正多边形和圆知识点

合集下载

九年级下册沪教版数学知识点总结

九年级下册沪教版数学知识点总结

九年级下册沪教版数学知识点总结圆的确定1.圆是到定点的距离等于定长的点的集合。

2.圆的两要素是圆心和半径。

圆心确定圆的位置,半径确定圆的大小。

3.圆心相同的圆叫做同心圆。

半径相等的圆叫做等圆。

4.经过一点A 可以做无数个圆。

经过A 、B 可以作无数个圆。

经过不在同一直线上的三个点A 、B 、C 可以做1个圆。

5.三角形的外接圆的圆心叫做外心。

6.一个三角形有1个外接圆,一个圆有无数个内接三角形。

7.锐角三角形的外心在三角形的内部,直角三角形的外心在斜边的中点,钝角三角形的外心在三角形的外部。

8.经过四边形四个顶点的圆叫做四边形的外接圆。

经过多边形每个顶点的圆叫做多边形的外接圆。

圆心角、弧、弦、弦心距之间的关系(1)1.联接圆上任意两点间的线段叫做弦。

过圆心的弦就是直径。

2.直径的两个端点把圆分成两条弧,每条弧都叫做半圆。

大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧。

3.从圆心到弦的距离叫做弦心距。

圆心角、弧、弦、弦心距之间的关系(2)1.在同圆或等圆中,如果圆心角相等,那么所对的劣弧或优弧相等,所对的弦相等,所对的弦心距相等。

2.在同圆或等圆中,如果两个圆心角、两条优劣弧、两条弦、或两条弦心距,这四组量中有一组量相等,那么它们所对应的其余三组量也相等。

圆心角、弧、弦、弦心距之间的关系(3)1.角平分线上的点到角两边的距离相等。

垂径定理(1)1.垂径定理:如果圆的直径垂直于弦,那么这条直径平分这条弦,并且平分这条弦所对的弧。

(推论:弦心距平分弦)垂径定理(2)1.如果圆的直径平分炫(这条弦不是直径),那么这条直径垂直这条弦,并且平分这条弦所对弧。

2.如果圆的直径平分弧,那么这条直径垂直平分这条弧所对的弦。

3.如果一条直线是弦的垂直平分线,那么这条直线过圆心,并且平分这条弦所对的弧。

4.如果一条直线平分弦和它所对的一条弧,那么这条直线过圆点,并且垂直这条弦。

5.如果一条直线垂直于弦,并且平分弦所对的一条弧,那么这条直线过圆点,并且平分这条弦。

初中数学知识点:正多边形和圆知识点

初中数学知识点:正多边形和圆知识点

初中数学知识点:正多边形和圆知识点新一轮的中考复习又开始了,本站编辑为此特为大家整理了正多边形和圆知识点,希望可以帮助大家复习,预祝大家取得优异的成绩~正多边形和圆知识点1、正多边形的定义各边相等,各角也相等的多边形叫做正多边形。

2、正多边形和圆的关系只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。

典型例题粉笔是校园中最常见的必备品.图1是一盒刚打开的六角形粉笔,总支数为50支.图2是它的横截面(矩形ABCD),已知每支粉笔的直径为12mm,由此估算矩形ABCD的周长约为_____mm.(,结果精确到1mm)答案:300解析:把图形中的边长的问题转化为正六边形的边长、边心距之间的计算即可.解:作B′M′∥C′D′,C′M′⊥B′M′于点M′.粉笔的半径是6mm.则边长是6mm.∵∠M′B′C′=60°∴B′M′=B′C′?cos60°=6×=3.边心距C′M′=6sin60°=3mm.则图(2)中,AB=CD=11×3=33mm.AD=BC=5×6+5×12+3=93mm.则周长是:2×33+2×93=66+186≈300mm.故答案是:300mm.同步练习题1判断题:①各边相等的圆外切多边形一定是正多边形.( )②各角相等的圆内接多边形一定是正多边形.( )③正多边形的中心角等于它的每一个外角.( )④若一个正多边形的每一个内角是150°,则这个正多边形是正十二边形.( )⑤各角相等的圆外切多边形是正多边形.( )2填空题:①一个外角等于它的一个内角的正多边形是正____边形.[②正八边形的中心角的度数为 ____,每一个内角度数为____,每一个外角度数为____.③边长为6cm的正三角形的半径是____cm,边心距是____cm ,面积是____cm.④面积等于 cm2的正六边形的周长是____.⑤同圆的内接正三角形与外切正三角形的边长之比是____.⑥正多边形的面积是240cm2,周长是60cm2,则边心距是____cm.⑦正六边形的两对边之间的距离是12cm,则边长是____cm.⑧同圆的外切正四边形与内接正四边形的边心距之比是____.⑨同圆的内接正三角形的边心距与正六边形的边心距之比是____.3选择题:①下列命题中,假命题的是( )A.各边相等的圆内接多边形是正多边形.B.正多边形的任意两个角的平分线如果相交,则交点为正多边形的中心.C.正多边形的任意两条边的中垂线如果相交,则交点是正多边形的中心.D.一个外角小于一个内角的正多边形一定是正五边形.②若一个正多边形的一个外角大于它的一个内角,则它的边数是( )A.3B.4C.5D.不能确定③同圆的内接正四边形与外切正四边形的面积之比是( )A.1:B.1:C.1:2D. :1④正六边形的两条平行边间距离是1,则边长是( )A . B. C. D.⑤周长相等的正三角形、正四边形、正六边形的面积S3、S4、S6之间的大小关系是:( )A.S3>S4>S6B.S6>S4>S3C.S6>S3>S4D.S4>S6>S3⑥正三角形的边心距、半径和高的比是( )A.1:2:3B.1: :C. 1: :3D.1:2:四、计算1.已知正方形面积为8cm2,求此正方形边心距 .3.已知圆内接正三角形边心距为 2cm,求它的边长.距长.长.8.已知圆外切正方形边长为2cm ,求该圆外切正三角形半径.10.已知圆内接正方形边长为m,求该圆外切正三角形边长.长.12.已知正方形边长为1cm,求它的外接圆的外切正六边形外接圆的半径.13.已知一个正三角形与一个正六边形面积相等,求两者边长之比.15.已知圆内接正六边形与正方形面积之差为11cm2,求该圆内接正三角形的面积.16.已知圆O内接正n边形边长为an,⊙O半径为R,试用an,R表示此圆外切正n边形边长bn.。

