同济高数课后习题答案解析

合集下载

高等数学(同济第七版下)课后习题及解答

高等数学(同济第七版下)课后习题及解答

1.设u =a -b +2c ,v =-a +3b -c .试用a ,b ,c 表示2u -3v .解2u -3v =2(a -b +2c )-3(-a +3b -c )=5a -11b +7c .2.如果平面上一个四边形的对角线互相平分,试用向量证明它是平行四边形.证如图8-1,设四边形ABCD 中AC 与BD 交于M ,已知AM =MC ,MB DM =.故DC DM MC MB AM AB =+=+=.即DC AB //且|AB |=|DC |,因此四边形ABCD是平行四边形.3.把△ABC 的BC 边五等分,设分点依次为D 1,D 2,D 3,D 4,再把各分点与点A 连接.试以AB =c ,BC =a 表向量A D 1,A D 2,A D 3,A D4.证如图8-2,根据题意知511=BD a,5121=D D a,5132=D D a,5143=D D a,故A D 1=-(1BD AB +)=-51a -cA D 2=-(2BD AB +)=-52a -c A D 3=-(3BD AB +)=-53a -c A D 4=-(4BD AB +)=-54a -c.4.已知两点M 1(0,1,2)和M 2(1,-1,0).试用坐标表示式表示向量21M M 及-221M M .解21M M =(1-0,-1-1,0-2)=(1,-2,-2).-221M M =-2(1,-2,-2)=(-2,4,4).5.求平行于向量a =(6,7,-6)的单位向量.解向量a 的单位向量为a a ,故平行向量a 的单位向量为±a a =111±(6,7,-6)=⎪⎭⎫ ⎝⎛-±116,117,116,其中11)6(76222=-++=a .6.在空间直角坐标系中,指出下列各点在哪个卦限?A (1,-2,3),B (2,3,-4),C (2,-3,-4),D (-2,-3,1).解A 点在第四卦限,B 点在第五卦限,C 点在第八卦限,D 点在第三卦限.7.在坐标面上和在坐标轴上的点的坐标各有什么特征?指出下列各点的位置:A (3,4,0),B (0,4,3),C (3,0,0),D (0,-1,0).解在坐标面上的点的坐标,其特征是表示坐标的三个有序数中至少有一个为零,比如xOy 面上的点的坐标为(x 0,y 0,0),xOz 面上的点的坐标为(x 0,0,z 0),yOz 面上的点的坐标为(0,y 0,z 0).在坐标轴上的点的坐标,其特征是表示坐标的三个有序数中至少有两个为零,比如x 轴上的点的坐标为(x 0,0,0),y 轴上的点的坐标为(0,y 0,0),z 轴上的点的坐标为(0,0,z 0).A 点在xOy 面上,B 点在yOz 面上,C 点在x 轴上,D 点在y 轴上.8.求点(a ,b ,c )关于(1)各坐标面;(2)各坐标轴;(3)坐标原点的对称点的坐标.解(1)点(a ,b ,c )关于xOy 面的对称点(a ,b ,-c ),为关于yOz 面的对称点为(-a ,b ,c ),关于zOx 面的对称点为(a ,-b ,c ).(2)点(a ,b ,c )关于x 轴的对称点为(a ,-b ,-c ),关于y 轴的对称点为(-a ,b ,-c ),关于z 轴的对称点为(-a ,-b ,c ).(3)点(a ,b ,c )关于坐标原点的对称点是(-a ,-b ,-c ).9.自点P 0),,(000z y x 分别作各坐标面和各坐标轴的垂线,写出各垂足的坐标.解设空间直角坐标系如图8-3,根据题意,P 0F 为点P 0关于xOz面的垂线,垂足F 坐标为),,000(z x ;P 0D 为点P 0关于xOy 面的垂线,垂足D 坐标为),,0(00y x ;P 0E 为点P 0关于yOz 面的垂线,垂足E 坐标为)0(0o z y ,,.P 0A 为点P 0关于x 轴的垂线,垂足A 坐标为),0,0(o x ;P 0B 为点P 0关于y 轴的垂线,垂足B 坐标为)0,,0(0y ;P 0C 为点P 0关于z 轴的垂线,垂足C 坐标为),0,0(0z .10.过点P 0),,(000z y x 分别作平行于z 轴的直线和平行于xOy 面的平面,问在它们上面的点的坐标各有什么特点?解如图8-4,过P 0且平行于z 轴的直线l 上的点的坐标,其特点是,它们的横坐标均相同,纵坐标也均相同.而过点P 0且平行于xOy 面的平面 上的点的坐标,其特点是,它们的竖坐标均相同.11.一边长为a 的正方体放置在xOy 面上,其底面的中心在坐标原点,底面的顶点在x 轴和y 轴上,求它各顶点的坐标.解如图8-5,已知AB=a ,故OA=OB=a 22,于是各顶点的坐标分别为A )0022(,,a ,B (),022,0(a ),C (-a 22,0,0),D (0,-a 22,0),E (a 22,0,a ),F (0,a 22,a ),G (-a 22,0,a ),H (0,-a 22,a ).12.求点M (4,-3,5)到各坐标轴的距离.解点M 到x 轴的距离为d 1=345)3(22=+-,点M 到y 轴的距离为d 2=415422=+,点M 到z 轴的距离为d 3=525)3(422==-+.13.在yOz 面上,求与三点A (3,1,2),B (4,-2,-2),C (0,5,1)等距离的点.解所求点在yOz 面上,不妨设为P (0,y ,z ),点P 与三点A ,B ,C,)2()1(3222-+-+=z y,)2()2(4222++++=z y.)1()5(22-+-=z y==222222)2()2(4)2()1(3++++=-+-+z y z y 22)1()5(-+-=z y ,即.)1()5()2()1(9,)2()2(16)2()1(922222222-+-=-+-+++++=-+-+z y z y z y z y 解上述方程组,得y=1,z=-2.故所求点坐标为(0,1,-2).14.试证明以三点A (4,1,9),B (10,-1,6),C (2,4,3)为顶点的三角形是等腰直角三角形.证由2798)63()14()102(,7)93()14()42(,7)96()11()410(222222222==-+++-==-+-+-==-+--+-=.+==故△ABC 为等腰直角三角形.15.设已知两点为M 1(4,2,1),M 2(3,0,2),计算向量21M M 的模、方向余弦和方向角.解向量21M M =(3-4,0-2,2-1)=(-1,-2,-1),2412-1-222==++=)()(.其方向余弦分别为cos α=-21,cos β=-22,cos γ=21.方向角分别为3,43,32πγπβπα===.16.设向量的方向余弦分别满足(1)cos α=0;(2)cos β=1;(3)cos α=cos β=0,问这些向量与坐标轴或坐标面的关系如何?解(1)由cos α=0得知2πα=,故向量与x 轴垂直,平行于yOz 面.(2)由cos β=1得知β=0,故向量与y 轴同向,垂直于xOz 面.(3)由cos α=cos β=0知2πβα==,故向量垂直于x 轴和y 轴,即与z 轴平行,垂直于xOy 面.17.设向量r 的模是4,它与u 轴的夹角为3π,求r 在u 轴上的投影.解已知|r |=4,则Prj u r=|r |cos θ=4∙cos 3π=4×21=2.18.一向量的终点在点B (2,-1,7),它在x 轴、y 轴和z 轴上的投影依次为4,-4和7,求这向量的起点A 的坐标.解设A 点坐标为(x ,y ,z ),则AB =(2-x ,-1-y ,7-z ),由题意知2-x=4,-1-y=-4,7-z=7,故x=-2,y=3,z=0,因此A 点坐标为(-2,-3,0).19.设m =3i +4j +8k ,n =2i -4j -7k 和p =5i +j -4k .求向量a =4m +3n -p 在x 轴上的投影及在y轴上的分向量.解a=4m+3n-p=4(3i+5j+8k)+3(2i-4j-7k)-(5i+j-4k)=13i+7j+15k,a在x轴上的投影为13,在y轴上的分向量为7j.1.设k j i b k j i a -+=--=2,23,求(1)b a b a ⨯⋅及;(2)b a 2b 3a 2-⨯⋅及)(;(3)b a ,的夹角的余弦.解(1)),(),,(1-2,12-1-3⋅=⋅b a ,)()()(31-2-21-13=⨯+⨯+⨯==⨯b a 121213---kj i =(5,1,7).(2)1836)(63)2(-=⨯-=⋅-=⋅-b a b a )14,2,10()7,1,5(2)(22==⨯=⨯b a b a (3222222)1(21)2()1(33),cos(-++-+-+=⋅=b a b a b a 21236143==2.设c b a ,,为单位向量,满足.,0a c c b b a cb a ⋅+⋅+⋅=++求解已知,0,1=++===c b a c b a 故0=++⋅++)()(c b a c b a .即0222222=⋅+⋅+⋅+++a c c b b a c b a .因此23-21222=++-=⋅+⋅+⋅)(c b a a c c b b a 3.已知M 1(1,-1,2),M 2(3,3,1)M 3(3,1,3).求与3221,M M M M 同时垂直的单位向量.解21M M =(3-1,3-(-1),1-2)=(2,4,-1)32M M =(3-3,1-3,3-1)=(0,-2,2)由于3221M M M M ⨯与3221,M M M M 同时垂直,故所求向量可取为M M M M a =)(由3221M M M M ⨯=220142--k j i=(6,-4,-4),17268)4()4(6222==-+-+=⨯知).172,172,173()4,4,6(1721--±=--±=a 4.设质量为100kg 的物体从点M1(3,1,8)沿直线移动到点M2(1,4,2),计算重力所作的功(坐标系长度单位为m ,重力方向为z 轴负方向).解21M M =(1-3,4-1,2-8)=(-2,3,-6)F=(0,0,-100×9.8)=(0,0,-980)W=F ∙21M M =(0,0,-980)∙(-2,3,-6)=5880(J).5.在杠杆上支点O 的一侧与点O 的距离为x 1的点P 1处,有一与1OP 成角1θ的力F 1作用着;在O 的另一侧与点O 的距离为x 2的点P 2处,有一与2OP 成角2θ的力F 2作用着(图8-6),问1θ,2θ,x 1,x 2,21,F F 符合怎样的条件才能使杠杆保持平衡?解如图8-6,已知有固定转轴的物体的平衡条件是力矩的代数和为零,又由对力矩正负符号的规定可得杠杆保持平衡的条件为0sin sin 222111=-θθx F x F ,即222111sin sin θθx F x F =.6.求向量),(4,3-4=a在向量)(1,2,2=b 上的投影.解236122)1,2,2()4,3,4(Pr 222==++⋅-=⋅=b b a a j b .7.设)4,1,2(),2,5,3(=-=b a,问μλ与有怎样的关系,能使b a μλ+与z 轴垂直?解b a μλ+=λ(3,5,-2)+μ(2,1,4)=(μλμλμλ42,5,23+-++).要b a μλ+与z 轴垂直,即要(b a μλ+)⊥(0,0,1),即(b a μλ+)∙(0,0,1)=0,亦即(μλμλμλ42,5,23+-++)∙(0,0,1)=0,故(μλ42+-)=0,因此μλ2=时能使b a μλ+与z 轴垂直.8.试用向量证明直径所对的圆周角是直角.证如图8-7,设AB 是圆O 的直径,C 点在圆周上,要证∠ACB=2π,只要证明0=⋅BCAC 即可.由BC AC ⋅=)()(OC BO OC AO +⋅+=BO OC OC AO BO AO ⋅+⋅+⋅=0=+⋅-⋅+OC AO OC AO .故BC AC⊥,∠ACB为直角.9.已知向量j i c k j i b k j i a 23,32-=+-=+-=和,计算:(1)b c a c b a )()(⋅-⋅(2))()(c b b a +⨯+(3)cb a ⋅⨯)(解(1)8)3,1,1()1,3,2(=-⋅-=⋅ba ,8)0,2,1()1,3,2(=-⋅-=⋅c a ,b c a c b a )()(⋅-⋅)24,8,0()3,1,1(8)0,2,1(8--=---=k i 248--=.(2)b a +=(2,-3,1)+(1,-1,3)=(3,-4,4),c b +=(1,-1,3)+(1,-2,0)=(2,-3,3),)()(c b b a +⨯+332443--=kj i k j --=--=)1,1,0(.(3)c b a ⋅⨯)(.2021311132=---=10.已知k j OBk i OA 3,3+=+=,求△OAB 的面积.解由向量积的几何意义知S △OAB⨯)1,3,3(310301--==⨯kj i OB OA,⨯191)3()3(22=+-+-=S △OAB219=11.已知),,(),,,(),,,(z y x z y x z y x c c c c b b b b a a a a ===,试利用行列式的性质证明:ba c a cbc b a ⋅⨯=⋅⨯=⋅⨯)()()(证因为,)(z yxz y xz y xc c c b b b a a a cb a =⋅⨯zyxz y x z y x a a a c c c b b b a c b =⋅⨯)(=⋅⨯b a c )(zyxz yxz y xb b b a a ac c c ,而由行列式的性质知z yxz y x z y x c c c b b b a a a z yx z y x z y x a a a c c c b b b ==zyxz y x z y x b b b a a a c c c ,故b ac a c b c b a ⋅⨯=⋅⨯=⋅⨯)()()(.12.试用向量证明不等式:332211232221232221b a b a b a b b b a a a ++≥++++,其中321321,,,,,b b b a a a 为任意实数.并指出等号成立的条件.证设向量=a (321,,a a a ),=b (321,,b b b ).由),cos(b a b a ba =⋅b a ≤,从而232221232221332211b b b a a a b a b a b a ++++≤++,当321,,a a a 与321,,b b b 成比例,即332211b a b a b a ==时,上述等式成立.1.求过点(3,0,-1)且与平面012573=-+-z y x 平行的平面方程.解所求平面与已知平面012573=-+-z y x 平行.因此所求平面的法向量可取为n=(3,-7,5),设所求平面为0573=++-D z y x .将点(3,0,-1)代入上式得D=-4.故所求平面方程为04573=-+-z y x .2.求过点M 0(2,9,-6)且与连接坐标原点及点M 0的线段OM 0垂直的平面方程.解.6,9,2(0)-=OM 所求平面与0OM 垂直,可取n=0OM ,设所求平面方程为0692=+-+D z y x .将点M 0(2,9,-6)代入上式得D=-121.故所求平面方程为0121692=--+z y x .3.求过(1,1,-1),(-2,-2,2)和(1,-1,2)三点的平面方程.解由0121111121212111=+---+----+--z y x ,得023=--z y x ,即为所求平面方程.注设M (x,y,z )为平面上任意一点,)3,2,1)(,,(==i z y x M i i i i 为平面上已知点.由,0)(31211=⨯⋅M M M M MM 即,0131313121212111=---------z z y y x x z z y y x x z z y y x x 它就表示过已知三点M i (i=1,2,3)的平面方程.4.指出下列各平面的特殊位置,并画出各平面:(1)x=0;(2)3y-1=0;(3)2x-3y-6=0;(4)x-3y=0;(5)y+z=1;(6)x-2z=0;(7)6x+5y-z=0.解(1)—(7)的平面分别如图8—8(a )—(g ).(1)x=0表示yOz 坐标面.(2)3y-1=0表示过点(0,31,0)且与y 轴垂直的平面.(3)2x-3y-6=0表示与z 轴平行的平面.(4)x-3y=0表示过z 轴的平面.(5)y+z=1表示平行于x 轴的平面.(6)x-2z=0表示过y 轴的平面.(7)6x+5y-z=0表示过原点的平面.5.求平面0522=++-z y x 与各坐标面的夹角的余弦.解平面的法向量为n=(2,-2,1),设平面与三个坐标面xOy ,yOz ,zOx 的夹角分别为321,,θθθ.则根据平面的方向余弦知,3111)2(2)1,0,0()1,2,2(cos cos 2221=⋅+-+⋅-=⋅==k n k n γθ,3213)0,0,1()1,2,2(cos cos 2=⋅⋅-=⋅==i n i n αθ3213)0,1,0()1,2,2(cos cos 3-=⋅⋅-=⋅==j n j n βθ.6.一平面过点(1,0,-1)且平行于向量)1,1,2(=a 和)0,1,1(-=b ,试求这个平面方程.解所求平面平行于向量a 和b ,可取平面的法向量)3,1,1(011112-=-=⨯=kj i b a n .故所求平面为0)1(3)0(1)1(1=+--⋅+-⋅z y x ,即043=--+z y x .7.求三平面322,02,13=++-=--=++z y x z y x z y x 的交点.解联立三平面方程.322,02,13=++-=--=++z y x z y x z y x 解此方程组得.3,1,1=-==z y x故所求交点为(1,-1,3).8.分别按下列条件求平面方程:(1)平行于xOz 面且经过点(2,-5,3);(2)通过z 轴和点(-3,1,-2);(3)平行于x 轴且经过两点(4,0,-2)和(5,1,7).解(1)所求平面平行于xOz 面,故设所求平面方程为0=+D By .将点(2,-5,3)代入,得05=+-D B ,即B D 5=.因此所求平面方程为05=+B By ,即05=+y .(2)所求平面过z 轴,故设所求平面为0=+By Ax .将点(-3,1,-2)代入,得03=+-B A ,即A B 3=.因此所求平面方程为03=+Ay Ax ,即03=+y x .(3)所求平面平行于x 轴,故设所求平面方程为0=++D Cz By .将点(4,0,-2)及(5,1,7)分别代入方程得2=+-D C 及07=++D C B .D B D C 29,2-==.因此,所求平面方程为0229=++-D z DDy ,即029=--z y .9.求点(1,2,1)到平面01022=-++zy x 的距离.解利用点),,(00o o z y x M 到平面0=+++D Cz By Ax 的距离公式222000C B A DCz By Ax d +++++=.1332211012221222=-=++-⋅+⋅+=1.求过点(4,-1,3)且平行于直线51123-==-z y x 的直线方程.解所求直线与已知直线平行,故所求直线的方向向量)5,1,2(=s ,直线方程即为531124-=+=-z y x .2.求过两点)1,2,3(1-M 和)2,0,1(2-M 的直线方程.解取所求直线的方向向量)1,2,4()12),2(0,31(21-=-----==M M s ,因此所求直线方程为112243-=+=--z y x .3.用对称式方程及参数方程表示直线.42,1=++=+-z y x z y x 解根据题意可知已知直线的方向向量112111-=kj i s ).3,1,2(-=取x=0,代入直线方程得.4,1=+=+-z y z y 解得.25,23==z y 这样就得到直线经过的一点(25,23,0).因此直线的对称式方程为.32512320-=-=--z y x 参数方程为.325,23,2t z t y t x +=+=-=注由于所取的直线上的点可以不同,因此所得到的直线对称式方程或参数方程得表达式也可以是不同的.4.求过点(2,0,-3)且与直线1253,0742=+-+=-+-z y x z y x 垂直的平面方程.解根据题意,所求平面的法向量可取已知直线的方向向量,即),11,14,16(253421-=--==kj i s n 故所求平面方程为.0)3(11)0(14)2(16=++-+--z y x 即.065111416=---z y x 5.求直线0123,09335=-+-=-+-z y x z y x 与直线01883,02322=-++=+-+z y x z y x 的夹角的余弦.解两已知直线的方向向量分别为),1,4,3(1233351-=--=k j i s ),10,5,10(1831222-=-=kj i s 因此,两直线的夹角的余弦212121),(cos cos s s s s s s ⋅== .010)5(10)1(4310154103222222=+-+-++⨯-⨯-⨯=6.证明直线72,72=++-=-+z y x z y x 与直线02,8363=--=-+z y x z y x 平行.证已知直线的方向向量分别是),15,3,9(112363),5,1,3(11212121---=---==--=kj i s k j i s 由123s s -=知两直线互相平行.7.求过点(0,2,4)且与两平面12=+zx 和23=-z y 平行的直线方程.解所求直线与已知的两个平面平行,因此所求直线的方向向量可取),1,3,2(31020121-=-=⨯=kj i n n s 故所求直线方程为.143220-=-=-z y x 注本题也可以这样解:由于所求直线与已知的两个平面平行,则可视所求直线是分别与已知平面平行的两平面的交线,不妨设所求直线为.3,2b z y a z x=-=+将点(0,2,4)代入上式,得.10,8-==b a 故所求直线为.103,82-=-=+z y z x 8.求过点(3,1,-2)且通过直线12354z y x =+=-的平面方程.解利用平面束方程,过直线12354z y x =+=-的平面束方程为,0)23(2354=-+=+=-z y y x λ将点(3,1,-2)代入上式得.2011=λ因此所求平面方程为,0)23(20112354=-+=+=-z y y x即.0592298=---z y x 9.求直线0,03=--=++z y x z y x 与平面01=+--z y x 的夹角.解已知直线的方向向量),2,4,2(111311-=--=k j is 平面的法向量).1,1,1(--=n 设直线与平面的夹角为,ϕ则,0)1()1(1)2(42)1()2()1(412),cos(sin 222222=-+-+-++-⋅-+-⋅+⋅=⋅==n s n s s n ϕ即.0=ϕ10.试确定下列各组中的直线和平面间的关系;(1)37423z y x =-+=-+和3224=--z y x ;(2)723z y x =-=和8723=+-z y x ;(3)431232--=+=-z y x 和.3=++z y x 解设直线的方向向量为s ,平面的法向量为n ,直线与平面的夹角为,ϕ且ns n s s n ⋅==),cos(sin ϕ.(1)),2,2,4(),3,7,2(--=--=ns,0)2()2(43)7()2()2(3)2()7(4)2(sin 222222=-+-+⋅+-+--⋅+-⋅-+⋅-=ϕ则.0=ϕ故直线平行于平面或在平面上,现将直线上的点A (-3,-4,0)代入平面方程,方程不成立.故点A 不在平面上,因此直线不在平面上,直线与平面平行.(2)),7,2,3(),7,2,3(-=-=n s 由于n s =或,17)2(37)2(377)2()2(33sin 222222=+-+⋅+-+⋅+-⋅-+⋅=ϕ知2πϕ=,故直线与平面垂直.(3)),1,1,1(),4,1,3(=-=n s 由于0=⋅n s 或,0111)4(131)4(1113sin 222222=++⋅-++⋅-+⋅+⋅=ϕ知,0=ϕ将直线上的点A (2,-2,3)代入平面方程,方程成立,即点A 在平面上.故直线在平面上.11.求过点(1,2,1)而与两直线1,012=-+-=+-+z y x z y x 和0,02=+-=+-z y x z y x 平行的平面的方程.解两直线的方向向量为),1,1,0(111112),3,2,1(11112121--=--=--=--=kj i s k j is取),1,1,1(11032121--=----=⨯=k j i s s n 则过点(1,2,1),以n 为法向量的平面方程为,0)1(1)2(1)1(1=-⋅--⋅+-⋅-z y x 即.0=+-z y x 12.求点(-1,2,0)在平面012=+-+z y x 上的投影.解作过已知点且与已知平面垂直的直线.该直线与平面的交点即为所求.根据题意,过点(-1,2,0)与平面012=+-+z y x 垂直的直线为,102211--=-=+z y x 将它化为参数方程,,22,1t z t y t x -=+=+-=代入平面方程得,01)()22(21=+--+++-t t t 整理得32-=t .从而所求点(-1,2,0)在平面012=+-+z y x 上的投影为(32,32,35-).13.求点P (3,-1,2)到直线042,01=-+-=+-+z y x z y x 的距离.解直线的方向向量).3,3,0(112111--=--=kj i s 在直线上取点(1,-2,0),这样,直线的方程可表示成参数方程形式.3,32,1t z t y x -=--==(1)又,过点P (3,-1,2),以)3,3,0(--=s 为法向量的平面方程为,0)2(3)1(3=--+-z y 即.01=-+z y (2)将式(1)代入式(2)得21-=t ,于是直线与平面的交点为(23,21,1-),故所求距离为.223)232()211()13(222=-++-+-=d 14.设M 0是直线L 外一点,M 是直线L 上任意一点,且直线的方向向量为s ,试证:点M 0到直线L的距离d =.证如图8-9,点M 0到直线L 的距离为d.由向量积的几何意义知s ⨯表示以M M 0,s 为邻边的平行四边形的面积.而表示以s 为边长的该平面四边形的高,即为点M 0到直线L 的距离.于是d =15.求直线0923,042=---=+-z y x z y x 在平面14=+-z y x 上的投影直线的方程.解作过已知直线的平面束,在该平面束中找出与已知平面垂直的平面,该平面与已知平面的交线即为所求.设过直线0923,042=---=+-z y x z y x 的平面束方程为,0)923(42=---++-z y x z y x λ经整理得.09)21()4()32(=--+--++λλλλz y x 由,01)21()1()4(4)32(=⋅-+-⋅--+⋅+λλλ得1113-=λ.代入平面束方程,得.0117373117=--+z y x 因此所求投影直线的方程为.14,0117373117=+-=--+z y x z y x 16.画出下列各平面所围成的立体的图形.(1);012243,1,2,0,0,0=-++=====z y x y x z y x(2).4,2,1,0,0yz y x z x =====解(1)如图8-10(a );(2)如图8-10(b ).1.一球面过原点及A (4,0,0),B (1,3,0)和C (0,0,-4)三点,求球面的方程及球心的坐标和半径.解设所求球面的方程为2222)()()(R c z b y a x =-+-+-,将已知点的坐标代入上式,得,2222R c b a =++(1),)4(2222R c b a =++-(2),)3()1(2222R c b a =+-+-(3)2222)4(R c b a =+++,(4)联立(1)(2)得,2=a 联立(1)(4)得,2-=c 将2=a 代入(2)(3)并联立得b=1,故R=3.因此所求球面方程为,9)2()1()2(222=++-+-z y x 其中球心坐标为),2,1,2(-半径为3.2.建立以点(1,3,-2)为球心,且通过坐标原点的球面方程.解设以点(1,3,-2)为球心,R 为半径的球面方程为,)2()3()1(2222R z y x =++-+-球面经过原点,故,14)20()30()10(2222=++-+-=R 从而所求球面方程为.14)2()3()1(222=++-+-z y x 3.方程0242222=++-++z y x z y x 表示什么曲面?解将已知方程整理成,)6()1()2()1(2222=++++-z y x所以此方程表示以(1,-2,-1)为球心,以6为半径的球面.4.求与坐标原点O 及点(2,3,4)的距离之比为1:2的点的全体所组成的曲面的方程,它表示怎样的曲面?解设动点坐标为(z y x ,,),根据题意有,21)4()3()2()0()0()0(222222=-+-+--+-+-z y x z y x 化简整理得.)2932()34()1()32(2222=+++++z y x 它表示以(34,1,32---)为球心,以2932为半径的球面.5.将xOz 坐标面上的抛物线x z 52=绕x 轴旋转一周,求所生成的旋转曲面的方程.解以22z y +±代替抛物线方程x z 52=中的z ,得222)(z y +±x 5=,即x z y 522=+.注xOz 面上的曲线0),(=z x F 绕x 轴旋转一周所生成的旋转曲面方程为0),(22=+±z y x F .6.将xOz 坐标面上的圆922=+z x 绕z 轴旋转一周,求所生成的旋转曲面的方程.解以22y x +±代替圆方程922=+z x 中的x ,得,9)(2222=++±z y x 即.9222=++z y x7.将xOy 坐标面上的双曲线369422=-y x分别绕x 轴及y 轴旋转一周,求所生成的旋转曲面的方程.解以22zy +±代替双曲线方程369422=-y x中的y ,得该双曲线绕x 轴旋转一周而生成的旋转曲面方程为,36)(942222=+±-z y x 即.36)(94222=+-z y x 以22zx +±代替双曲线方程369422=-y x中的x ,得该双曲线绕y 轴旋转一周而生成的旋转曲面方程为,369)(42222=-+±y z x 即.369)(4222=-+y z x 8.画出下列各方程所表示的曲面:(1);)2()2(222a y a x =+-(2);19422=+-y x (3);14922=+z x (4);02=-z y (5)22x z-=.解(1)如图8-11(a );(2)如图8-11(b );(3)如图8-11(c );(4)如图8-11(d );(5)如图8-11(e ).9.指出下列方程在平面解析几何中和在空间解析几何中分别表示什么图形:(1);2=x (2);1+=x y (3);422=+y x(4).122=-y x解(1)2=x 在平面解析几何中表示平行于y 轴的一条直线,在空间解析几何中表示与yOz 面平行的平面.(2)1+=x y在平面解析几何中表示斜率为1,y 轴截距也为1的一条直线,在空间解析几何中表示平行于z 轴的平面.(3)422=+y x在平面解析几何中表示圆心在原点,半径为2的圆,在空间解析几何中表示母线平行于z 轴,准线为0,422==+z y x 的圆柱面.(4)122=-y x在平面解析几何中表示以x 轴为实轴,y 轴为虚轴的双曲线,在空间解析几何中表示母线平行于z轴,准线为,122==-z y x 的双曲柱面.10.说明下列旋转曲面是怎样形成的:(1);1994222=++z y x (2);14222=+-z y x (3);1222=--z y x (4).)(222y x a z+=-解(1)1994222=++z y x 表示xOy 面上的椭圆19422=+y x 绕x轴旋转一周而生成的旋转曲面,或表示xOz 面的椭圆19422=+z x 绕x 轴旋转一周而生成的旋转曲面.(2)14222=+-z y x 表示xOy 面上的双曲线1422=-y x 绕y 轴旋转一周而生成的旋转曲面,或表示yOz 面的双曲线1422=+-z y 绕y 轴旋转一周而生成的旋转曲面.(3)1222=--z y x表示xOy 面上的双曲线122=-y x 绕x 轴旋转一周而生成的旋转曲面,或表示xOz 面的双曲线122=-z x 绕x 轴旋转一周而生成的旋转曲面.(4)222)(y x a z+=-表示xOz 面上的直线a x z +=或a x z +-=绕z 轴旋转一周而生成的旋转曲面,或表示yOz 面的直线a y z+=或a y z +-=绕z 轴旋转一周而生成的旋转曲面.11.画出下列方程所表示的曲面:(1);44222=++z y x(2);44222=--z y x(3).94322y x z +=解(1)如图8-12(a );(2)如图8-12(b );(3)如图8-12(c );12.画出下列各曲面所围立体的图形:(1)1,03,0,3,022=+=-=-==y x y x y x z z(在第一卦限内);(2)222222,,0,0,0R z y R y x z y x =+=+===(在第一卦限内).解(1)如图8-13所示;(2)如图8-14所示.1.画出下列曲线在第一卦限内的图形;(1);2,1==y x (2);0,422=---=yxyx z(3).,222222a z x a y x =+=+解(1)如图8-15(a );(2)如图8-15(b );(3)如图8-15(c ).2.指出下列方程组在平面解析几何中与在空间解析几何中分别表示什么图形:(1);32,15-=+=x y x y (2).3,19422==+y y x 解(1)32,15-=+=x y x y 在平面解析几何中表示两直线的交点.在空间解析几何中表示两平面的交线,即空间直线.(2)3,19422==+y y x 在平面解析几何中表示椭圆19422=+y x 与其切线3=y 的交点,即切点.在空间解析几何中表示椭圆柱面19422=+y x 与其切平面3=y 的交线,即空间直线.3.分别求母线平行于x 轴及y 轴而且通过曲线0,162222222=-+=++y z x z y x 的柱面方程.解在,162222222=-+=++y z x z y x 中消去x ,得,16322=-z y 即为母线平行于x 轴且通过已知曲线的柱面方程.在,162222222=-+=++y z x z y x 中消去y ,得,162322=+z x 即为母线平行于y 轴且通过已知曲线多的柱面方程.4.求球面9222=++z y x 与平面1=+z x 的交线在xOy 面上的投影的方程.解在1,9222=+=++z x z y x 中消去z ,得,9)1(222=-++x y x 即,82222=+-y x x它表示母线平行于z轴的柱面,故0,82222==+-z y x x 表示已知交线在xOy 面上的投影的方程.5.将下列曲线的一般方程化为参数方程:(1);,9222x y z y x ==++(2).0,4)1()1(222==+++-z z y x解(1)将x y=代入,9222=++z y x 得,9222=+z x 取,cos 23t x =则,sin 3t z =从而可得该曲线的参数方程tz t y t x sin 3,cos 23,cos 23===(t ≤0˂π2)(2)将z=0代入,4)1()1(222=+++-z y x 得,3)1(22=+-y x 取,cos 31t x =-则,sin 3t y =从而可得该曲线的参数方程0,sin 3,cos 31==+=z t y t x (t ≤0˂π2)6.求螺旋线θθθb z a y a x ===,sin ,cos 在三个坐标面上的投影曲线的直角坐标方程.解由θθsin ,cos a y a x==得,222a y x =+故该螺旋线在xOy 面上的投影曲线的直角坐标方程为,222==+z a y x 由θθb z a y ==,sin 得bza y sin =,故该螺旋线在yOz 面上的投影曲线的直角坐标方程为0,sin ==x bza y 由θθb z a x ==,cos 得,cos b za x =故故该螺旋线在yOz 面上的投影曲线的直角坐标方程为.0,cos ==y bza x 7.求上半球2220y x a z --≤≤与圆柱体a ax y x (22≤+>0)的公共部分在xOy 面和xOz 面上的投影.解如图8-16.所求立体在xOy 面上的投影即为ax y x ≤+22,而由axy x y x a z =+--=22222,得.2ax a z -=故所求立体在xOz 面上的投影为由x 轴,z 轴及曲线ax a z-=2所围成的区域.8.求旋转抛物面)40(22≤≤+=z y x z在三坐标面上的投影解联立422=+=z y x z ,得422=+y x.故旋转抛物面在xOy面上的投影为.0,422=≤+z y x 如图8-17.联立0,22=+=x y x z 得,2y z=故旋转抛物面在yOz 面上的投影为2y z=及4=z 所围成的区域.同理,联立0,22=+=y y x z 得,2x z =故旋转抛物面在xOz 面上的投影为2x z=及4=z 所围成的区域.。

