5.6三角函数的图像和性质
正弦函数和余弦函数的图像与性质
例2.求下列函数的最大值与最小值,及取到最值 时的自变量 x 的值. (2) y 3sin x cos x (1) y sin(2 x )
4 解:(1)视为 y sin u , u 2 x 4
8 3 当 u 2k ,即 x k , k Z 时, 2 8 ymin 1 2
二、正弦函数与余弦函数的周期
对于任意 x R 都有
sin( x 2k ) sin x, k Z cos( x 2k ) cos x, k Z
正弦函数是周期函数, k , k Z , k 0 都是它的 2
周期,最小正周期是 2 余弦函数是周期函数, k , k Z , k 0 都是它的 2 周期,最小正周期是 2
注:一般三角函数的周期都是指最小正周期
1 (1) f ( x) cos 2 x (2) f ( x) sin( x ) 2 6 解: (1)设 f ( x)的周期为 T f ( x T ) f ( x)
即 cos[2( x T )] cos 2 x 即 cos(2 x 2T ) cos 2 x 即 对任意 u 都成立:cos(u 2T ) cos u 因此 2T 2 ,从而 T 解毕
第六章 三角函数
5.6.4 正弦定理、余弦定理和解斜三角形
6.1.1 正弦函数和余弦函数的图像与性质
一、正弦函数和余弦函数的概念 实数集与角的集合可以建立一一对应的关系, 每一个确定的角都对应唯一的正弦(余弦)值. 因此,任意给定一个实数 x ,有唯一确定的值
sin x(cos x) 与之对应.
函数 y sin x 叫做正弦函数 函数 y cos x 叫做余弦函数 正弦函数和余弦函数的定义域是 R 正弦函数和余弦函数的值域是[1,1]
(完整word版)三角函数公式和图像大全,推荐文档
初等函数的图形幂函数的图形指数函数的图形各三角函数值在各象限的符号sinα·cscα cosα·secα tanα·cotα三角函数的性质反三角函数的图形反三角函数的性质三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinBtan(A+B) =tanAtanB -1tanBtanA +tan(A-B) =tanAtanB 1tanBtanA +-cot(A+B) =cotA cotB 1-cotAcotB +cot(A-B) =cotAcotB 1cotAcotB -+倍角公式tan2A =Atan 12tanA2- Sin2A=2SinA•CosACos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A三倍角公式sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosAtan3a = tana ·tan(3π+a)·tan(3π-a)sin(2A )=2cos 1A - cos(2A )=2cos 1A + tan(2A )=A A cos 1cos 1+- cot(2A )=AA cos 1cos 1-+ tan(2A )=A A sin cos 1-=AA cos 1sin + 和差化积sina+sinb=2sin2b a +cos 2ba - sina-sinb=2cos 2b a +sin 2ba -cosa+cosb = 2cos 2b a +cos 2ba -cosa-cosb = -2sin 2b a +sin 2ba -tana+tanb=ba b a cos cos )sin(+积化和差sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)]sinacosb = 21[sin(a+b)+sin(a-b)]cosasinb = 21[sin(a+b)-sin(a-b)]sin(-a) = -sina cos(-a) = cosasin(2π-a) = cosacos(2π-a) = sinasin(2π+a) = cosacos(2π+a) = -sinasin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosatgA=tanA =aacos sin万能公式sina=2)2(tan 12tan2aa + cosa=22)2(tan 1)2(tan 1aa+- tana=2)2(tan 12tan2aa -a•sina+b•cosa=)b (a 22+×sin(a+c) [其中tanc=a b ] a•sin(a)-b•cos(a) =)b (a 22+×cos(a-c) [其中tan(c)=b a ] 1+sin(a) =(sin 2a +cos 2a )2 1-sin(a) = (sin 2a -cos 2a )2其他非重点三角函数 csc(a) =asin 1 sec(a) =a cos 1 双曲函数 sinh(a)=2e -e -aa cosh(a)=2e e -aa + tg h(a)=)cosh()sinh(a a 公式一设α为任意角,终边相同的角的同一三角函数的值相等:sin (2kπ+α)= sinαcos (2kπ+α)= cosαtan (2kπ+α)= tanαcot (2kπ+α)= cotα设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα公式三任意角α与-α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα公式五利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα2π±α及23π±α与α的三角函数值之间的关系: sin (2π+α)= cosα cos (2π+α)= -sinα tan (2π+α)= -cotα