数学知识点秋人教版数学九年级上册24.3.2《正多边形和圆》word教案-总结

数学知识点秋人教版数学九年级上册24.3.2《正多边形和圆》word教案-总结
初中数学、数学课件、数学综合练习题、数学教学教案、试卷数学
师生行为 教师提出问题,学生进行 回答 教师可再展示一些图片让 学生欣赏.
设 计 意 图 复习正多边形的 概念,为本节课 做准备. 培养学生的思维 品质,将正多边 形与圆联系起 来.并由此引出 今天的课题. 使学生理解、体 会圆与正多边形 的内在联系. 充分发展学生的 发散思维. 教给学生等分圆 周的方法,尤其 是尺规作正六边 形.
初中数学、数学课件、数学综合练习题、数学教学教案、试卷数学
初中数学、数学课件、数学综合练习题、数学教学教案、试卷数学
作 课 类 别 教 学 媒 体 知 识 教 学 目 标 技 能 过 程 方 法 情 感 态 度 教学重点 教学难点
课 题
24.3 .2 正多边形和圆 多媒体
初中数学、数学课件、数学综合练习题、数学教学教案、试卷数学
学生根据教师提出的问题 进行思考,回忆圆的有关 知识,进而回答教师提出 的问题.即等分圆周,就 可以得到圆内接正多边 形.
Байду номын сангаас
教师提出问题后,学 生认真思考、交流,充分 发表自己的见解,并互相 补充.教师在学生归纳的 基础上进行补充,并以正 五边形为例进行证明. 教师提出问题后,学生思 考、交流自己的见解,教 师组织学生进行作图,方 法不限. 在学生作图的基础上,教 师归纳出等分圆周的方 法:1.用量角器等分圆: 依据:同圆中相等的圆心 角所对应的弧相等. 操作:两种情况:其一是 依次画出相等的圆心角来 等分圆,这种方法比较准 确,但是麻烦;其二是先 用量角器画一个圆心角, 然后在圆上依次截取等于 该圆心角所对弧的等弧, 于是得到圆的等分点,这 种方法比较方便,但画图 的误差积累到最后一个等 分点,使画出的正多边形 的边长误差较大. 2.用尺规等分圆: 教师组织学生,分析、作 图、归纳:理论上我们可 以一直画下去,但大家不 难发现,随着边数的增

中考正多边形和圆知识点

中考正多边形和圆知识点

中考正多边形和圆知识点中考数学中的多边形和圆的知识点主要包括多边形的性质、圆的性质以及相关的计算。

一、多边形的性质:1.多边形是由若干条线段组成的封闭图形,它的每个线段都是相邻两个顶点之间的连接线段,多边形的每个顶点都是两个线段的公共顶点。

2.多边形的顶点个数等于线段的个数,多边形的边数等于线段的长度。

3.多边形中,相邻两条边之间的夹角称为内角,多边形中所有内角的和等于180°×(n-2),其中n为多边形的边数。

4.多边形中的对角线是多边形内部两个非连续顶点之间的线段,多边形中的对角线的条数D=(n×(n-3))/2,其中n为多边形的边数。

5.正多边形是所有边和角都相等的多边形,正多边形中的所有内角都相等,且每个内角是(2×180°)/(n),其中n为多边形的边数。

二、圆的性质:1.圆是由所有与圆心的距离相等的点组成的图形。

2.圆心是圆上所有点的中心,圆上的每条线段都通过圆心。

3.圆的半径是圆心到圆上任意一点的距离,圆的直径是经过圆心的两个点之间的距离,直径是半径的2倍。

4.圆的周长是圆的边界的长度,周长等于2π乘以半径,或π乘以直径。

5.圆的面积是圆内部的平面区域,面积等于π乘以半径的平方。

6.弧是圆上的一段弧线,它是圆上两个点之间的连线所对应的圆心角所夹的弧,它的长度等于圆的周长乘以圆心角所占的比例。

7.扇形是圆心和圆上的两个点所围成的图形,扇形的面积是圆的面积乘以圆心角所占的比例。

8.弦是圆上的两个点之间的线段,它的长度可以通过圆心角的正弦、余弦等函数关系进行计算。

三、相关计算:1.根据多边形的边数和边长计算多边形的周长。

2.根据多边形的边数和一个内角的度数计算多边形的内角和。

3.根据圆的半径或直径计算圆的周长和面积。

4.根据圆周角的度数计算弧长和扇形的面积。

5.根据圆心角的度数计算弧长和扇形的面积。

以上就是中考数学中多边形和圆的相关知识点,掌握了这些知识点,同学们就能够正确理解多边形和圆的性质,能够运用相关公式进行计算和解题。

中考数学复习----《正多边形与圆》知识点总结与练习题(含答案)

中考数学复习----《正多边形与圆》知识点总结与练习题(含答案)

中考数学复习----《正多边形与圆》知识点总结与练习题(含答案)知识点总结1.正多边形与圆的关系把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆。

2.正多边形的有关概念①中心:正多边形的外接圆的圆心叫做正多边形的中心。

②正多边形的半径:外接圆的半径叫做正多边形的半径。

③中心角:正多边形每一边所对的圆心角叫做正多边形的中心角。

④边心距:中心到正多边形的一边的距离叫做正多边形的边心距。

练习题1、(2022•长春)跳棋是一项传统的智力游戏.如图是一副跳棋棋盘的示意图,它可以看作是由全等的等边三角形ABC和等边三角形DEF组合而成,它们重叠部分的图形为正六边形.若AB=27厘米,则这个正六边形的周长为厘米.【分析】根据对称性和周长公式进行解答即可.【解答】解:由图象的对称性可得,AM=MN=BN=AB=9(厘米),∴正六边形的周长为9×6=54(厘米),故答案为:54.2、(2022•营口)如图,在正六边形ABCDEF中,连接AC,CF,则∠ACF=度.【分析】设正六边形的边长为1,正六边形的每个内角为120°,在△ABC中,根据等腰三角形两底角相等得到∠BAC=30°,从而∠CAF=∠BAF﹣∠BAC=120°﹣30°=90°,过点B作BM⊥AC于点M,根据含30°的直角三角形的性质求出BM,根据勾股定理求出AM,进而得到AC的长,根据tan∠ACF===即可得出∠ACF=30°.【解答】解:设正六边形的边长为1,正六边形的每个内角=(6﹣2)×180°÷6=120°,∵AB=BC,∠B=120°,∴∠BAC=∠BCA=×(180°﹣120°)=30°,∵∠BAF=120°,∴∠CAF=∠BAF﹣∠BAC=120°﹣30°=90°,如图,过点B作BM⊥AC于点M,则AM=CM(等腰三角形三线合一),∵∠BMA=90°,∠BAM=30°,∴BM=AB=,∴AM===,∴AC=2AM=,∵tan∠ACF===,∴∠ACF=30°,故答案为:30.3、(2022•呼和浩特)如图,从一个边长是a的正五边形纸片上剪出一个扇形,这个扇形的面积为(用含π的代数式表示);如果将剪下来的扇形围成一个圆锥,圆锥的底面圆直径为.【分析】先求出正五边形的内角的度数,根据扇形面积的计算方法进行计算即可;扇形的弧长等于圆锥的底面周长,可求出底面直径.【解答】解:∵五边形ABCDE是正五边形,∴∠BCD==108°,∴S扇形==;又∵弧BD的长为=,即圆锥底面周长为,∴圆锥底面直径为,故答案为:;.4、(2022•绥化)如图,正六边形ABCDEF和正五边形AHIJK内接于⊙O,且有公共顶点A,则∠BOH的度数为度.【分析】求出正六边形的中心角∠AOB和正五边形的中心角∠AOH,即可得出∠BOH的度数.【解答】解:如图,连接OA,正六边形的中心角为∠AOB=360°÷6=60°,正五边形的中心角为∠AOH=360°÷5=72°,∴∠BOH=∠AOH﹣∠AOB=72°﹣60°=12°.故答案为:12.5、(2022•梧州)如图,四边形ABCD是⊙O的内接正四边形,分别以点A,O为圆心,取大1OA的定长为半径画弧,两弧相交于点M,N,作直线MN,交⊙O于点E,F.若OA 于2=1,则BE⌒,AE,AB所围成的阴影部分面积为.【分析】连接OE、OB.由题意可知,∴△AOE为等边三角形,推出S阴影=S扇形AOB﹣S弓形AOE﹣S△AOB=S扇形AOB﹣(S扇形AOE﹣S△AOE)﹣S△AOB=S扇形AOB﹣S扇形AOE+S△AOE ﹣S△AOB,即可求出答案.【解答】解:连接OE、OB,由题意可知,直线MN垂直平分线段OA,∴EA=EO,∵OA=OE,∴△AOE为等边三角形,∴∠AOE=60°,∵四边形ABCD是⊙O的内接正四边形,∴∠AOB=90°,∴∠BOE=30°,∵S弓形AOE=S扇形AOE﹣S△AOE,∴S阴影=S扇形AOB﹣S弓形AOE﹣S△AOB=S扇形AOB﹣(S扇形AOE﹣S△AOE)﹣S△AOB=S扇形AOB﹣S扇形AOE+S△AOE﹣S△AOB=S扇形BOE+S△AOE﹣S△AOB=+﹣=.故答案为:.6、(2022•宿迁)如图,在正六边形ABCDEF中,AB=6,点M在边AF上,且AM=2.若经过点M的直线l将正六边形面积平分,则直线l被正六边形所截的线段长是.【分析】设正六边形ABCDEF的中心为O,过点M、O作直线l交CD于点N,则直线l 将正六边形的面积平分,直线l被正六边形所截的线段长是MN,连接OF,过点M作MH ⊥OF于点H,连接OA,由正六边形的性质得出AF=AB=6,∠AFO=∠AFE=×=60°,MO=ON,进而得出△OAF是等边三角形,得出OA=OF=AF=6,由AM=2,得出MF=4,由MH⊥OF,得出∠FMH=30°,进而求出FH=2,MH=2,再求出OH=4,利用勾股定理求出OM=2,即可求出MN的长度,即可得出答案.【解答】解:如图,设正六边形ABCDEF的中心为O,过点M、O作直线l交CD于点N,则直线l将正六边形的面积平分,直线l被正六边形所截的线段长是MN,连接OF,过点M 作MH⊥OF于点H,连接OA,∵六边形ABCDEF是正六边形,AB=6,中心为O,∴AF=AB=6,∠AFO=∠AFE=×=60°,MO=ON,∵OA=OF,∴△OAF是等边三角形,∴OA=OF=AF=6,∵AM=2,∴MF=AF﹣AM=6﹣2=4,∵MH⊥OF,∴∠FMH=90°﹣60°=30°,∴FH=MF=×4=2,MH===2,∴OH=OF﹣FH=6﹣2=4,∴OM===2,∴NO=OM=2,∴MN=NO+OM=2+2=4,故答案为:4.。