同济高等数学下册课后题答案详解

同济高等数学下册课后题答案详解

第8章第1节向量及其线性运算习题8—111,12,15,17,18第8章第2节数量积、向量积、混合积习题8—23,4,6,7,9,10第8章第3节曲面及其方程习题8—32,5,7,9,10(1)(2)(3)(4)第8章第4节空间曲线及其方程习题8—43,4,7,8第8章第5节平面及其方程习题8—51,2,3,5,9第8章第6节空间直线及其方程习题8—61,2,3,4,5,8,9,10(1)(2),12,13,15第8章总复习题总复习题八1,7,8,10,11,12,13,14(1)(2),15,17,19,20第9章第1节多元函数基本概念习题9—12,5(1)(2),6(1)(2)(4)(5),7(1),8第9章第2节偏导数习题9—21(3)(4)(5) (6)(7),4,6(2),9(1)第9章第3节全微分习题9—31(1)(2)(4),2,3,5第9章第4节多元复合函数的求导法则习题9—42,4,6,7,8(1)(2),10,11,12(1)(4)第9章第5节隐函数的求导公式习题9—51,2,4,5,6,8,9,10(1)(3)第9章第6节多元函数微分学的几何应用习题9—63,4,6,7,9,10,12第9章第7节方向导数与梯度习题9—72,3,5,7,8,10第9章第8节多元函数的极值及其求法习题9—81,2,5,6,7,9,11第9章第9节二元函数泰勒公式习题9—91,3第9章总复习题总复习题九1,2,3,5,6,8,9,12,15,16,17,20第10章第1节二重积分的概念与性质习题10—12,4,5第10章第2节二重积分的计算法习题10—21(1)(3),2(3)(4),4(1)(3),6(4)(5)(6),7,89,12(1)(2)(3),14(1)(2),15(1)(2)(3),16 第10章第3节三重积分习题10—31(1)(2),2,4,5,7,8,9(1)(2),10(1)(2),11(1)第10章第4节重积分的应用习题10—41,2,5,6,8,10,14第10章总复习题总复习题十1,2(1) (3),3(1)(2)6,8(1)(2),10,11,12第11章第1节对弧长的曲线积分习题11—11,3(3)(4)(5)(7),4第11章第2节对坐标的曲线积分习题11—23(1) (2)(3) (5) (6)(7),4(1)(2)(3),7(1)(2),8第11章第3节格林公式及其应用习题11—31,2(1)(2),3,4(1)(2),5(1)(2)(4),6(1)(3)(4),8(1) (3)(5) (6)(7)第11章第4节对面积的曲面积分习题11—41,4(1)(2),5(1),6(1)(2)(3),7,8第11章第5节对坐标的曲面积分习题11—53(1)(2)(4),4(1)(2)第11章第6节高斯公式通量与散度习题11—61(1) (2)(3) (4) , 3(1)(2)第11章第7节斯托克斯公式环流量与旋度习题11—72(1) (2)(3),3(1)(2)第11章总复习题总复习题十一1,2,3,4,5,7,11第12章第1节常数项级数的概念和性质习题12—11(1)(4),2(3)(4),3,4第12章第2节常数项级数的审敛法习题12—21(1)(4) (5),2(1)(4) ,3(1)(3),4(1)(3)(5),5(1)(2)(3) (5)第12章第3节幂级数习题12—31,2第12章第4节函数展开成幂级数习题12—42,3,4,5,6第12章第7节傅里叶级数习题12—71(1)(2),2(1),3,4,5,6第12章第8节一般周期函数的傅里叶级数习题12—81(1)(2),2第12章总复习题总复习题十二1,2(1)(2)(3)(5),4,5(1)(2)(4),6(1),7(1)(2)(4),8(1)(2)(3),9(1),10(1),11。

同济大学《高等数学》第七版上、下册答案(详解),DOC

同济大学《高等数学》第七版上、下册答案(详解),DOC
(4)2 12 (7 z)2 32 52 (2 z)2
解得 z 14
9
即所求点为 M(0,0,14 ).
9
7. 试证:以三点 A(4,1,9),B(10,-1,6),C(2,4,3)为顶点的三角形是等腰直角三角形. 证明:因为|AB|=|AC|=7.且有 |AC|2+|AB|2=49+49=98=|BC|2. 故△ABC 为等腰直角三角形. 8. 验证: (a b) c a (b c) .
3 i 14
1 j 14
2 k.
14
14. 三个力 F1=(1,2,3), F2=(-2,3,-4), F3=(3,-4,5)同时作用于一点. 求合力 R 的大小和方向余弦.
解:R=(1-2+3,2+3-4,3-4+5)=(2,1,4)
| R | 22 12 42 21
cos 2 , cos 1 , cos 4 .
故 A 的坐标为 A(-2, 3, 0).
13. 一向量的起点是 P1(4,0,5),终点是 P2(7,1,3),试求:
(1) P1P2 在各坐标轴上的投影; (2) P1P2 的模;
(3) P1P2 的方向余弦;
(4) P1P2 方向的单位向量.
解:(1) ax Pr jx P1P2 3,
ay Pr jy P1P2 1,
练习 5-2
练习 5-3
练习 5-4
总习题五
练习 6-2
练习 6-3
(2) s 22 (3)2 (4)2 29
(3) s (1 2)2 (0 3)2 (3 4)2 67
(4) s (2 4)2 (1 2)2 (3 3)2 3 5 .
5. 求点(4,-3,5)到坐标原点和各坐标轴间的距离.

同济第六版高数答案(高等数学课后习题解答)

同济第六版高数答案(高等数学课后习题解答)

习题3-31. 按(x -4)的幂展开多项式x 4-5x 3+x 2-3x +4. 解 设f (x )=x 4-5x 3+x 2-3x +4. 因为 f (4)=-56,f '(4)=(4x 3-15x 2+2x -3)|x =4=21, f ''(4)=(12x 2-30x +2)|x =4=74, f '''(4)=(24x -30)|x =4=66, f (4)(4)=24, 所以4)4(32)4(!4)4()4(!3)4()4(!2)4()4)(4()4()(-+-'''+-''+-'+=x f x f x f x f f x f =-56+21(x -4)+37(x -4)2+11(x -4)3+(x -4)4. 2. 应用麦克劳林公式, 按x 幂展开函数f (x )=(x 2-3x +1)3. 解 因为f '(x )=3(x 2-3x +1)2(2x -3),f ''(x )=6(x 2-3x +1)(2x -3)2+6(x 2-3x +1)2=30(x 2-3x +1)(x 2-3x +2), f '''(x )=30(2x -3)(x 2-3x +2)+30(x 2-3x +1)(2x -3)=30(2x -3)(2x 2-6x +3), f (4)(x )=60(2x 2-6x +3)+30(2x -3)(4x -6)=360(x 2-3x +2), f (5)(x )=360(2x -3), f (6)(x )=720;f (0)=1, f '(0)=-9, f ''(0)=60, f '''(0)=-270, f (4)(0)=720, f (5)(0)=-1080, f (6)(0)=720, 所以6)6(5)5(4)4(32!6)0(!5)0(!4)0(!3)0(!2)0()0()0()(x f x f x f x f x f x f f x f +++'''+''+'+==1-9x +30x 3-45x 3+30x 4-9x 5+x 6.3. 求函数x x f =)(按(x -4)的幂展开的带有拉格朗日型余项的3阶泰勒公式. 解 因为24)4(==f , 4121)4(421=='=-x x f , 32141)4(423-=-=''=-x x f , 328383)4(425⋅=='''=-x x f , 27)4(1615)(--=x x f , 所以4)4(32)4(!4)()4(!3)4()4(!2)4()4)(4()4(-+-'''+-''+-'+=x f x f x f x f f x ξ4732)4()]4(4[1615!41)4(5121)4(641)4(412--+⋅--+---+=x x x x x θ(0<θ<1). 4. 求函数f (x )=ln x 按(x -2)的幂展开的带有佩亚诺型余项的n 阶泰勒公式. 解 因为f '(x )=x -1, f ''(x )=(-1)x -2, f '''(x )=(-1)(-2)x -3 , ⋅ ⋅ ⋅ , nn nn x n x n x f )!1()1()1( )2)(1()(1)(--=+-⋅⋅⋅--=--; kk k k f 2)!1()1()2(1)(--=-(k =1, 2, ⋅ ⋅ ⋅, n +1), 所以])2[()2(!)2( )2(!3)2()2(!2)2()2)(2()2(ln )(32n n n x o x n f x f x f x f f x -+-+⋅⋅⋅+-'''+-''+-'+=])2[()2(2)1( )2(231)2(221)2(212ln 13322n n n n x o x n x x x -+-⋅-+⋅⋅⋅--⋅+-⋅--+=-. 5. 求函数x x f 1)(=按(x +1)的幂展开的带有拉格朗日型余项的n 阶泰勒公式. 解 因为f (x )=x -1, f '(x )=(-1)x -2, f ''(x )=(-1)(-2)x -3 , ⋅ ⋅ ⋅ , 1)1()(!)1()( )2)(1()(++--=-⋅⋅⋅--=n n n n xn xn x f ; !)1(!)1()1(1)(k k fk k k -=--=-+(k =1, 2, ⋅ ⋅ ⋅, n ),所以 )1(!3)1()1(!2)1()1)(1()1(132⋅⋅⋅++-'''++-''++-'+-=x f x f x f f x1)1()()1()!1()()1(!)1(++++++-+n n nn x n f x n f ξ 12132)1()]1(1[)1(])1( )1()1()1(1[++++++--+++⋅⋅⋅+++++++-=n n n nx x x x x x θ (0<θ<1). 6. 求函数f (x )=tan x 的带有拉格朗日型余项的3阶麦克劳林公式. 解 因为 f '(x )=sec 2x ,f ''(x )=2sec x ⋅sec x ⋅tan x =2sec 2x ⋅tan x ,f '''(x )=4sec x ⋅sec x ⋅tan 2x +2sec 4x =4sec 2x ⋅tan 2x +2sec 4x ,f (4)(x )=8sec 2x ⋅tan 3x +8sec 4x ⋅tan x +8sec 4x ⋅tan x xx x 52cos )2(sin sin 8+=;f (0)=0, f '(0)=1, f ''(0)=0, f '''(0)=2,所以 4523)(c o s 3]2)()[s i n s i n (31t a nx x x x x x x θθθ+++=(0<θ<1). 7. 求函数f (x )=xe x 的带有佩亚诺型余项的n 阶麦克劳林公式. 解 因为 f '(x )=e x +xe x ,f ''(x )=e x +e x +xe x =2e x +xe x , f '''(x )=2e x +e x +xe x =3e x +xe x , ⋅ ⋅ ⋅, f (n )(x )=ne x +xe x ; f (k )(0)=k (k =1, 2, ⋅ ⋅ ⋅, n ),所以 )(!)0( !3)0(!2)0()0()0()(32n nn xx o x n f x f x f x f f xe ++⋅⋅⋅⋅+'''+''+'+=)()!1(1 !2132n n x o x n x x x +-⋅⋅⋅+++=.8. 验证当210≤≤x 时, 按公式62132x x x e x +++≈计算e x 的近似值时, 所产生的误差小于0.01, 并求e 的近似值, 使误差小于0.01.解 因为公式62132x x x e x+++≈右端为e x 的三阶麦克劳林公式, 其余项为 43!4)(x e x R ξ=, 所以当210≤≤x 时,按公式62132x x x e x +++≈计算e x 的误差 01.00045.0)21(!43|!4||)(|42143<≈≤=x e x R ξ.645.1)21(61)21(212113221≈⋅+⋅++≈=e e .9. 应用三阶泰勒公式求下列各数的近似值, 并估计误差: (1)330; (2)sin18︒.解 (1)设3)(x x f =, 则f (x )在x 0=27点展开成三阶泰勒公式为2353233)27)(2792(!21)27(273127)(-⋅-⋅+-⋅+==--x x x x f4311338)27)(8180(!41)27)(272710(!31--⋅+-⋅⋅+--x x ξ(ξ介于27与x 之间).于是33823532333)272710(!313)2792(!21327312730⋅⋅⋅+⋅⋅-⋅+⋅⋅+≈---10724.3)3531311(31063≈+-+≈, 其误差为5114311431131088.13!4803278180!41|3)8180(!41||)30(|---⨯=⋅=⋅⋅⋅<⋅-⋅=ξR .(2) 已知43!4s i n !31s i n x x x x ξ+-=(ξ介于0与x 之间),所以 sin 18︒3090.0)10(!311010sin 3≈-≈=πππ,其误差为44431003.2)10(!46sin |)10(!4sin ||)10(|-⨯=<=πππξπR . 10. 利用泰勒公式求下列极限: (1))23(lim 434323x x x x x --++∞→;(2))]1ln([cos lim2202x x x e x x x -+--→;(3)2220sin )(cos 1211lim 2x e x x x x x -+-+→. 解 (1)tt t xx x x x x x t x x 430434343232131lim 12131lim)23(lim --+=--+=--++→+∞→+∞→.因为)(1313t o t t ++=+,)(211214t o t t +-=-, 所以23])(23[lim )](211[)](1[lim)23(lim 00434323=+=+--++=--++→+→+∞→t t o t t o t t o t x x x x t t x . (2)])1ln(1[)](41!21211[)](!41!211[lim)]1ln([cos lim1344244202202x x xx x xx o x x x o x x x x x e x -++⋅+--++-=-+-→-→010)1l n (1)(121lim 11340=+=-++-=-→e x x x o x x x . (3)2442442442202220))](!211())(!41!211[()](!43!211[211lim sin )(cos 1211lim 2xx o x x x o x x x o x x x x e x x x x x x +++-++-+-+-+=-+-+→→ 12123!43)(241123)(!43lim )(241123)(!43lim 2424404264440-=-=+--+=⋅+--+=→→x x o x x x o x o x x x x o x x x .习题3-41. 判定函数f (x )=arctan x -x 单调性.解 因为011111)(22≤+-=-+='x x x f , 且仅当x =0时等号成立, 所以f (x )在(-∞, +∞)内单调减少.2. 判定函数f (x )=x +cos x (0≤x ≤2π)的单调性.解 因为f '(x )=1-sin x ≥0, 所以f (x )=x +cos x 在[0, 2π]上单调增加. 3. 确定下列函数的单调区间: (1) y =2x 3-6x 2-18x -7;(2)xx y 82+=(x >0);(3)x x x y 6941023+-=;(4))1ln(2x x y ++=; (5) y =(x -1)(x +1)3;(6))0())(2(32>--=a x a a x y ; (7) y =x n e -x (n >0, x ≥0); (8)y =x +|sin 2x |.解 (1) y '=6x 2-12x -18=6(x -3)(x +1)=0, 令y '=0得驻点x 1=-1, x 2=3. 列表得可见函数在(-∞, -1]和[3, +∞)内单调增加, 在[-1, 3]内单调减少.(2) 0)2)(2(28222=+-=-='x x x x y ,令y '=0得驻点x 1=2, x 2=-2(舍去).因为当x >2时, y >0; 当0<x <2时, y '<0, 所以函数在(0, 2]内单调减少, 在[2, +∞)内单调增加. (3)223)694()1)(12(60x x x x x y +----=', 令y '=0得驻点211=x , x 2=1, 不可导点为x =0. 列表得可见函数在(-∞, 0), ]21 ,0(, [1, +∞)内单调减少, 在]1 ,21[上单调增加.(4)因为011)1221(11222>+=++++='x x x x x y , 所以函数在(-∞, +∞)内单调增加. (5) y '=(x +1)3+3(x -1)(x +1)22)1)(21(4+-=x x . 因为当21<x 时, y '<0; 当21>x 时, y '>0, 所以函数在]21 ,(-∞内单调减少, 在) ,21[∞+内单调增加.(6)32)()2(3)32(x a a x a x y ----=', 驻点为321a x =, 不可导点为22a x =, x 3=a .列表得可见函数在)2 ,(a -∞, ]32 ,2(a a , (a , +∞)内单调增加, 在) ,32[a a 内单调减少.(7)y '=e -x x n -1(n -x ), 驻点为x =n . 因为当0<x <n 时, y '>0; 当x >n 时, y '<0, 所以函数在[0, n ]上单调增加, 在[n , +∞)内单调减少.(8)⎪⎩⎪⎨⎧+<<+-+≤≤+=πππππππk x k x x k x k x x y 22sin 2 2sin (k =0, ±1, ±2, ⋅ ⋅ ⋅),⎪⎩⎪⎨⎧+<<+-+≤≤+='πππππππk x k x k x k x y 2 2c o s 212 2c o s 21(k =0, ±1, ±2, ⋅ ⋅ ⋅). y '是以π为周期的函数, 在[0, π]内令y '=0, 得驻点21π=x , 652π=x , 不可导点为23π=x .列表得根据函数在[0, π]上的单调性及y '在(-∞, +∞)的周期性可知函数在]32 ,2[πππ+k k 上单调增加, 在]22 ,32[ππππ++k k 上单调减少(k =0, ±1, ±2, ⋅ ⋅ ⋅).4. 证明下列不等式: (1)当x >0时, x x +>+1211;(2)当x >0时, 221)1ln(1x x x x +>+++; (3)当20π<<x 时, sin x +tan x >2x ;(4)当20π<<x 时, 331tan x x x +>;(5)当x >4时, 2x >x 2;证明 (1)设x x x f +-+=1211)(, 则f (x )在[0, +∞)内是连续的. 因为x x f +-='12121)(01211>+-+=xx , 所以f (x )在(0, +∞)内是单调增加的, 从而当x >0时f (x )>f (0)=0, 即 01211>+-+x x , 也就是 x x +>+1211.(2)设221)1ln(1)(x x x x x f +-+++=, 则f (x )在[0, +∞)内是连续的. 因为 0)1l n (1)11(11)1l n ()(22222>++=+-++⋅++⋅+++='x x x x x x x x x x x x f ,所以f (x )在(0, +∞)内是单调增加的, 从而当x >0时f (x )>f (0)=0, 即 01)1l n (122>+-+++x x x x , 也就是 221)1l n (1x x x x +>+++.(3)设f (x )=sin x +tan x -2x , 则f (x )在)2,0[π内连续,f '(x )=cos x +sec 2x -2xx x x 22cos ]cos )1)[(cos 1(cos ---=. 因为在)2 ,0(π内cos x -1<0, cos 2x -1<0, -cos x <0, 所以f '(x )>0, 从而f (x )在)2 ,0(π内单调增加, 因此当20π<<x 时, f (x )>f (0)=0, 即sin x +tan x -2x >0, 也就是 sin x +tan x >2x .(4)设331tan )(x x x x f --=, 则f (x )在)2 ,0[π内连续,))(t a n (t a n t a n 1s e c )(2222x x x x x x x x x f +-=-=--='. 因为当20π<<x 时, tan x >x , tan x +x >0, 所以f '(x )在)2 ,0(π内单调增加, 因此当20π<<x 时, f (x )>f (0)=0, 即031t a n 3>--x x x ,也就是 231t a n x x x +>.(5)设f (x )=x ln2-2ln x , 则f (x )在[4, +∞)内连续, 因为 0422ln 224ln 22ln )(=->-=-='e x x x f ,所以当x >4时, f '(x )>0, 即f (x )内单调增加.因此当x >4时, f (x )>f (4)=0, 即x ln2-2ln x >0, 也就是2x >x 2. 5. 讨论方程ln x =ax (其中a >0)有几个实根?解 设f (x )=ln x -ax . 则f (x )在(0, +∞)内连续, xax a x x f -=-='11)(, 驻点为a x 1=.因为当ax 10<<时, f '(x )>0, 所以f (x )在)1 ,0(a 内单调增加; 当a x 1>时, f '(x )<0, 所以f (x )在) ,1(∞+a内单调减少. 又因为当x →0及x →+∞时, f (x )→-∞, 所以如果011ln )1(>-=a a f , 即e a 1<, 则方程有且仅有两个实根; 如果011ln )1(<-=aa f , 即e a 1>, 则方程没有实根. 如果011ln )1(=-=a a f , 即e a 1=, 则方程仅有一个实根. 6. 单调函数的导函数是否必为单调函数?研究下面这个例子: f (x )=x +sin x .解 单调函数的导函数不一定为单调函数.例如f (x )=x +sin x 在(-∞,+∞)内是单调增加的, 但其导数不是单调函数. 事实上, f '(x )=1+cos x ≥0,这就明f (x )在(-∞, +∞)内是单调增加的. f ''(x )=-sin x 在(-∞, +∞)内不保持确定的符号, 故f '(x )在(-∞, +∞)内不是单调的.7. 判定下列曲线的凹凸性: (1) y =4x -x 2 ; (2) y =sh x ;(3)xy 11+=(x >0);(4) y =x arctan x ; 解 (1)y '=4-2x , y ''=-2,因为y ''<0, 所以曲线在(-∞, +∞)内是凸的. (2)y '=ch x , y ''=sh x . 令y ''=0, 得x =0.因为当x <0时, y ''=sh x <0; 当x >0时, y ''=sh x >0, 所以曲线在(-∞, 0]内是凸的, 在[0, +∞)内是凹的.(3)21x y -=', 32x y =''. 因为当x >0时, y ''>0, 所以曲线在(0, +∞)内是凹的. (4)21arctan xx x y ++=',22)1(2x y +=''.因为在(-∞, +∞)内, y ''>0, 所以曲线y =x arctg x 在(-∞, +∞)内是凹的.8. 求下列函数图形的拐点及凹或凸的区间: (1).y =x 3-5x 2+3x +5 ; (2) y =xe -x ; (3) y =(x +1)4+e x ;(4) y =ln(x 2+1); (5) y =e arctan x ; (6) y =x 4(12ln x -7),解 (1)y '=3x 2-10x +3, y ''=6x -10. 令y ''=0, 得35=x .因为当35<x 时, y ''<0; 当35>x 时, y ''>0, 所以曲线在]35 ,(-∞内是凸的, 在) ,35[∞+内是凹的, 拐点为)2720 ,35(.(2)y '=e -x -xe -x , y ''=-e -x -e -x +xe -x =e -x (x -2). 令y ''=0, 得x =2.因为当x <2时, y ''<0; 当x >2时, y ''>0, 所以曲线在(-∞, 2]内是凸的, 在[2, +∞)内是凹的, 拐点为(2, 2e -2).(3)y '=4(x +1)3+e x , y ''=12(x +1)2+e x .因为在(-∞, +∞)内, y ''>0, 所以曲线y =(x +1)4+e x 的在(-∞, +∞)内是凹的, 无拐点.(4)122+='x x y , 22222)1()1)(1(2)1(22)1(2++--=+⋅-+=''x x x x x x x y . 令y ''=0, 得x 1=-1, x 2=1. 列表得可见曲线在(-∞, -1]和[1, +∞)内是凸的, 在[-1, 1]内是凹的, 拐点为(-1, ln2)和(1, ln2).(5)2arctan 11x e y x+⋅=',)21(12arctan x x e y x-+=''. 令y ''=0得, 21=x . 因为当21<x 时, y ''>0; 当21>x 时, y ''<0, 所以曲线y =e arctg x 在]21 ,(-∞内是凹的,在) ,21[∞+内是凸的, 拐点是) ,21(21arctane. (6) y '=4x 3(12ln x -7)+12x 3, y ''=144x 2⋅ln x . 令y ''=0, 得x =1.因为当0<x <1时, y ''<0; 当x >1时, y ''>0, 所以曲线在(0, 1]内是凸的, 在[1, +∞)内是凹的, 拐点为(1, -7).9. 利用函数图形的凹凸性, 证明下列不等式:(1) nn n y x y x )2()(21+>+(x >0, y >0, x ≠y , n >1);(2))(22y x e e e yx y x ≠>++;(3)2ln)(ln ln yx y x y y x x ++>+ (x >0, y >0, x ≠y ). 证明 (1)设f (t )=t n , 则f '(t )=nt n -1, f ''(t )=n (n -1)t n -2. 因为当t >0时, f ''(t )>0, 所以曲线f (t )=t n 在区间(0, +∞)内是凹的. 由定义, 对任意的x >0, y >0, x ≠y 有)2()]()([21yx f y f x f +>+,即 nn n y x y x )2()(21+>+.(2)设f (t )=e t , 则f '(t )=e t , f ''(t )=e t . 因为f ''(t )>0, 所以曲线f (t )=e t 在(-∞, +∞)内是凹的. 由定义, 对任意的x , y ∈(-∞, +∞), x ≠y 有)2()]()([21yx f y f x f +>+,即 )(22y x ee e yx yx ≠>++.(3)设f (t )=t ln t , 则 f '(t )=ln t +1, tt f 1)(=''.因为当t >0时, f ''(t )>0, 所以函数f (t )=t ln t 的图形在(0, +∞)内是凹的. 由定义, 对任意的x >0, y >0, x ≠y 有)2()]()([21yx f y f x f +>+,即 2ln )(ln ln yx y x y y x x ++>+. 10. 试证明曲线112+-=x x y 有三个拐点位于同一直线上.证明 222)1(12+++-='x x x y ,323223)1()]32()][32()[1(2)1(2662++---+=++--=''x x x x x x x x y . 令y ''=0, 得x 1=-1, 322-=x , 323+=x . 例表得可见拐点为(-1, -1), ))32(431 ,32(---, ))32(431 ,32(+++. 因为41)1(32)1()32(431=-------, 41)1(32)1()32(431=--+--++,所以这三个拐点在一条直线上.11. 问a 、b 为何值时, 点(1, 3)为曲线y =ax 3+bx 2的拐点?解 y '=3ax 2+2bx , y ''=6ax +2b . 要使(1, 3)成为曲线y =ax 3+bx 2的拐点, 必须y (1)=3且y ''(1)=0, 即a +b =3且6a +2b =0, 解此方程组得23-=a , 29=b .12. 试决定曲线y =ax 3+bx 2+cx +d 中的a 、b 、c 、d , 使得x =-2处曲线有水平切线, (1, -10)为拐点, 且点(-2, 44)在曲线上. 解 y '=3ax 2+2bx +c , y ''=6ax +2b . 依条件有⎪⎩⎪⎨⎧=''=-'-==-0)1(0)2(10)1(44)2(y y y y , 即⎪⎩⎪⎨⎧=+=+--=+++=+-+-02604121044248b a c b a d c b a d c b a .解之得a =1, b =-3, c =-24, d =16.13. 试决定y =k (x 2-3)2中k 的值, 使曲线的拐点处的法线通过原点. 解y '=4kx 3-12kx , y ''=12k (x -1)(x +1). 令y ''=0, 得x 1=-1, x 2=1.因为在x 1=-1的两侧y ''是异号的, 又当x =-1时y =4k , 所以点(-1, 4k )是拐点. 因为y '(-1)=8k , 所以过拐点(-1, 4k )的法线方程为)1(814+-=-x k k y . 要使法线过原点, 则(0, 0)应满足法线方程, 即kk 814-=-, 82±=k .同理, 因为在x 1=1的两侧y ''是异号的, 又当x =1时y =4k , 所以点(1, 4k )也是拐点.因为y '(1)=-8k , 所以过拐点(-1, 4k )的法线方程为)1(814-=-x k k y . 要使法线过原点, 则(0, 0)应满足法线方程, 即k k 814-=-, 82±=k .因此当82±=k 时, 该曲线的拐点处的法线通过原点.14. 设y =f (x )在x =x 0的某邻域内具有三阶连续导数, 如果f ''(x 0)=0, 而f '''(x 0)≠0,试问 (x 0, f (x 0))是否为拐点?为什么?解 不妨设f '''(x 0)>0. 由f '''(x )的连续性, 存在x 0的某一邻域(x 0-δ, x 0+δ), 在此邻域内有f '''(x )>0. 由拉格朗日中值定理, 有f ''(x )-f ''(x 0)=f '''(ξ)(x -x 0) (ξ介于x 0与x 之间), 即 f ''(x )=f '''(ξ)(x -x 0).因为当x 0-δ<x <x 0时, f ''(x )<0; 当x 0<x <x 0+δ 时, f ''(x )>0, 所以(x 0, f (x 0))是拐点.习题3-51. 求函数的极值: (1) y =2x 3-6x 2-18x +7; (2) y =x -ln(1+x ) ; (3) y =-x 4+2x 2 ; (4)x x y -+=1;(5)25431x xy ++=;(6)144322++++=x x x x y ;(7) y =e xcos x ;(8)xx y 1=;(9)31)1(23+-=x y ; (10) y =x +tan x .解 (1)函数的定义为(-∞, +∞), y '=6x 2-12x -18=6(x 2-2x -3)=6(x -3)(x +1), 驻点为x 1=-1, x 2=3. 列表可见函数在 (2)函数的定义为(-1, +∞), xxx y +=+-='1111, 驻点为x =0. 因为当-1<x <0时, y '<0; 当x >0时, y '>0, 所以函数在x =0处取得极小值, 极小值为y (0)=0. (3)函数的定义为(-∞, +∞),y '=-4x 3+4x =-4x (x 2-1), y ''=-12x 2+4, 令y '=0, 得x 1=0, x 2=-1, x 3=1.因为y ''(0)=4>0, y ''(-1)=-8<0, y ''(1)=-8<0, 所以y (0)=0是函数的极小值, y (-1)=1和y (1)=1是函数的极大值.(4)函数的定义域为(-∞, 1], )112(1243121121211+---=---=--='x x x xx xy ,令y '=0, 得驻点43=x .因为当43<x 时, y '>0; 当143<<x 时, y '<0, 所以45)1(=y 为函数的极大值.(5)函数的定义为(-∞, +∞), 32)54()512(5x x y +--=', 驻点为512=x . 因为当512<x 时, y '>0; 当512>x 时, y '<0, 所以函数在512=x 处取得极大值, 极大值为10205)512(=y . (6)函数的定义为(-∞, +∞), 22)1()2(+++-='x x x x y , 驻点为x 1=0, x 2=-2.列表可见函数在x =-2处取得极小值3, 在x =0处取得极大值4.(7)函数的定义域为(-∞, +∞). y '=e x (cos x -sin x ), y ''=-e x sin x .令y '=0, 得驻点ππk x 24+=, ππ)1(24++=k x , (k =0, ±1, ±2, ⋅ ⋅ ⋅).因为0)24(<+''ππk y , 所以22)24(24⋅=++ππππk e k y 是函数的极大值. 因为y ''0])1(24[>++ππk , 所以22])1(24[)1(24⋅-=++++ππππk e k y 是函数的极小值. (8)函数xx y 1=的定义域为(0, +∞),)ln 1(121x x x y x-⋅='. 令y '=0, 得驻点x =e .因为当x <e 时, y '>0; 当x >e 时, y '<0, 所以ee e y 1)(=为函数f (x )的极大值.(9)函数的定义域为(-∞, +∞), 3/2)1(132+-='x y , 因为y '<0, 所以函数在(-∞, +∞)是单调减少的, 无极值.(10)函数y =x +tg x 的定义域为ππk x +≠2(k =0, ±1, ±2, ⋅ ⋅ ⋅). 因为y '=1+sec 2x >0, 所以函数f (x )无极值.2. 试证明: 如果函数y =ax 3+bx 2+cx +d 满足条件b 2 -3ac <0, 那么这函数没有极值 . 证明y '=3a x 2+2b x +c . 由b 2 -3ac <0, 知a ≠0. 于是配方得到y '=3a x 2+2b x +c ab ac a b x a a c x a b x a 33)3(3)332(32222-++=++=,因3ac -b 2>0, 所以当a >0时, y '>0; 当a <0时, y '<0. 因此y =ax 3+bx 2+cx +d 是单调函数, 没有极值.3. 试问a 为何值时, 函数x x a x f 3sin 31sin )(+=在3π=x 处取得极值?它是极大值还是极小值?并求此极值.解 f '(x )=a cos x +cos 3x , f ''(x )=-a sin x -3 sin x .要使函数f (x )在3π=x 处取得极值, 必有0)3(='πf , 即0121=-⋅a , a =2 .当a =2时, 0232)3(<⋅-=''πf . 因此, 当a =2时, 函数f (x )在3π=x 处取得极值, 而且取得极大值, 极大值为3)23(=f .4. 求下列函数的最大值、最小值: (1) y =2x 3-3x 2 , -1≤x ≤4; (2) y =x 4-8x 2+2, -1≤x ≤3 ; (3)x x y -+=1, -5≤x ≤1.解 (1)y '=6x 2-6x =6x (x -1), 令y '=0, 得x 1=0, x 2=1. 计算函数值得 y (-1)=-5, y (0)=0, y (1)=-1, y (4)=80,经比较得出函数的最小值为y (-1)=-5, 最大值为y (4)=80.(2)y '=4x 3-16x =4x (x 2-4), 令y '=0, 得x 1=0, x 2=-2(舍去), x 3=2. 计算函数值得 y (-1)=-5, y (0)=2, y (2)=-14, y (3)=11,经比较得出函数的最小值为y (2)=-14, 最大值为y (3)=11.(3)xy --='1211, 令y '=0, 得43=x . 计算函数值得65)5(+-=-y , 45)43(=y , y (1)=1,经比较得出函数的最小值为65)5(+-=-y , 最大值为45)43(=y .5. 问函数y =2x 3-6x 2-18x -7(1≤x ≤4)在何处取得最大值?并求出它的最大值. 解 y '=6x 2-12x -18=6(x -3)(x +1), 函数f (x )在1≤x ≤4内的驻点为x =3. 比较函数值:f (1)=-29, f (3)=-61, f (4)=-47,函数f (x )在x =1处取得最大值, 最大值为f (1)=-29.6. 问函数x x y 542-=(x <0)在何处取得最小值?解 2542x x y +=', 在(-∞, 0)的驻点为x =-3. 因为31082xy -='', 0271082)3(>+=-''y ,所以函数在x =-3处取得极小值. 又因为驻点只有一个, 所以这个极小值也就是最小值, 即函数在x =-3处取得最小值, 最小值为27)3(=-y .7. 问函数12+=x xy (x ≥0)在何处取得最大值?解 222)1(1+-='x x y . 函数在(0, +∞)内的驻点为x =1.因为当0<x <1时, y '>0; 当x >1时y '<0, 所以函数在x =1处取得极大值. 又因为函数在(0, +∞)内只有一个驻点, 所以此极大值也是函数的最大值, 即函数在x =1处取得最大值, 最大值为f (1)=21.8. 某车间靠墙壁要盖一间长方形小屋, 现有存砖只够砌20cm 长的墙壁, 问应围成怎样的长方形才能使这间小屋的面积最大?解 设宽为x 长为y , 则2x +y =20, y =20-2x , 于是面积为 S = xy =x (20-2x )=20x -2x 2. S '=20-4x =4(10-x ), S ''=-4. 令S '=0, 得唯一驻点x =10.因为S ''(10)-4<0, 所以x =10为极大值点, 从而也是最大值点. 当宽为5米, 长为10米时这间小屋面积最大.9. 要造一圆柱形油罐, 体积为V , 问底半径r 和高h 等于多少时, 才能使表面积最小?这时底直径与高的比是多少?解 由V =π r 2h , 得h =V π-1r -2. 于是油罐表面积为S =2π r 2+2π rh rVr 222+=π(0<x <+∞),224r Vr S -='π.令S '=0, 得驻点32πV r =. 因为0443>+=''r V S π, 所以S 在驻点32πVr =处取得极小值, 也就是最小值. 这时相应的高为r r Vh 2 20==π. 底直径与高的比为2r : h =1 : 1.10. 某地区防空洞的截面拟建成矩形加半圆(如图), 截面的面积为5m 2, 问底宽x 为多少时才能使截面的周长最小, 从而使建造时所用的材料最省?解 设矩形高为h , 截面的周长S , 则5)2(212=⋅+πx xh , x x h 85π-=.于是xx x x h x S 10422++=++=ππ(π400<<x ), 21041xS -+='π.令S '=0, 得唯一驻点π+=440x .因为0203>=''xS , 所以π+=440x 为极小值点, 同时也是最小值点. 因此底宽为π+=440x 时所用的材料最省.11. 设有重量为5kg 的物体, 置于水平面上, 受力F 的作用而开始移动(如图). 设摩擦系数μ=0.25, 问力F 与水平线的交角α为多少时, 才可使力F 的大小为最小?解 由F cos α =(m -F sin α)μ 得αμαμsin cos +=m F (2 0πα≤≤),2)sin (cos )cos (sin αμααμαμ+-='m F , 驻点为 α = arctan μ.因为F 的最小值一定在)2 ,0(π内取得, 而F 在)2,0(π内只有一个驻点α = arctan μ,所以α=arctan μ一定也是F 的最小值点. 从而当α=arctan0.25=14︒时, 力F 最小. 12. 有一杠杆, 支点在它的一端. 在距支点0.1m 处挂一重量为49kg 的物体. 加力于杠杆的另一端使杠杆保持水平(如图). 如果杠杆的线密度为5kg/m , 求最省力的杆长?解 设杆长为x (m), 加于杠杆一端的力为F , 则有1.049521⋅+⋅=x x xF , 即)0(9.425>+=x x x F .29.425xF -=',驻点为x =1.4. 由问题的实际意义知, F 的最小值一定在(0, +∞)内取得, 而F 在(0, +∞)内只有一个驻点x =1.4, 所以F 一定在x =1.4m 处取得最小值, 即最省力的杆长为1.4m . 13. 从一块半径为R 的圆铁片上挖去一个扇形做成一漏斗(如图),问留下的扇形的中心角ϕ取多大时, 做成的漏斗的容积最大? 解 漏斗的底周长l 、底半径r 、高h 分别为l =R ⋅ϕ, πϕ2R r =, 222242ϕππ-=-=Rr R h .漏斗的容积为22223242431ϕππϕπ-==R hr V (0<ϕ<2π). 2222234)38(24ϕπϕπϕπ--⋅='R V ,驻点为πϕ362=. 由问题的实际意义, V 一定在(0, 2π)内取得最大值, 而V 在(0, 2π)内只有一个驻点, 所以该驻点一定也是最大值点. 因此当ϕ π362=时, 漏斗的容积最大.14. 某吊车的车身高为1.5m , 吊臂长15m , 现在要把一个6m 宽、2m 高的屋架, 水平地吊到6m 高的柱子上去(如图), 问能否吊得上去?解 设吊臂对地面的倾角为ϕ时, 屋架能够吊到的最大高度为h . 在直角三角形∆EDG 中 15sin ϕ=(h -1. 5)+2+3tan ϕ,故 21tan 3sin 15--=ϕϕh ,ϕϕ2cos 3cos 15-='h . 令h '=0得唯一驻点5451arccos 3≈=ϕ︒.因为0cos sin 6sin 153<--=''ϕϕϕh , 所以ϕ=54︒为极大值点, 同时这也是最大值点. 当ϕ=54︒时, 5.721tan 3sin 15≈--=ϕϕh m .所以把此屋最高能水平地吊至7. 5m 高, 现只要求水平地吊到6m 处, 当然能吊上去. 15. 一房地产公司有50套公寓要出租. 当月租金定为1000元时, 公寓会全部租出去. 当月租金每增加50元时, 就会多一套公寓租不出去, 而租出去的公寓每月需花费100元的维修费. 试问房租定为多少可获最大收入?解 房租定为x 元, 纯收入为R 元.当x ≤1000时, R =50x -50⨯100=50x -5000, 且当x =1000时, 得最大纯收入45000元. 当x >1000时,700072501100)]1000(5150[)]1000(5150[2-+-=⋅---⋅--=x x x x x R ,72251+-='x R .令R '=0得(1000, +∞)内唯一驻点x =1800. 因为0251<-=''R , 所以1800为极大值点, 同时也是最大值点. 最大值为R =57800.因此, 房租定为1800元可获最大收入.习题3-6描绘下列函数的图形: 1. )786(5124++-=x x x y ;解 (1)定义域为(-∞, +∞);(2)23)1)(2(54)8124(51-+=+-='x x x x y ,)1)(1(512)33(542-+=-=''x x x y ,令y '=0, 得x =-2, x =1; 令y ''=0, 得x =-1, x =1.(3)列表(4)作图:2.21xx y +=;解 (1)定义域为(-∞, +∞);(2)奇函数, 图形关于原点对称, 故可选讨论x ≥0时函数的图形.(3)22)1()1)(1(x x x y ++--=', 32)1()3)(3(2x x x x y ++-='',当x ≥0时, 令y '=0, 得x =1; 令y ''=0, 得x =0, 3=x .(4)列表(5)有水平渐近线y =0; (6)作图:3.2)1(--=x e y ;解 (1)定义域为(-∞, +∞); (2))]221()][221([4)1(222)1()1(--+-=''--='----x x e y e x y x x ,令y '=0, 得x =1; 令y ''=0, 得221+=x ,221-=x .(3)列表(4)有水平渐近线y =0; (5)作图: 4.xx y 12+=;解 (1)定义域为(-∞, 0)⋃(0, +∞); (2)2321212xx xx y -=-=',333)1(222x x x y +=+='',令y '=0, 得321=x ; 令y ''=0, 得x =-1.(3)列表(4)有铅直渐近线x =0; (5)作图: 5.xxy 2cos cos =.解 (1)定义域为42ππ+≠n x (n =0, ±1, ±2, ⋅⋅⋅)(2)是偶函数, 周期为2 . 可先作[0, ]上的图形, 再根据对称性作出[-, 0)内的图形, 最后根据周期性作出[-, ]以外的图形; (3)xx x y 2cos )sin 23(sin 22-=',xx x x y 2cos )sin 4sin 123(cos 342-+⋅='',在[0,]上, 令y '=0, 得x =0, x =; 令y ''=0, 得2π=x .(4)列表(5)有铅直渐近线4π=x 及43π=x ;(6)作图:习题3-71. 求椭圆4x 2+y 2=4在点(0, 2)处的曲率. 解 两边对x 求导数得8x +2yy '=0, y x y 4-=', 244y y x y y '--=''.y '|(0, 2)=0, y ''|(0, 2)=-2.所求曲率为2)01(|2|)1(||2/322/32=+-='+''=y y K .2. 求曲线y =lnsec x 在点(x , y )处的曲率及曲率半径.解 x x x xy tan tan sec sec 1=⋅⋅=', x y 2sec =''.所求曲率为|cos |)tan 1(|sec |)1(||2/3222/32x x x y y K =+='+''=, 曲率半径为 |sec ||cos |11x x K ===ρ.3. 求抛物线y =x 2-4x +3在其顶点处的曲率及曲率半径. 解 y '=2x -4, y ''=2.令y '=0, 得顶点的横坐标为x =2. y '|x =2=0, y ''|x =2=2. 所求曲率为2)01(|2|)1(||2/322/32=+='+''=y y K , 曲率半径为211==K ρ.4. 求曲线x =a cos 3t , y =a sin 3t 在t =t 0处的曲率.解 t x a t a y tan )cos ()sin (33-=''=', tt a x a x y 43cos sin 31)cos ()tan (⋅=''-=''. 所求曲率为|2sin |32|cos sin 31|)tan 1(|cos sin 31|)1(||32/3242/32t a t t a t t t a y y K ==+⋅='+''=, |2sin |3200t a K t t ==.5. 对数曲线y =ln x 上哪一点处的曲率半径最小?求出该点处的曲率半径.解 x y 1=', 21xy -=''.2/322/3222/32)1()11(|1|)1(||x x xx y y K +=+-='+''=, xx 232)1(+=ρ,2222232212)12(1)1(2)1(23x x x x x x x x --=+-⋅⋅+='ρ.令ρ'=0, 得22=x . 因为当220<<x 时, ρ<0; 当22>x 时, ρ>0, 所以22=x 是ρ的极小值点, 同时也最小值点. 当22=x 时, 22ln =y . 因此在曲线上点)22ln ,22(处曲率半径最小, 最小曲率半径为233=ρ. 6. 证明曲线axa y ch =在点(x , y )处的曲率半径为a y 2.解 a x y sh =', axa y ch 1=''.在点(x , y )处的曲率半径为a y a x a a x a a xa x a a x y y 222/322/322/32ch |ch 1|)(ch |ch 1|)sh 1(||)1(===+='''+=ρ.7. 一飞机沿抛物线路径100002x y =(y 轴铅直向上, 单位为m )作俯冲飞行, 在坐标原点O 处飞机的速度为v =200m /s 飞行员体重G =70Kg . 求飞机俯冲至最低点即原点O 处时座椅对飞行员的反力.解 5000100002x x y ==', 50001=''y ; y '|x =0=0, 50001|0=''=x y . 500050001)01(||)1(|2/322/320=+='''+==y y x ρ.向心力56050002007022=⨯==ρmV F (牛顿). 飞行员离心力及它本身的重量对座椅的压力为 79⨯9.8+560=1246(牛顿).8. 汽车连同载重共5t , 在抛物线拱桥上行驶, 速度为21.6km/h , 桥的跨度为10m , 拱的矢高为0.25m . 求汽车越过桥顶时对桥的压力.解 如图取直角坐标系, 设抛物线拱桥方程为y =ax 2, 由于抛物线过点(5, 0.25), 代入方程得01.02525.0==a ,于是抛物线方程为y =0. 01x 2. y '=0.02x , y ''=0.02.5002.0)01(||)1(|2/322/320=+='''+==y y x ρ. 向心力为360050)3600106.21(1052332=⨯⨯==ρmV F (牛顿). 因为汽车重为5吨, 所以汽车越过桥顶时对桥的压力为 5⨯103⨯9.8-3600=45400(牛顿).*9. 求曲线y =ln x 在与x 轴交点处的曲率圆方程.*10. 求曲线y =tan x 在点)1 ,4(π处的曲率圆方程.*11. 求抛物线y 2=2px 的渐屈线方程.总习题三1. 填空:设常数k >0, 函数k exx x f +-=ln )(在(0, +∞)内零点的个数为________.解 应填写2.提示: e x x f 11)(-=', 21)(xx f -=''.在(0, +∞)内, 令f '(x )=0, 得唯一驻点x =e .因为f ''(x )<0, 所以曲线k exx x f +-=ln )(在(0, +∞)内是凸的, 且驻点x =e 一定是最大值点,最大值为f (e )=k >0.又因为-∞=+→)(lim 0x f x , -∞=+∞→)(lim x f x , 所以曲线经过x 轴两次, 即零点的个数为2.2. 选择以下题中给出的四个结论中一个正确的结论:设在[0, 1]上f ''(x )>0, 则f '(0), f '(1), f (1)-f (0)或f (0)-f (1)几个数的大小顺序为( ). (A )f '(1)>f '(0)>f (1)-f (0); (B )f '(1)>f (1)-f (0)>f '(0); (C )f (1)-f (0)>f '(1)>f '(0); (D )f '(1)>f (0)-f (1)>f '(0). 解 选择B .提示: 因为f ''(x )>0, 所以f '(x )在[0, 1]上单调增加, 从而f '(1)>f '(x )>f '(0). 又由拉格朗日中值定理, 有f (1)-f (0)=f '(ξ), ξ∈[0, 1], 所以 f '(1)> f (1)-f (0)>f '(0).3. 列举一个函数f (x )满足: f (x )在[a , b ]上连续, 在(a ,b )内除某一点外处处可导, 但在(a , b )内不存在点ξ , 使f (b )-f (a )=f '(ξ)(b -a ). 解 取f (x )=|x |, x ∈[-1, 1].易知f (x )在[-1, 1]上连续, 且当x >0时f '(x )=1; 当x >0时, f '(x )=-1; f '(0)不存在, 即f (x )在[-1, 1]上除x =0外处处可导.注意f (1)-f (-1)=0, 所以要使f (1)-f (-1)=f '(ξ)(1-(-1))成立, 即f '(ξ)=0, 是不可能的. 因此在(-1, 1)内不存在点ξ , 使f (1)-f (-1)=f '(ξ)(1-(-1)). 4. 设k x f x ='∞→)(lim , 求)]()([lim x f a x f x -+∞→.解 根据拉格朗日中值公式, f (x +a )-f (x )=f '(ξ )⋅a , ξ 介于x +a 与x 之间. 当x →∞ 时, ξ → ∞, 于是ak f a a f x f a x f x x ='=⋅'=-+∞→∞→∞→)(lim )(lim )]()([lim ξξξ.5. 证明多项式f (x )=x 3-3x +a 在[0, 1]上不可能有两个零点.证明 f '(x )=3x 2-3=3(x 2-1), 因为当x ∈(0, 1)时, f '(x )<0, 所以f (x )在[0, 1]上单调减少. 因此, f (x ) 在[0, 1]上至多有一个零点.6. 设1210++⋅⋅⋅++n a aa n =0, 证明多项式f (x )=a 0+a 1x +⋅ ⋅ ⋅+a n x n 在(0,1)内至少有一个零点.证明 设121012)(+++++=n n x n a x ax a x F , 则F (x )在[0, 1]上连续, 在(0, 1)内可导, 且F (0)=F (1)=0. 由罗尔定理, 在(0, 1)内至少有一个点ξ , 使F (ξ )=0. 而F '(x )=f (x ), 所以f (x )在(0, 1)内至少有一个零点.7. 设f (x )在[0, a ]上连续, 在(0, a )内可导, 且f (a )=0, 证明存在一点ξ∈(0, a ), 使f (ξ)+ξf '(ξ)=0.证明 设F (x )=xf (x ), 则F (x )在[0, a ]上连续, 在(0, a )内可导, 且F (0)=F (a )=0. 由罗尔定理, 在(0, a )内至少有一个点ξ , 使F (ξ )=0. 而F (x )=f (x )+x f '(x ), 所以f (ξ)+ξf '(ξ)=0.8. 设0<a <b , 函数f (x )在[a , b ]上连续, 在(a , b )内可导, 试利用柯西中值定理, 证明存在一点ξ∈(a , b )使abf b f a f ln )()()(ξξ'=-.证明 对于f (x )和ln x 在[a , b ]上用柯西中值定理, 有ξξ1)(ln ln )()(f ab a f b f '=--, ξ∈(a , b ), 即 abf b f a f ln )()()(ξξ'=-, ξ∈(a , b ).9. 设f (x )、g (x )都是可导函数, 且|f '(x )|<g '(x ), 证明: 当x >a 时, |f (x )-f (a )|<g (x )-g (a ).证明 由条件|f '(x )|<g '(x )得知,1)()(<''ξξg f , 且有g '(x )>0, g (x )是单调增加的, 当x >a 时, g (x )>g (a ).因为f (x )、g (x )都是可导函数, 所以f (x )、g (x ) 在[a , x ]上连续, 在(a , x )内可导, 根据柯西中值定理, 至少存在一点ξ∈(a , x ), 使)()()()()()(ξξg f a g x g a f x f ''=--. 因此,1)()()()(|)()(|<''=--ξξg f a g x g a f x f , |f (x )-f (a )|<g (x )-g (a ).10. 求下列极限:(1)xx x x xx ln 1lim 1+--→;(2)]1)1ln(1[lim 0xx x -+→;(3)x x x )arctan 2(lim π+∞→.(4)nxx n x x x n a a a ]/) [(lim 11211+⋅⋅⋅++∞→(其中a 1, a 2, ⋅ ⋅ ⋅, a n >0).解 (1) (x x )'=(e x l n x )'=e x l n x(ln x +1)=x x (ln x +1).xx x x xx x x x x x x x x x x x x x x x xx -+-=+-+-='+-'-=+--+→→→→1)1(ln lim11)1(ln 1lim )ln 1()(lim ln 1lim 11111 21)1)(ln 11(ln 1lim11=--+++-=+→xx x x x x x x . (2)xxx x x x x x x x x x x x x x x x ++++-='+'+-=++-=-+→→→→1)1ln(111lim ])1ln([])1ln([lim )1ln()1ln(lim ]1)1ln(1[lim 00002111)1l n (1lim )1ln()1(lim00=+++=+++=→→x x x x x x x。

