同粒子体系的波函数是反对称的,这类粒子服从费米(Fermi) -狄拉克 (Dirac) 统计,称为费米子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
量子力学基础简答题1、简述波函数的统计解释;2、对“轨道”和“电子云”的概念,量子力学的解释是什么?3、力学量Gˆ在自身表象中的矩阵表示有何特点? 4、简述能量的测不准关系;5、电子在位置和自旋z S ˆ表象下,波函数⎪⎪⎭⎫ ⎝⎛=ψ),,(),,(21z y x z y x ψψ如何归一化?解释各项的几率意义。
6、何为束缚态?7、当体系处于归一化波函数ψ(,) r t 所描述的状态时,简述在ψ(,)r t 状态中测量力学量F 的可能值及其几率的方法。
8、设粒子在位置表象中处于态),(t rψ,采用Dirac 符号时,若将ψ(,)r t 改写为ψ(,)r t 有何不妥?采用Dirac 符号时,位置表象中的波函数应如何表示? 9、简述定态微扰理论。
10、Stern —Gerlach 实验证实了什么? 11、一个物理体系存在束缚态的条件是什么? 12、两个对易的力学量是否一定同时确定?为什么? 13、测不准关系是否与表象有关?14、在简并定态微扰论中,如 ()H0的某一能级)0(n E ,对应f 个正交归一本征函数i φ(i =1,2,…,f ),为什么一般地i φ不能直接作为()H HH'+=ˆˆˆ0的零级近似波函数? 15、在自旋态χ12()s z 中, S x 和 S y的测不准关系( )( )∆∆S S x y 22•是多少? 16、在定态问题中,不同能量所对应的态的迭加是否为定态Schrodinger 方程的解?同一能量对应的各简并态的迭加是否仍为定态Schrodinger 方程的解?17、两个不对易的算符所表示的力学量是否一定不能同时确定?举例说明。
18说明厄米矩阵的对角元素是实的,关于对角线对称的元素互相共轭。
19何谓选择定则。
20、能否由Schrodinger 方程直接导出自旋?21、叙述量子力学的态迭加原理。
22、厄米算符是如何定义的?23、据[aˆ,+a ˆ]=1,a a Nˆˆˆ+=,n n n N =ˆ,证明:1ˆ-=n n n a 。
24、非简并定态微扰论的计算公式是什么?写出其适用条件。
25、自旋 S =2σ,问 σ是否厄米算符? σ是否一种角动量算符? 26、波函数的量纲是否与表象有关?举例说明。
27、动量的本征函数有哪两种归一化方法?予以简述。
28、知 Gee x x ααα=,问能否得到 G ddx=?为什么? 29、简述变分法求基态能量及波函数的过程。
30、简单Zeemann 效应是否可以证实自旋的存在?31、不考虑自旋,当粒子在库仑场中运动时,束缚态能级E n 的简并度是多少?若粒子自旋为s ,问E n的简并度又是多少?32、根据]ˆ,ˆ[1ˆH F i t F dt F d+∂=∂说明粒子在辏力场中运动时,角动量守恒。
33、对线性谐振子定态问题,旧量子论与量子力学的结论存在哪些根本区别? 34、简述氢原子的一级stark 效应。
35、写出 J jm +的计算公式。
36、由12=⎰τψd ,说明波函数的量纲。
37、Fˆ、G ˆ为厄米算符,问[F ˆ,G ˆ]与i [F ˆ,G ˆ]是否厄米算符? 38、据[aˆ,+a ˆ]=1,a a Nˆˆˆ+=,n n n N =ˆ证明:11ˆ++=+n n n a 。
39、利用量子力学的含时微扰论,能否直接计算发射系数和吸收系数? 40、什么是耦合表象?41、不考虑粒子内部自由度,宇称算符Pˆ是否为线性厄米算符?为什么? 42、写出几率密度与几率流密度所满足的连续性方程。
43、已知()++⎪⎪⎭⎫⎝⎛=a a x ˆˆ2ˆ21μω ,()+-⎪⎭⎫ ⎝⎛=a a i p x ˆˆ21ˆ21μω,且1ˆ-=n n n a ψψ,11ˆ+++=n n n a ψψ,试推出线性谐振子波函数的递推公式。
44、写出一级近似下,跃迁几率的计算式。
45、何谓无耦合表象?46、给出线性谐振子定态波函数的递推公式。
47、*=ψψGˆ,Gˆ是否线性算符? 48、在什么样的基组中,厄米算符是厄米矩阵? 49、何谓选择定则?50、写出jm J -ˆ公式。
51、何为束缚态?52、写出位置表象中x p ˆ,p ˆ ,x ˆ和r ˆ 的表示式。
53、对于定态问题,试从含时Schrodinger 方程推导出定态Schrodinger 方程;54、对于氢原子,其偶极跃迁的选择定则对主量子数n 是否存在限制?为什么?55、在现阶段所学的量子力学中,电子的自旋是作为一个基本假定引入的,还是由其它假定自然推出的?56、假如波函数应满足的方程不是线性方程,波函数是否一定能归一化?57、试写出动量表象中xˆ,r ˆ ,x p ˆ,p ˆ 的表式 58、幺正算符是怎样定义的?59、我们知道,平面单色波的电场能和磁场能相等,而在用微扰论计算发射系数和吸收系数时,我们为什么忽略了磁场对电子的作用?60、对于自旋为3/2的粒子,其自旋本征函数应是几行一列的矩阵?61、写出德布罗意关系式及自由粒子的德布罗意波。