人教版九年级数学上册24.3__正多边形和圆练习试卷(含知识点)

人教版九年级数学上册24.3__正多边形和圆练习试卷(含知识点)

24.3 正多边形和圆附参考答案一、正多边形的有关概念1.把圆分成n 等份,依次连接各分点所得的多边形是______________.2.正多边形__________________叫做正多边形的中心,______________________叫做正多边形的半径,中心到正多边形一边的距离叫做正多边形的_____________,正多边形的每一边所对的圆心角叫做正多边形的______________.问题1.圆内接正六边形一边所对的圆周角是( ) (A )30︒.(B )60︒.(C )150︒.(D )30︒或150︒. 二、正多边形的对称性3.正多边形都是______对称图形,正n 边形有_______条对称轴,每条对称轴都经过正n 边形的__________.4.若n 为偶数,正n 边形为_________对称图形,它的中心就是__________. 问题2.正n 边形的对称轴的总数是( ) (A )n 条.(B )2n条.(C )2n 条.(D )()2n -条. 三、正多边形的有关计算5.正n 边形的内角和为_______________,每个内角的度数为________________. 6.正n 边形有n 个相等的中心角,每个中心角的度数为____________,正n 边形有n 个相等的外角,每个外角的度数为____________,正n 边形的中心角和它的外角__________.问题3.要用圆形要板截出一个边长为3cm 的正方形桌面,则选用的圆形木板的直径至少应为_____________cm .要点探究探究1.正多边形的有关计算例1.如图,已知正六边形的外接圆半径为4,求这个正六边形的中心角、边长、周长、面积.解析:连接正六边形半径,把一个正六边形划分为六个全等的等边三角形,再利用每个三角形的面积求正六边形的面积.答案:正六边形的中心角为360︒÷6=60︒.∵OA =OF ,∠AOF =60︒,∴△AOF 是等边三角形,∴AF =OA =4.∴正六边形的周长为24.过O 作OG ⊥AF 于G ,∴∠AOG =30︒,∴AG =2,则OG 23=.∴△AOF 的面积为43,∴正六边形的面积为243.智慧背囊:正多边形边长的一半、半径、边心距构成了一个直角三角形,正多边形的有关计算都可以归结到这个直角三角形中.活学活用:已知正三角形、正方形、正六边形的半径都是R ,请你将各正多边形的边长、边心距、周长和面积值填在下表中.(用R 来表示)边长 边心距 周长 面积 正三角形 正方形 正六边形随堂尝试A 基础达标1.选择题(1)如图,将若干全等的正五边形排成环状.图中所示的是前3个五边形,要完成这一圆环还需要五边形( )(A )7个.(B )8个.(C )9个.(D )10个.ORQDCBA(第1(1)题) (第1(2)题)(2)如图,正方形ABCD 与等边△PRQ 内接于⊙O ,RQ ∥BC ,则∠AOP 等于( ) (A )45o .(B )60o .(C )30o .(D )55o .(3)下列图形中既是中心对称图形,又是轴对称图形的是( ) (A )正三角形.(B )正五边形.(C )正六边形.(D )正七边形.(4)若一个正多边形的每个内角的度数是中心角的3倍,则正多边形的边数是( ) (A )4.(B )6.(C )8.(D )12. 2.填空题(1)要用圆形铁片截出边长为4cm 的正方形铁片,则选用的圆形铁片的直径最小要____________cm.(2)如图,这是一个滚珠轴承的平面示意图,若该滚珠轴承的内外圆的半径分别为2和6,则在该轴承内最多能放___________颗半径为2的滚珠.F EDCBA A'HGA(第2(2)题)(第2(3)题)(第2(4)题)(3)如图,有一个边长为1.5cm的正六边形,如果要剪一张圆形纸片完全盖住这个图形,那么这张圆形纸片的最小半径为___________cm.(4)如图,将一块正六边形硬纸片,做成一个底面仍为正六边形且高相等的无盖的纸盒(侧面均垂直于底面),需在每一个顶点处剪去一个四边形,则∠GA/H为________度.3.已知两个正多边形的边数之比为2:1,而它们的内角和之比为8:3,求这两个正多边形的边数.4.如图,已知⊙O的两直径AB、CD互相垂直,弦MN垂直平分OB,交OB于点E;求证:MB与MC分别为该圆的内接正六边形和正十二边形的边长.B能力升级5.图①是“口子窖”酒的一个由铁片制成的包装底盒,它是一个无盖的六棱柱形状的盒子(如图②),侧面是矩形或正方形.经测量,底面六边形有三条边的长是9cm,有三条边长是3cm,每个内角都是120 ,六棱柱的高为3cm.现沿它的侧棱剪开展平,得到如图③的平面展开图.①②③④⑤(1)制作这种底盒时,可以按图④中虚线裁剪出如图③的模片.现有一块长为17.5cm、宽为16.5cm的长方形铁片,请问能否按图④的裁剪方法制作这样的无盖底盒?并请说明理由;(2)如果用一块正三角形铁皮按图⑤中虚线剪出如图③的模片,那么这个正三角形的边长至少应为________________cm.(说明:以上裁剪不计接缝处损耗)C感受中考6.已知圆内接正六边形的边长是1,则这个圆的内接正方形的边长是____________.7.如图①、②、③、④分别是⊙O的内接正三角形、正四边形、正五边形、…、正n边形,点M、N分别从点B、C开始以相同的速度在⊙O上逆时针运动.(1)求图①中∠APN的度数;(2)图②中,∠APN的度数是___________,图③中,∠APN的度数是___________;(3)试探索∠APN的度数与正多边形边数n的关系(直接写答案).图①图②图③图④课后实践从正五角星形的内角谈起我们常见到的五星红旗上的五角星形,不但给庄严的感觉,而且还给人一种和谐、对称、协调的美感,很容易得到它的一个内角为36︒.我们将圆周五等分,得五个分点1、2、3、4、5,如果按1→2→3→4→5相连,则得一个正五边形(如图①).如果按1→3→5→2→4→1相连,则得一个正五角星形(如图②).前者看成是5/1边形,后者则可以看成是5/2边形.所以每一个内角为55 18023622⎛⎫︒⨯-÷=︒⎪⎝⎭.图①图②图③图④以此类推,如图③、④将两个七角星形分别看成7/2边形和7/3边形,其内角分别为77540 1802227︒⎛⎫︒⨯-÷= ⎪⎝⎭,77180 1802337︒⎛⎫︒⨯-÷=⎪⎝⎭.有兴趣的同学不妨继续沿着这个思路研究下去,你一定会有很大的收获.参考答案基础准备问题1.D.问题2.A.问题3.要点探究活学活用:略.随堂尝试A基础达标1.(1)A (2)A (3)C (4)C2.(1)(2)6 (3)1.5 (4)60 3.两个正多边形的边数分别为10和5.4.连结MO.∵弦MN垂直平分OB,OE=BE=12OB=12OM,∠EMO=30︒,∴∠MOE=60︒.MB为圆内接六边形边长,CD⊥AB,∠MOC=30︒,∴MC为圆内接十二边形的边长.B能力升级5.(1)经计算所需的长方形铁片至少为(12+cm,宽至少为(6+cm,1217.5+<,616.5+<,能按图④裁剪方法制作无盖底盒;(2)约25.4cm.C感受中考6.7.(1)∠APN=60︒;(2)90︒,108︒;(3)∠APN=()2180 nn-.以下不需要可以删除人教版初中数学知识点总结必备必记目录七年级数学(上)知识点 (1)第一章有理数 (1)第二章整式的加减 (3)第三章一元一次方程 (4)第四章图形的认识初步 (5)七年级数学(下)知识点 (6)第五章相交线与平行线 (6)第六章平面直角坐标系 (8)第七章三角形 (9)第八章二元一次方程组 (12)第九章不等式与不等式组 (13)第十章数据的收集、整理与描述 (13)八年级数学(上)知识点 (14)第十一章全等三角形 (14)第十二章轴对称 (15)第十三章实数 (16)第十四章一次函数 (17)第十五章整式的乘除与分解因式 (18)八年级数学(下)知识点 (19)第十六章分式 (19)第十七章反比例函数 (20)第十八章勾股定理 (21)第十九章四边形 (22)第二十章数据的分析 (23)九年级数学(上)知识点 (24)第二十一章二次根式 (24)第二十二章一元二次根式 (25)第二十三章旋转 (26)第二十四章圆 (27)第二十五章概率 (28)九年级数学(下)知识点 (30)第二十六章二次函数 (30)第二十七章相似 (32)第二十八章锐角三角函数 (33)第二十九章投影与视图 (34)七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章有理数一.知识框架二.知识概念1.有理数:(1)凡能写成)0pq,p(pq≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(2)有理数的分类: ①⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a(a)0a()0a(aa或⎩⎨⎧<-≥=)0a(a)0a(aa;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数. 7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律: (1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a . 13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n . 14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂; 15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位. 17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.请判断下列题的对错,并解释.1.近似数25.0的精确度与近似数25一样.2.近似数4千万与近似数4000万的精确度一样.3.近似数660万,它精确到万位.有三个有效数字.4.用四舍五入法得近似数6.40和6.4是相等的.5.近似数3.7x10的二次与近似数370的精确度一样.1、错。