第六版同济大学高等数学上下课后答案详解

第六版同济大学高等数学上下课后答案详解
1
|sin x | | x | 3 求 ( ) ( ) ( ) (2) 并作出函数 y(x) 8 设 ( x) 4 6 4 | x | 0 3
的图形 解 ( ) |sin | 1 ( ) |sin | 2 ( ) |sin( )| 2 (2) 0 6 6 2 4 4 2 4 4 2 9 试证下列函数在指定区间内的单调性 (1) y x ( 1) 1 x (2)yxln x (0 ) 证明 (1)对于任意的 x1 x2( 1) 有 1x10 1x20 因为当 x1x2 时
对于映射 g YX 因为对每个 yY 有 g(y)xX 且满足 f(x)f[g(y)]Iy yy 按逆映射的定义 g 是 f 的逆映射 5 设映射 f XY AX 证明 (1)f 1(f(A))A (2)当 f 是单射时 有 f 1(f(A))A 证明 (1)因为 xA f(x)yf(A) f 1(y)xf 1(f(A)) f 1(f(A))A 所以 (2)由(1)知 f 1(f(A))A 另一方面 对于任意的 xf 1(f(A))存在 yf(A) 使 f 1(y)xf(x)y 因为 yf(A)且 f 是单射 所以 xA 这就证明了 f 1(f(A))A 因此 f 1(f(A))A 6 求下列函数的自然定义域 (1) y 3x 2 解 由 3x20 得 x 2 函数的定义域为 [ 2 , ) 3 3 (2) y 1 2 1 x 解 由 1x20 得 x1 函数的定义域为( 1)(1 1)(1 ) (3) y 1 1 x 2 x 解 由 x0 且 1x20 得函数的定义域 D[1 0)(0 1] (4) y
y1 y2
x1 x x1 x2 2 0 1 x1 1 x2 (1 x1)(1 x2 )