62、一维线性谐振子基态归一化波函数为2221x e απαψ-=,试计算积分x d e x ⎰∞-02β; 63、当体系处于归一化波函数ψ所描述的状态时,简述在ψ态中测量力学量F 的可能值及其几率的方法;64、已知氢原子径向Schrodinger 方程无简并,微扰项只与r 有关,问非简并定态微扰论能否适用?65、自旋是否意味着自转? 66、光到底是粒子还是波;67、两个对易的力学量是否一定同时具有确定值?在什么情况下才同时具有确定值? 68、不考虑自旋,求球谐振子能级E n 的简并度;69、我们学过,氢原子的选择定则1±=∆l ,这是否意味着∆l =±3的跃迁绝对不可能发生? 70、克莱布希-高豋系数是为解决什么问题提出的? )71、在球坐标系下,波函数()φθψ,,r 为什么应是进动角φ的周期函数?72、设当a <x 和b y <时,势能为常数0U ,试将此区域内的二维Schrodinger 方程分离变量(不求解); 73、何谓力学量完全集?74、定性说明为什么在氢原子的Stark 效应中,可将r e H•='εˆ视为微扰项? 75、Pauli 算符σˆ 是否满足角动量的定义式?76、简述量子力学产生的背景;77、写出位置表象中直角坐标系下xL ˆ、y L ˆ、z L ˆ、2ˆL 的表示式; 78、l n r R 为有心力场中的径向波函数,问r r r r n n l l l n l n dr r R R ''''∞*=⎰δδ2是否成立?为什么?79、定态微扰论是否适用于主量子数n 很大的氢原子情况?为什么?80、有关角动量的定义,我们学过哪两种?哪一种更广泛?自旋角动量是按哪一种定义的? 81、说明()x δ的量纲;82、说明在定态问题中,定态能量的最小值不可能低于势能的最低值; 83、简述占有数表象;84、试说明对易的厄米算符的乘积也是厄米算符; 85、何为偶极近似?86、量子力学克服了旧量子论的哪些不足?87、写出φ∂∂=i L zˆ的本征值及对应本征函数; 88、一个物理体系存在束缚态的条件是什么? 89、简述态的表象变换的方法;90、已知总角动量21ˆˆˆJ J J +=,试说明0]ˆ,ˆ[212=J J 。
91、旧量子论存在哪些不足?92、对于旧量子论中氢原子的“轨道”,量子力学的解释是什么? 93、两个不对易的力学量一定不能同时确定吗?举例说明; 94、简述变分法的思想;95、写出电子在zS ˆ表象下的三个Pauli 矩阵。
96、简述波函数的Born 统计解释;97、设ψ是定态Schrodinger 方程的解,说明*ψ也是对应同一本征能级的解,进而说明无简并能级的波函数一定可以取为实数; 98、引入Dirac 符号的意义何在? 99、定态微扰论的适用范围是什么? 100、简述两个角动量耦合的三角形关系。
答案1. 波函数在空间某一点的强度(振幅绝对值的平方)和在该点找到粒子的几率成正比。
2. 电子云:用点的疏密来描述粒子出现的几率。
轨道:电子径向分布几率最大之处。
3. 力学量Gˆ在自身表象中的矩阵是对角的,对角线上为G ˆ的本征值。
4. 能量测不准关系的数学表示式为E t /2∆•∆≥,即微观粒子的能量与时间不可能同时进行准确的测量,其中一项测量的越精确,另一项的不确定程度越大。
5. 利用()()()2212x,y,z x,y,z d 1ψψτ+=⎰进行归一化,其中:()21x,y,z ψ表示粒子在()z y x ,,处21S z =的几率密度,()22x,y,z ψ表示粒子在()z y x ,,处21S z -=的几率密度。
6. 束缚态: 无限远处为零的波函数所描述的状态。
能量小于势垒高度,粒子被约束在有限的空间内运动。
7. 首先求解力学量F 对应算符的本征方程:λλλφφφλφ==F F n n n ˆˆ,然后将()t r ,ϕ按F 的本征态展开:()⎰∑+=λφφϕλλd c c t r nn n ,,则F 的可能值为λλλλ,,,,n 21⋅⋅⋅,n F λ=的几率为2n c ,F 在λλλd +~范围内的几率为λλd c 28. Dirac 符号是不涉及任何表象的抽象符号。
位置表象中的波函数应表示为ϕr。
9. 求解定态薛定谔方程ψψE H =∧时,若可以把不显含时间的∧H 分为大、小两部分∧∧∧'+=H HH )(0,其中(1)∧)(H0的本征值)(n E 0和本征函数)(n 0ψ是可以精确求解的,或已有确定的结果)(n)(n )(n)(E H0000ψψ=∧,(2)∧'H 很小,称为加在∧)(H0上的微扰,则可以利用)(n 0ψ和)(n E 0构造出ψ和E 。
10. Gerlack Stein -实验证明了电子自旋的存在。
11、条件:①能量比无穷远处的势小;②能级满足的方程至少有一个解。
12、不一定,只有在它们共同的本征态下才能同时确定。
13、无关。
14、因为作为零级近似的波函数必须保证()()()()()()()()011100E HE H nnnnˆˆφφ--=-有解。
15、164。
16、不是,是17、不一定,如z y x L ,L ,L ˆˆˆ互不对易,但在Y 00态下,0L L L zy x ===ˆˆˆ。
18、厄米矩阵的定义为矩阵经转置、共轭两步操作之后仍为矩阵本身,即*nm A =m n A ,可知对角线上的元素必为实数,而关于对角线对称的元素必互相共轭。
19、原子能级之间辐射跃迁所遵从的规则。
选择定则表明并非任何两能级之间的辐射跃迁都是可能的,只有遵从选择定则的能级之间的辐射跃迁才是可能的。