正多边形与圆 知识点+例题+练习(非常好 分类全面)

正多边形与圆 知识点+例题+练习(非常好 分类全面)

§ 2.6 正多边形与圆一、概念知识点1 正多边形及其有关概念★正多边形:________相等、________也相等的多边形叫做正多边形.注:边数3n 的多边形必须同时满足“各边相等”和“各角相等”这两个条件,才能判定它是正多边形.例1 下列说法正确的是()A.正三角形不是正多边形B.平行四边形是正多边形C.正方形是正多边形D.各角相等的多边形是正多边形知识点2 正多边形的对称性(重点)1.正多边形都是________图形.一个正n边形共有_______条对称轴,每一条对称轴都经过正n边形的_________.2.一个正多边形,如果有偶数条边,那么它是________________图形,也是_________________图形;如果有奇数条边,那么是_______________图形.注:(1)如果一个正多边形是中心对称图形,那么它的中心就是对称中心;(2)正n边形的内角和等于________________,每一个内角都等于___________________,每一个外角都等于_________________.知识点3 正多边形的判定例2 如图,在正∆ABC中,E,F,G,H,L,K分别是各边的三等分点,试说明六边形EFGHLK是正六边形.二、经典题型题型1 根据正多边形的性质求角例1 如图,正方形ABCD是O的内接正方形,点P是弧CD上不同于点C的任意一点,则∠BPC等于___________.题型2 利用正多边形的性质求图形的面积例 2 如图,正六边形内接于O,O的半径为10,则图中阴影面积_________.典例精讲:1. 下列边长为a 的正多边形与边长为a 的正方形组合起来,不能镶嵌成平面( ) 、(1)正三角形 (2)正五边形 (3)正六边形 (4)正八边形A .(1)(2)B .(2)(4)C .(1)(3)D .(1)(4)2. 若同一个圆的内角正三角形、正方形、正六边形的边心距分别为r 3,r 4,r 6,则r 3:r 4:r 6等于( )A .1:2:3B .3:2:1C .1:2:3D . 3:2:13. 已知正六边形ABCDEF 内接于⊙O ,图中阴影部分的面积为312,则⊙O的半径为______________________.(第4题) (第5题)4.如图,正方形ABCD 内接于⊙O ,点E 在AD 上,则∠BEC= .5.将一块正六边形硬纸片(图1),做成一个底面仍为正六边形且高相等的无盖纸盒(侧面均垂直于底面,见图2),需在每一个顶点处剪去一个四边形,例如图中的四边形AGA /H ,那么∠GA /H 的大小是 度.OB CDA EF E D C A O6.从一个半径为10㎝的圆形纸片上裁出一个最大的正方形,则此正方形的边长为 .7.如图,若正方形A 1B 1C 1D 1内接于正方形ABCD 的内接圆,则AB B A 11的值为( )A .21 B .22 C .41D .42。

初中数学知识点精讲精析 正多边形与圆

初中数学知识点精讲精析 正多边形与圆

5.7 正多边形与圆学习目标1.了解正多边形的概念、正多边形和圆的关系,会判定一个正多边形是中心对称图形还是轴对称图形。

2.会通过等分圆心角的方法等分圆周,画出所需的正多边形。

3.能够用直尺和圆规作图,作出一些特殊的正多边形。

知识详解1. 正多边形:各边相等,各角也相等的多边形叫正多边形。

我们可以借助一个量角器将一个圆n(n≥3)等分,依次连接各等分点所得的多边形是这个圆的内接正多边形,这个圆是这个正多边形的外接圆,正多边形外接圆的圆心叫做正多边形的中心。