同济第六版高数答案(高等数学课后习题解答)1

同济第六版高数答案(高等数学课后习题解答)1

习题8-31. 求下列函数的全微分: (1)yx xy z +=;解 dy y z dx x z dz ∂∂+∂∂=dy y x x dx y y )()1(2-++=.(2)xy e z =;解 xdy e x dx e x y dy y z dx x z dz y x y 12+-=∂∂+∂∂=.(3) 22y x yz +=;解 因为2/3222322)()(21y x xy y x y x z +-=+-=∂∂-, 2/3222222222)(y x x y x y x yy y x y z +=++⋅-+=∂∂, 所以 dy y x x dx y x xy dz 2/32222/322)()(+++-=)()(2/322xdy ydx y x x -+-=.(4)u =x yz . 解 因为1-⋅=∂∂yz x yz x u , x zx yu yz ln =∂∂, x yx z u yz ln =∂∂,所以 xdz yx xdy zx dx yzx du yz yz yz ln ln 1++=-.2. 求函数z =ln(1+x 2+y 2)当x =1, y =2时的全微分. 解 因为2212y x x x z ++=∂∂, 2212y x y y z ++=∂∂, 3121=∂∂==y x xz, 3221=∂∂==y x y z , 所以 dy dx dz y x 323121⋅+===.3. 求函数xyz =当x =2, y =1, ∆x =0.1, ∆y =-0.2时的全增量和全微分.解 因为xy x x y y z -∆+∆+=∆, y x x x ydz ∆+∆-=12, 所以, 当x =2, y =1, ∆x =0.1, ∆y =-0.2时,119.0211.02)2.0(1-=-+-+=∆z , 125.0)2.0(211.041-=-⨯+⨯-=dz .4. 求函数z =e xy 当x =1, y =1, ∆x =0.15, ∆y =0.1时的全微分. 解 因为y xe x ye y yz x x z dz xy xy ∆+∆=∆∂∂+∆∂∂=所以, 当x =1, y =1, ∆x =0.15, ∆y =0.1时, e e e dz 25.01.015.0=⋅+⋅=.*5. 计算33)97.1()102(+的近似值. 解 设33y x z +=, 由于y yz x x z y x y y x x ∆∂∂+∆∂∂++≈∆++∆+3333)()(332233233yx y y x x y x +∆+∆++=,所以取x =1, y =2, ∆x =0.02, ∆y =-0.03可得95.2212)03.0(2302.0321)97.1()02.1(32333=+-⋅⋅+⋅++≈+. *6. 计算(1.97)1.05的近似值(ln2=0.693). 解 设z =x y , 由于y yz x x z x x x y y y ∆∂∂+∆∂∂+≈∆+∆+)(y x x x yx x y y y ∆+∆+=-ln 1,所以取x =2, y =1, ∆x =-0.03, ∆y =0.05可得(1.97)1.05≈2-0.03+2ln2⋅0.05+1.97+0.0693 ≈2.093.*7( 已知边长为x(6m 与y(8m 的矩形( 如果x 边增加5cm 而y 边减少10cm(问这个矩形的对角线的近似变化怎样? 解 矩形的对角线为22y x z +=,)(122y y x x yx y dy dz x dx dz dz z ∆+∆+=∆+∆=≈∆,当x =6, y =8, ∆x =0.05, ∆y =-0.1时,05.0)1.0805.06(86122-=⋅-⋅+≈∆z .这个矩形的对角线大约减少5cm .*8. 设有一无盖圆柱形容器, 容器的壁与底的厚度均为0.1cm , 内高为20cm ,内半径为4厘米, 求容器外壳体积的近似值. 解 圆柱体的体积公式为V =πR 2h , ∆V ≈dV =2πRh ∆R +πR 2∆h , 当R =4, h =20, ∆R =∆h =0.1时,∆V ≈2⨯3.14⨯4⨯20⨯0.1+3.14⨯42⨯0.1≈55.3(cm 3), 这个容器外壳的体积大约是55.3cm 3.*9. 设有直角三角形, 测得其两腰的长分别为7±0.1cm 和24±0.1cm , 试求利用上述二值来计算斜边长度时的绝对误差. 解 设两直角边的长度分别为x 和y , 则斜边的长度为22y x z +=.||||||||||||y y z x x z dz z ∆⋅∂∂+∆⋅∂∂≤≈∆|)|||(122y y x x yx ∆+∆+=.令x =7, y =24, |∆x |≤0.1, |∆y |≤0.1, 则得斜边长度z 的绝对误差约为124.0)1.0241.07(247122=⋅+⋅+=z δcm .*10. 测得一块三角形土地的两边长分别为63±0.1m 和78±0.1m ,这两边的夹角为60︒±1︒, 试求三角形面积的近似值, 并求其绝对误差和相对误差.解 设三角形的两边长为x 和y , 它们的夹角z , 为则三角形面积为z xy s sin 21=.zdz xy zdy x zdx y dS cos 21sin 21sin 21++=||cos 21||sin 21||sin 21||||dz z xy dy z x dx z y dS S ++≤≈∆.令x =63, y =78, 3π=z , |dx |=0.1, |dy |=0.1, 180π=dz , 则55.2718021278631.0232631.023278=⨯⨯⨯+⨯⨯+⨯⨯≈πδs ,82.21273sin 786321=⋅⋅⋅=πS ,%29.182.212755.27==S s δ,所以三角形面积的近似值为2127.82m 2, 绝对误差为27.55m 2, 相对误差为1.29%.*11. 利用全微分证明: 两数之和的绝对误差等于它们各自的绝对误差之和.证明 设u =x +y , 则||||||||||||y x y x y yu x x u du u ∆+∆≤∆+∆=∆∂∂+∆∂∂=≈∆.所以两数之和的绝对误差|∆u |等于它们各自的绝对误差|∆x |与|∆y |的和.*12. 利用全微分证明: 乘积的相对误差等于各因子的相对误差之和; 商的相对误差等于被除数及除数的相对误差之和. 证明 设u =xy , y x v =, 则∆u ≈du =ydx +xdy ,2yxdyydx dv v -=≈∆, 由此可得相对误差;||||||||y dy x dx xy xdy ydx u du u u +=+=≈∆||||||||yyx x y dy x dx ∆+∆=+≤;||||||||2y dy x dx yx y xdy ydx v dv v v -=⋅-==∆||||||||y yx x y dy x dx ∆+∆=+≤.习题8-41. 设z =u 2-v 2, 而u =x +y , v =x -y , 求x z ∂∂, y z ∂∂.解 xv v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂=2u ⋅1+2v ⋅1=2(u +v )=4x ,y v v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂=2u ⋅1+2v ⋅(-1)=2(u -v )=4y .2. 设z =u 2ln v , 而y x u =, v =3x -2y , 求x z ∂∂, y z ∂∂.解 xv v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂31ln 22⋅+⋅=v u y v u 222)23(3)23ln(2y y x x y x y x -+-=, yv v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂)2()(ln 222-+-⋅=v u y x v u 2232)23(2)23ln(2yy x x y x y x ----=. 3. 设z =e x -2y , 而x =sin t , y =t 3, 求dtdz .解 dtdyy z dt dx x z dt dz ⋅∂∂+⋅∂∂=2223)2(cos t e t e y x y x ⋅-⋅+=--)6(cos )6(cos 22sin 223t t e t t e t t y x -=-=--.4. 设z =arcsin(x - y ), 而x +3t , y =4t 3, 求dtdz .解 dt dy y z dt dx x z dt dz ⋅∂∂+⋅∂∂=22212)(113)(11t y x y x ⋅---+⋅--= 232)43(1)41(3t t t ---=. 5. 设z =arctan(xy ), 而y =e x , 求dxdz .解 dx dy y z x z dx dz ⋅∂∂+∂∂=xxxe x x e e y x x y x y 2222221)1(11++=⋅+++=.6. 设1)(2+-=a z y e u ax , 而y =a sin x , z =cos x , 求dxdu .解 dxdz dz u dx dyy u x u dx du ⋅∂+⋅∂∂+∂∂=)sin (1cos 11)(222x a e x a a e a z y ae ax ax ax -⋅+-⋅+++-= )sin cos cos sin (122x x a x a x a a e ax ++-+=x e ax sin =. 7. 设yx z arctan =, 而x =u +v , y =u -v , 验证22v u v uv z u z +-=∂∂+∂∂. 证明 )()(v yy z v x x z u y y z u x x z v z u z ∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂=∂∂+∂∂)()(111)(11222y x yx y y x -⋅++⋅+=)1()()(111)(11222-⋅-⋅++⋅++y x yx y y x22222v u v u y x y +-=+=. 8. 求下列函数的一阶偏导数(其中f 具有一阶连续偏导数): (1) u =f (x 2-y 2, e xy );解 将两个中间变量按顺序编为1, 2号, 2122212)()(f ye f x xe f x y x f x u xy xy '+'=∂∂⋅'+∂-∂⋅'=∂∂, 212)2212)((f xe f y ye f y y x f y u xy xy '+'-=∂∂⋅'+∂-∂⋅'=∂∂. (2)) ,(zyy x f u =;解 1211)()(f y z yx f y x x f x u '=∂∂⋅'+∂∂⋅'=∂∂,)()(21z yy f y x y f y u ∂∂⋅'+∂∂'=∂∂2121f z f y x '+'-=,)()(21z y z f z x z f z u ∂∂⋅'+∂∂'=∂∂22f z y '⋅-=. (3) u =f (x , xy , xyz ).解 yz f y f f xu ⋅'+⋅'+⋅'=∂∂3211321f yz f y f '+'+'=,3232f xz f x xz f x f y u '+'=⋅'+⋅'=∂∂,33f xy xy f zu '=⋅'=∂∂.9. 设z =xy +xF (u ), 而xyu =, F (u )为可导函数, 证明xy z yz y x z x +=∂∂+∂∂⋅. 证明 y z y x z x ∂∂⋅+∂∂⋅])([])()([y u u F x x y x u u F x u F y x ∂∂'+⋅+∂∂'++=)]([)]()([u F x y u F xyu F y x '+⋅+'-+==xy +xF (u )+xy =z +xy .10. 设)(22y x f yz -=, 其中f (u )为可导函数, 验证 211y z y z y x z x =∂∂+∂∂.证明 ()()u f f xy u f x f y x z 2222'-=⋅'⋅-=∂∂, ()()u f f y u f u f y f y u f y z 2222)(1)2()('-+=-⋅'⋅-=∂∂, 所以 )(11221122u f y u f f y u f f y y z y x z x ⋅+'+'-=∂∂⋅+∂∂⋅211yz zy y =⋅.11. 设z =f (x 2+y 2), 其中f 具有二阶导数, 求22x z ∂∂, y x z ∂∂∂2, 22y z ∂∂.解 令u =x 2+y 2, 则z =f (u ), f x xu u f x z '=∂∂'=∂∂2)(,f y yu u f y z '=∂∂'=∂∂2)(,f x f x u f x f x z ''+'=∂∂⋅''+'=∂∂2224222,f xy yu f x y x z ''=∂∂⋅''=∂∂∂422,f y f yu f y f y z ''+'=∂∂⋅''+'=∂∂422222. 12. 求下列函数的22x z ∂∂,y x z ∂∂∂2,22yz ∂∂(其中f 具有二阶连续偏导数): (1) z =f (xy , y );解 令u =xy , v =y , 则z =f (u , v ).ufy v f y u f x v v f x u u f x z ∂∂=⋅∂∂+⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂0,vfu f x v f x u f y v v f y u u f y z ∂∂+∂∂=⋅∂∂+⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂1.因为f (u , v )是u 和v 的函数, 所以u f∂∂和vf ∂∂也是u 和v 的函数, 从而u f∂∂和vf ∂∂是以u 和v 为中间变量的x 和y 的函数. )()()(22uf x y u f y x x z x x z ∂∂∂∂=∂∂∂∂=∂∂∂∂=∂∂222222222)0()(u f y v u f y u f y x v v u f x u u f y ∂∂=⋅∂∂∂+⋅∂∂=∂∂⋅∂∂∂+∂∂⋅∂∂=,)(1)()(2uf y y u f u f y y x z y y x z ∂∂∂∂+∂∂⋅=∂∂∂∂=∂∂∂∂=∂∂∂ )(222yvv u f y u u f y u f ∂∂⋅∂∂∂+∂∂⋅∂∂+∂∂= v u fy u f xy u f v u f x u f y u f ∂∂∂+∂∂+∂∂=⋅∂∂∂+⋅∂∂+∂∂=222222)1(,)()()()(22vf y u f y x v f u f x y y z y y z∂∂∂∂+∂∂∂∂=∂∂+∂∂∂∂=∂∂∂∂=∂∂ y vv f y u u v f y v v u f y u u f x ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂=222222)( 1)1(222222⋅∂∂+⋅∂∂∂+⋅∂∂∂+⋅∂∂=vfx u v f v u f x u f x2222222vfv u f x u f x ∂∂+∂∂∂+∂∂=. (2)) ,(yx x f z =;解 令u =x ,yx v =, 则z =f (u , v ).v fy u f x v v f dx du u f x z ∂∂⋅+∂∂=∂∂⋅∂∂+⋅∂∂=∂∂1,vfy x dy dv v f y z ∂∂⋅-=⋅∂∂=∂∂2.因为f (u , v )是u 和v 的函数, 所以u f∂∂和vf ∂∂也是u 和v 的函数, 从而u f∂∂和vf ∂∂是以u 和v 为中间变量的x 和y 的函数. )(1)()1()(22v f x y u f x v f y u f x x z x x z ∂∂∂∂⋅+∂∂∂∂=∂∂⋅+∂∂∂∂=∂∂∂∂=∂∂ )(1)(222222xvv f dx du u v f y x v v u f dx du u f ∂∂⋅∂∂+⋅∂∂∂+∂∂⋅∂∂∂+⋅∂∂=22222212vfy v u f y u f ∂∂⋅+∂∂∂⋅+∂∂=,)1()(2vf y u f y x z y y x z ∂∂⋅+∂∂∂∂=∂∂∂∂=∂∂∂)(1)1()(v f y y v f y dy d u f y ∂∂∂∂⋅+∂∂⋅+∂∂∂∂= y vv f y v f y y v v u f ∂∂⋅∂∂⋅+∂∂⋅-∂∂⋅∂∂∂=22211 2232221vf y x v f y v u f y x ∂∂⋅-∂∂⋅-∂∂∂⋅-= )()()(2222vf y y x v f y x y y z y y z∂∂∂∂⋅-∂∂⋅-∂∂=∂∂∂∂=∂∂22423222322v f y x v f y x y v v f y x v f y x ∂∂⋅+∂∂⋅=∂∂⋅∂∂⋅-∂∂⋅=. (3) z =f (xy 2, x 2y );解 z x =f 1'⋅y 2+f 2'⋅2xy =y 2f 1'+2xyf 2', z y =f 1'⋅2xy +f 2'⋅x 2=2xyf 1'+x 2f 2';z xx =y 2[f 11''⋅y 2+f 12''⋅2xy ]+2yf 2''+2xy [f 21''⋅y 2+f 22''⋅2xy ] =y 4f 11''+2xy 3f 12''+2yf 2''+2xy 3f 21''+4x 2y 2 f 22'' =y 4f 11''+4xy 3f 12''+2yf 2''+4x 2y 2 f 22'',z xy =2y f 1'+y 2[f 11''⋅2xy +f 12''⋅x 2]+2xf 2'+2xy [f 21''⋅2xy +f 22''⋅x 2] =2y f 1'+2xy 3f 11''+x 2y 2 f 12''+2xf 2'+4x 2y 2f 21''+2x 3yf 22'' =2y f 1'+2xy 3f 11''+5x 2y 2 f 12''+2xf 2'+2x 3yf 22'', z yy =2xf 1'+2xy [f 11''⋅2xy +f 12''⋅x 2]+x 2[f 21''⋅2xy +f 22''⋅x 2] =2xf 1'+4x 2y 2f 11''+2x 3y f 12''+2x 3yf 21''+x 4f 22'' =2xf 1'+4x 2y 2f 11''+4x 3y f 12''+x 4f 22''. (4) z =f (sin x , cos y , e x +y ).解 z x =f 1'⋅cos x + f 3'⋅e x +y =cos x f 1'+e x +y f 3', z y =f 2'⋅(-sin y )+ f 3'⋅e x +y =-sin y f 2'+e x +y f 3', z xx =-sin x f 1'+cos x ⋅(f 11''⋅cos x + f 13''⋅e x +y ) +e x +y f 3'+e x +y (f 31''⋅cos x + f 33''⋅e x +y ) =-sin x f 1'+cos 2x f 11''+e x +y cos x f 13''+e x +y f 3' +e x +y cos x f 31''+e 2(x +y ) f 33''=-sin x f 1'+cos 2x f 11''+2e x +y cos x f 13''+e x +y f 3'+e 2(x +y ) f 33'', z xy =cos x [f 12''⋅(-sin y )+ f 13''⋅e x +y ] +e x +y f 3'+e x +y [f 32''⋅(-sin y )+ f 33''⋅e x +y ] =-sin y cos x f 12''+e x +y cos x f 13' +e x +y f 3'-e x +y sin y f 32'+e 2(x +y )f 33' =-sin y cos x f 12''+e x +y cos x f 13'' +e x +y f 3'-e x +y sin y f 32''+e 2(x +y )f 33'',z yy =-cos y f 2'-sin y [f 22''⋅(-sin y )+ f 23''⋅e x +y ] +e x +y f 3'+e x +y [f 32''⋅(-sin y )+ f 33''⋅e x +y ] =-cos y f 2'+sin 2y f 22''-e x +y sin y f 23'' +e x +y f 3'-e x +y sin y f 32''+ f 33''⋅e 2(x +y )=-cos y f 2'+sin 2y f 22''-2e x +y sin y f 23''+e x +y f 3'+f 33''⋅e 2(x +y ). 13. 设u =f (x , y )的所有二阶偏导数连续, 而23t s x -=,23t s y +=, 证明2222)()()()(t u s u y u x u ∂∂+∂∂=∂∂+∂∂及22222222t u s u y u x u ∂∂+∂∂=∂∂+∂∂.证明 因为y u x u s yy u s x x u s u ∂∂⋅+∂∂⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂2321yu x u t yy u t x x u t u ∂∂⋅+∂∂⋅-=∂∂⋅∂∂+∂∂⋅∂∂=∂∂2123所以2222)2123()2321()()(y u x u y u x u t u s u ∂∂+∂∂-+∂∂+∂∂=∂∂+∂∂22)()(y u x u ∂∂+∂∂=. 又因为)2321()(22yu x u s s u s s u∂∂⋅+∂∂⋅∂∂=∂∂∂∂=∂∂ )(23)(21222222s y y u s x x y u s y y x u s x x u ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂= )2321(23)2321(21222222y u x y u y x u x u ∂∂⋅+∂∂∂⋅+∂∂∂⋅+∂∂⋅= 22222432341yu y x u x u ∂∂⋅+∂∂∂⋅+∂∂⋅=,)2123()(22yu x u t t u t t u∂∂⋅+∂∂⋅-∂∂=∂∂∂∂=∂∂ )(21)(23222222t y y u t x x y u t y y x u t x x u ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂-= )2123(21)2123(23222222y u x y u y x u x u ∂∂⋅+∂∂∂⋅-+∂∂∂⋅+∂∂⋅--= 22222412343y u y x u x u ∂∂⋅+∂∂∂⋅-∂∂⋅=, 所以 22222222yu x u t u s u ∂∂+∂∂=∂∂+∂∂.习题8-51. 设sin y +e x -xy 2=0, 求dxdy . 解 令F (x , y )=sin y +e x -xy 2, 则F x =e x -y 2, F y =cos y -2xy ,xyy e y xy y y e F F dx dy xy x 2cos 2cos 222--=---=-=. 2. 设x y y x arctan ln 22=+, 求dxdy .解 令xyy x y x F arctan ln ),(22-+=, 则22222222)()(11221y x y x x y xy y x x y x F x ++=-⋅+-+⋅+=,22222221)(11221y x x y x xy y x y y x F y +-=⋅+-+⋅+=, yx y x F F dx dyy x -+=-=. 3. 设022=-++xyz z y x , 求x z ∂∂及y z ∂∂.解 令xyz z y x z y x F 22),,(-++=, 则 xyz yz F x -=1, xyzxz F y -=2, xyz xyF z -=1, xy xyz xyz yz F F x z z x --=-=∂∂, xy xyz xyz xz F F y z z y --=-=∂∂2. 4. 设y z z x ln =, 求x z ∂∂及y z ∂∂,解 令yz z x z y x F ln ),,(-=, 则 z F x 1=, y y z y z F y 1)(12=-⋅-=, 2211z z x y yz z x F z +-=⋅--=, 所以 z x z F F x z z x +=-=∂∂, )(2z x y z F F yz z y +=-=∂∂.5. 设2sin(x +2y -3z )=x +2y -3z , 证明1=∂∂+∂∂y z x z证明 设F (x , y , z )=2sin(x +2y -3z )-x -2y +3z , 则 F x =2cos(x +2y -3z )-1, F y =2cos(x +2y -3z )⋅2-2=2F x , F z =2cos(x +2y -3z )⋅(-3)+3=-3F x ,313=--=-=∂∂x x z x F F F F x z ,3232=--=-=∂∂x x z y F F F F yz , 于是13231=+=--=∂∂+∂∂z z z x F F F F y z x z . 6. 设x =x (y , z ), y =y (x , z ), z =z (x , y )都是由方程F (x , y , z )=0所确定的具有连续偏导数的函数, 证明1-=∂∂⋅∂∂⋅∂∂x z z yy x .解 因为x y F F y x -=∂∂, y z F F z y -=∂∂, zx F F x z -=∂∂, 所以 1)()()(-=-⋅-⋅-=∂∂⋅∂∂⋅∂∂zx y z x y F F F F F F x z z y y x . 7. 设ϕ(u , v )具有连续偏导数, 证明由方程ϕ(cx -az , cy -bz )=0 所确定的函数z =f (x , y )满足 c y z b x z a =∂∂+∂∂.证明 因为vu uv u u b a c b a c x z ϕϕϕϕϕϕ+=⋅-⋅-⋅-=∂∂, vu v v u v b a c b a c y z ϕϕϕϕϕϕ+=⋅-⋅-⋅-=∂∂, 所以 c b a c b b a c a y z b x z a vu vv u u =+++⋅=∂∂+∂∂ϕϕϕϕϕϕ.8. 设e z-xyz =0, 求22xz∂∂.解 设F (x , y , z )=e z -xyz , 则F x =-yz , F z =e z -xy , xye yzF F x z z z x -=-=∂∂,222)()()()(xy e y x z e yz xy e x z y x z x x z z z z --∂∂--∂∂=∂∂∂∂=∂∂ 222)()(xy e xye yzyze xy ye z y zz z z ----+=32232)(22xy e e z y z xy ze y z zz ---=. 9. 设z 3-3xyz =a 3, 求yx z ∂∂∂2. 解 令F (x , y , z )=z 3-3xyz -a 3, 则 xyz yzxy z yz F F x z z x -=---=-=∂∂22333,xyz xzxy z xz F F y z z y -=---=-=∂∂22333, )()(22xyz yz y x z y y x z -∂∂=∂∂∂∂=∂∂∂ 222)()2())((xy z x yz z yz xy z y z y z --∂∂--∂∂+= 22222)()2()()(xy z x xyz xz z yz xy z xy z xz yz -----⋅-+=322224)()2(xy z y x xyz z z ---=. 10. 求由下列方程组所确定的函数的导数或偏导数: (1)设⎩⎨⎧=+++=203222222z y x y x z , 求dx dy , dx dz ;解 视y =y (x ), z =z (x ), 方程两边对x 求导得 ⎪⎩⎪⎨⎧=+++=064222dx dz z dx dy y x dx dy y x dx dz , 即⎪⎩⎪⎨⎧-=+-=-xdx dzz dxdy y x dx dz dx dy y 3222.解方程组得 )13(2)16(++-=∂∂z y z x x y , 13+=z x dx dz.(2)设⎩⎨⎧=++=++10222z y x z y x , 求dz dx ,dz dy ; 解 视x =x (z ), y =y (z ), 方程两边对z 求导得 ⎪⎩⎪⎨⎧=++=++022201z dz dy y dz dx x dz dy dz dx , 即⎪⎩⎪⎨⎧-=+-=+zdz dy y dzdxx dz dy dz dx 2221.解方程组得y x z y z x --=∂∂, yx xz z y --=∂∂. (3)设⎩⎨⎧-=+=),(),(2y v x u g v y v ux f u , 其中f , g 具有一阶连续偏导数, 求x u ∂∂,xv ∂∂; 解 视u =u (x , y ), v =v (x , y ), 方程两边对x 求偏导得 ⎪⎩⎪⎨⎧∂∂⋅'+-∂∂⋅'=∂∂∂∂⋅'+∂∂+⋅'=∂∂x v yv g xu g x v x vf x u x u f x u 21212)1()( ,即 ⎪⎩⎪⎨⎧'=∂∂⋅⋅-'+∂∂'''-=∂∂⋅'+∂∂-'121121)12()1(g x v g yv xu g f u x v f x u f x .解之得1221221)12)(1()12(g f g yv f x g f g yv f u x u ''--'-'''--''-=∂∂,1221111)12)(1()1(g f g yv f x f u f x g x v ''--'-'-'+''=∂∂.(4)设⎩⎨⎧-=+=vu e y v u e x uu cos sin , 求x u ∂∂, y u ∂∂, x v ∂∂, y v ∂∂. 解 视u =u (x , y ), v =v (x , y ), 方程两边微分得 ⎩⎨⎧+-=++=vdv u vdu du e dy vdv u vdu du e dx uu sin cos cos sin , 即 ⎩⎨⎧=+-=++dy vdv u du v e dx vdv u du v e u u sin )cos (cos )sin (, 从中解出du , dv 得 dy v v e v dx v v e v du uu 1)cos (sin cos 1)cos (sin sin +--++-=, dy v v e u e v dx v v e u e v dv u uuu ]1)cos (sin [sin ]1)cos (sin [cos +-+++--=, 从而1)cos (sin sin +-=∂∂v v e v x u u , 1)cos (sin cos +--=∂∂v v e v y u u, ]1)cos (sin [cos +--=∂∂v v e u e v x v u u , ]1)cos (sin [sin +-+=∂∂v v e u e v y v u u. 11. 设y =f (x , t ), 而t 是由方程F (x , y , t )=0所确定的x , y 的函数, 其中f , F 都具有一阶连续偏导数, 试证明:tF y F t f x F t f t F x f dx dy ∂∂+∂∂⋅∂∂∂∂⋅∂∂-∂∂⋅∂∂=.证明 由方程组⎩⎨⎧==0),,(),(t y x F t x f y 可确定两个一元隐函数⎩⎨⎧==)()(x t t x y y , 方程两边对x 求导可得⎪⎩⎪⎨⎧=⋅∂∂+⋅∂∂+∂∂⋅∂∂+∂∂=0dx dt t F dx dy y F x F dxdtt f x f dx dy ,移项得 ⎪⎩⎪⎨⎧∂∂-=∂∂+⋅∂∂∂∂=⋅∂∂-x F dx dt t F dx dy y F x f dx dt t f dx dy , 在01≠∂∂⋅∂∂+∂∂=∂∂∂∂∂∂-=y F t f t F tF y F t fD 的条件下 yFt f t F xFt f t F x f t F x F t f x f D dx dy ∂∂⋅∂∂+∂∂∂∂⋅∂∂-∂∂⋅∂∂=∂∂∂∂-∂∂-∂∂⋅=1. 习题8-61. 求曲线x =t -sin t , y =1-cos t , 2sin 4t z =在点)22 ,1 ,12 (-π处的切线及法平面方程.解 x '(t )=1-cos t , y '(t )=sin t , 2cos 2)(t t z ='. 因为点)22 ,1 ,12 (-π所对应的参数为2π=t , 故在点)22 ,1 ,12(-π处的切向量为)2 ,1 ,1(=T . 因此在点)22 ,1 ,12 (-π处, 切线方程为22211121-=-=-+z y x π, 法平面方程为0)22(2)1(1)12(1=-+-⋅++-⋅z y x π, 即422+=++πz y x .2. 求曲线t t x +=1, t t y +=1, z =t 2在对应于t =1的点处的切线及法平面方程. 解 2)1(1)(t t x +=', 21)(t t y -=', z '(t )=2t .在t =1所对应的点处, 切向量)2 ,1 ,41(-=T , t =1所对应的点为)1 ,2 ,21(, 所以在t =1所对应的点处, 切线方程为 21124121-=--=-z y x , 即8142121-=--=-z y x ; 法平面方程为0)1(2)2()21(41=-+---z y x , 即2x -8y +16z -1=0.3. 求曲线y 2=2mx , z 2=m -x 在点(x 0, y 0, z 0)处的切线及法平面方程.解 设曲线的参数方程的参数为x , 将方程y 2=2mx 和z 2=m -x的两边对x 求导, 得m dx dy y 22=, 12-=dxdz z , 所以y m dx dy =, z dxdz 21-=. 曲线在点(x 0, y 0, z 0,)的切向量为)21,,1(00z y m -=T , 所求的切线方程为0000211z z z y m y y x x --=-=-, 法平面方程为0)(21)()(00000=---+-z z z y y y m x x . 4. 求曲线⎩⎨⎧=-+-=-++0453203222z y x x z y x 在点(1, 1, 1)处的切线及法平面方程.解 设曲线的参数方程的参数为x , 对x 求导得,⎪⎩⎪⎨⎧=+-=-++053203222dx dz dx dy dx dz z dx dy y x , 即⎪⎩⎪⎨⎧=-+-=+2533222dxdz dx dy x dx dz z dx dy y . 解此方程组得z y z x dx dy 61015410----=, zy y x dx dz 610946---+=. 因为169)1,1,1(=dx dy , 161)1,1,1(-=dx dz , 所以)161 ,169 ,1(=T . 所求切线方程为1611169111--=-=-z y x , 即1191161--=-=-z y x ; 法平面方程为0)1(161)1(169)1(=---+-z y x , 即16x +9y -z -24=0. 5. 求出曲线x =t , y =t 2, z =t 3上的点, 使在该点的切线平行于平面x +2y +z =4.解 已知平面的法线向量为n =(1, 2, 1).因为x '=1, y '=2t , z '=3t 2, 所以参数t 对应的点处的切向量为T =(1, 2t , 3t 2). 又因为切线与已知平面平行, 所以T ⋅n =0, 即1+4t +3t 2=0,解得t =-1, 31-=t . 于是所求点的坐标为(-1, 1, -1)和)271 ,91 ,31(--. 6. 求曲面e z -z +xy =3在点(2,1,0)处的切平面及法线方程. 解 令F (x , y , z )=e z -z +xy -3, 则n =(F x , F y , F z )|(2, 1, 0)=(y , x , e z -1)|(2, 1, 0)=(1, 2, 0),点(2,1, 0)处的切平面方程为1⋅(x -2)+2(y -1)+0⋅(z -0)=0, 即x +2y -4=0,法线方程为02112-=-=-z y x . 7. 求曲面ax 2+by 2+cz 2=1在点(x 0, y 0, z 0)处的切平面及法线方程. 解 令F (x , y , z )=ax 2+by 2+cz 2-1, 则n =(F x , F y , F z )=(2ax , 2by , 2cz )=(ax , by , cz ).在点(x 0, y 0, z 0)处, 法向量为(ax 0, by 0, cz 0), 故切平面方程为ax 0(x -x 0)+by 0(y -y 0)+cz 0(z -z 0)=0,即 202020000cz by ax z cz y by x ax ++=++, 法线方程为00000cz z z by y y ax x x -=-=-.8. 求椭球面x 2+2y 2+z 2=1上平行于平面x -y +2z =0的切平面方程.解 设F (x , y , z )=x 2+2y 2+z 2-1, 则n =(F x , F y , F z )=(2x , 4y , 2z )=2(x , 2y , z ).已知切平面的法向量为(1, -1, 2). 因为已知平面与所求切平面平行, 所以2121z y x =-=, 即z x 21=, z y 41-=, 代入椭球面方程得1)4(2)2(222=+-+z z z ,解得1122±=z , 则1122±=x , 11221 =y . 所以切点坐标为)1122,11221,112(±± . 所求切平面方程为0)1122(2)11221()112(=±+-±z y x , 即 2112±=+-z y x . 9. 求旋转椭球面3x 2+y 2+z 2=16上点(-1, -2, 3)处的切平面与xOy 面的夹角的余弦.解 x O y 面的法向为n 1=(0, 0, 1).令F (x , y , z )=3x 2+y 2 +z 2-16, 则点(-1, -2, 3)处的法向量为 n 2=(F x , F y , F z )|(-1, -2, 3)=(6x , 2y , 2z )|(-1, -2, 3)=(-6, -4, 6). 点(-1, -2, 3)处的切平面与xOy 面的夹角的余弦为22364616||||cos 2222121=++⋅=⋅⋅=n n n n θ.10. 试证曲面a z y x =++(a >0)上任何点处的切平面在各坐标轴上的截距之和等于a .证明 设a z y x z y x F -++=),,(, 则)21,21,21(zy x =n . 在曲面上任取一点M (x 0, y 0, z 0), 则在点M 处的切平面方程为 0)(1)(1)(1000000=-+-+-z z z y y y x x x ,即 a z y x z z y y x x =++=++000000. 化为截距式, 得1000=++az z ay y ax x , 所以截距之和为a z y x a az ay ax =++=++)(000000.习题8-71. 求函数z =x 2+y 2在点(1, 2)处沿从点(1, 2)到点)32 ,2(+的方向的方向导数.解 因为从点(1, 2)到点)32 ,2(+的向量为)3 ,1(=l , 故 )cos ,(cos )23 ,21(||βα===l l e l . 又因为22)2,1()2,1(==∂∂x x z , 42)2,1()2,1(==∂∂y y z , 故所求方向导数为321234212cos cos +=⋅+⋅=∂∂+∂∂=∂∂βαy z x z l z . 2. 求函数z =ln(x +y )在抛物线y 2=4x 上点(1, 2)处, 沿这抛物线在该点处偏向x 轴正向的切线方向的方向导数.解 方程y 2=4x 两边对x 求导得2yy '=4, 解得yy 2='. 在抛物线y 2=4x 上点(1, 2)处, 切线的斜率为y '(1)=1, 切向量为l =(1, 1), 单位切向量为)cos ,(cos )21 ,21(βα==l e . 又因为31 1)2,1()2,1(=+=∂∂y x x z , 31 1)2,1()2,1(=+=∂∂y x y z , 故所求方向导数为3221312131cos cos =⋅+⋅=∂∂+∂∂=∂∂βαy z x z l z . 3. 求函数)(12222b y a x z +-=在点)2,2(b a 处沿曲线12222=+b y a x 在这点的内法线方向的方向导数.解 令1),(2222-+=by a x y x F , 则22a x F x =, 22b y F y =. 从而点(x , y )处的法向量为)2 ,2() ,(22by a x F F y x ±=±=n . 在)2,2(b a 处的内法向量为 )2 ,2()2 ,2()2,2(22ba b y a x ba-=-=n , 单位内法向量为)cos ,(cos ) ,(2222βα=+-+-=b a a b a b n e . 又因为aa x x zbab a 22)2,2(2)2,2(-=-=∂∂, b b y y zb a b a 22)2,2(2)2,2(-=-=∂∂, 所以 βαcos cos yz x z n z ∂∂+∂∂=∂∂222222b a a b b a b a +⋅++⋅=222b a ab+=.4. 求函数u =xy 2+z 3-xyz 在点(1, 1, 2)处沿方向角为3 πα=, 4 πβ=, 3πγ=的方向的方向导数. 解 因为方向向量为)21 ,22 ,21()cos ,cos ,(cos ==γβαl , 又因为1)()2,1,1(2)2,1,1(-=-=∂∂yz y x u , 0)2()2,1,1()2,1,1(=-=∂∂xz xy y u , 11)3()2,1,1(2)2,1,1(=-=∂∂xy z z u , 所以 γβαcos cos cos zu y u x u l u ∂∂+∂∂+∂∂=∂∂ 5211122021)1(=⋅+⋅+⋅-=. 5. 求函数u =xyz 在点(5,1,2)处沿从点(5, 1, 2)到点(9, 4, 14)的方向的方向导数.解 因为l =(9-5, 4-1, 14-2)=(4, 3, 12),)1312 ,133 ,134(||==l l e l , 并且 2)2,1,5()2,1,5(==∂∂yz xu ,10)2,1,5()2,1,5(==∂∂xz y u , 5)2,1,5()2,1,5(==∂∂xy z u , 所以 γβαcos cos cos zu y u x u l u ∂∂+∂∂+∂∂=∂∂ 139813125133101342=⋅+⋅+⋅=. 6. 求函数u =x 2+y 2+z 2在曲线x =t , y =t 2, z =t 3上点(1, 1, 1)处, 沿曲线在该点的切线正方向(对应于t 增大的方向)的方向导. 解 曲线x =t , y =t 2, z =t 3上点(1, 1, 1)对应的参数为t =1, 在点(1, 1,1)的切线正向为)3 ,2 ,1()3 ,2 ,1(12===t t t l ,)143,142,141(||==l l e l , 又 22)1,1,1()1,1,1(==∂∂x x u , 22)1,1,1()1,1,1(==∂∂y y u , 22)1,1,1()1,1,1(==∂∂z z u , 所以 γβαcos cos cos )1,1,1(zu y u x u l u ∂∂+∂∂+∂∂=∂∂ 1412143214221412=⋅+⋅+⋅=. 7. 求函数u =x +y +z 在球面x 2+y 2+z 2=1上点(x 0, y 0, z 0)处, 沿球面在该点的外法线方向的方向导数.解 令F (x , y , z )=x 2+y 2+z 2-1, 则球面x 2+y 2+z 2=1在点(x 0, y 0, z 0)处的外法向量为)2 ,2 ,2() , ,(000),,(000z y x F F F z y x z y x ==n , )cos ,cos ,(cos ) , ,(||000γβα===z y x n n n e , 又 1=∂∂=∂∂=∂∂zu y u x u , 所以 γβαcos cos cos zu y u x u n u ∂∂+∂∂+∂∂=∂∂ 000000111z y x z y x ++=⋅+⋅+⋅=.8. 设f (x , y , z )=x 2+2y 2+3z 2+xy +3x -2y -6z , 求grad f (0, 0, 0)及grad f (1, 1, 1).解 32++=∂∂y x x f , 24-+=∂∂x y yf , 66-=∂∂z z f . 因为 3)0,0,0(=∂∂x f, 2)0,0,0(-=∂∂yf, 6)0,0,0(-=∂∂z f , 6)1,1,0(=∂∂x f , 3)1,1,0(=∂∂y f, 0)1,1,0(=∂∂z f,所以 grad f (0, 0, 0)=3i -2j -6k ,grad f (1, 1, 1)=6i +3j .9. 设u , v 都是 x , y , z 的函数, u , v 的各偏导数都存在且连续, 证明(1) grad (u +v )=grad u + grad v ;解 k j i zv u y v u x v u v u ∂+∂+∂+∂+∂+∂=+)()()()(grad k j i )()()(zv z u y v y u x v x u ∂∂+∂∂+∂∂+∂∂+∂∂+∂∂=)()(k j i k j i zv y v x v z u y u x u ∂∂+∂∂+∂∂+∂∂+∂∂+∂∂= v u grad grad +=.(2) grad (uv )=v grad u +u grad v ;解 k j i zuv y uv x uv uv ∂∂+∂∂+∂∂=)()()()(grad k j i )()()(z v u z u v y v u y u v x v u x u v ∂∂+∂∂+∂∂+∂∂+∂∂+∂∂= )()(k j i k j i zv y v x v u z u y u x u v ∂∂+∂∂+∂∂+∂∂+∂∂+∂∂= =v grad u +u grad v .(3) grad (u 2)=2u grad u .解 k j i z u y u x u u ∂∂+∂∂+∂∂=2222)(grad k j i zu u y u u x u u ∂∂+∂∂+∂∂=222 u u zu y u x u u grad 2)(2=∂∂+∂∂+∂∂=k j i .10. 问函数u =xy 2z 在点p (1, -1, 2)处沿什么方向的方向导数最大? 并求此方向导数的最大值.解 k j i k j i 222 xy xyz z y zu y u x u u ++=∂∂+∂∂+∂∂=grad , k j i k j i +-=++=--42)2()2 ,1 ,1( )2,1,1(22xy xyz z y u grad .grad u (1, -1, 2)为方向导数最大的方向, 最大方向导数为 211)4(2|)2 ,1 ,1( 222=+-+=-u grad |.习题8-81. 求函数f (x , y )=4(x -y )-x 2-y 2的极值.解 解方程组⎩⎨⎧=--==-=024),(024),(y y x f x y x f yx , 求得驻点为(2,-2). f xx =-2, f xy =0, f yy =-2,在驻点(2,-2)处, 因为f xx f yy -f xy 2=(-2)(-2)-0=4>0, f xx =-2<0,所以在点(2, -2)处, 函数取得极大值, 极大值为f (2, -2)=8.2. 求函数f (x , y )=(6x -x 2)(4y -y 2)的极值.解 解方程组⎩⎨⎧=--==--=0)24)(6(),(0)4)(26(),(22y x x y x f y y x y x f yx , 得驻点(0, 0), (0, 4), (3, 2), (6, 0), (6,4).函数的二阶偏导数为f xx (x , y )=-2(4y -y 2), f xy (x , y )=4(3-x )(2-y ), f yy (x , y )=-2(6x -x 2). 在点(0, 0)处, 因为f xx ⋅f yy -f xy 2=0⨯0-242=-242<0,所以f (0, 0)不是极值;在点(0, 4)处, 因为f xx ⋅f yy -f xy 2=0⨯0-(-24)2=-242<0,所以f (0, 4)不是极值.在点(3, 2)处, 因为f xx ⋅f yy -f xy 2=(-8)⨯(-18)-02=8⨯18>0, f xx =-8<0,所以f (3, 2)=36是函数的极大值.在点(6, 0)处, 因为f xx ⋅f yy -f xy 2=0⨯0-(-24)2=-242>0,所以f (6, 0)不是极值.在点(6, 4)处, 因为f xx ⋅f yy -f xy 2=0⨯0-242=-242>0,所以f (6, 4)不是极值.综上所述, 函数只有一个极值, 这个极值是极大值f (3, 2)=36. 3. 求函数f (x , y )=e 2x (x +y 2+2y )的极值.解 解方程组⎩⎨⎧=+==+++=0)22(),(0)1422(),(222y e y x f y y x e y x f x yx x , 得驻点)1 ,21(-. f xx (x , y )=4e 2x (x +y 2+2y +1), f xy (x , y )=4e 2x (y +1), f yy (x , y )=2e 2x . 在驻点)1 ,21(-处, 因为 f xx ⋅f yy -f xy 2=2e ⋅2e -02=4e 2>0, f xx =2e >0, 所以2)1 ,21(e f -=-是函数的极小值. 4. 求函数z =xy 在适合附加条件x +y =1下的极大值.解 由x +y =1得y =1-x , 代入z =xy , 则问题化为求z =x (1-x )的无条件极值.x dxdz 21-=, 222-=dx z d . 令,0=dx dz 得驻点21=x . 因为022122<-==x dx zd , 所以21=x 为极大值点, 极大值为41)211(21=-=z . 5. 从斜边之长为l 的一切直角三角形中, 求有最大周界的直角三角形.解 设直角三角形的两直角边之长分别为x , y , 则周长 S =x +y +l (0<x <l , 0<y <l ).因此, 本题是在x 2+y 2=l 2下的条件极值问题, 作函数 F (x , y )=x +y +l +λ(x 2+y 2-l 2).解方程组⎪⎩⎪⎨⎧=+=+==+=222021021ly x y F x F y x λλ, 得唯一可能的极值点2l y x ==. 根据问题性质可知这种最大周界的直角三角形一定存在, 所以斜边之长为l 的一切直角三角形中, 周界最大的是等腰直角三角形.6. 要造一个容积等于定数k 的长方体无盖水池, 应如何选择水池的尺寸方可使表面积最小.解 设水池的长为x , 宽为y , 高为z , 则水池的表面积为 S =xy +2xz +2yz (x >0, y >0, z >0).本题是在条件xyz =k 下, 求S 的最大值.作函数F (x , y , z )=xy +2xz +2yz +λ(xyz -k ).解方程组⎪⎩⎪⎨⎧==++==++==++=k xyz xy y x F xz z x F yz z y F z y x 0220202λλλ, 得唯一可能的极值点)221 ,2 ,2(333k k k . 由问题本身可知S 一定有最小值, 所以表面积最小的水池的长和宽都应为.23k 高为3221k . 7. 在平面xOy 上求一点, 使它到x =0, y =0及x +2y -16=0三直线距离平方之和为最小.解 设所求点为(x , y ), 则此点到x =0的距离为|y |, 到y =0的距离为|x |, 到x +2y -16=0的距离为221|162|+-+y x , 而距离平方之和为 222)162(51-+++=y x y x z . 解方程组⎪⎩⎪⎨⎧=-++=∂∂=-++=∂∂0)162(5420)162(522y x y y z y x x x z , 即{03292083=-+=-+y x y x . 得唯一的驻点)516 ,58(, 根据问题的性质可知, 到三直线的距离平方之和最小的点一定存在, 故)516 ,58(即为所求. 8( 将周长为2p 的矩形绕它的一边旋转而构成一个圆柱体( 问矩形的边长各为多少时( 才可使圆柱体的体积为最大?解 设矩形的一边为x , 则另一边为(p -x ), 假设矩形绕p -x 旋转, 则旋转所成圆柱体的体积为V =πx 2(p -x ).由0)32()(22=-=--=x p x x x p x dx dV πππ, 求得唯一驻点p x 32=. 由于驻点唯一, 由题意又可知这种圆柱体一定有最大值, 所以当矩形的边长为32p 和3p 时, 绕短边旋转所得圆柱体体积最大. 9. 求内接于半径为a 的球且有最大体积的长方体.解 设球面方程为x 2+y 2+z 2=a 2, (x , y , z )是它的各面平行于坐标面的内接长方体在第一卦限内的一个顶点, 则此长方体的长宽高分别为2x , 2y , 2z , 体积为V =2x ⋅2y ⋅2z =8xyz .令 F (x , y , z )=8xyz +λ(x 2+y 2+z 2-a 2) .解方程组⎪⎩⎪⎨⎧=++=+==+==+=2222028028028a z y x z xy F y xz F x yz F z y x λλλ, 即⎪⎩⎪⎨⎧=++=+=+=+2222040404a z y x z xy y xz x yz λλλ, 得唯一驻点)3,3,3(a a a . 由题意可知这种长方体必有最大体积, 所以当长方体的长、宽、高都为32a 时其体积最大. 10. 抛物面z =x 2+y 2被平面x +y +z =1截成一椭圆, 求原点到这椭圆的最长与最短距离.解 设椭圆上点的坐标(x , y , z ), 则原点到椭圆上这一点的距离平方为d 2=x 2+y 2+z 2, 其中x , y , z 要同时满足z =x 2+y 2和x +y +z =1. 令 F (x , y , z )=x 2+y 2+z 2+λ1(z -x 2-y 2)+λ2(x +y +z -1).解方程组⎪⎩⎪⎨⎧=++==+-==+-=02022022212121λλλλλλz F y y F x x F z y x , 得驻点231±-==y x , 32 =z . 它们是可能的两个极值点, 由题意这种距离的最大值和最小值一定存在, 所以距离的最大值和最小值在两点处取得, 因为在驻点处359)32()231(2222222 =+±-=++=z y x d , 所以3591+=d 为最长距离;3592-=d 为最短距离.总习题八1. 在“充分”、“必要”和“充分必要”三者中选择一个正确的填入下列空格内:(1)f (x , y )在(x , y )可微分是f (x , y )在该点连续的______条件, f (x , y )在点连续是f (x , y )在该点可微分的______条件.解 充分; 必要.(2)z =f (x , y )在点(x , y )的偏导数x z ∂∂及yz ∂∂存在是f (x , y )在该点可微分的______条件, z = f (x , y )在点(x , y )可微分是函数在该点的偏导数x z ∂∂及y z ∂∂存在的______条件. 解 必要; 充分.(3)z =f (x , y )的偏导数x z ∂∂及yz ∂∂在(x , y )存在且连续是f (x , y )在该点可微分的______条件. 解 充分. (4)函数z =f (x , y )的两个二阶偏导数y x z ∂∂∂2及xy z ∂∂∂2在区域D 内连续是这两个二阶混合偏导数在D 内相等的______条件.解 充分.2. 选择下述题中给出的四个结论中一个正确的结论:设函数f (x , y )在点(0, 0)的某邻域内有定义, 且f x (0, 0)=3, f y (0, 0)=-1, 则有______.(A )dz |(0, 0)=3dx -dy .(B )曲面z =f (x , y )在点(0, 0, f (0, 0))的一个法向量为(3, -1, 1).(C )曲线⎩⎨⎧==0),(y y x f z 在点(0, 0, f (0, 0))的一个切向量为(1, 0, 3). (D )曲线⎩⎨⎧==0),(y y x f z 在点(0, 0, f (0, 0))的一个切向量为(3, 0, 1). 解 (C ).3. 求函数)1ln(4),(222y x y x y x f ---=的定义域, 并求),(lim )0,21(),(y x f y x →. 解 函数的定义域为{(x , y )| 0<x 2+y 2<1, y 2≤4x }因为D ∈)0 ,21(, 故由初等函数在定义域内的连续性有 43ln 2)1ln(4)1ln(4lim ),(lim )0,21(222222)0,21(),()0,21(),(=---=---=→→y x y x y x y x y x f y x y x .。