cot (2π+α)= -tanα sin (2π-α)= cosα cos (2π-α)= sinα tan (2π-α)= cotα cot (2π-α)= tanα sin (23π+α)= -cosα cos (23π+α)= sinα tan (23π+α)= -cotα cot (23π+α)= -tanα sin (23π-α)= -cosα cos (23π-α)= -sinα tan (23π-α)= cotα cot (23π-α)= tanα (以上k ∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用 A•sin(ωt+θ)+ B•sin(ωt+φ) =)cos(222ϕθ⋅++AB B A ×sin )cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A三角函数公式证明(全部)公式表达式乘法与因式分解a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) 三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a根与系数的关系X1+X2=-b/aX1*X2=c/a注:韦达定理判别式b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac<0 注:方程有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角正切定理[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*ra是圆心角的弧度数r >0扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h圆柱体V=pi*r2h。
职高数学5.6三角函数的图像和性质 PPT课件
3.已知 sin 3 a , 求 a 的取值范围.
4.求使函数 y sin 4x 取得最大值的 x 的集合,并指
出最大值是多少?
计算器
动脑思考 探索新知
图像关于y轴对称
在 ((2k 1)π, 2kπ) (k Z) 内是增函数
在 (2kπ,(2k 1)π) (k Z) 内是减函数
周期
周期为 2π
三 角 函 数
巩固知识 典型例题
例 5 用“五点法”做出函数 y cosx , x 0,2π 上的图像
x
cos x
y cos x
0
π 2
π
3π 2π
2
1
演示
演示
余弦函数 y cos x, x R 的图像—余弦曲线.
三 角 函 数
动脑思考 探索新知
y
y cos x xR
1
-2π -π o
-1
π
2π 3π 4π x
定义域: 实数集R 值 域: [-1,1] 奇偶性:偶函数
单调性
当 x 2kπ(k Z) 时, ymax 1;
当 x (2k 1)π (k Z) 时, ymin 1
1
函-3π -2π -π
O -1
π
2π 3π 4π x
数
正弦函数是R内的有界函数.
动脑思考 探索新知
y
y sin x, xR
三
1
-3π -2π -π O
-1
π
2π 3π 4π x
角
定义域: 实数集R
函 数
三角函数的概念、图像、性质
三角函数的概念、性质和图象【知识网络】一、角的概念和弧度制:(1)在直角坐标系内讨论角:角的顶点在原点,始边在x 轴的正半轴上,角的终边在第几象限,就说过角是第几象限的角。
若角的终边在坐标轴上,就说这个角不属于任何象限,它叫象限界角。
(2)①与α角终边相同的角的集合(α为第一象限角): },2|{},360|{0Z k k Z k k ∈+=∈+=απββαββ或与α角终边在同一条直线上的角的集合: ;与α角终边关于x 轴对称的角的集合: ;与α角终边关于y 轴对称的角的集合: ;与α角终边关于x y =轴对称的角的集合: ;②一些特殊角集合的表示:终边在坐标轴上角的集合: ;终边在一、三象限的平分线上角的集合: ;终边在二、四象限的平分线上角的集合: ;终边在四个象限的平分线上角的集合: ;任意角的概念弧长公式角度制与 弧度制 同角三角函数的基本关系式诱导 公式计算与化简 证明恒等式任意角的 三角函数三角函数的 图像和性质已知三角函数值求角和角公式倍角公式差角公式应用应用应用应用应用应用应用(3)区间角的表示:①象限角:第一象限角: ;第三象限角: ;第一、三象限角: ;②写出图中所表示的区间角:(4)弧度制:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零;任一已知角α的弧度数的绝对值rl=||α,其中l 为以角α作为圆心角时所对圆弧的长,r 为圆的半径。
(5)弧长公式: ;扇形面积公式: ;二、任意角的三角函数:(1)任意角的三角函数定义:以角α的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系,在角α的终边上任取一个异于原点的点),(y x P ,点P 到原点的距离记为r ,则=αsin ;=αcos ;=αtan ;=αc s c ;=αsec ;=αcot ; 如:角α的终边上一点)3,(a a -,则=+ααsin 2cos 。
(2)在图中画出角α的正弦线、余弦线、正切线;比较)2,0(π∈x ,x sin ,x tan ,x 的大小关系: 。
数学精华课件:三角函数的图象和性质
课堂互动讲练
跟踪训练
5π π π (2)由于区间[- , )的长度为 , 12 12 2 为半个周期. 5π π 又 f(x)在- , 分别取到函数的最 12 12 3 3 3 3 小值 -1,最大值 +1,所以函数 2 2 5π π 3 3 f(x)在区间[-12,12 )上的值域为[ 2 - 3 3 1, 2 +1).