正多边形都是轴对称图形,一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心,一个正多边形,如果有偶数条边,那么它既是轴对称图形,又是中心对称图形。

(1)当n=3时,上述两个条件只满足一个条件就可以。

(2)当n>3时,多边形必须同时满足上述条件的每一个条件,才能判定是正多边形。

2. 正多边形和圆的关系定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆,因此可采用作辅助圆的办法,解决一些问题。

3. 边数相同的正多边形是相似多边形,具有以下性质:(1)半径(或边心距)的比等于相似比。

(2)面积的比等于边心距(或半径)的比的平方,即相似比的平方。

4. 由于正n边形的n个顶点n等分它的外接圆,因此画正n边形实际就是等分圆周。

(1)画正n边形的步骤:将一个圆n等分,顺次连接各分点。

(2)用量角器等分圆先用量角器画一个等于360n︒的圆心角,这个角所对的弧就是圆的1n,然后在圆上依次截取这条弧的等弧,就得到圆的n等分点,连结各分点即得此圆的内接正n边形。

5. 对于一些特殊的正n边形,如正四边形、正八边形、正六边形、正三角形、正十二边形还可以用尺规作图。

6. 正n边形的每个内角都等于()2180nn︒-,每个外角为360n︒,等于中心角。

【典型例题】例1. 若一边长为40cm的等边三角形硬纸板刚好能不受损地从用铁丝围成的圆形铁圈中穿过,则铁圈直径的最小值为 cm.(铁丝粗细忽略不计)【答案】【解析】在直角△ABD 中,AB=40cm ,∠BAD=30°,则AD=AB •cos30°=40例2. 如图,正六边形内接于圆O ,圆O 的半径为10,则图中阴影部分的面积为【答案】100π【解析】过点O 作OC ⊥AB 于C ,连接OA 、OB ,∵OA=OB=AB=10,AOB S 6S =△正六边形=6×12O S S S =-⊙阴影正六边形 =100π例3. 如图,在正五边形ABCDE 中,连接AC 、AD ,则∠CAD 的度数是 度.【答案】36°【解析】根据正五边形的性质,△ABC ≌△AED ,∴∠CAB=∠DAE=12(180°-108°)=36°,∴∠CAD=108°-36°-36°=36°.【误区警示】易错点1:正方形的边长1. 将一个边长为1的正八边形补成如图所示的正方形,这个正方形的边长等于 .(结果保留根号)【答案】【解析】∵△BDE 是等腰直角三角形,BE=1.∴BD=BE •2=2.∴正方形的边长等于易错点2:内接正方形的面积2. 如图,△ABC 为⊙O 的内接三角形,AB=1,∠C=30°,则⊙O 的内接正方形的面积为( )A .2B .4C .8D .16【答案】A【解析】连接BO 并延长交圆于点E ,连接AE ,根据三角函数可求得BE 的长;再根据圆内接正方形的性质求得其边长,从而可得到其面积.【综合提升】针对训练1. 如图,小红做了一个实验,将正六边形ABCDEF 绕点F 顺时针旋转后到达A B C D E F ''''''的位置,所转过的度数是( )A .60°B .72°C .108°D .120°2. 判断图中正六边形ABCDEF 与正三角形FCG 的面积比为何( )A .2:1B .4:3C .3:1D .3:23. 如图,有一圆内接正八边形ABCDEFGH ,若△ADE 的面积为10,则正八边形ABCDEFGH 的面积为何( )A .40B .50C .60D .801.【答案】A【解析】由六边形ABCDEF 是正六边形,即可求得∠AFE 的度数,又由邻补角的定义,求得∠E FE '的度数,由将正六边形ABCDEF 绕点F 顺时针旋转后到达A B C D E F ''''''的位置,可得∠EFE '是旋转角,继而求得答案.2.【答案】D【解析】如图:作EH ∥CG 交CF 于H ,连接DH ,∴GED DEG FCG ABCDEF S 4S S 6S ==△△正三角形正六边形∴正六边形ABCDEF 与正三角形FCG 的面积的比为:3:23.【答案】A【解析】过C 作CL ⊥AD 于L ,连接HE ,设正八边形的边长为a ,AD=h ;先根据△ADE 的面积求出矩形ADEH 的面积,再根据正多边形内角和定理求出各内角的度数,判断出△CDL 的形状,求出边长;进一步可求出梯形ABCD 的面积,根据ABCDEFGH ABCD ABCD ADEH S S S S =++正八边形梯形梯形矩形即可解答.课外拓展解析几何的产生十六世纪以后,由于生产和科学技术的发展,天文、力学、航海等方面都对几何学提出了新的需要。

数学知识点秋人教版数学九上《24.3 正多边形和圆》学案(1)-总结

数学知识点秋人教版数学九上《24.3 正多边形和圆》学案(1)-总结

24.3 正多边形和圆(1)学习目标:1.了解正多边形和圆的关系。

2.了解正多边形的中心、半径、边心距、中心角等概念。

3.能运用正多边形的知识解决圆的有关计算问题。

重点:1. 探索正多边形与圆的关系2.运用正多边形的半径、中心角、弦心距、•边长之间的关系进行计算.难点:探索正多边形与圆的关系。

学习过程:一、知识频道忆一忆(知识回顾)请同学们思考下面两个问题.1、什么叫正多边形?举出两三个正多边形的实例。

2、正多边形是轴对称图形吗?若是,其对称轴有几条?是中心对称图形吗?若是对称中心是哪一点?归纳:1、正多边形的概念中,强调两个条件:①相等,②相等。

2、正多边形是对称图形;当时,•正多边形也是对称图形,对称轴是对称中心是 .做一做(1)将一个圆分成五等份,依次连接各分点得到一个五边形,这个五边形是正五边形吗?如果是请你证明这个结论。

(2)如果将一个圆分成n等份,依次连接各分点得到一个n边形,这个n边形一定是正n边形吗?总一总:正多边形的有关概念(1)中心:一个正多边形的叫做正多边形的中心.(2)半径:正多边形叫做正多边形的半径.(3)中心角:正多边形叫做正多边形的中心角.(4)边心距:到的距离叫做正多边形的边心距.正多边形和圆的关系(5):只要把一个圆分成相等的一些弧,就可以作出这个圆的,这个圆就是这个正多边形的(6)正多边形都有个外接圆,反之,圆有个内接正多边形.正多边形的计算:(7)正n边形的半径和边心距把正n边形分成个全等的直角三角形由正多边形和圆的关系可知,正n边形的中心角为度;它的每个内角是度;每个外角是度。

二方法频道1.正多边形和圆的关系:例1.已知五边形ABCDE内接于⊙O,∠AOB=∠BOC=COD=∠DOE=72°.求证:五边形ABCDE是正五边形。

OBC DEA分析:要证明某多边形是正五边形,必须从两方面进行证明:1.各角,2.各边,而证明角相等和边相等又往往借助于。

九年级数学专题18 正多边形与圆(知识点串讲)(解析版)

九年级数学专题18 正多边形与圆(知识点串讲)(解析版)