同济大学第六版高等数学课后答案详解全集

同济大学第六版高等数学课后答案详解全集

同济六版高等数学课后答案全集第一章习题1-11. 设A =(-∞, -5)⋃(5, +∞), B =[-10, 3), 写出A ⋃B , A ⋂B , A \B 及A \(A \B )的表达式.解 A ⋃B =(-∞, 3)⋃(5, +∞),A ⋂B =[-10, -5),A \B =(-∞, -10)⋃(5, +∞),A \(A \B )=[-10, -5).2. 设A 、B 是任意两个集合, 证明对偶律: (A ⋂B )C =A C ⋃B C .证明 因为x ∈(A ⋂B )C ⇔x ∉A ⋂B ⇔ x ∉A 或x ∉B ⇔ x ∈A C 或x ∈B C ⇔ x ∈A C ⋃B C , 所以 (A ⋂B )C =A C ⋃B C .3. 设映射f : X →Y , A ⊂X , B ⊂X . 证明(1)f (A ⋃B )=f (A )⋃f (B );(2)f (A ⋂B )⊂f (A )⋂f (B ).证明 因为y ∈f (A ⋃B )⇔∃x ∈A ⋃B , 使f (x )=y⇔(因为x ∈A 或x ∈B ) y ∈f (A )或y ∈f (B )⇔ y ∈f (A )⋃f (B ),所以 f (A ⋃B )=f (A )⋃f (B ).(2)因为y ∈f (A ⋂B )⇒∃x ∈A ⋂B , 使f (x )=y ⇔(因为x ∈A 且x ∈B ) y ∈f (A )且y ∈f (B )⇒ y ∈ f (A )⋂f (B ),所以 f (A ⋂B )⊂f (A )⋂f (B ).4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g = , Y I g f = , 其中I X 、I Y 分别是X 、Y 上的恒等映射, 即对于每一个x ∈X , 有I X x =x ; 对于每一个y ∈Y , 有I Y y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1.证明 因为对于任意的y ∈Y , 有x =g (y )∈X , 且f (x )=f [g (y )]=I y y =y , 即Y 中任意元素都是X 中某元素的像, 所以f 为X 到Y 的满射.又因为对于任意的x 1≠x 2, 必有f (x 1)≠f (x 2), 否则若f (x 1)=f (x 2)⇒g [ f (x 1)]=g [f (x 2)] ⇒ x 1=x 2.因此f 既是单射, 又是满射, 即f 是双射.对于映射g : Y →X , 因为对每个y ∈Y , 有g (y )=x ∈X , 且满足f (x )=f [g (y )]=I y y =y , 按逆映射的定义, g 是f 的逆映射.5. 设映射f : X →Y , A ⊂X . 证明:(1)f -1(f (A ))⊃A ;(2)当f 是单射时, 有f -1(f (A ))=A .证明 (1)因为x ∈A ⇒ f (x )=y ∈f (A ) ⇒ f -1(y )=x ∈f -1(f (A )),所以 f -1(f (A ))⊃A .(2)由(1)知f -1(f (A ))⊃A .另一方面, 对于任意的x ∈f -1(f (A ))⇒存在y ∈f (A ), 使f -1(y )=x ⇒f (x )=y . 因为y ∈f (A )且f 是单射, 所以x ∈A . 这就证明了f -1(f (A ))⊂A . 因此f -1(f (A ))=A . 6. 求下列函数的自然定义域:(1)23+=x y ;解 由3x +2≥0得32->x . 函数的定义域为) ,32[∞+-. (2)211xy -=; 解 由1-x 2≠0得x ≠±1. 函数的定义域为(-∞, -1)⋃(-1, 1)⋃(1, +∞).(3)211x xy --=; 解 由x ≠0且1-x 2≥0得函数的定义域D =[-1, 0)⋃(0, 1].(4)241x y -=; 解 由4-x 2>0得 |x |<2. 函数的定义域为(-2, 2).(5)x y sin =;解 由x ≥0得函数的定义D =[0, +∞).(6) y =tan(x +1);解 由21π≠+x (k =0, ±1, ±2, ⋅ ⋅ ⋅)得函数的定义域为 12-+≠ππk x (k =0, ±1, ±2, ⋅ ⋅ ⋅).(7) y =arcsin(x -3);解 由|x -3|≤1得函数的定义域D =[2, 4].(8)xx y 1arctan 3+-=;解 由3-x ≥0且x ≠0得函数的定义域D =(-∞, 0)⋃(0, 3).(9) y =ln(x +1);解 由x +1>0得函数的定义域D =(-1, +∞).(10)x e y 1=.解 由x ≠0得函数的定义域D =(-∞, 0)⋃(0, +∞).7. 下列各题中, 函数f (x )和g (x )是否相同?为什么?(1)f (x )=lg x 2, g (x )=2lg x ;(2) f (x )=x , g (x )=2x ;(3)334)(x x x f -=,31)(-=x x x g .(4)f (x )=1, g (x )=sec 2x -tan 2x .解 (1)不同. 因为定义域不同.(2)不同. 因为对应法则不同, x <0时, g (x )=-x .(3)相同. 因为定义域、对应法则均相相同.(4)不同. 因为定义域不同.8. 设⎪⎩⎪⎨⎧≥<=3|| 03|| |sin |)(ππϕx x x x , 求)6(πϕ, )4(πϕ, )4(πϕ-, ϕ(-2), 并作出函数y =ϕ(x )的图形.解 21|6sin |)6(==ππϕ, 22|4sin |)4(==ππϕ, 22|)4sin(|)4(=-=-ππϕ, 0)2(=-ϕ. 9. 试证下列函数在指定区间内的单调性:(1)xx y -=1, (-∞, 1); (2)y =x +ln x , (0, +∞).证明 (1)对于任意的x 1, x 2∈(-∞, 1), 有1-x 1>0, 1-x 2>0. 因为当x 1<x 2时, 0)1)(1(112121221121<---=---=-x x x x x x x x y y , 所以函数xx y -=1在区间(-∞, 1)内是单调增加的. (2)对于任意的x 1, x 2∈(0, +∞), 当x 1<x 2时, 有0l n )()l n ()l n (2121221121<+-=+-+=-x x x x x x x x y y , 所以函数y =x +ln x 在区间(0, +∞)内是单调增加的.10. 设 f (x )为定义在(-l , l )内的奇函数, 若f (x )在(0, l )内单调增加, 证明f (x )在(-l , 0)内也单调增加.证明 对于∀x 1, x 2∈(-l , 0)且x 1<x 2, 有-x 1, -x 2∈(0, l )且-x 1>-x 2.因为f (x )在(0, l )内单调增加且为奇函数, 所以f (-x 2)<f (-x 1), -f (x 2)<-f (x 1), f (x 2)>f (x 1),这就证明了对于∀x 1, x 2∈(-l , 0), 有f (x 1)< f (x 2), 所以f (x )在(-l , 0)内也单调增加. 11. 设下面所考虑的函数都是定义在对称区间(-l , l )上的, 证明:(1)两个偶函数的和是偶函数, 两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数.证明 (1)设F (x )=f (x )+g (x ). 如果f (x )和g (x )都是偶函数, 则F (-x )=f (-x )+g (-x )=f (x )+g (x )=F (x ),所以F (x )为偶函数, 即两个偶函数的和是偶函数.如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )+g (-x )=-f (x )-g (x )=-F (x ),所以F (x )为奇函数, 即两个奇函数的和是奇函数.(2)设F (x )=f (x )⋅g (x ). 如果f (x )和g (x )都是偶函数, 则F (-x )=f (-x )⋅g (-x )=f (x )⋅g (x )=F (x ),所以F (x )为偶函数, 即两个偶函数的积是偶函数.如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )⋅g (-x )=[-f (x )][-g (x )]=f (x )⋅g (x )=F (x ),所以F (x )为偶函数, 即两个奇函数的积是偶函数.如果f (x )是偶函数, 而g (x )是奇函数, 则F (-x )=f (-x )⋅g (-x )=f (x )[-g (x )]=-f (x )⋅g (x )=-F (x ),所以F (x )为奇函数, 即偶函数与奇函数的积是奇函数.12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数?(1)y =x 2(1-x 2);(2)y =3x 2-x 3;(3)2211xxy +-=; (4)y =x (x -1)(x +1);(5)y =sin x -cos x +1;(6)2x x a a y -+=. 解 (1)因为f (-x )=(-x )2[1-(-x )2]=x 2(1-x 2)=f (x ), 所以f (x )是偶函数.(2)由f (-x )=3(-x )2-(-x )3=3x 2+x 3可见f (x )既非奇函数又非偶函数. (3)因为())(111)(1)(2222x f x x x x x f =+-=-+--=-, 所以f (x )是偶函数. (4)因为f (-x )=(-x )(-x -1)(-x +1)=-x (x +1)(x -1)=-f (x ), 所以f (x )是奇函数.(5)由f (-x )=sin(-x )-cos(-x )+1=-sin x -cos x +1可见f (x )既非奇函数又非偶函数.(6)因为)(22)()()(x f a a a a x f x x x x =+=+=-----, 所以f (x )是偶函数. 13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期:(1)y =cos(x -2);解 是周期函数, 周期为l =2π.(2)y =cos 4x ;解 是周期函数, 周期为2π=l . (3)y =1+sin πx ;解 是周期函数, 周期为l =2.(4)y =x cos x ;解 不是周期函数.(5)y =sin 2x .解 是周期函数, 周期为l =π.14. 求下列函数的反函数:(1)31+=x y 错误!未指定书签。

(完整word版)同济大学第六版高等数学课后答案详解全集

(完整word版)同济大学第六版高等数学课后答案详解全集

同济六版高等数学课后答案全集第一章习题1-11. 设A =(-∞, -5)⋃(5, +∞), B =[-10, 3), 写出A ⋃B , A ⋂B , A\B 及A\(A\B)的表达式.2. 设A 、B 是任意两个集合, 证明对偶律: (A ⋂B)C =AC ⋃BC . .3. 设映射f : X →Y , A ⊂X , B ⊂X . 证明(1)f(A ⋃B)=f(A)⋃f(B);(2)f(A ⋂B)⊂f(A)⋂f(B).4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g = , Y I g f = , 其中IX 、IY 分别是X 、Y 上的恒等映射, 即对于每一个x ∈X , 有IX x =x ; 对于每一个y ∈Y , 有IY y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1.5. 设映射f : X →Y , A ⊂X . 证明:(1)f -1(f(A))⊃A ;(2)当f 是单射时, 有f -1(f(A))=A .6. 求下列函数的自然定义域:(1)23+=x y ;. (2)211x y -=; (3)211x x y --=;(4)241x y -=;(5)x y sin =; (6) y =tan(x +1);(7) y =arcsin(x -3); (8)x x y 1arctan 3+-=;. (9) y =ln(x +1);(10)x e y 1=.7. 下列各题中, 函数f(x)和g(x)是否相同?为什么?(1)f(x)=lg x2, g(x)=2lg x ;(2) f(x)=x , g(x)=2x ;(3)334)(x x x f -=,31)(-=x x x g .(4)f(x)=1, g(x)=sec2x -tan2x .8. 设⎪⎩⎪⎨⎧≥<=3|| 03|| |sin |)(ππϕx x x x , 求)6(πϕ, )4(πϕ, )4(πϕ-, ϕ(-2), 并作出函数y =ϕ(x)的图形.. 9. 试证下列函数在指定区间内的单调性:(1)x xy -=1, (-∞, 1);(2)y =x +ln x , (0, +∞).10. 设 f(x)为定义在(-l , l)内的奇函数, 若f(x)在(0, l)内单调增加, 证明f(x)在(-l , 0)内也单调增加.11. 设下面所考虑的函数都是定义在对称区间(-l , l)上的, 证明:(1)两个偶函数的和是偶函数, 两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数.12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数?(1)y =x2(1-x2);(2)y =3x2-x3;(3)2211x xy +-=;(4)y =x(x -1)(x +1);(5)y =sin x -cos x +1;(6)2x x aa y -+= 13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期:(1)y =cos(x -2);.(2)y =cos 4x ;(3)y =1+sin πx ;(4)y =xcos x ;(5)y =sin2x .14. 求下列函数的反函数:(1)31+=x y 错误!未指定书签。

高等数学(同济第七版下)课后习题及解答

高等数学(同济第七版下)课后习题及解答

1.设u=a-b+2c,v=-a+3b-c.试用a,b,c表示2u-3v.解2u-3v=2(a-b+2c)-3(-a+3b-c)=5a-11b+7c.2.如果平面上一个四边形的对角线互相平分,试用向量证明它是平行四边形.证如图8-1,设四边形ABCD中AC与BD交于M,已知AM=MC,DM MB.故AB AM MB MC DM DC.即AB//DC且|A B|=|DC|,因此四边形ABCD是平行四边形.3.把△ABC的BC边五等分,设分点依次为D1,D2,D3,D4,再把各分点与点A连接.试以AB=c,BC=a表向量D1A,D2A,D3A,D A4.证如图8-2,根据题意知1 BD a,151D1D a,251D2D a,351 D3D a,45故D A1=-(AB BD1)=- 15a-cD2A=-(AB BD2)=- 25a-cD3A=-(AB BD3)=- 35a-cD4 A=-(AB BD)=-445a-c.4.已知两点M1(0,1,2)和M2(1,-1,0).试用坐标表示式表示向量M1M2及-2M1M2.解M1M2=(1-0,-1-1,0-2)=(1,-2,-2).-2M1M2=-2(1,-2,-2)=(-2,4,4).5.求平行于向量a=(6,7,-6)的单位向量.解向量a的单位向量为aa,故平行向量a的单位向量为a a =1(6,7,-6)=1167,,1111611 ,22 2其中a67(6)11.6.在空间直角坐标系中,指出下列各点在哪个卦限?A(1,-2,3),B(2,3,-4),C(2,-3,-4),D(-2,-3,1).解A点在第四卦限,B点在第五卦限,C点在第八卦限,D点在第三卦限.7.在坐标面上和在坐标轴上的点的坐标各有什么特征?指出下列各点的位置:A(3,4,0),B(0,4,3),C(3,0,0),D(0,-1,0).解在坐标面上的点的坐标,其特征是表示坐标的三个有序数中至少有一个为零,比如xOy面上的点的坐标为(x0,y0,0),xOz面上的点的坐标为(x0,0,z0),yOz面上的点的坐标为(0,y0,z0).在坐标轴上的点的坐标,其特征是表示坐标的三个有序数中至少有两个为零,比如x轴上的点的坐标为(x0,0,0),y轴上的点的坐标为(0,y0,0),z轴上的点的坐标为(0,0,z0).A点在xOy面上,B点在yOz面上,C点在x轴上,D点在y轴上.8.求点(a,b,c)关于(1)各坐标面;(2)各坐标轴;(3)坐标原点的对称点的坐标.解(1)点(a,b,c)关于xOy面的对称点(a,b,-c),为关于yOz面的对称点为(-a,b,c),关于zOx面的对称点为(a,-b,c).(2)点(a,b,c)关于x轴的对称点为(a,-b,-c),关于y 轴的对称点为(-a,b,-c),关于z轴的对称点为(-a,-b,c).(3)点(a,b,c)关于坐标原点的对称点是(-a,-b,-c). 9.自点P(0x0,y0,z0)分别作各坐标面和各坐标轴的垂线,写出各垂足的坐标.解设空间直角坐标系如图8-3,根据题意,P0F为点P0关于xOz 面的垂线,垂足F坐标为(x0,0,z0);P0D为点P0关于xOy面的垂线,垂足D坐标为(,,0)x0y;P0E为点P0关于yOz面的垂线,垂足E坐标为(0),y0,z o.P0A为点P0关于x轴的垂线,垂足A坐标为(x o,0,0);P0B为点P0关于y轴的垂线,垂足B坐标为(0,y0,0);P0C为点P0关于z轴的垂线,垂足C坐标为(0,0,)z.10.过点P(0x0,y0,z0)分别作平行于z轴的直线和平行于xOy面的平面,问在它们上面的点的坐标各有什么特点?解如图8-4,过P0且平行于z轴的直线l上的点的坐标,其特点是,它们的横坐标均相同,纵坐标也均相同.而过点P0且平行于xOy面的平面上的点的坐标,其特点是,它们的竖坐标均相同.11.一边长为a的正方体放置在xOy面上,其底面的中心在坐标原点,底面的顶点在x轴和y轴上,求它各顶点的坐标.2 解 如图 8-5,已知 AB=a ,故 OA=OB=a2,于是各顶点的坐 22 2 标分别为 A0 0)(a ,, ,B ((0,a ,0)),C (-a222,0,0),D 2 (0,- a 2 2 ,0),E ( a 2 2 ,0,a ),F (0, a 2 2 ,a ),G (- a2, 2 0,a ),H (0,- a 2,a ). 12.求点 M (4,-3,5)到各坐标轴的距离 .2 2解 点 M 到 x 轴的距离为 d 1=( 3) 534,点 M 到 y 22轴 的 距 离 为 d 2=4541, 点 M 到 z 轴 的 距 离 为 22.d 3=4 ( 3) 25 513.在 yOz 面上,求与三点 A (3,1,2),B (4,-2,-2),C (0,5, 1)等距离的点 .解 所求点在 yOz 面上,不妨设为 P (0,y ,z ),点 P 与三点 A ,2y 2 z 2B ,C 等距离, PA 3( 1) ( 2) , PB2 y 2 z 4 ( 2)(2) 2,PC(y 2z1) 2 .5)(由 PAPBPC 知,2( 1)2 ( 2)2 42 (2)( 2)223yz yz2( 1)2( y 5)z ,即9 ( y 1) 9 ( y 1) 2 2 2 (z 2) 16 ( y 2) 22 2 (z 2) ( y 5)( z( z21) . 2 2), 解上述方程组,得 y=1,z=-2.故所求点坐标为( 0,1,-2). 14.试证明以三点 A (4,1,9),B (10,-1,6),C (2,4,3)为顶 点的三角形是等腰直角三角形 .证 由AB (10 24)( 1 1) 2( 6 29)7, AC (2 24)( 4 1)22(3 9)7,BC(2 210)(4 1) 2(3 26)98 7 2 222知.ABAC 及 BCABAC 故△ABC 为等腰直角三角形.15. 设已知两点为 M 1(4, 2 ,1),M 2(3,0,2),计算向量 M 1M 2的模、方向余弦和方向角 .解 向量M 1M=(3-4,0-2 ,2-1)=(-1,- 2 ,-1),2其模-1 2- 2 2 12 4 2M1M()().其方向余弦分2别为cos=- 12,cos=-22,cos=12.方向角分别为23,34,3.16.设向量的方向余弦分别满足(1)cos=0;(2)cos=1;(3)cos=cos=0,问这些向量与坐标轴或坐标面的关系如何?解(1)由cos=0得知,故向量与x轴垂直,平行于2yOz面.(2)由cos=1得知=0,故向量与y轴同向,垂直于xOz面.(3)由cos=cos=0知,故向量垂直于x轴和y轴,2即与z轴平行,垂直于xOy面.,求r在u轴上的投影.17.设向量r的模是4,它与u轴的夹角为3解已知|r|=4,则Prju r=|r|cos=4?cos 3 =4×12 =2.18.一向量的终点在点B(2,-1,7),它在x轴、y轴和z轴上的投影依次为4,-4和7,求这向量的起点A的坐标.解设A点坐标为(x,y,z),则AB=(2-x,-1-y,7-z),由题意知2-x=4,-1-y=-4,7-z=7,故x=-2,y=3,z=0,因此A点坐标为(-2,-3,0).19.设m=3i+4j+8k,n=2i-4j-7k和p=5i+j-4k.求向量a=4m+3n-p在x轴上的投影及在y轴上的分向量.解a=4m+3n-p=4(3i+5j+8k)+3(2i-4j-7k)-(5i+j-4k)=13i+7j+15k,a在x轴上的投影为13,在y轴上的分向量为7j.1.设a3i j2k,b i2j k,求(1)a b及a b;(2)(-2a)3b及a2b;(3)a,b的夹角的余弦.解(1)a b(3,-1,-2)(1,2,-1)31(-12-2-1 3)()(),i j ka b31 2=(5,1,7).12 1(2)(2a)3b6(a b)6318a2b2(a b)2(5,1,7)(10,2,14)(3 cos(a,b) aabb32(1)(2)12(1)222 232 3 31462212.设a,b,c为单位向量,满足a b c0,求a b b c c a.解已知a b c1,a b c0,故(a b c)(a b c)0.22 2即2220a b c a b b c c a.因此a b b c c a 122 2(a b c)2-323.已知M1(1,-1,2),M2(3,3,1)M3(3,1,3).求与M1M2,M2M3同时垂直的单位向量.解M1M2=(3-1,3-(-1),1-2)=(2,4,-1)M 2M=(3-3,1-3,3-1)=(0,-2,2)3由于 M 1M 2 M 2M 3 与M 1M 2,M 2M 3 同时垂直,故所求向量可取为a(M M1 2M M12M M23M M2)3,ij k 由M 1M 2 M 2M 3 =2 4 1 022=(6,-4,-4),M 1M M M2 232 6 ( 24) ( 24)68 2 17 132 2知). a(6, 4, 4)(, , 2 171717174. 设质量为 100kg 的物体从点 M1(3,1,8)沿直线移动到点 M2(1,4,2), 计算重力所作的功(坐标系长度单位为 m ,重力方向为 z 轴负方向).解M 1M 2 =(1-3,4-1,2-8)=(-2,3,-6)F=(0,0,-100×9.8)=(0,0,-980)W=F?M 1M 2 =(0,0,-980)?(-2,3 ,-6 )=588(0 J ).1处,有一与O P 1 5.在杠杆上支点 O 的一侧与点 O 的距离为 x 1 的点 P 成角 1 的力 F1作用着;在 O 的另一侧与点 O 的距离为 x 2 的点 P2处,有一与OP2成角2的力F2,F1,F2作用着(图8-6),问1,2,x1,x2符合怎样的条件才能使杠杆保持平衡?解如图8-6,已知有固定转轴的物体的平衡条件是力矩的代数和为零,又由对力矩正负符号的规定可得杠杆保持平衡的条件为F1x sin1F2x2sin20,1即F1x1sin1F2x2sin2.6.求向量a(4,-3,4)在向量b(2,2,1)上的投影.a b(4,3,4)(2,2,1) 6解 2Pr j b a.22 2b 322 17.设a(3,5,2),b(2,1,4),问与有怎样的关系,能使a b与z轴垂直?解a b=(3,5,-2)+(2,1,4)=(32,5,24).要a b与z轴垂直,即要(a b)(0,0,1),即(a b)?(0,0,1)=0,亦即(32,5,24)?(0,0,1)=0,故(24)=0,因此2时能使a b与z轴垂直.8.试用向量证明直径所对的圆周角是直角.证如图8-7,设AB是圆O的直径,C点在圆周上,要证∠ACB=,2 只要证明AC BC0即可.由AC BC=(AO OC)(BO OC)2AO BO AO OC OC BO OC =2 2=0AO AO OC AO OC OC.故AC BC,∠ACB为直角.9.已知向量a2i3j k,b i j3k和c i2j,计算:(1)(a b)c(a c)b(2)(a b)(b c)(3)(a b) c 解(1)a b(2,3,1)(1,1,3)8,a c(2,3,1)(1,2,0)8,(a b)c(a c)b8(1,2,0)8(1,1,3)(0,8,24)8i24k.(2)a b=(2,-3,1)+(1,-1,3)=(3,-4,4),b c=(1,-1,3)+(1,-2,0)=(2,-3,3),i j k(a b)(b c)344(0,1,1)j k.23323 1(3)(ab) c2. 1 1 3 12 010. 已知OA i 3k,OB j 3k ,求△OAB 的面积.解 由向量积的几何意义知1△OAB= OA OB S2,ij kOA OB 1 0 3 ( 3, 3,1) , 0 1 32 2OA OB( 3) ( 3) 119S△OAB19 211. 已知( , , ), ( , , ), ( , , )a a x a a bb b b cc c c ,试利用yzxyzxyz行列式的性质证明:(a b) c (b c) a (c a) baxa yazbxbybz证因为(), a b c bbbx y z (b c) acxcyczcxc yc zaxayazcx cy cz(c a) baxayaz,bxbybz而由行列式的性质知a x a y a zb x b y b zc x c y cz b x b y b z c x c y c z = a x a y a z ,故 c x c y c z a x a y a zb x b ybz(a b) c (b c) a (c a) b .12. 试用向量证明不等式:222222a 1aabbba ba b a b ,231231 12 23 3其中a 1,a 2 ,a 3,b 1,b 2,b 3 为任意实数 . 并指出等号成立的条件.证 设向量 a ( a 1,a ,a ),b (b 1,b 2,b 3).23由ab a b cos(a, b ) a b ,从而222222 a 1ba ba baaa bbb ,1 2 23 3121 233当a 1,a 2 ,a 3与b 1,b 2 ,b 3 成比例,即a1b1a 2b2a 3b3时,上述等式成立.1.求过点(3,0,-1)且与平面3x7y5z120平行的平面方程.解所求平面与已知平面3x7y5z120平行.因此所求平面的法向量可取为n=(3,-7,5),设所求平面为3x7y5z D0.将点(3,0,-1)代入上式得D=-4.故所求平面方程为3x7y5z40.2.求过点M0(2,9,-6)且与连接坐标原点及点M0的线段OM0垂直的平面方程.解OM(2,9,6.所求平面与0)O M垂直,可取n=OM0,0设所求平面方程为2x9y6z D0.将点M0(2,9,-6)代入上式得D=-121.故所求平面方程为2x9y6z1210.3.求过(1,1,-1),(-2,-2,2)和(1,-1,2)三点的平面方程.x1y1z 1解由021212 1,得x3y2z0,11112 1即为所求平面方程.注设M(x,y,z)为平面上任意一点,M(x,y,z)(i1,2,3)i为i i i平面上已知点.由()0,M1M M M M M即1213x x1 y y1z z1x 2 x1y2y1z2z10,x 3 x1y3y1z3z1它就表示过已知三点M i(i=1,2,3)的平面方程.4.指出下列各平面的特殊位置,并画出各平面:(1)x=0;(2)3y-1=0;(3)2x-3y-6=0;(4)x-3y=0;(5)y+z=1;(6)x-2z=0;(7)6x+5y-z=0.解(1)—(7)的平面分别如图8—8(a)—(g). (1)x=0表示yOz坐标面.1(2)3y-1=0表示过点(,00,)且与y轴垂直的平面.3(3)2x-3y-6=0表示与z轴平行的平面.(4)x-3y=0表示过z轴的平面.(5)y+z=1表示平行于x轴的平面.(6)x-2z=0表示过y轴的平面.(7)6x+5y-z=0表示过原点的平面.5.求平面2x2y z50与各坐标面的夹角的余弦.解平面的法向量为n=(2,-2,1),设平面与三个坐标面xOy,yOz,zOx的夹角分别为1,2,3.则根据平面的方向余弦知cosn kcos1n k(2,222,1)(0,0,1)21( 22)113,cos2cos nnii(2, 2,1)3(1,0,0)123,cos3 cos nnjj(2, 2,1)3(10,1,0)23.6.一平面过点(1,0,-1)且平行于向量a(2,1,1)和b(1,1,0),试求这个平面方程.解所求平面平行于向量a和b,可取平面的法向量i j kn a b211(1,1,3).110故所求平面为1(x1)1(y0)3(z1)0,即x y3z40.7.求三平面x3y z1,2x y z0,x2y2z3的交点.解联立三平面方程x3y z1,2x y z0,x2y2z 3.解此方程组得x1,y1,z 3.故所求交点为(1,-1,3). 8.分别按下列条件求平面方程:(1)平行于xOz面且经过点(2,-5,3);(2)通过z轴和点(-3,1,-2);(3)平行于x轴且经过两点(4,0,-2)和(5,1,7).解(1)所求平面平行于xOz面,故设所求平面方程为By D0.将点(2,-5,3)代入,得5B D0,即D5B.因此所求平面方程为By5B0,即y50.(2)所求平面过z轴,故设所求平面为Ax By0.将点(-3,1,-2)代入,得3A B0,即B3A.因此所求平面方程为Ax3Ay0,即x3y0.(3)所求平面平行于x轴,故设所求平面方程为By Cz D0. 将点(4,0,-2)及(5,1,7)分别代入方程得2C D0及B7C D0.C D2, B92D .因此,所求平面方程为9 2DDy z D0,2即9y z20.9.求点(1,2,1)到平面x2y2z100的距离.解利用点(,,)M0x y o z o到平面Ax By Cz D0的距离公式dA xABy2B2CzC2D1 2212 22212210 331.1.求过点(4,-1,3)且平行于直线x3y z21 51的直线方程.解所求直线与已知直线平行,故所求直线的方向向量s(2,1,5),直线方程即为x 4y1z 21 5 3 .2.求过两点M1(3,2,1)和M2(1,0,2)的直线方程.解取所求直线的方向向量s M1M(13,0(2),21)(4,2,1),2因此所求直线方程为x 3y2z4 2 1 1 .3.用对称式方程及参数方程表示直线x y z1,2x y z 4.解根据题意可知已知直线的方向向量i j ks111(2,1,3).21 1取x=0,代入直线方程得yzy z1,4.3 5解得.y,z这2 2样就得到直线经过的一点(3 50,,).因此直线的对称式方程为2 2x30y z22 1 352 .参数方程为x2t,y 32t ,z 523t.注由于所取的直线上的点可以不同,因此所得到的直线对称式方程或参数方程得表达式也可以是不同的.4.求过点(2,0,-3)且与直线x2y4z70,3x5y2z10垂直的平面方程.解根据题意,所求平面的法向量可取已知直线的方向向量,即i j kn s124(16,14,11),35 2故所求平面方程为16(x2)14(y0)11(z3)0.即16x14y11z650.5.求直线5x3x3y2y3zz91 00,与直线2x3x28yyzz23180,的夹角的余弦.解两已知直线的方向向量分别为i j k i j ks533(3,4,1),s221(10,5,10), 1 232138 1因此,两直线的夹角的余弦cos(cos s1,)s2 s1s1s2s22 332410(1)4252101(1025)2100.6.证明直线x 2yz2xyz7,7与直线3x2x6yy 3zz 08,平行.证已知直线的方向向量分别是i j k i j ks 1 121(3,1,5),s2363(9,3,15), 21121 1由s23s1知两直线互相平行.7.求过点(0,2,4)且与两平面x2z1和y3z2平行的直线方程.解所求直线与已知的两个平面平行,因此所求直线的方向向量可取i j ks n1 n102(201 32,3,1),故所求直线方程为x 2 0y2z3 14.注本题也可以这样解:由于所求直线与已知的两个平面平行,则可视所求直线是分别与已知平面平行的两平面的交线,不妨设所求直线为x2z a,y3z b.将点(0,2,4)代入上式,得a8,b10.故所求直线为x2z8,y3z10.8.求过点(3,1,-2)且通过直线x54y3z2 1的平面方程.解利用平面束方程,过直线x54y3z2 1的平面束方程为x4y3y 3(z)0,52 211将点(3,1,-2)代入上式得.因此所求平面方程为20x4y311y5220 23(z) 0,即8x9y22z590.9.求直线xxyy3zz0,与平面x y z10的夹角.i j k解已知直线的方向向量(2,4,2),s113平面11 1的法向量n(1,1,1).设直线与平面的夹角为,则sin cos(n, s) ssnn 2221244((1)22)21(2)((1) 21)( 21)0,即0.10.试确定下列各组中的直线和平面间的关系;(1)x3y4z27 3和4x2y2z3;(2)x3y2z7 和3x2y7z8;(3)x32y2z134和x y z 3.解设直线的方向向量为s,平面的法向量为n,直线与平面的夹角为,且s nsin cos(n,s).s n (1)s(2,7,3),n(4,2,2),sin ( 2) ( 2 2) ( 4 2 7) ( 7) 2 3 ( 2) 2 4 3 ( ( 2 2)2) ( 2) 20, 则0.故直线平行于平面或在平面上, 现将直线上的点 A (-3,-4,0)代入平面方程,方程不成立 .故点 A 不在平面上,因此直线不在平 面上,直线与平面平行 . (2)s(3, 2,7), n (3, 2,7),由于s n 或sin 2 3 3( 3 2) 2( 2) 2 7 ( 2)2 3 7 ( 7 2) 22 71,知,故直线与平面垂直 .2(3)s( 3,1, 4), n (1,1,1),由于s n 0或sin 2 3 3 2 1 1 ( 1 1 4) 2( 4) 2 1 1 2 1 21 0, 知0,将直线上的点 A (2,-2,3)代入平面方程,方程成立,即点 A 在平面上 .故直线在平面上 . 11.求过点(1,2,1)而与两直线x x2 yy z 1 0, 2x y z z 1 0xy z 00,和 平行的平面的方程.解 两直线的方向向量为i j k i j ks 1 121(1,2,3),s2211(0,1,1), 11111 1i j k取(1,1,1),n s s12 31 201 1则过点(1,2,1),以n为法向量的平面方程为1(x1)1(y2)1(z1)0,即x y z0.12.求点(-1,2,0)在平面x2y z10上的投影.解作过已知点且与已知平面垂直的直线.该直线与平面的交点即为所求.根据题意,过点(-1,2,0)与平面x2y z10垂直的直线为x 1 1y2z21,将它化为参数方程x1t,y22t,z t,代入平面方程得1t2(22t)(t)10,整理得2t.从而所求点(-1,2,0)在平面x2y z10上的3投影为(53,23,23).13.求点P(3,-1,2)到直线x2xy z 1y z 40,的距离.i j k解直线的方向向量(0,3,3).s11 121 1在直线上取点(1,-2,0),这样,直线的方程可表示成参数方程形式x 1, y 2 3t,z 3t.(1)又,过点 P (3,-1,2),以s (0, 3, 3)为法向量的平面方程为3(y 1) 3(z 2) 0,即y z 1 0.(2)将式(1)代入式(2)得11 3t,于是直线与平面的交点为 (1, , ),2 2 2故所求距离为 d (321) ( 1 1 2 ) 2 (2 3 2 ) 2322.14.设 M 0 是直线 L 外一点,M 是直线 L 上任意一点,且直线的方向向 量为s ,试证:点 M 0 到直线 L 的距离dM M ss.证 如图 8-9,点 M 0 到直线 L 的距离为 d.由向量积的几何意义知M 0 表示以 M 0M ,s 为邻边的平行四边形的面积 .而M s M 0Mss表示以 s为边长的该平面四边形的高, 即为点 M 0 到直线L 的距离.于是dM 0 Mss.15.求直线2x3x4yy z2z0,9 0在平面4x y z1上的投影直线的方程.解作过已知直线的平面束,在该平面束中找出与已知平面垂直的平面,该平面与已知平面的交线即为所求.设过直线2x3x4yy z2z0,9 0的平面束方程为2x4y z(3x y2z9)0,经整理得(23)x(4)y(12)z90. 由(23)4(4)(1)(12)10,得1311.代入平面束方程,得17x31y37z1170.因此所求投影直线的方程为17x31y37z1170,4x y z 1.16.画出下列各平面所围成的立体的图形.(1)x0,y0,z0,x2,y1,3x4y2z120;y(2).x0,z0,x1,y2,z4解(1)如图8-10(a);(2)如图8-10(b).1.一球面过原点及A(4,0,0),B(1,3,0)和C(0,0,-4)三点,求球面的方程及球心的坐标和半径.解设所求球面的方程为2()()2 22(x a)y b z c R,将已知点的坐标代入上式,得2b c R22 2a,(1)2b2c2R2(a4),(2)( 2b2c2R2a1)(3),(3)2b2(4c)2R2a,(4)联立(1)(2)得a2,联立(1)(4)得c2,将a2代入(2)(3)并联立得b=1,故R=3.因此所求球面方程为(x2y2z2)(1)(2) 2 9,其中球心坐标为(2,1,2),半径为3.2.建立以点(1,3,-2)为球心,且通过坐标原点的球面方程.解设以点(1,3,-2)为球心,R为半径的球面方程为(x1)2y z R22 2(3)(2),球面经过原点,故2R (021) ( 0 3)2 2(02) 14,从而所求球面方程为(x1)2(y3)2(z2)214.2y z x y z2 23.方程x2420表示什么曲面?解将已知方程整理成(x2y2z1)(2)( 1) 2 2(6) ,所以此方程表示以(1,-2,-1)为球心,以6为半径的球面.4.求与坐标原点O及点(2,3,4)的距离之比为1:2的点的全体所组成的曲面的方程,它表示怎样的曲面?解设动点坐标为(x,y,z),根据题意有2(x0) (y (x22) ( y220)3)((zz220)4)12,化简整理得(x 232y2z)(1)(43)2 (它表示以(23,1,43 2)为球心,以293为25.将xOz坐标面上的抛物线z5x 绕x轴旋转一周,求所生成的旋转曲面的方程.解以2z 22y代替抛物线方程z5x中的z,得22)2(y z5x,即y2z25x.注xOz面上的曲线F(x,z)0绕x轴旋转一周所生成的旋转2z2曲面方程为(,)0F x y.2z26.将xOz坐标面上的圆x9绕z轴旋转一周,求所生成的旋转曲面的方程.解以2y22z2x代替圆方程x9中的x,得9,( 2y22z2x)2y2z2即9.x2y27.将xOy坐标面上的双曲线4x936分别绕x轴及y轴旋转一周,求所生成的旋转曲面的方程.解以2z22y2y代替双曲线方程4936x中的y,得该双曲线绕x轴旋转一周而生成的旋转曲面方程为4 2y2z2 x9(2) 36,即4x29(y2z2)36.以2z22y2x代替双曲线方程4936x中的x,得该双曲线绕y轴旋转一周而生成的旋转曲面方程为4( 2z y22 2x)936,即4(x2z2)9y236.8.画出下列各方程所表示的曲面:2y2 a2a x2 2(1));(x)y((2)1;22492z2x(3)1;9 4(4)y2z0;(5)z2x2.解(1)如图8-11(a);(2)如图8-11(b);(3)如图8-11(c);(4)如图8-11(d);(5)如图8-11(e).9.指出下列方程在平面解析几何中和在空间解析几何中分别表示什么图形:(1)x2;(2)y x1;2y22y2(3)4;x(4)x 1.解(1)x2在平面解析几何中表示平行于y轴的一条直线,在空间解析几何中表示与yOz面平行的平面.(2)y x1在平面解析几何中表示斜率为1,y轴截距也为1的一条直线,在空间解析几何中表示平行于z轴的平面.2y2(3) 4x在平面解析几何中表示圆心在原点,半径为2的圆,在空间解析几何中表示母线平行于z轴,准线为2x2y4, z0的圆柱面.(4)x2y21在平面解析几何中表示以x轴为实轴,y轴为虚轴的双曲线,在空间解析几何中表示母线平行于z轴,准线为2 x2y1,的双曲柱面.z010.说明下列旋转曲面是怎样形成的:2y2z2x(1)1;49922y z2 (2)1;x4(3)x2y2z21;(4)(z a)2x2y2.2y2z22y2 xx解(1)1表示x Oy面上的椭圆 1绕x 499492z2 x轴旋转一周而生成的旋转曲面,或表示xOz面的椭圆 1绕49x轴旋转一周而生成的旋转曲面.2 22y z2y2(2) 1x表示xOy面上的双曲线x1绕y轴4 42y2旋转一周而生成的旋转曲面,或表示yOz面的双曲线 1z4绕y轴旋转一周而生成的旋转曲面.(3)x2y2z21表示xOy面上的双曲线x2y21绕x轴2z2旋转一周而生成的旋转曲面,或表示xOz面的双曲线 1x绕x轴旋转一周而生成的旋转曲面.(4)22 2(z a)x y表示x Oz面上的直线z x a或z x a绕z轴旋转一周而生成的旋转曲面,或表示yOz面的直线z y a或z y a绕z轴旋转一周而生成的旋转曲面.11.画出下列方程所表示的曲面:(1)4x2y2z24;(2)x2y24z24;2y2z x(3).349解(1)如图8-12(a);(2)如图8-12(b);(3)如图8-12(c);12.画出下列各曲面所围立体的图形:(1)z0,z3,x y0,x3y0,x2y21(在第一卦限内);222,22 2 x0,y0,z0,x y R y z R(在第一卦(2)限内).解(1)如图8-13所示;(2)如图8-14所示.1.画出下列曲线在第一卦限内的图形;(1)xy1,2;(2)zx y4 2 x0;y 2 ,(3)2x2x2y2z2a,2a.解(1)如图8-15(a);(2)如图8-15(b);(3)如图8-15(c).2.指出下列方程组在平面解析几何中与在空间解析几何中分别表示什么图形:(1)yy5x2x1,3;(2)2x4y2y3.91,解(1)yy5x2x1,3在平面解析几何中表示两直线的交点.在空间解析几何中表示两平面的交线,即空间直线.(2)2xy 32y91,2y2x在平面解析几何中表示椭圆 1与449 其切线y3的交点,即切点.在空间解析几何中表示椭圆柱面2y2 x49与其切平面y3的交线,即空间直线. 13.分别求母线平行于x轴及y轴而且通过曲线22x2x2y2z2z2y16,的柱面方程.解在22x2x2y2zy2z216,中消去x,得3 2z2y16,即为母线平行于x轴且通过已知曲线的柱面方程.在22x2xy2z2y2z216,中消去y,得2z23x 216,即为母线平行于y轴且通过已知曲线多的柱面方程.2y z2 2x与平面x z1的交线在xOy面上的投4.求球面9影的方程.解在2x2y2z 9, 中消去z,得x z 12y2x2x y2 2 x(1)9,即2x28,它表示母线平行于z轴的柱面,故2 22x2x yz08,表示已知交线在xOy面上的投影的方程.5.将下列曲线的一般方程化为参数方程:(1)2x(x1)y x;z0.2y2z 9, (2)2 2y ( z21) 4,。

同济大学高等数学第七版上下册答案详解

同济大学高等数学第七版上下册答案详解
同济大学高等数学第七版上下册答案详解
练习1-1
练习1-2
练习1-3
练习1-4
练习1-5
练习1-6
练习1-7
练习1-8
练习1-9
练习1-10
总习题一
练习2-1
练习2-2
练习2-3
练习2-4
练习2-5
总习题二
练习3-1
练习3-2
练习3-3
练习3-4
练习3-5
练习3-6
x
( 2)
2
(2 1)
1
(1 1)
1
(1 )
y
0
+
+
+
0
+
y
+
+
+
0
0
+
yf(x)

17/5
极小值

6/5
拐点

2
拐点

x
0
(0 1)
1
y
+
+
0
-
-
-
y
0
-
-
-
0
+
yf(x)
0
拐点

极大值

拐点

x
1
y
+
+
+
0
-
-
-
y
+
0
-
-
-
0
+
yf(x)

拐点

1
极大值

拐点

x
( 1)
-1

高等数学下(同济大学第五版)课后习题答案解析

高等数学下(同济大学第五版)课后习题答案解析

word 完美格式第八章 多元函数微分法及其应用第一节 多元函数的基本概念本节主要概念,定理,公式和重要结论理解多元函数的概念,会表达函数,会求定义域; 理解二重极限概念,注意A y x f y x y x =→),(lim ),(),(00是点),(y x 以任何方式趋于),(00y x ;注意理解本节中相关概念与一元函数中相应内容的区分与联系。

习题 8-11.求下列函数表达式:(1)xy y x y x f +=),(,求),(y x xy f +解:(,)()x yxy f xy x y xyx y ++=++(2)22),(y x y x y x f -=-+,求),(y x f解:(,)()()(,)f x y x y x y x y f x y xy +-=-+⇒= 2.求下列函数的定义域,并绘出定义域的图形: (1)221)1ln(yx x y x z --+-+=解:22221011010x y x y x y x y x +->⎧+>⎧⎪-->⇒⎨⎨+<⎩⎪≥⎩(2))12ln(2+-=y x z 解:2210x y -+>(3) |)|||1ln(),(y x y x f --= 解:1||||0||||1x y x y -->⇒+< 3.求下列极限:(1)22)1,0(),(1limy x xyx y x ++-→解:22(,)(0,1)1lim1x y x xyx y →-+=+ (2)xy xy y x 42lim)0,0(),(+-→解一:(,)(0,0)(,)(0,0)(,)(0,0)18lim2lim2lim 4x y x y x y xyxy →→→=-=-=-(3)yxy x y x )sin()2(lim )0,1(),(+→(4)2222011limy x y x y x +-+→→解一:(,)(1,0)(,)(1,0)sin()sin()lim (2)lim [(2)]3x y x y xy xy x x x y xy→→+=+=解二:(,)(1,0)(,)(1,0)(,)(1,0)sin()lim (2)lim (2)lim (2)3x y x y x y xy xyx x x x y y →→→+=+=+= (4)22220011limyx y x y x +-+→→解一:2222222200000011lim lim()022x x x y y y x y y x x y x y →→→→→→==⋅=++解二:222222000000x x x y y y y x y →→→→→→===+ 4.证明下列函数当)0,0(),(→y x 时极限不存在:(1)2222),(yx y x y x f +-=解:222222222222001lim lim 1x x y kxx y x k x k x y x k x k →→=---==+++ (2)22222)(),(y x y x y x y x f -+= 解:224222400lim lim 1()x x y x x y x x y x y x →→===+- 2222200lim 0()x y x y x y x y →==+- 5.下列函数在何处是间断的? (1) yx z -=1解:x y =(2)x y xy z 2222-+=解:22y x =第二节 偏导数word 完美格式本节主要概念,定理,公式和重要结论1.偏导数:设),(y x f z =在),(00y x 的某一邻域有定义,则xy x f y x x f y x f x x ∆∆∆),(),(lim),(0000000-+=→, yy x f y y x f y x f y y ∆∆∆),(),(lim ),(0000000-+=→. ),(00y x f x 的几何意义为曲线⎩⎨⎧==0),(y y y x f z 在点)),(,,(0000y x f y x M 处的切线对x 轴的斜率.),(y x f 在任意点),(y x 处的偏导数),(y x f x 、),(y x f y 称为偏导函数,简称偏导数.求),(y x f x 时,只需把y 视为常数,对x 求导即可. 2.高阶偏导数),(y x f z =的偏导数),(),,(y x f y x f y x 的偏导数称为二阶偏导数,二阶偏导数的偏导数称为三阶偏导数,如此类推. 二阶偏导数依求导次序不同,有如下4个:xy zy x z y z x z ∂∂∂∂∂∂∂∂∂∂222222,,,,其中后两个称为混合偏导数. 若两个混合偏导数皆为连续函数,则它们相等,即可交换求偏导数的次序.高阶混合偏导数也有类似结果.习题 8-21.求下列函数的一阶偏导数:(1)xy y xz +=解:21,z z xy x x y y y∂∂=+=-+∂∂ (2)xyz arctan =解:2222222111,1()1()z y y z x y y x x x y y x x y x x∂--∂=⋅==⋅=∂+∂+++ (3))ln(22y x x z ++=解:(1z x ∂=+=∂z y ∂==∂ (4))ln(222z y x u ++=解:222222222222,,u x u y u z x x y z y x y z z x y z∂∂∂===∂++∂++∂++ (5)⎰=yzxzt dt e u 2解:22222222,,x z y z y z x z u u u ze ze ye xe x y z∂∂∂=-==-∂∂∂ (6)x y y x z cos sin = 解:2211cos cos sin sin ,cos cos sin sin z x y y x y u x x y x y x y y x x y x y y y x x y x ∂∂=+=--∂∂ (7)y x xy z ++=)1( (8))cos(ϕθϕθ-=+e u解:(1)[ln(1)],(1)[ln(1)]11x y x y z x y u x y xy xy y xy xy x x xy y xy ++∂+∂+=+++=+++∂+∂+ (8))cos(ϕθϕθ-=+e u解:[cos()sin()],[cos()sin()]u u e e θϕθϕθϕθϕθϕθϕθϕ++∂∂=---=-+-∂∂ 2.求下列函数在指定点处的一阶偏导数: (1)yxy x z arcsin)1(2-+=,求)1,0(x z 解:20(0,1)lim0x x x z x∆→∆==∆ (2)xyx e x z yarctan)1(2-+=,求)0,1(y z 解:01(1,0)lim1y y y e z y∆∆→-==-∆ 3.求下列函数的高阶偏导数:(1))ln(xy x z =, 求22x z ∂∂,22yz ∂∂,y x z∂∂∂2解:ln()1,z z x xy x y y∂∂=+=∂∂ 22222211,,z z x z x x y y x y y∂∂∂==-=∂∂∂∂ (2))2(cos 2y x z +=,求22x z ∂∂,22yz ∂∂,y x z ∂∂∂2,x y z ∂∂∂2解:2cos(2)sin(2)sin 2(2)z x y x y x y x∂=-++=-+∂word 完美格式4cos(2)sin(2)2sin 2(2)zx y x y x y y∂=-++=-+∂ 222222cos 2(2),8cos 2(2),4cos 2(2)z z zx y x y x y x y x y∂∂∂=-+=-+=-+∂∂∂∂ (3)⎰+=22 y x xtdt e z , 求22x z ∂∂, yx z∂∂∂2解:22222222222,2(12),4x y x x y x x y z z z xe e x e e xye x x x y+++∂∂∂=-=+-=∂∂∂∂ 4.设⎪⎩⎪⎨⎧=+≠++-=0 00),(22222233y x y x y x xy y x y x f ,求)0,0(xy f 和)0,0(yx f .解:00(0)(0,0)00(0,0)lim lim 0x x x f x f f x x ∆→∆→∆--===∆∆,00(0,)(0,0)00(0,0)lim lim 0y y y f y f f y y ∆→∆→∆--===∆∆4224222224(,),0()x x x y y f x y y x y x y +-=+≠+ 4224222224(,),0()y x x y y f x y x x y x y --=+≠+ 54000(0,)(0,0)(0,0)lim lim 1x x xy y y y f y f y f y y∆→∆→-∆-∆-∆===-∆∆54000(,0)(0,0)(0,0)lim lim 1x x yx x x x f x f x f x x ∆→∆→∆-∆-∆===∆∆5.设)11(y x e z +-=, 求证z y z y x z x222=∂∂+∂∂ 解: 1111()()2211,x y x y z z e ex x y y-+-+∂∂==∂∂ 111111()()()2222221122x yx y x y z z x y x e y e e z x y x y -+-+-+∂∂+=⋅+⋅==∂∂ 6.设222z y x r ++=, 证明r zr y r x r 2222222=∂∂+∂∂+∂∂证明: 22222223,r x r x r r x r r x x r x r x r r r ∂--∂∂-∂=====∂∂由轮换对称性, 2222222323,r r y r r z y r z r∂-∂-==∂∂ 222222222223321r r r r x y z r x y z r r r∂∂∂---++===∂∂∂ 第三节 全微分本节主要概念,定理,公式和重要结论1.全微分的定义若函数),(y x f z =在点),(00y x 处的全增量z ∆表示成22),(y x o y B x A z ∆+∆=+∆+∆=∆ρρ则称),(y x f z =在点),(00y x 可微,并称Bdy Adx y B x A +=+∆∆为),(y x f z =在点),(00y x 的全微分,记作dz .2.可微的必要条件:若),(y x f z =在),(00y x 可微,则 (1)),(y x f 在),(00y x 处连续;(2)),(y x f 在),(00y x 处可偏导,且),(),,(0000y x f B y x f A y x ==,从而dy y x f dx y x f dz y x ),(),(0000+=.一般地,对于区域D 内可微函数, dy y x f dx y x f dz y x ),(),(+=.3.可微的充分条件:若),(y x f z =在),(00y x 的某邻域内可偏导,且偏导数在),(00y x 处连续,则),(y x f z =在),(00y x 可微。

同济第五版高数答案(高等数学课后习题解答)

同济第五版高数答案(高等数学课后习题解答)


(7) yarcsin(x3);
解 由|x3|1 得函数的定义域 D[24]. 1 (8) y 3 x arctan ; x 解 由 3x0 且 x0 得函数的定义域 D(0)(03).
(9) yln(x1);
解 由 x10 得函数的定义域 D(1).
解 (1)是周期函数周期为 l2.
(2)是周期函数周期为 l . 2 (3)是周期函数周期为 l2. (4)不是周期函数. (5)是周期函数周期为 l. 14. 求下列函数的反函数 (1) y 3 x 1 (2) y 1 x 1 x (3) y ax b (adbc0); cx d (4) y2sin3x; (5) y1ln(x2); 2x . (6) y x 2 1
解 (1)由 y 3 x 1 得 xy31所以 y 3 x 1 的反函数为 yx31.
1 y (2)由 y 1 x 得 x 所以 y 1 x 的反函数为 y 1 x . 1 x 1 x 1 x 1 y dy b 所以 y ax b 的反函数为 y dx b . (3)由 y ax b 得 x cx d cy a cx d cx a
F(x)f(x)g(x)f(x)g(x)F(x)
所以 F(x)为偶函数即两个偶函数的和是偶函数. 如果 f(x)和 g(x)都是奇函数则
F(x)f(x)g(x)f(x)g(x)F(x)
所以 F(x)为奇函数即两个奇函数的和是奇函数.
解 ( ) |sin | 1 ( ) |sin | 2 ( ) |sin( )| 2 (2) 0 . 4 4 2 4 4 6 6 2 2
9. 试证下列函数在指定区间内的单调性: x (1) y , (, 1); 1 x (2)yxln x, (0, ).