专题18 正多边形与圆【重点突破】知识点一正多边形和圆正多边形概念:各条边相等,并且各个内角也都相等的多边形叫做正多边形.正多边形的相关概念:➢正多边形的中心:正多边形的外接圆的圆心叫做这个正多边形的中心.➢正多边形的半径:正多边形外接圆的半径叫做正多边形的半径.➢正多边形的中心角:正多边形每一边所对的圆心角叫做正多边形的中心角.➢正多边形的边心距:中心到正多边形的一边的距离叫做正多边形的边心距.半径、边心距,边长之间的关系:画圆内接正多边形方法(仅保留作图痕迹):1)量角器(作法操作复杂,但作图较准确)2)量角器+圆规(作法操作简单,但作图受取值影响误差较大)3)圆规+直尺(适合做特殊正多边形,例如正四边形、正八边形、正十二边形…..)【考查题型】考查题型一求正多边形的中心角典例1.(2019·南京市期末)若一个正多边形的边长与半径相等,则这个正多边形的中心角是()A.45°B.60°C.72°D.90°【答案】B【提示】利用正多边形的边长与半径相等得到正多边形为正六边形,然后根据正多边形的中心角定义求解.【详解】解:因为正多边形的边长与半径相等,所以正多边形为正六边形,因此这个正多边形的中心角为60°.故选B.【名师点拨】本题主要考查的是正多边形的中心角的概念,正确的理解正多边形的边长与半径相等得到正多边形为正六边形是解决问题的关键.变式1-1.(2020·淮安市期末)如图,正六边形ABCDEF内接于圆O,圆O半径为2,则六边形的边心距OM 的长为()A.2 B.3C.4 D3【答案】D【提示】连接OB、OC,证明△OBC是等边三角形,得出3=OM OB即可求解.【详解】解:连接OB、OC,如图所示:则∠BOC=60°,∵OB=OC,∴△OBC是等边三角形,∴BC=OB=2,∵OM⊥BC,∴△OBM为30°、60°、90°的直角三角形,∴333 OM故选:D.【名师点拨】本题考查了正多边形和圆、正六边形的性质、垂径定理、勾股定理、等边三角形的判定与性质;熟练掌握正六边形的性质,证明三角形是等边三角形和运用垂径定理求出BM是解决问题的关键.变式1-2.(2019·宿迁市期末)正六边形的周长为6,则它的面积为()A.93B.332C3D.33【答案】B【提示】首先根据题意画出图形,即可得△OBC是等边三角形,又由正六边形ABCDEF的周长为6,即可求得BC 的长,继而求得△OBC的面积,则可求得该六边形的面积.【详解】解:如图,连接OB,OC,过O作OM⊥BC于M,∴∠BOC=16×360°=60°, ∵OB=OC ,∴△OBC 是等边三角形,∵正六边形ABCDEF 的周长为6, ∴BC=6÷6=1, ∴OB=BC=1, ∴BM=12BC=12, ∴2222131()22OB BM -=-=, ∴S △OBC =12×BC×OM=1331224⨯⨯= , 3336=. 故选:B . 【名师点拨】此题考查了圆的内接六边形的性质与等边三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.变式1-3.(2020·东台市期末)在一块半径为2cm 的圆形钢板中裁出一个最大的等边三角形,此等边三角形的边长( ) A .1cm B 3cm C .2cm D .3cm【答案】D 【提示】画出图形,作OC AB ⊥于点C ,利用垂径定理和等边三角形的性质求出AC 的长即可得出AB 的长. 【详解】解:依题意得3603120AOB ∠=︒÷=︒, 连接OA ,OB ,作OC AB ⊥于点C , ∵OA OB =,∴2AB AC =,60AOC ∠=︒, ∴sin 603cm AC OA =⋅︒=, ∴223cm AB AC ==. 故选:D .【名师点拨】本题考查了圆的内接多边形,和垂径定理的使用,弄清题意准确计算是关键.变式1-4.(2019·宿迁市期中)如图,已知正六边形ABCDEF ,则∠ADF =_____度.【答案】30 【提示】找到AD 的中点O ,连接OF ,由多边形是正六边形可求出∠AOF 的度数,再根据圆周角定理即可求出∠ADF 的度数. 【详解】解:由题意知:AD 是正六边形的外接圆的直径, 找到AD 的中点O ,连接OF , ∵六边形ABCDEF 是正六边形,∴∠AOF =3606︒=60°, ∴∠ADF =12∠AOF =12×60°=30°.故答案为:30.【名师点拨】此题考查的是圆与正六边形,掌握圆的内接正六边形的性质和同弧所对的圆周角是圆心角的一半是解决此题的关键.变式1-5 (2019·房县期末)若用αn表示正n边形的中心角,则边长为4的正十二边形的中心角是____.【答案】30º【提示】根据正多边形的中心角的定义,可得正十二边形的中心角是:360°÷12=30°.【详解】正十二边形的中心角是:360°÷12=30°.故答案为:30º.【名师点拨】此题考查了正多边形的中心角.此题比较简单,注意准确掌握定义是关键.考查题型二已知正多边形的中心角求边数典例2.(2018·东台市期末)如果一个正多边形的中心角为72,那么这个正多边形的边数是().A.4B.5C.6D.7【答案】B【解析】÷=.试题提示:根据正多边形的中心角与边数的关系,其边数为360725变式2-1.(2020·宿豫区期末)如图,AC是⊙O的内接正四边形的一边,点B在弧AC上,且BC是⊙O的内接正六边形的一边.若AB是⊙O的内接正n边形的一边,则n的值为()A.6 B.8 C.10 D.12【答案】D【提示】连接AO、BO、CO,根据中心角度数=360°÷边数n,分别计算出∠AOC、∠BOC的度数,根据角的和差则有∠AOB=30°,根据边数n=360°÷中心角度数即可求解.【详解】连接AO、BO、CO,∵AC是⊙O内接正四边形的一边,∴∠AOC=360°÷4=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【名师点拨】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.变式2-2.(2019·赣榆区期中)如图,AC是⊙O的内接正六边形的一边,点B在弧AC上,且BC是⊙O的内接正十边形的一边,若AB是⊙O的内接正n边形的一边,则n=____ .【答案】15.【提示】连接OB,先求得∠AOB的度数,然后利用360°除以∠AOB度数,根据所得的结果进行提示即可得. 【详解】连接OB,∵AC是⊙O的内接正六边形的一边,∴∠AOC=360°÷6=60°,∵BC是⊙O的内接正十边形的一边,∴∠BOC=360°÷10=36°,∴∠AOB=60°-36°=24°,即360°÷n=24°,∴n=15,故答案为:15.【名师点拨】本题考查了正多边形和圆,中心角等知识,熟练掌握相关知识是解题的关键.注意把圆周等分,然后顺次连接各个分点就会得到正多边形.考查题型三正多边形和圆典例3.(2020·浔阳区期末)如图,螺母的一个面的外沿可以看作是正六边形,这个正六边形ABCDEF的半径是23cm,则这个正六边形的周长是()A.12 B.63C.36 D.123【答案】D【提示】由正六边形的性质证出△AOB是等边三角形,由等边三角形的性质得出AB=OA,即可得出答案【详解】设正六边形的中心为O,连接AO,BO,如图所示:∵O是正六边形ABCDEF的中心,∴AB=BC=CD=DE=EF=FA,∠AOB=60°,AO=BO=23cm,∴△AOB是等边三角形,∴AB=OA=23cm,∴正六边形ABCDEF的周长=6AB=123cm.故选D【名师点拨】此题主要考查了正多边形和圆、等边三角形的判定与性质;根据题意得出△AOB是等边三角形是解题关键. 变式3-1.(2018·射阳县期末)正多边形的中心角与该正多边形一个内角的关系是()A.互余B.互补C.互余或互补D.不能确定【答案】B【解析】设正多边形的边数为n,则正多边形的中心角为360n︒,正多边形的一个外角等于360n︒,所以正多边形的中心角等于正多边形的一个外角,而正多边形的一个外角与该正多边形相邻的一个内角的互补,所以正多边形的中心角与该正多边形一个内角互补.故选B.变式3-2.(2018·合肥市期末)如图,已知⊙O 是正方形ABCD 的外接圆,点E 是弧AD 上任意一点,则∠BEC 的度数为()A.30°B.45°C.60°D.90°【答案】B【提示】首先连接OB,OC,由O是正方形ABCD的外接圆,即可求得∠BOC的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠BEC的度数.【详解】连接OB,OC,∵⊙O是正方形ABCD的外接圆,∴∠BOC=90°,∴∠BEC=12∠BOC=45°.故选B.变式3-3(2020·泉州市期中)如图,若干相同正五边形排成环状.图中已经排好前3个五边形,还需()个五边形完成这一圆环.A.6 B.7 C.8 D.9【答案】B【提示】延长正五边形的相邻两边交于圆心,求得该圆心角的度数后,用360°除以该圆心角的度数即可得到正五边形的个数,减去3后即可得到本题答案.【详解】解:延长正五边形的相邻两边,交于圆心,∵正五边形的外角等于360°÷5=72°,∴延长正五边形的相邻两边围成的角的度数为:180°﹣72°﹣72°=36°,∴360°÷36°=10,∴排成圆环需要10个正五边形,故排成圆环还需7个五边形.故选:B.【名师点拨】本题考查了正五边形与圆的有关运算,属于层次较低的题目,解题的关键是正确地构造圆心角.变式3-4.(2020无锡市期中)如图,边长为a的正六边形内有两个三角形(数据如图),则SS阴影空白的值为()A.3 B.4 C.5 D.6 【答案】C【详解】解:因为是正六边形,所以△OAB是边长为a的等边三角形,即两个空白三角形面积为S△OAB,即SS阴影空白=5.故选C.【名师点拨】本题考查正多边形和圆.变式3-5.(2019·临川市期中)如图,小明随意向水平放置的大正方形内部区域抛一个小豆子,则小豆子落在小正方形内部及边界(阴影)区域的概率为()A.34B.13C.12D.14【答案】C【提示】算出阴影部分的面积及大正方形的面积,这个比值就是所求的概率.【详解】解:设小正方形的边长为1,则其面积为1.圆的直径正好是大正方形边长,∴根据勾股定理,其小正方形对角线为2,即圆的直径为2,∴大正方形的边长为2,则大正方形的面积为222⨯=,则小球停在小正方形内部(阴影)区域的概率为12.故选:C.【名师点拨】概率=相应的面积与总面积之比,本题实质是确定圆的内接正方形和外切正方形的边长比.设较小吧边长为单位1是在选择填空题中求比的常见方法.变式3-6.(2020·吴江区期末)若正方形的外接圆半径为2,则其内切圆半径为()A.22B.2C.22D.1【答案】B【解析】试题解析:如图所示,连接OA、OE,∵AB 是小圆的切线,∴OE ⊥AB ,∵四边形ABCD 是正方形,∴AE =OE ,∴△AOE 是等腰直角三角形, 2 2.2OE OA ∴== 故选B. 变式3-7.(2019·徐州市期末)已知圆内接正六边形的边长是1,则该圆的内接正三角形的面积为( ) A .43 B .23 C .33 D .322【答案】C【提示】根据圆内接正六边形的边长是1可得出圆的半径为1,利用勾股定理可求出该内接正三角形的边长为3,高为32,从而可得出面积. 【详解】解:由题意可得出圆的半径为1,∵△ABC 为正三角形,AO=1,AD BC ⊥,BD=CD ,AO=BO ,∴1DO 2=,32AD =, ∴223BD 2OB OD =-=, ∴BC 3=∴13333224ABC S =⨯=. 故选:C .【名师点拨】本题考查的知识点是正多边形的性质以及解直角三角形,根据圆内接正多边形的边长求出圆的半径是解此题的关键.考查题型四利用尺规作正多边形典例4.(2019·扬州市期中)尺规作图:如图,AD为⊙O的直径。