同济高等数学第三版上册答案详解

同济高等数学第三版上册答案详解

同济高等数学第三版上册答案详解同济大学高等数学第三版上册是比较有名的一本数学教材,最新出版的三版包含了更多的知识和技能。

下面是同济高等数学第三版上册答案详解:第一章:实数和函数1.练习题:1、设x与y为实数,请计算:(1)(2x-3)/(x+2y) = 2x/ (x+2y) - 3/ (x+2y)(2)x+|y|-2y = x-y+2(|y|-|y|)=x-y2、如果a>0,b>0,那么:(1)1/a +1/b = 1/a + 1/b =(ab)/ab=1(2)(a-b)/ab = a/ab - b/ab = (a/b) -13、D=(a +b )2 /4,那么,D/(ab)= (a+b)2/4(ab) =(a+b)/2 2.定理:1、对任何实数x,均有:x-x=02、若a>b,则a-b>03、若a>0,b>0,则a/b>1第二章:多项式、函数和系数1.练习题:1、如果a+b=3,且a*b=2,那么:(1)a2 +b2 = 9+4=13(2)a3 + b3 = 8+1=92、若多项式P(x)=2x3+7x2-3x+20,则:(1)P(1)= 2*1^3+7*1^2-3*1+20=26(2)P(-2)=2*(-2)^3+7*(-2)^2-3*(-2)+20=-182.定理:1、若系数a+b=3,则a*b=3-a2、若多项式P(x)=ax3 +bx2 +cx +d,则P(x+h)=a(x+h)3 +b(x+h)2 +c(x+h) +d第三章:极坐标与向量1.练习题:1、如果向量m=(-2,4),则(1)|m|=根号(-2)^2+4^2=根号20=4.47213(2)m方向的极坐标r=4.47213,O=45°2、若向量m=(3,-3),则(1)向量m的极坐标r=根号3^2 +(-3)^2 =根号18 =4.24264,\theta=135°(2)向量m在极坐标中的表示法为(4.24264,135°)2.定理:1、若向量a=(a1,a2)和向量b=(b1,b2),则向量a+b=(a1+b1,a2+b2)2、若向量a=(a1,a2),则|a|=根号a1^2 +a2^2。

高等数学(同济第七版)课后答案解析

高等数学(同济第七版)课后答案解析
解当0i时.s(t)二!F.
当I V,w2时,s(!)=I - y(2-/)2=一£f2+ 2/-1 ,
当/>2HhS(f) =1.

/>2.
Q 16.求联系华氏温度(用F表示)和扱氏温度(用C表示)的转换公式.并求
(1)90叩的等价摄氏温度和-5 °C的等价华氏温度:
(2)是否存在一个温度值.使华氏温度汁和摄氏温度汁的读数是样的?如果存在,那么该温度值是多少?
xi
所以/(存)>/(%),即/(W在(0, + ao)内单调增加.
公5・设/U)为定义在(-/./)内的荷函数.若/(X)在(01)内单调増加,证明/(#)在(-L0)内也单凋増加.
证设-/<X, <X2<0,则0< “2 <-A,</,由/(、)是哉函数,從/g)V(X|)=-/(-知)+f(-旳)■因为/Xx)在(OJ)内单调増加.所以y(-X!)-/(-x2)>0.从而/(旳)>/(旳),即/(X〉在《・"0)内也単调增加.
解设尸.其中叽/,均为常数.
因为〃=32。相当于。=。。/ =212。相当于C= 100°.所以
7 "*=槌
故〃=1.80+32或C=扌(F-32).
(1)F=90°. C =刑90-32)52.2。.
C=-5。,F= 1.Xx(-5)+32= 23°.
(2)设温度値,符合题意.则有
/ = 1.8/ +32,I =-40.
尸銘EC
> =
y=•<>«< w
y=cotZ;
y=arcfiin lx I C1;
G2.卜列各题中,函数/(x)和g(x)是否相同?为什么”⑴/U) =lg/,g⑴=21gx;

同济第六版高数答案(高等数学课后习题解答)

同济第六版高数答案(高等数学课后习题解答)

习题3-31. 按(x -4)的幂展开多项式x 4-5x 3+x 2-3x +4. 解 设f (x )=x 4-5x 3+x 2-3x +4. 因为 f (4)=-56,f '(4)=(4x 3-15x 2+2x -3)|x =4=21, f ''(4)=(12x 2-30x +2)|x =4=74, f '''(4)=(24x -30)|x =4=66, f (4)(4)=24, 所以4)4(32)4(!4)4()4(!3)4()4(!2)4()4)(4()4()(-+-'''+-''+-'+=x f x f x f x f f x f =-56+21(x -4)+37(x -4)2+11(x -4)3+(x -4)4. 2. 应用麦克劳林公式, 按x 幂展开函数f (x )=(x 2-3x +1)3. 解 因为f '(x )=3(x 2-3x +1)2(2x -3),f ''(x )=6(x 2-3x +1)(2x -3)2+6(x 2-3x +1)2=30(x 2-3x +1)(x 2-3x +2), f '''(x )=30(2x -3)(x 2-3x +2)+30(x 2-3x +1)(2x -3)=30(2x -3)(2x 2-6x +3), f (4)(x )=60(2x 2-6x +3)+30(2x -3)(4x -6)=360(x 2-3x +2), f (5)(x )=360(2x -3), f (6)(x )=720;f (0)=1, f '(0)=-9, f ''(0)=60, f '''(0)=-270, f (4)(0)=720, f (5)(0)=-1080, f (6)(0)=720, 所以6)6(5)5(4)4(32!6)0(!5)0(!4)0(!3)0(!2)0()0()0()(x f x f x f x f x f x f f x f +++'''+''+'+==1-9x +30x 3-45x 3+30x 4-9x 5+x 6.3. 求函数x x f =)(按(x -4)的幂展开的带有拉格朗日型余项的3阶泰勒公式. 解 因为24)4(==f , 4121)4(421=='=-x x f , 32141)4(423-=-=''=-x x f , 328383)4(425⋅=='''=-x x f , 27)4(1615)(--=x x f , 所以4)4(32)4(!4)()4(!3)4()4(!2)4()4)(4()4(-+-'''+-''+-'+=x f x f x f x f f x ξ4732)4()]4(4[1615!41)4(5121)4(641)4(412--+⋅--+---+=x x x x x θ(0<θ<1). 4. 求函数f (x )=ln x 按(x -2)的幂展开的带有佩亚诺型余项的n 阶泰勒公式. 解 因为f '(x )=x -1, f ''(x )=(-1)x -2, f '''(x )=(-1)(-2)x -3 , ⋅ ⋅ ⋅ , nn nn x n x n x f )!1()1()1( )2)(1()(1)(--=+-⋅⋅⋅--=--; kk k k f 2)!1()1()2(1)(--=-(k =1, 2, ⋅ ⋅ ⋅, n +1), 所以])2[()2(!)2( )2(!3)2()2(!2)2()2)(2()2(ln )(32n n n x o x n f x f x f x f f x -+-+⋅⋅⋅+-'''+-''+-'+=])2[()2(2)1( )2(231)2(221)2(212ln 13322n n n n x o x n x x x -+-⋅-+⋅⋅⋅--⋅+-⋅--+=-. 5. 求函数x x f 1)(=按(x +1)的幂展开的带有拉格朗日型余项的n 阶泰勒公式. 解 因为f (x )=x -1, f '(x )=(-1)x -2, f ''(x )=(-1)(-2)x -3 , ⋅ ⋅ ⋅ , 1)1()(!)1()( )2)(1()(++--=-⋅⋅⋅--=n n n n xn xn x f ; !)1(!)1()1(1)(k k fk k k -=--=-+(k =1, 2, ⋅ ⋅ ⋅, n ),所以 )1(!3)1()1(!2)1()1)(1()1(132⋅⋅⋅++-'''++-''++-'+-=x f x f x f f x1)1()()1()!1()()1(!)1(++++++-+n n nn x n f x n f ξ 12132)1()]1(1[)1(])1( )1()1()1(1[++++++--+++⋅⋅⋅+++++++-=n n n nx x x x x x θ (0<θ<1). 6. 求函数f (x )=tan x 的带有拉格朗日型余项的3阶麦克劳林公式. 解 因为 f '(x )=sec 2x ,f ''(x )=2sec x ⋅sec x ⋅tan x =2sec 2x ⋅tan x ,f '''(x )=4sec x ⋅sec x ⋅tan 2x +2sec 4x =4sec 2x ⋅tan 2x +2sec 4x ,f (4)(x )=8sec 2x ⋅tan 3x +8sec 4x ⋅tan x +8sec 4x ⋅tan x xx x 52cos )2(sin sin 8+=;f (0)=0, f '(0)=1, f ''(0)=0, f '''(0)=2,所以 4523)(c o s 3]2)()[s i n s i n (31t a nx x x x x x x θθθ+++=(0<θ<1). 7. 求函数f (x )=xe x 的带有佩亚诺型余项的n 阶麦克劳林公式. 解 因为 f '(x )=e x +xe x ,f ''(x )=e x +e x +xe x =2e x +xe x , f '''(x )=2e x +e x +xe x =3e x +xe x , ⋅ ⋅ ⋅, f (n )(x )=ne x +xe x ; f (k )(0)=k (k =1, 2, ⋅ ⋅ ⋅, n ),所以 )(!)0( !3)0(!2)0()0()0()(32n nn xx o x n f x f x f x f f xe ++⋅⋅⋅⋅+'''+''+'+=)()!1(1 !2132n n x o x n x x x +-⋅⋅⋅+++=.8. 验证当210≤≤x 时, 按公式62132x x x e x +++≈计算e x 的近似值时, 所产生的误差小于0.01, 并求e 的近似值, 使误差小于0.01.解 因为公式62132x x x e x+++≈右端为e x 的三阶麦克劳林公式, 其余项为 43!4)(x e x R ξ=, 所以当210≤≤x 时,按公式62132x x x e x +++≈计算e x 的误差 01.00045.0)21(!43|!4||)(|42143<≈≤=x e x R ξ.645.1)21(61)21(212113221≈⋅+⋅++≈=e e .9. 应用三阶泰勒公式求下列各数的近似值, 并估计误差: (1)330; (2)sin18︒.解 (1)设3)(x x f =, 则f (x )在x 0=27点展开成三阶泰勒公式为2353233)27)(2792(!21)27(273127)(-⋅-⋅+-⋅+==--x x x x f4311338)27)(8180(!41)27)(272710(!31--⋅+-⋅⋅+--x x ξ(ξ介于27与x 之间).于是33823532333)272710(!313)2792(!21327312730⋅⋅⋅+⋅⋅-⋅+⋅⋅+≈---10724.3)3531311(31063≈+-+≈, 其误差为5114311431131088.13!4803278180!41|3)8180(!41||)30(|---⨯=⋅=⋅⋅⋅<⋅-⋅=ξR .(2) 已知43!4s i n !31s i n x x x x ξ+-=(ξ介于0与x 之间),所以 sin 18︒3090.0)10(!311010sin 3≈-≈=πππ,其误差为44431003.2)10(!46sin |)10(!4sin ||)10(|-⨯=<=πππξπR . 10. 利用泰勒公式求下列极限: (1))23(lim 434323x x x x x --++∞→;(2))]1ln([cos lim2202x x x e x x x -+--→;(3)2220sin )(cos 1211lim 2x e x x x x x -+-+→. 解 (1)tt t xx x x x x x t x x 430434343232131lim 12131lim)23(lim --+=--+=--++→+∞→+∞→.因为)(1313t o t t ++=+,)(211214t o t t +-=-, 所以23])(23[lim )](211[)](1[lim)23(lim 00434323=+=+--++=--++→+→+∞→t t o t t o t t o t x x x x t t x . (2)])1ln(1[)](41!21211[)](!41!211[lim)]1ln([cos lim1344244202202x x xx x xx o x x x o x x x x x e x -++⋅+--++-=-+-→-→010)1l n (1)(121lim 11340=+=-++-=-→e x x x o x x x . (3)2442442442202220))](!211())(!41!211[()](!43!211[211lim sin )(cos 1211lim 2xx o x x x o x x x o x x x x e x x x x x x +++-++-+-+-+=-+-+→→ 12123!43)(241123)(!43lim )(241123)(!43lim 2424404264440-=-=+--+=⋅+--+=→→x x o x x x o x o x x x x o x x x .习题3-41. 判定函数f (x )=arctan x -x 单调性.解 因为011111)(22≤+-=-+='x x x f , 且仅当x =0时等号成立, 所以f (x )在(-∞, +∞)内单调减少.2. 判定函数f (x )=x +cos x (0≤x ≤2π)的单调性.解 因为f '(x )=1-sin x ≥0, 所以f (x )=x +cos x 在[0, 2π]上单调增加. 3. 确定下列函数的单调区间: (1) y =2x 3-6x 2-18x -7;(2)xx y 82+=(x >0);(3)x x x y 6941023+-=;(4))1ln(2x x y ++=; (5) y =(x -1)(x +1)3;(6))0())(2(32>--=a x a a x y ; (7) y =x n e -x (n >0, x ≥0); (8)y =x +|sin 2x |.解 (1) y '=6x 2-12x -18=6(x -3)(x +1)=0, 令y '=0得驻点x 1=-1, x 2=3. 列表得可见函数在(-∞, -1]和[3, +∞)内单调增加, 在[-1, 3]内单调减少.(2) 0)2)(2(28222=+-=-='x x x x y ,令y '=0得驻点x 1=2, x 2=-2(舍去).因为当x >2时, y >0; 当0<x <2时, y '<0, 所以函数在(0, 2]内单调减少, 在[2, +∞)内单调增加. (3)223)694()1)(12(60x x x x x y +----=', 令y '=0得驻点211=x , x 2=1, 不可导点为x =0. 列表得可见函数在(-∞, 0), ]21 ,0(, [1, +∞)内单调减少, 在]1 ,21[上单调增加.(4)因为011)1221(11222>+=++++='x x x x x y , 所以函数在(-∞, +∞)内单调增加. (5) y '=(x +1)3+3(x -1)(x +1)22)1)(21(4+-=x x . 因为当21<x 时, y '<0; 当21>x 时, y '>0, 所以函数在]21 ,(-∞内单调减少, 在) ,21[∞+内单调增加.(6)32)()2(3)32(x a a x a x y ----=', 驻点为321a x =, 不可导点为22a x =, x 3=a .列表得可见函数在)2 ,(a -∞, ]32 ,2(a a , (a , +∞)内单调增加, 在) ,32[a a 内单调减少.(7)y '=e -x x n -1(n -x ), 驻点为x =n . 因为当0<x <n 时, y '>0; 当x >n 时, y '<0, 所以函数在[0, n ]上单调增加, 在[n , +∞)内单调减少.(8)⎪⎩⎪⎨⎧+<<+-+≤≤+=πππππππk x k x x k x k x x y 22sin 2 2sin (k =0, ±1, ±2, ⋅ ⋅ ⋅),⎪⎩⎪⎨⎧+<<+-+≤≤+='πππππππk x k x k x k x y 2 2c o s 212 2c o s 21(k =0, ±1, ±2, ⋅ ⋅ ⋅). y '是以π为周期的函数, 在[0, π]内令y '=0, 得驻点21π=x , 652π=x , 不可导点为23π=x .列表得根据函数在[0, π]上的单调性及y '在(-∞, +∞)的周期性可知函数在]32 ,2[πππ+k k 上单调增加, 在]22 ,32[ππππ++k k 上单调减少(k =0, ±1, ±2, ⋅ ⋅ ⋅).4. 证明下列不等式: (1)当x >0时, x x +>+1211;(2)当x >0时, 221)1ln(1x x x x +>+++; (3)当20π<<x 时, sin x +tan x >2x ;(4)当20π<<x 时, 331tan x x x +>;(5)当x >4时, 2x >x 2;证明 (1)设x x x f +-+=1211)(, 则f (x )在[0, +∞)内是连续的. 因为x x f +-='12121)(01211>+-+=xx , 所以f (x )在(0, +∞)内是单调增加的, 从而当x >0时f (x )>f (0)=0, 即 01211>+-+x x , 也就是 x x +>+1211.(2)设221)1ln(1)(x x x x x f +-+++=, 则f (x )在[0, +∞)内是连续的. 因为 0)1l n (1)11(11)1l n ()(22222>++=+-++⋅++⋅+++='x x x x x x x x x x x x f ,所以f (x )在(0, +∞)内是单调增加的, 从而当x >0时f (x )>f (0)=0, 即 01)1l n (122>+-+++x x x x , 也就是 221)1l n (1x x x x +>+++.(3)设f (x )=sin x +tan x -2x , 则f (x )在)2,0[π内连续,f '(x )=cos x +sec 2x -2xx x x 22cos ]cos )1)[(cos 1(cos ---=. 因为在)2 ,0(π内cos x -1<0, cos 2x -1<0, -cos x <0, 所以f '(x )>0, 从而f (x )在)2 ,0(π内单调增加, 因此当20π<<x 时, f (x )>f (0)=0, 即sin x +tan x -2x >0, 也就是 sin x +tan x >2x .(4)设331tan )(x x x x f --=, 则f (x )在)2 ,0[π内连续,))(t a n (t a n t a n 1s e c )(2222x x x x x x x x x f +-=-=--='. 因为当20π<<x 时, tan x >x , tan x +x >0, 所以f '(x )在)2 ,0(π内单调增加, 因此当20π<<x 时, f (x )>f (0)=0, 即031t a n 3>--x x x ,也就是 231t a n x x x +>.(5)设f (x )=x ln2-2ln x , 则f (x )在[4, +∞)内连续, 因为 0422ln 224ln 22ln )(=->-=-='e x x x f ,所以当x >4时, f '(x )>0, 即f (x )内单调增加.因此当x >4时, f (x )>f (4)=0, 即x ln2-2ln x >0, 也就是2x >x 2. 5. 讨论方程ln x =ax (其中a >0)有几个实根?解 设f (x )=ln x -ax . 则f (x )在(0, +∞)内连续, xax a x x f -=-='11)(, 驻点为a x 1=.因为当ax 10<<时, f '(x )>0, 所以f (x )在)1 ,0(a 内单调增加; 当a x 1>时, f '(x )<0, 所以f (x )在) ,1(∞+a内单调减少. 又因为当x →0及x →+∞时, f (x )→-∞, 所以如果011ln )1(>-=a a f , 即e a 1<, 则方程有且仅有两个实根; 如果011ln )1(<-=aa f , 即e a 1>, 则方程没有实根. 如果011ln )1(=-=a a f , 即e a 1=, 则方程仅有一个实根. 6. 单调函数的导函数是否必为单调函数?研究下面这个例子: f (x )=x +sin x .解 单调函数的导函数不一定为单调函数.例如f (x )=x +sin x 在(-∞,+∞)内是单调增加的, 但其导数不是单调函数. 事实上, f '(x )=1+cos x ≥0,这就明f (x )在(-∞, +∞)内是单调增加的. f ''(x )=-sin x 在(-∞, +∞)内不保持确定的符号, 故f '(x )在(-∞, +∞)内不是单调的.7. 判定下列曲线的凹凸性: (1) y =4x -x 2 ; (2) y =sh x ;(3)xy 11+=(x >0);(4) y =x arctan x ; 解 (1)y '=4-2x , y ''=-2,因为y ''<0, 所以曲线在(-∞, +∞)内是凸的. (2)y '=ch x , y ''=sh x . 令y ''=0, 得x =0.因为当x <0时, y ''=sh x <0; 当x >0时, y ''=sh x >0, 所以曲线在(-∞, 0]内是凸的, 在[0, +∞)内是凹的.(3)21x y -=', 32x y =''. 因为当x >0时, y ''>0, 所以曲线在(0, +∞)内是凹的. (4)21arctan xx x y ++=',22)1(2x y +=''.因为在(-∞, +∞)内, y ''>0, 所以曲线y =x arctg x 在(-∞, +∞)内是凹的.8. 求下列函数图形的拐点及凹或凸的区间: (1).y =x 3-5x 2+3x +5 ; (2) y =xe -x ; (3) y =(x +1)4+e x ;(4) y =ln(x 2+1); (5) y =e arctan x ; (6) y =x 4(12ln x -7),解 (1)y '=3x 2-10x +3, y ''=6x -10. 令y ''=0, 得35=x .因为当35<x 时, y ''<0; 当35>x 时, y ''>0, 所以曲线在]35 ,(-∞内是凸的, 在) ,35[∞+内是凹的, 拐点为)2720 ,35(.(2)y '=e -x -xe -x , y ''=-e -x -e -x +xe -x =e -x (x -2). 令y ''=0, 得x =2.因为当x <2时, y ''<0; 当x >2时, y ''>0, 所以曲线在(-∞, 2]内是凸的, 在[2, +∞)内是凹的, 拐点为(2, 2e -2).(3)y '=4(x +1)3+e x , y ''=12(x +1)2+e x .因为在(-∞, +∞)内, y ''>0, 所以曲线y =(x +1)4+e x 的在(-∞, +∞)内是凹的, 无拐点.(4)122+='x x y , 22222)1()1)(1(2)1(22)1(2++--=+⋅-+=''x x x x x x x y . 令y ''=0, 得x 1=-1, x 2=1. 列表得可见曲线在(-∞, -1]和[1, +∞)内是凸的, 在[-1, 1]内是凹的, 拐点为(-1, ln2)和(1, ln2).(5)2arctan 11x e y x+⋅=',)21(12arctan x x e y x-+=''. 令y ''=0得, 21=x . 因为当21<x 时, y ''>0; 当21>x 时, y ''<0, 所以曲线y =e arctg x 在]21 ,(-∞内是凹的,在) ,21[∞+内是凸的, 拐点是) ,21(21arctane. (6) y '=4x 3(12ln x -7)+12x 3, y ''=144x 2⋅ln x . 令y ''=0, 得x =1.因为当0<x <1时, y ''<0; 当x >1时, y ''>0, 所以曲线在(0, 1]内是凸的, 在[1, +∞)内是凹的, 拐点为(1, -7).9. 利用函数图形的凹凸性, 证明下列不等式:(1) nn n y x y x )2()(21+>+(x >0, y >0, x ≠y , n >1);(2))(22y x e e e yx y x ≠>++;(3)2ln)(ln ln yx y x y y x x ++>+ (x >0, y >0, x ≠y ). 证明 (1)设f (t )=t n , 则f '(t )=nt n -1, f ''(t )=n (n -1)t n -2. 因为当t >0时, f ''(t )>0, 所以曲线f (t )=t n 在区间(0, +∞)内是凹的. 由定义, 对任意的x >0, y >0, x ≠y 有)2()]()([21yx f y f x f +>+,即 nn n y x y x )2()(21+>+.(2)设f (t )=e t , 则f '(t )=e t , f ''(t )=e t . 因为f ''(t )>0, 所以曲线f (t )=e t 在(-∞, +∞)内是凹的. 由定义, 对任意的x , y ∈(-∞, +∞), x ≠y 有)2()]()([21yx f y f x f +>+,即 )(22y x ee e yx yx ≠>++.(3)设f (t )=t ln t , 则 f '(t )=ln t +1, tt f 1)(=''.因为当t >0时, f ''(t )>0, 所以函数f (t )=t ln t 的图形在(0, +∞)内是凹的. 由定义, 对任意的x >0, y >0, x ≠y 有)2()]()([21yx f y f x f +>+,即 2ln )(ln ln yx y x y y x x ++>+. 10. 试证明曲线112+-=x x y 有三个拐点位于同一直线上.证明 222)1(12+++-='x x x y ,323223)1()]32()][32()[1(2)1(2662++---+=++--=''x x x x x x x x y . 令y ''=0, 得x 1=-1, 322-=x , 323+=x . 例表得可见拐点为(-1, -1), ))32(431 ,32(---, ))32(431 ,32(+++. 因为41)1(32)1()32(431=-------, 41)1(32)1()32(431=--+--++,所以这三个拐点在一条直线上.11. 问a 、b 为何值时, 点(1, 3)为曲线y =ax 3+bx 2的拐点?解 y '=3ax 2+2bx , y ''=6ax +2b . 要使(1, 3)成为曲线y =ax 3+bx 2的拐点, 必须y (1)=3且y ''(1)=0, 即a +b =3且6a +2b =0, 解此方程组得23-=a , 29=b .12. 试决定曲线y =ax 3+bx 2+cx +d 中的a 、b 、c 、d , 使得x =-2处曲线有水平切线, (1, -10)为拐点, 且点(-2, 44)在曲线上. 解 y '=3ax 2+2bx +c , y ''=6ax +2b . 依条件有⎪⎩⎪⎨⎧=''=-'-==-0)1(0)2(10)1(44)2(y y y y , 即⎪⎩⎪⎨⎧=+=+--=+++=+-+-02604121044248b a c b a d c b a d c b a .解之得a =1, b =-3, c =-24, d =16.13. 试决定y =k (x 2-3)2中k 的值, 使曲线的拐点处的法线通过原点. 解y '=4kx 3-12kx , y ''=12k (x -1)(x +1). 令y ''=0, 得x 1=-1, x 2=1.因为在x 1=-1的两侧y ''是异号的, 又当x =-1时y =4k , 所以点(-1, 4k )是拐点. 因为y '(-1)=8k , 所以过拐点(-1, 4k )的法线方程为)1(814+-=-x k k y . 要使法线过原点, 则(0, 0)应满足法线方程, 即kk 814-=-, 82±=k .同理, 因为在x 1=1的两侧y ''是异号的, 又当x =1时y =4k , 所以点(1, 4k )也是拐点.因为y '(1)=-8k , 所以过拐点(-1, 4k )的法线方程为)1(814-=-x k k y . 要使法线过原点, 则(0, 0)应满足法线方程, 即k k 814-=-, 82±=k .因此当82±=k 时, 该曲线的拐点处的法线通过原点.14. 设y =f (x )在x =x 0的某邻域内具有三阶连续导数, 如果f ''(x 0)=0, 而f '''(x 0)≠0,试问 (x 0, f (x 0))是否为拐点?为什么?解 不妨设f '''(x 0)>0. 由f '''(x )的连续性, 存在x 0的某一邻域(x 0-δ, x 0+δ), 在此邻域内有f '''(x )>0. 由拉格朗日中值定理, 有f ''(x )-f ''(x 0)=f '''(ξ)(x -x 0) (ξ介于x 0与x 之间), 即 f ''(x )=f '''(ξ)(x -x 0).因为当x 0-δ<x <x 0时, f ''(x )<0; 当x 0<x <x 0+δ 时, f ''(x )>0, 所以(x 0, f (x 0))是拐点.习题3-51. 求函数的极值: (1) y =2x 3-6x 2-18x +7; (2) y =x -ln(1+x ) ; (3) y =-x 4+2x 2 ; (4)x x y -+=1;(5)25431x xy ++=;(6)144322++++=x x x x y ;(7) y =e xcos x ;(8)xx y 1=;(9)31)1(23+-=x y ; (10) y =x +tan x .解 (1)函数的定义为(-∞, +∞), y '=6x 2-12x -18=6(x 2-2x -3)=6(x -3)(x +1), 驻点为x 1=-1, x 2=3. 列表可见函数在 (2)函数的定义为(-1, +∞), xxx y +=+-='1111, 驻点为x =0. 因为当-1<x <0时, y '<0; 当x >0时, y '>0, 所以函数在x =0处取得极小值, 极小值为y (0)=0. (3)函数的定义为(-∞, +∞),y '=-4x 3+4x =-4x (x 2-1), y ''=-12x 2+4, 令y '=0, 得x 1=0, x 2=-1, x 3=1.因为y ''(0)=4>0, y ''(-1)=-8<0, y ''(1)=-8<0, 所以y (0)=0是函数的极小值, y (-1)=1和y (1)=1是函数的极大值.(4)函数的定义域为(-∞, 1], )112(1243121121211+---=---=--='x x x xx xy ,令y '=0, 得驻点43=x .因为当43<x 时, y '>0; 当143<<x 时, y '<0, 所以45)1(=y 为函数的极大值.(5)函数的定义为(-∞, +∞), 32)54()512(5x x y +--=', 驻点为512=x . 因为当512<x 时, y '>0; 当512>x 时, y '<0, 所以函数在512=x 处取得极大值, 极大值为10205)512(=y . (6)函数的定义为(-∞, +∞), 22)1()2(+++-='x x x x y , 驻点为x 1=0, x 2=-2.列表可见函数在x =-2处取得极小值3, 在x =0处取得极大值4.(7)函数的定义域为(-∞, +∞). y '=e x (cos x -sin x ), y ''=-e x sin x .令y '=0, 得驻点ππk x 24+=, ππ)1(24++=k x , (k =0, ±1, ±2, ⋅ ⋅ ⋅).因为0)24(<+''ππk y , 所以22)24(24⋅=++ππππk e k y 是函数的极大值. 因为y ''0])1(24[>++ππk , 所以22])1(24[)1(24⋅-=++++ππππk e k y 是函数的极小值. (8)函数xx y 1=的定义域为(0, +∞),)ln 1(121x x x y x-⋅='. 令y '=0, 得驻点x =e .因为当x <e 时, y '>0; 当x >e 时, y '<0, 所以ee e y 1)(=为函数f (x )的极大值.(9)函数的定义域为(-∞, +∞), 3/2)1(132+-='x y , 因为y '<0, 所以函数在(-∞, +∞)是单调减少的, 无极值.(10)函数y =x +tg x 的定义域为ππk x +≠2(k =0, ±1, ±2, ⋅ ⋅ ⋅). 因为y '=1+sec 2x >0, 所以函数f (x )无极值.2. 试证明: 如果函数y =ax 3+bx 2+cx +d 满足条件b 2 -3ac <0, 那么这函数没有极值 . 证明y '=3a x 2+2b x +c . 由b 2 -3ac <0, 知a ≠0. 于是配方得到y '=3a x 2+2b x +c ab ac a b x a a c x a b x a 33)3(3)332(32222-++=++=,因3ac -b 2>0, 所以当a >0时, y '>0; 当a <0时, y '<0. 因此y =ax 3+bx 2+cx +d 是单调函数, 没有极值.3. 试问a 为何值时, 函数x x a x f 3sin 31sin )(+=在3π=x 处取得极值?它是极大值还是极小值?并求此极值.解 f '(x )=a cos x +cos 3x , f ''(x )=-a sin x -3 sin x .要使函数f (x )在3π=x 处取得极值, 必有0)3(='πf , 即0121=-⋅a , a =2 .当a =2时, 0232)3(<⋅-=''πf . 因此, 当a =2时, 函数f (x )在3π=x 处取得极值, 而且取得极大值, 极大值为3)23(=f .4. 求下列函数的最大值、最小值: (1) y =2x 3-3x 2 , -1≤x ≤4; (2) y =x 4-8x 2+2, -1≤x ≤3 ; (3)x x y -+=1, -5≤x ≤1.解 (1)y '=6x 2-6x =6x (x -1), 令y '=0, 得x 1=0, x 2=1. 计算函数值得 y (-1)=-5, y (0)=0, y (1)=-1, y (4)=80,经比较得出函数的最小值为y (-1)=-5, 最大值为y (4)=80.(2)y '=4x 3-16x =4x (x 2-4), 令y '=0, 得x 1=0, x 2=-2(舍去), x 3=2. 计算函数值得 y (-1)=-5, y (0)=2, y (2)=-14, y (3)=11,经比较得出函数的最小值为y (2)=-14, 最大值为y (3)=11.(3)xy --='1211, 令y '=0, 得43=x . 计算函数值得65)5(+-=-y , 45)43(=y , y (1)=1,经比较得出函数的最小值为65)5(+-=-y , 最大值为45)43(=y .5. 问函数y =2x 3-6x 2-18x -7(1≤x ≤4)在何处取得最大值?并求出它的最大值. 解 y '=6x 2-12x -18=6(x -3)(x +1), 函数f (x )在1≤x ≤4内的驻点为x =3. 比较函数值:f (1)=-29, f (3)=-61, f (4)=-47,函数f (x )在x =1处取得最大值, 最大值为f (1)=-29.6. 问函数x x y 542-=(x <0)在何处取得最小值?解 2542x x y +=', 在(-∞, 0)的驻点为x =-3. 因为31082xy -='', 0271082)3(>+=-''y ,所以函数在x =-3处取得极小值. 又因为驻点只有一个, 所以这个极小值也就是最小值, 即函数在x =-3处取得最小值, 最小值为27)3(=-y .7. 问函数12+=x xy (x ≥0)在何处取得最大值?解 222)1(1+-='x x y . 函数在(0, +∞)内的驻点为x =1.因为当0<x <1时, y '>0; 当x >1时y '<0, 所以函数在x =1处取得极大值. 又因为函数在(0, +∞)内只有一个驻点, 所以此极大值也是函数的最大值, 即函数在x =1处取得最大值, 最大值为f (1)=21.8. 某车间靠墙壁要盖一间长方形小屋, 现有存砖只够砌20cm 长的墙壁, 问应围成怎样的长方形才能使这间小屋的面积最大?解 设宽为x 长为y , 则2x +y =20, y =20-2x , 于是面积为 S = xy =x (20-2x )=20x -2x 2. S '=20-4x =4(10-x ), S ''=-4. 令S '=0, 得唯一驻点x =10.因为S ''(10)-4<0, 所以x =10为极大值点, 从而也是最大值点. 当宽为5米, 长为10米时这间小屋面积最大.9. 要造一圆柱形油罐, 体积为V , 问底半径r 和高h 等于多少时, 才能使表面积最小?这时底直径与高的比是多少?解 由V =π r 2h , 得h =V π-1r -2. 于是油罐表面积为S =2π r 2+2π rh rVr 222+=π(0<x <+∞),224r Vr S -='π.令S '=0, 得驻点32πV r =. 因为0443>+=''r V S π, 所以S 在驻点32πVr =处取得极小值, 也就是最小值. 这时相应的高为r r Vh 2 20==π. 底直径与高的比为2r : h =1 : 1.10. 某地区防空洞的截面拟建成矩形加半圆(如图), 截面的面积为5m 2, 问底宽x 为多少时才能使截面的周长最小, 从而使建造时所用的材料最省?解 设矩形高为h , 截面的周长S , 则5)2(212=⋅+πx xh , x x h 85π-=.于是xx x x h x S 10422++=++=ππ(π400<<x ), 21041xS -+='π.令S '=0, 得唯一驻点π+=440x .因为0203>=''xS , 所以π+=440x 为极小值点, 同时也是最小值点. 因此底宽为π+=440x 时所用的材料最省.11. 设有重量为5kg 的物体, 置于水平面上, 受力F 的作用而开始移动(如图). 设摩擦系数μ=0.25, 问力F 与水平线的交角α为多少时, 才可使力F 的大小为最小?解 由F cos α =(m -F sin α)μ 得αμαμsin cos +=m F (2 0πα≤≤),2)sin (cos )cos (sin αμααμαμ+-='m F , 驻点为 α = arctan μ.因为F 的最小值一定在)2 ,0(π内取得, 而F 在)2,0(π内只有一个驻点α = arctan μ,所以α=arctan μ一定也是F 的最小值点. 从而当α=arctan0.25=14︒时, 力F 最小. 12. 有一杠杆, 支点在它的一端. 在距支点0.1m 处挂一重量为49kg 的物体. 加力于杠杆的另一端使杠杆保持水平(如图). 如果杠杆的线密度为5kg/m , 求最省力的杆长?解 设杆长为x (m), 加于杠杆一端的力为F , 则有1.049521⋅+⋅=x x xF , 即)0(9.425>+=x x x F .29.425xF -=',驻点为x =1.4. 由问题的实际意义知, F 的最小值一定在(0, +∞)内取得, 而F 在(0, +∞)内只有一个驻点x =1.4, 所以F 一定在x =1.4m 处取得最小值, 即最省力的杆长为1.4m . 13. 从一块半径为R 的圆铁片上挖去一个扇形做成一漏斗(如图),问留下的扇形的中心角ϕ取多大时, 做成的漏斗的容积最大? 解 漏斗的底周长l 、底半径r 、高h 分别为l =R ⋅ϕ, πϕ2R r =, 222242ϕππ-=-=Rr R h .漏斗的容积为22223242431ϕππϕπ-==R hr V (0<ϕ<2π). 2222234)38(24ϕπϕπϕπ--⋅='R V ,驻点为πϕ362=. 由问题的实际意义, V 一定在(0, 2π)内取得最大值, 而V 在(0, 2π)内只有一个驻点, 所以该驻点一定也是最大值点. 因此当ϕ π362=时, 漏斗的容积最大.14. 某吊车的车身高为1.5m , 吊臂长15m , 现在要把一个6m 宽、2m 高的屋架, 水平地吊到6m 高的柱子上去(如图), 问能否吊得上去?解 设吊臂对地面的倾角为ϕ时, 屋架能够吊到的最大高度为h . 在直角三角形∆EDG 中 15sin ϕ=(h -1. 5)+2+3tan ϕ,故 21tan 3sin 15--=ϕϕh ,ϕϕ2cos 3cos 15-='h . 令h '=0得唯一驻点5451arccos 3≈=ϕ︒.因为0cos sin 6sin 153<--=''ϕϕϕh , 所以ϕ=54︒为极大值点, 同时这也是最大值点. 当ϕ=54︒时, 5.721tan 3sin 15≈--=ϕϕh m .所以把此屋最高能水平地吊至7. 5m 高, 现只要求水平地吊到6m 处, 当然能吊上去. 15. 一房地产公司有50套公寓要出租. 当月租金定为1000元时, 公寓会全部租出去. 当月租金每增加50元时, 就会多一套公寓租不出去, 而租出去的公寓每月需花费100元的维修费. 试问房租定为多少可获最大收入?解 房租定为x 元, 纯收入为R 元.当x ≤1000时, R =50x -50⨯100=50x -5000, 且当x =1000时, 得最大纯收入45000元. 当x >1000时,700072501100)]1000(5150[)]1000(5150[2-+-=⋅---⋅--=x x x x x R ,72251+-='x R .令R '=0得(1000, +∞)内唯一驻点x =1800. 因为0251<-=''R , 所以1800为极大值点, 同时也是最大值点. 最大值为R =57800.因此, 房租定为1800元可获最大收入.习题3-6描绘下列函数的图形: 1. )786(5124++-=x x x y ;解 (1)定义域为(-∞, +∞);(2)23)1)(2(54)8124(51-+=+-='x x x x y ,)1)(1(512)33(542-+=-=''x x x y ,令y '=0, 得x =-2, x =1; 令y ''=0, 得x =-1, x =1.(3)列表(4)作图:2.21xx y +=;解 (1)定义域为(-∞, +∞);(2)奇函数, 图形关于原点对称, 故可选讨论x ≥0时函数的图形.(3)22)1()1)(1(x x x y ++--=', 32)1()3)(3(2x x x x y ++-='',当x ≥0时, 令y '=0, 得x =1; 令y ''=0, 得x =0, 3=x .(4)列表(5)有水平渐近线y =0; (6)作图:3.2)1(--=x e y ;解 (1)定义域为(-∞, +∞); (2))]221()][221([4)1(222)1()1(--+-=''--='----x x e y e x y x x ,令y '=0, 得x =1; 令y ''=0, 得221+=x ,221-=x .(3)列表(4)有水平渐近线y =0; (5)作图: 4.xx y 12+=;解 (1)定义域为(-∞, 0)⋃(0, +∞); (2)2321212xx xx y -=-=',333)1(222x x x y +=+='',令y '=0, 得321=x ; 令y ''=0, 得x =-1.(3)列表(4)有铅直渐近线x =0; (5)作图: 5.xxy 2cos cos =.解 (1)定义域为42ππ+≠n x (n =0, ±1, ±2, ⋅⋅⋅)(2)是偶函数, 周期为2 . 可先作[0, ]上的图形, 再根据对称性作出[-, 0)内的图形, 最后根据周期性作出[-, ]以外的图形; (3)xx x y 2cos )sin 23(sin 22-=',xx x x y 2cos )sin 4sin 123(cos 342-+⋅='',在[0,]上, 令y '=0, 得x =0, x =; 令y ''=0, 得2π=x .(4)列表(5)有铅直渐近线4π=x 及43π=x ;(6)作图:习题3-71. 求椭圆4x 2+y 2=4在点(0, 2)处的曲率. 解 两边对x 求导数得8x +2yy '=0, y x y 4-=', 244y y x y y '--=''.y '|(0, 2)=0, y ''|(0, 2)=-2.所求曲率为2)01(|2|)1(||2/322/32=+-='+''=y y K .2. 求曲线y =lnsec x 在点(x , y )处的曲率及曲率半径.解 x x x xy tan tan sec sec 1=⋅⋅=', x y 2sec =''.所求曲率为|cos |)tan 1(|sec |)1(||2/3222/32x x x y y K =+='+''=, 曲率半径为 |sec ||cos |11x x K ===ρ.3. 求抛物线y =x 2-4x +3在其顶点处的曲率及曲率半径. 解 y '=2x -4, y ''=2.令y '=0, 得顶点的横坐标为x =2. y '|x =2=0, y ''|x =2=2. 所求曲率为2)01(|2|)1(||2/322/32=+='+''=y y K , 曲率半径为211==K ρ.4. 求曲线x =a cos 3t , y =a sin 3t 在t =t 0处的曲率.解 t x a t a y tan )cos ()sin (33-=''=', tt a x a x y 43cos sin 31)cos ()tan (⋅=''-=''. 所求曲率为|2sin |32|cos sin 31|)tan 1(|cos sin 31|)1(||32/3242/32t a t t a t t t a y y K ==+⋅='+''=, |2sin |3200t a K t t ==.5. 对数曲线y =ln x 上哪一点处的曲率半径最小?求出该点处的曲率半径.解 x y 1=', 21xy -=''.2/322/3222/32)1()11(|1|)1(||x x xx y y K +=+-='+''=, xx 232)1(+=ρ,2222232212)12(1)1(2)1(23x x x x x x x x --=+-⋅⋅+='ρ.令ρ'=0, 得22=x . 因为当220<<x 时, ρ<0; 当22>x 时, ρ>0, 所以22=x 是ρ的极小值点, 同时也最小值点. 当22=x 时, 22ln =y . 因此在曲线上点)22ln ,22(处曲率半径最小, 最小曲率半径为233=ρ. 6. 证明曲线axa y ch =在点(x , y )处的曲率半径为a y 2.解 a x y sh =', axa y ch 1=''.在点(x , y )处的曲率半径为a y a x a a x a a xa x a a x y y 222/322/322/32ch |ch 1|)(ch |ch 1|)sh 1(||)1(===+='''+=ρ.7. 一飞机沿抛物线路径100002x y =(y 轴铅直向上, 单位为m )作俯冲飞行, 在坐标原点O 处飞机的速度为v =200m /s 飞行员体重G =70Kg . 求飞机俯冲至最低点即原点O 处时座椅对飞行员的反力.解 5000100002x x y ==', 50001=''y ; y '|x =0=0, 50001|0=''=x y . 500050001)01(||)1(|2/322/320=+='''+==y y x ρ.向心力56050002007022=⨯==ρmV F (牛顿). 飞行员离心力及它本身的重量对座椅的压力为 79⨯9.8+560=1246(牛顿).8. 汽车连同载重共5t , 在抛物线拱桥上行驶, 速度为21.6km/h , 桥的跨度为10m , 拱的矢高为0.25m . 求汽车越过桥顶时对桥的压力.解 如图取直角坐标系, 设抛物线拱桥方程为y =ax 2, 由于抛物线过点(5, 0.25), 代入方程得01.02525.0==a ,于是抛物线方程为y =0. 01x 2. y '=0.02x , y ''=0.02.5002.0)01(||)1(|2/322/320=+='''+==y y x ρ. 向心力为360050)3600106.21(1052332=⨯⨯==ρmV F (牛顿). 因为汽车重为5吨, 所以汽车越过桥顶时对桥的压力为 5⨯103⨯9.8-3600=45400(牛顿).*9. 求曲线y =ln x 在与x 轴交点处的曲率圆方程.*10. 求曲线y =tan x 在点)1 ,4(π处的曲率圆方程.*11. 求抛物线y 2=2px 的渐屈线方程.总习题三1. 填空:设常数k >0, 函数k exx x f +-=ln )(在(0, +∞)内零点的个数为________.解 应填写2.提示: e x x f 11)(-=', 21)(xx f -=''.在(0, +∞)内, 令f '(x )=0, 得唯一驻点x =e .因为f ''(x )<0, 所以曲线k exx x f +-=ln )(在(0, +∞)内是凸的, 且驻点x =e 一定是最大值点,最大值为f (e )=k >0.又因为-∞=+→)(lim 0x f x , -∞=+∞→)(lim x f x , 所以曲线经过x 轴两次, 即零点的个数为2.2. 选择以下题中给出的四个结论中一个正确的结论:设在[0, 1]上f ''(x )>0, 则f '(0), f '(1), f (1)-f (0)或f (0)-f (1)几个数的大小顺序为( ). (A )f '(1)>f '(0)>f (1)-f (0); (B )f '(1)>f (1)-f (0)>f '(0); (C )f (1)-f (0)>f '(1)>f '(0); (D )f '(1)>f (0)-f (1)>f '(0). 解 选择B .提示: 因为f ''(x )>0, 所以f '(x )在[0, 1]上单调增加, 从而f '(1)>f '(x )>f '(0). 又由拉格朗日中值定理, 有f (1)-f (0)=f '(ξ), ξ∈[0, 1], 所以 f '(1)> f (1)-f (0)>f '(0).3. 列举一个函数f (x )满足: f (x )在[a , b ]上连续, 在(a ,b )内除某一点外处处可导, 但在(a , b )内不存在点ξ , 使f (b )-f (a )=f '(ξ)(b -a ). 解 取f (x )=|x |, x ∈[-1, 1].易知f (x )在[-1, 1]上连续, 且当x >0时f '(x )=1; 当x >0时, f '(x )=-1; f '(0)不存在, 即f (x )在[-1, 1]上除x =0外处处可导.注意f (1)-f (-1)=0, 所以要使f (1)-f (-1)=f '(ξ)(1-(-1))成立, 即f '(ξ)=0, 是不可能的. 因此在(-1, 1)内不存在点ξ , 使f (1)-f (-1)=f '(ξ)(1-(-1)). 4. 设k x f x ='∞→)(lim , 求)]()([lim x f a x f x -+∞→.解 根据拉格朗日中值公式, f (x +a )-f (x )=f '(ξ )⋅a , ξ 介于x +a 与x 之间. 当x →∞ 时, ξ → ∞, 于是ak f a a f x f a x f x x ='=⋅'=-+∞→∞→∞→)(lim )(lim )]()([lim ξξξ.5. 证明多项式f (x )=x 3-3x +a 在[0, 1]上不可能有两个零点.证明 f '(x )=3x 2-3=3(x 2-1), 因为当x ∈(0, 1)时, f '(x )<0, 所以f (x )在[0, 1]上单调减少. 因此, f (x ) 在[0, 1]上至多有一个零点.6. 设1210++⋅⋅⋅++n a aa n =0, 证明多项式f (x )=a 0+a 1x +⋅ ⋅ ⋅+a n x n 在(0,1)内至少有一个零点.证明 设121012)(+++++=n n x n a x ax a x F , 则F (x )在[0, 1]上连续, 在(0, 1)内可导, 且F (0)=F (1)=0. 由罗尔定理, 在(0, 1)内至少有一个点ξ , 使F (ξ )=0. 而F '(x )=f (x ), 所以f (x )在(0, 1)内至少有一个零点.7. 设f (x )在[0, a ]上连续, 在(0, a )内可导, 且f (a )=0, 证明存在一点ξ∈(0, a ), 使f (ξ)+ξf '(ξ)=0.证明 设F (x )=xf (x ), 则F (x )在[0, a ]上连续, 在(0, a )内可导, 且F (0)=F (a )=0. 由罗尔定理, 在(0, a )内至少有一个点ξ , 使F (ξ )=0. 而F (x )=f (x )+x f '(x ), 所以f (ξ)+ξf '(ξ)=0.8. 设0<a <b , 函数f (x )在[a , b ]上连续, 在(a , b )内可导, 试利用柯西中值定理, 证明存在一点ξ∈(a , b )使abf b f a f ln )()()(ξξ'=-.证明 对于f (x )和ln x 在[a , b ]上用柯西中值定理, 有ξξ1)(ln ln )()(f ab a f b f '=--, ξ∈(a , b ), 即 abf b f a f ln )()()(ξξ'=-, ξ∈(a , b ).9. 设f (x )、g (x )都是可导函数, 且|f '(x )|<g '(x ), 证明: 当x >a 时, |f (x )-f (a )|<g (x )-g (a ).证明 由条件|f '(x )|<g '(x )得知,1)()(<''ξξg f , 且有g '(x )>0, g (x )是单调增加的, 当x >a 时, g (x )>g (a ).因为f (x )、g (x )都是可导函数, 所以f (x )、g (x ) 在[a , x ]上连续, 在(a , x )内可导, 根据柯西中值定理, 至少存在一点ξ∈(a , x ), 使)()()()()()(ξξg f a g x g a f x f ''=--. 因此,1)()()()(|)()(|<''=--ξξg f a g x g a f x f , |f (x )-f (a )|<g (x )-g (a ).10. 求下列极限:(1)xx x x xx ln 1lim 1+--→;(2)]1)1ln(1[lim 0xx x -+→;(3)x x x )arctan 2(lim π+∞→.(4)nxx n x x x n a a a ]/) [(lim 11211+⋅⋅⋅++∞→(其中a 1, a 2, ⋅ ⋅ ⋅, a n >0).解 (1) (x x )'=(e x l n x )'=e x l n x(ln x +1)=x x (ln x +1).xx x x xx x x x x x x x x x x x x x x x xx -+-=+-+-='+-'-=+--+→→→→1)1(ln lim11)1(ln 1lim )ln 1()(lim ln 1lim 11111 21)1)(ln 11(ln 1lim11=--+++-=+→xx x x x x x x . (2)xxx x x x x x x x x x x x x x x x ++++-='+'+-=++-=-+→→→→1)1ln(111lim ])1ln([])1ln([lim )1ln()1ln(lim ]1)1ln(1[lim 00002111)1l n (1lim )1ln()1(lim00=+++=+++=→→x x x x x x x。

同济版高等数学课后习题解析

同济版高等数学课后习题解析

书后部分习题解答P21页3.(3)nnn b b b a a a ++++++++∞→ΛΛ2211lim (1,1<<b a )知识点:1)等比级数求和)1(1)1(12≠--=++++-q qq a aqaq aq a n n Λ(共n 项)2)用P14例4的结论:当1<q 时,0lim =∞→nn q解:n n n b b b a a a ++++++++∞→ΛΛ2211lim ab bb a a n n n --=----=++∞→111111lim 115.(1)判断下列数列是否收敛,若收敛,则求出极限:设a 为正常数,00>x ,)(211nn n x a x x +=+ 证:由题意,0>n x ,a x a x x a x x nn n n n =⋅⋅≥+=+221)(211(数列有下界) 又02)(2121≤-=-+=-+nn n n n n n x x a x x ax x x (因a x n ≥+1)(数列单调减少) 由单调有界定理,此数列收敛;记b x n n =∞→lim ,对)(211n n n x a x x +=+两边取极限,得)(21bab b +=,解得a b =(负的舍去),故此数列的极限为a .P35页4.(8)极限=-++-+→211)1()1(lim x n x n x n x 211)1()1()]1(1[lim -++--++→x nx n x n x 21221111)1()1()1()1()1(1lim -++--+-+-+=+++→x n x n x x C x C n n n x 2)1(21+==+n n C n (若以后学了洛必达法则(00型未定型),则211)1()1(lim -++-+→x nx n x n x 2)1(2)1(lim )1(2)1())1(lim 111+=+=-+-+=-→→n n nx n x n x n n x n x ) 书后部分习题解答2 P36页8.已知当0→x 时,1cos ~1)1(312--+x ax,求常数a .知识点:1)等价无穷小的概念;2)熟记常用的等价无穷小,求极限时可用等价无穷小的替换定理。

(完整版)高等数学第六版(同济大学)上册课后习题答案解析

(完整版)高等数学第六版(同济大学)上册课后习题答案解析

高等数学第六版上册课后习题答案及解析第一章习题1—11. 设A=(-, —5)(5, +),B=[-10, 3), 写出A B,A B, A\B及A\(A\B)的表达式。

解A B=(-, 3)(5, +),A B=[-10,—5),A\B=(—, -10)(5, +),A\(A\B)=[-10, -5).2. 设A、B是任意两个集合,证明对偶律: (A B)C=A C B C。

证明因为x(A B)C x A B x A或x B x A C或x B C x A C B C,所以(A B)C=A C B C。

3. 设映射f : X Y, A X, B X。

证明(1)f(A B)=f(A)f(B);(2)f(A B)f(A)f(B).证明因为y f(A B)x A B, 使f(x)=y(因为x A或x B) y f(A)或y f(B)y f(A)f(B),所以f(A B)=f(A)f(B).(2)因为y f(A B)x A B, 使f(x)=y(因为x A且x B) y f(A)且y f(B)yf (A )f (B ),所以 f (A B )f (A )f (B )。

4。

设映射f : XY , 若存在一个映射g : Y X , 使X I f g = , Y I g f = , 其中I X 、I Y 分别是X 、Y 上的恒等映射, 即对于每一个xX , 有I X x =x ; 对于每一个y Y , 有I Y y =y 。

证明:f 是双射, 且g 是f 的逆映射: g =f —1.证明 因为对于任意的yY , 有x =g (y )X , 且f (x )=f [g (y )]=I y y =y , 即Y 中任意元素都是X 中某元素的像, 所以f 为X 到Y 的满射. 又因为对于任意的x 1x 2, 必有f (x 1)f (x 2), 否则若f (x 1)=f (x 2)g [ f (x 1)]=g [f (x 2)]x 1=x 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

同济大学高等数学一、求下列极限1、sin ()lim x x x →−−22111;解一:()()12sin 1cos 1lim 02x x x x→−−==原式解二:()()11sin 1sin 1lim lim11x x x x x x →→−−==−+原式2、lim sin x x x →2203解一:00021311lim lim lim 6sin3cos39sin3cos39x x x x x x x x x →→→==⋅=原式解二:sin 3~30021limlim 6sin 3cos 39cos 39x xx x x x x xx x →→===原式3、20tan 2lim sin 3x x xx →解:()2tan 2~2,sin3~3222lim93x x x xx xx →=原式=4、0lim ln(1)x x x →+解一:()001lim lim 1111x x x x→→==+=+原式解二:()1011lim1ln ln 1x xex →===+原式5、2lim xx x x →∞−⎛⎞⎜⎟⎝⎠解一:()2222lim 1xx ex −⋅−−→∞⎛⎞=−=⎜⎟⎝⎠原式解二:()1211ln 2ln 22limlim ln2lim22lim x x x x xx x x x xx xx x x eeeee−−→∞→∞→∞−−−−−−→∞−−−=====原式6、()111lim 32x x x −→−解一:()()112220lim 12t x tt t e=−−−−→=−=令原式解二:1(2)221122221lim[1(22)]{lim[1(22)]}xx x x x x e−−→−−−→=+−=+−=i 原式7、30sin lim x x x x →−解:2001cos sin 1lim lim 366x x x x x x →→−===原式8、111lim ln 1x x x →⎛⎞−⎜⎟−⎝⎠解:111111ln 11lim lim lim 1(1)ln ln 1ln 11lim ln 112x x x x x x x x x x x x x x x xx →→→→−−+−===−−+−+−==−++原式9、12lim 22n n n n →∞+++⎛⎞−⎜⎟+⎝⎠⋯解:()()221122lim lim22221lim 422n n n n n n n n n n n n n n →∞→∞→∞⎛⎞+⎜⎟+−−=−=⎜⎟++⎜⎟⎝⎠−==−+原式10、329sin limx x t dtx →∫解:26686003sin 1sin 1lim lim 933x x x x x x x →→===原式11、arctan limx x tdt →+∞。

()122arctan limlim arctan 1122lim arctan lim 122x x x x xx x x x ππ→+∞→+∞−→+∞→+∞==+⋅=⋅=⋅=解:原式二、求下列导数或微分1、设4tan 1y x x x =−+,求dy 解一:dy y dx′=()324tan sec x x x x dx=−−解二:()34tan tan dy xdx xdx xd x =−+()32324tan sec 4tan sec x dx xdx x xdx x x x x dx=−−⋅=−−2、设21cos xy x =+,求y ′()()()()()222ln 21cos 2sin 1cos 2sin cos ln 2ln 2 1cos xxxx x y x x x x ⋅+−−′=++⋅+=+解:3、设51log sin y x =,求y ′()221cos111cos 11ln 5sin ln 5sin x y x x x x x−′=⋅⋅−=−⋅⋅解 4、设ln(y x =+,求y ′′()()()()12212233222211122111212y x xxy x x x x−−−−⎛⎞′/=⋅++⋅⎜⎟/⎝⎠=⋅=+′′=−+⋅=−+解:5、设lnx y y=+,求dydx111yy y yy y′′′=+⋅∴=+解:6、设sin()0xye xy+=,求dydx()()()()()cos0coscosx xxxy e ye xy y xyy e xyye x xy′′++⋅+=+′∴=−+解7、设arctanxy t⎧⎪=⎨=⎪⎩,求1tdydx=()()122212211111122 2t t dytdx t t t dy dx −−=++==+⋅∴=解8、设2ln(1)arctan x t y t t ⎧=+⎨=−⎩,求22d y dx 222222111122112121421dy t t dx t t t d d y t dt dx dx t t dt t−+==⋅+⎛⎞⎜⎟⎝⎠+∴===⋅+解9、设()tan (0)xy x x =>,求y ′()22tan ln 2ln tan ln 11sec ln tan 1sec ln tan secln tan x xy x x y x x x y x y y x x x x ex x x x x=′=⋅+⋅⎛⎞′=⋅+⋅⎜⎟⎝⎠+=解:10、设y =,求y ′()()()()()()()()()451ln ln 24ln 35ln 12114522311452231314524311y x x x y y x x x y y x x x x x x x x =++−−+′=−−+−+⎛⎞′=−−=⎜⎟⎜⎟+−+⎝⎠−⎛⎞−−⎜⎟+−+⎝⎠+解11、设23sin xt x dt y e =∫,求y ′32226sin 0sin 2 cos 3xx tt xx y e dt e dty ex x e=−′∴=−∫∫解12、设31sin 0()00x x f x xx ⎧≠⎪=⎨⎪=⎩,求()f x ′()()()()323223002020111(sin 3sin cos 11 3sin cos01sin 000lim lim1 lim sin 0113sin cos ,00,0x x x x y x x x x x x xx x x xx x f x f x y x xx x x x x y x xx −∆→∆→∆→≠′′==+⋅−=−=∆+∆−∆′==∆∆⎛⎞=∆=⎜⎟∆⎝⎠⎧−≠⎪′∴=⎨⎪=⎩解,,三、求下列积分1、xe dx−∫()xxe d x e c−−=−−=−+∫解:原式2、2xx e dx∫()22ln 2 21ln 2xx xx e e dx c e e c⎛⎞⎜⎟⎛⎞⎝⎠==+⎜⎟⎛⎞⎝⎠⎜⎟⎝⎠=+−∫解:原式3、csc dxx ∫1sin cos xdx x c==−+∫解:原式4、2x xe dx∫2221122x x e dx e c==+∫解:原式5、3(ln )x dx x∫()()341ln ln ln 4x d x x c==+∫解:原式6、x xdxe e −+∫()22arctan 11xxxxx ededx e c e e ===+++∫∫解:原式7、421xdxx +∫222223223(1)[]1111111 1311arctan 3x x x x x x dx dx x x x x x x x dx dx dx dxx x x x x x c+−+=−++++−+=−=−++++=−++∫∫∫∫∫∫42222222解:原式=8、sin x xdx∫(),()sin ,()1,()cos ()()()()cos cos cos sin u x x v x x u x v x x u x v x u x v x dx x x xdx x x x C′′====−′−=−−−=−++∫∫解一:令原式=cos cos cos cos sin udv uv vduxd x x x xdx x x x c=−=−=−+=−++∫∫∫∫解二:利用原式9、353cos x xdx−∫55()cos()cos 0x x x x −−=−∴=解:因原式10、1ln e ex dx∫[][][][]()111111111111111ln ln ln ln ln ln 1111(ln 1ln )ln ln 11112112eeeeeee eeexdx xdxx x xd x x x xd xx dx e e x dxe ex xe x x e e e e e e =−+=−++−=−−+⋅+−−⋅⎛⎞=−+−=−+−−−=−⎜⎟⎝⎠∫∫∫∫∫∫解:原式11、94dx ∫2332233332222332322233222222112(1)22222111221 []2(1)11 94[2]2[ln |1|]ttt t t tdt dtt t t t t t dt dt tdt dtt t t t t dt d t t t t t −+⋅=−−−−+=+=+−−−−=++−−−=−++−∫∫∫∫∫∫∫∫解:原式 5642ln 22ln172ln 2=+−+−=+12、121dx x−∫()[]sin 22224422244cos cos cot sin csc 1cot 11244x tt tdt tdt tt dt t t πππππππππππ==⋅==−=−−=−++=−∫∫∫令解:原式13、dx x∫3sin ,(,)222222cos cos (3csc cot )3sin 3cot 3(csc 1) 3cot 33sin ,cos ,cot ,3t t x tt t t dt dt ttdt t dtt t ct t t xxππ=∈−===−=−=−=−−=++===∫∫∫∫∫∫∵解:原式3 3arcsin cx∴++14、127(1)x x dx−∫()()()()1012727101109819870112121211210981098360x tt t dt t t t dtt t t t t t dt −==−⋅−=−+⎡⎤=−+=−+=−+=⎢⎥⎣⎦∫∫∫解:原式15、320sin sin xdxx cosxπ+∫()33220332200332202200sin co s ,sin co s sin co s 21sin co s 2sin co s sin co s 1sin co s 11sin co s 2sin co s 21sin 2co s 22428xx d x d x x t x xx x x xd x d x x xx x x x d x x x d xx x x x x d x πππππππππ⎛⎞==−⎜⎟++⎝⎠⎛⎞=+⎜⎟++⎝⎠+==−+⎛⎞⎡⎤=−=+=⎜⎟⎢⎥⎝⎠⎣⎦∫∫∫∫∫∫∫∵解:令原式co s 14884πππ⎛⎞++=⎜⎟⎝⎠注:上题答案有误,应为(π-1)/4四、微分和积分的应用1、列表讨论下列函数的单调性、凹凸性、极值、拐点:(1)3229123y x x x =−+−;261812,1218y x x y x ′′′=−+=−解:301,.0y x x y x ′′′=⇒==⇒=由或=2由()21=f ⎟⎠⎞⎜⎝⎛23,23()12=f 3229123y x x x ∴=−+−在区间(,1)(2,)−∞+∞,上递增;在区间[1,2]上递减。

相关文档
最新文档