正多边形和圆知识点归纳

正多边形和圆知识点归纳

正多边形和圆知识点归纳1. 正多边形①定义:各边相等,各角也相等的多边形,叫做正多边形;②定义中两个条件缺一不可.我们知道三边相等的三角形是正三角形,三个角相等的三角形也是正三角形.但菱形四条边相等,却不是正四边形.矩形四角都相等,也不是正四边形.所以正多边形的定义中各边相等和各角相等两个条件缺一不可.2. 正多边形与圆的关系把一个圆分成相等的一些弧,就可以得到这个圆的内接正多边形,这个圆是这个多边形的外接圆.3、正多边形中各元素间的关系一个正多边形的外接圆的圆心叫做这个正多边形的中心.外接圆的半径叫做正多边形的半径.正多边形每一边所对的圆心角叫做正多边形的中心角.中心到正多边形的一边的距离叫做正多边形的边心距.如图,设正多边形的边长为a n,半径为R,边心距为r n,中心角为αn,则它们有如下关系:;正n边形的中心角;正n边形的周长P n=na n;正n边形的面积.4、正多边形有关计算在解决有关正多边形计算时,通常运用转化的思想方法,将正多边形的有关计算化为一个边长分别是正多边形的半径、正多边形边长的一半,正多边形的边心距的直角三角形来解决.5、正多边形的对称性①多边形都是轴对称图形,当边数为偶数时,它的对称轴是每一边的垂直平分线和正多边形的边心距所在的直线,当边数为奇数时,它的对称轴是边心距所在的直线;②只有正偶边形才是中心对称图形;③正n边形绕着它的中心每旋转就与它本身重合.典例讲解例1、填空题1. 如图,小颖同学在手工制作中,把一个边长为12cm的等边三角形纸片贴到一个圆形的纸片上,若三角形的三个顶点恰好都在这个圆上,则该圆的半径为()A. B. C. D.答案:D2. 正六边形两条平行边间的距离是1,则它的边长为()A. B. C. D.答案:C3. 已知正三角形的边长为2,则它的内切圆和外接圆组成的圆环面积为()A. B. C. D.答案:B4. 边长为a的正三角形的边心距、半径和高之比为()A.1∶2∶3B.C. D.答案:A例2、如图,圆内接正六边形ABCDEF中,对角线BD、EC相交于点G,求∠BGC的度数.解:正六边形ABCDEF中DC=DE,,∴,同理可证:∠2=,∴∠BGC=∠1+∠2=.例3、如图,已知正三角形ABC外接圆的半径为R,求正三角形ABC的边长、边心距、周长和面积.思路点拨:过中心向正多边形的边作垂线得到Rt△OCH,在Rt△OCH中包含了中心角的一半、边心距、半径、边长的一半等基本元素.解:连接OB、OC,作OH⊥BC于H.例4、如图,正方形的边长为4cm,剪去四个角后成为一个正八边形,求这个正八边形的边长和面积.解:由题意知PD=PE=FQ设PD=PE=FQ=xcm,则EF=ED=(4-2x)cm,∵∠P=90°,由勾股定理ED=,∴,∴正八边形的边长为4-2x=cm,面积为.。

圆知识点汇总

圆知识点汇总

圆知识点汇总(一)一、圆、垂径定理1、圆的定义及表示法(1)圆的定义1:在一个平面内,线段绕它固定的一个端点旋转一周,另一个端点A随之旋转所成的图形叫做圆。

固定的端点O叫做圆心。

线段OA叫做半径(如图1-1)。

(2)圆的表示方法:以点O为圆心的圆,记作“⊙O”,读作“圆O”。

(3)圆的定义2:圆心为O,半径为r的圆可以看成是所有到定点O的距离等于定长r的点组成的图形。

(圆是一条闭合曲线,不包含中间的部分)确定一个圆的要素是圆心和半径。

2、与圆有关的概念(1)弦:连接圆上任意两点的线段叫做弦。

(2)直径:经过圆心的弦是直径。

注意:圆中有无数条弦,其中直径是圆中最长的弦。

(3)圆弧:圆上任意两点间的部分叫做圆弧,简称弧。

(4)半圆弧:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧叫做半圆。

(画图判断带弦的不叫弧,叫弓形)(5)优弧:大于半圆的弧叫做优弧。

优弧CAB,记作“⌒CAB”,如图1-2。

(6)劣弧:小于半圆的弧叫做劣弧。

劣弧表示时只需两个字母。

(7)弓形:由弦及其所对的弧组成的图形叫做弓形。

(8)同心圆:圆心相同,半径不相等的两个圆叫做同心圆。

(9)等圆:能够重合的两个圆叫做等圆。

(10)等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。

判断:长度相等的弧叫做等弧。

(×)3、圆的轴对称性圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

注意:(1)圆的对称轴有无数条。

(2)错误说法:圆的对称轴是直径。

因为直径是弦,弦是线段,所以直径是线段,而对称轴是直线。

应该说“圆的对称轴是直径所在的直线”。

4、垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

5、垂径定理的推论(1)平分弦(不是直径)的直径垂直于弦并且平分弦所对的两条弧。

(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

(3)平分弦所对的一条弧的直径,平分弦,并且平分弦所对的另一条弧。

(4)在同圆中,圆的两条平行弦所夹的弧相等。

2019年九年级数学上册第二十四章圆知识点总结新版新人教版

2019年九年级数学上册第二十四章圆知识点总结新版新人教版

第二十四章 圆24.1.1 圆知识点一 圆的定义圆的定义:第一种:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 所形成的图形叫作圆。

固定的端点O 叫作圆心,线段OA 叫作半径。

第二种:圆心为O ,半径为r 的圆是所有到定点O 的距离等于定长r 的点的集合。

比较圆的两种定义可知:第一种定义是圆的形成进行描述的,第二种是运用集合的观点下的定义,但是都说明确定了定点与定长,也就确定了圆。

知识点二 圆的相关概念(1) 弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫作直径。

(2) 弧:圆上任意两点间的部分叫做圆弧,简称弧。

圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。

(3) 等圆:等够重合的两个圆叫做等圆。

(4) 等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。

弦是线段,弧是曲线,判断等弧首要的条件是在同圆或等圆中,只有在同圆或等圆中完全重合的弧才是等弧,而不是长度相等的弧。

24.1.2 垂直于弦的直径知识点一 圆的对称性圆是轴对称图形,任何一条直径所在直线都是它的对称轴。

知识点二 垂径定理(1)垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。

如图所示,直径为MD ,AB 是弦, 且CD ⊥AB ,垂径定理的直径垂直弧如上图所示,直径MD 与非直径弦AB 相交于点C , CD ⊥ABAC=BC AM=BMAD=BD 注意:因为圆的两条直径必须互相平分,所以垂径定理的推论中,被平分的弦必须不是直径,否则结论不成立。

24.1.3 弧、弦、圆心角知识点 弦、弧、圆心角的关系(1) 弦、弧、圆心角之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

(2) 在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余的各组量也相等。

(3) 注意不能忽略同圆或等圆这个前提条件,如果丢掉这个条件,即使圆心角相等,所对的弧、弦也不一定相等,比如两个同心圆中,两个圆心角相同,但此时弧、C ⌒⌒ ⌒ ⌒弦不一定相等。

初中数学 圆 知识点 考点 思维导图 圆的概念与性质 与圆有关的位置关系 圆有关的计算 正多边形与圆

初中数学 圆 知识点 考点 思维导图 圆的概念与性质 与圆有关的位置关系 圆有关的计算 正多边形与圆

1、与圆的位置关系可从形和数两方面来判断,思维单一容易致误. 2、切线长定理不能与三角函数结合致误. 3、两圆相交时,半径与圆心距的关系考虑不全.
点在圆内台d <r 点在圆上台 d=r
1.有切线,作过切点的半径.
2.有半径,过端点作圆的切线.
常作的
辅助线
点在圆外 与d>r
3.有切线长,作以切线、过切点的半径、圆心
2.在同圆或等圆中,同弧或等弧所对的圆周角相等;
相等的圆周角所对的弧相等.
定义 顶点都在同一圆上的多边形.
顶点都在同一圆上的三角形称圆内接三角形,
圆内接三角形 定义 圆心称三角形外心.
2.直径所对圆周角的特征
或三角形外接圆 性质 外心到各顶点距离相等,是三角形各边的中垂线的交点.
(1)作辅助线,构造"直径所对的圆周角是直角"
初初中中数数学学 圆 思思维维导导图图
考点 知识点 快速理解记忆
超超实实用用一一看看就就明明白白 极易记忆
第一节 圆的概念与性质
第二节 与与圆圆有关的位置关系
第三节 与圆有关的计算 第四节节 正多边形与圆
初中数学 第七章 圆 第一节 圆的概念与性质
在平面内,线段OA绕它固定的一个端点O旋转一周,另
(1)判定方法
1定义法∶与圆只有一个交点的直线
②数量法∶与圆心的距离d=/的直线.
(2)相切判定
③判定定理.
有明确交点,连半径,证直线与半径垂直. (3)证明直
无明确的交点,过圆心作垂线段,证其等于半径.线与圆相切
已知直线满足∶①过圆心;②过切点;
③垂直于切线.可知二推出另一个.
(4)切线性 质的拓展
线交点组成的正多边形叫圆外切正多边形.
性质 正多边形都有一外接圆,反之,同一个圆有无数多个内接正多边形
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正多边形和圆知识点-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII
正多边形和圆
知识要点
1、正多边形
(1)、正多边形的定义
各边相等,各角也相等的多边形叫做正多边形。

如:正六边形,表示六条边都相等,六个角也相等。

(2)、正多边形和圆的关系
只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。

(3)、正多边形的中心
正多边形的外接圆的圆心叫做这个正多边形的中心。

(4)、正多边形的半径
正多边形的外接圆的半径叫做这个正多边形的半径。

(5)、正多边形的边心距
正多边形的中心到正多边形一边的距离叫做这个正多边形的边心距。

(6)、中心角
正多边形的每一边所对的外接圆的圆心角叫做这个正多边形的中心角。

2、正多边形的对称性
(1)、正多边形的轴对称性
正多边形都是轴对称图形。

一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心。

(2)、正多边形的中心对称性
边数为偶数的正多边形是中心对称图形,它的对称中心是正多边形的中心。

(3)、正多边形的画法
先用量角器或尺规等分圆,再做正多边形。

2。

相关文档
最新文档