对称性
π 对称轴l: x=kπ+ (k∈Z) 2
对称轴l: x= kπ(k∈Z)
基础知识梳理
正弦函数、余弦函数的对称中心是 正弦函数、余弦函数与x轴的交点,所以 函数y=Asin(ωx+φ)+B的对称中心就是 该函数与x轴的交点,这种说法对吗? 【思考· 提示】 不正确,应是函数y= Asin(ωx+φ)+B与直线y=B的交点.
三基能力强化
2.(2009年高考福建卷改编)函数f(x) =sinxcosx的最小值是________.
1 1 解析:f(x)=sinxcosx=2sin2x≥-2. 1 答案:-2
三基能力强化
3.(2010 年绍兴质检)关于函数 y=1+ cos2x 的图象, 下面说法正确的是________. ①关于 x 轴对称 ②关于原点对称 π π ③关于点( , 0)对称 ④关于直线 x= 对称 4 2
课堂互动讲练
考点二 三角函数的单调性
1.准确记忆三角函数的单调区间是求 复合三角函数单调区间的基础. 2.形如 y=Asin(ωx+φ)(A>0,ω>0)的 函数的单调区间, 基本思路是把 ωx+φ 看作 π π 一 个 整 体 , 由 - 2 + 2kπ≤ωx + φ≤ 2 + π 2kπ(k∈Z)求得函数的增区间, 2+2kπ≤ωx 由 3π +φ≤ 2 +2kπ(k∈Z)求得函数的减区间.
5.6余弦三角函数的图像和性质
-1
0
1
0
-1
②描点
y
y = cosx 的图像
1
连线
O
. π
3
2
2
.2π y = - cosx 的图像
X
-1
2021/6/30
请观察:y = cosx与y = -cosx图像的区别与联系?
5
利用y=cosx 的周期为 2
将 y=cosx 图象向左或向右平移
y=cosx x[0,2]
利用图象平移
则y = cos2x 化为 y = cos u 即当u = 2k 时(k∈z),ymax=1
即 u = 2x = 2k 解之x = k (k∈z)
所以集合{x|x= k , k∈z } 函数y = cos2x取得最大值是1
2021/6/30
9
四、余弦函数的性质
y
y=cosx (xR)
1
x
-3 5 2
5.6 三角函数的图像及性质
2021/6/30
1
5.6.2余弦函数的图像和性质
一、表达式:
1、形如:y = cosx 的函数叫余弦函数.其中x是自变量.
当x是角度制时可取一切角度,当x代表弧度制是可取一切实数,x∈R
二、余弦函数的图像及画法:
1、因为cos(α+2kπ) = cosα, 所以 y = cosx 是周期函数, 且周期是2π。
三、余弦弦函数的性质
y
1
x
-3 5 -2 3
2
2
o - 2
2
3 2
2
5 2
3 7 2
4
-1
1 定义域: ___________
5.6三角函数的图像和性质
【课题】5.6三角函数的图像和性质
【教学目标】
知识目标:
(1) 理解正弦函数的图像和性质;
(2) 理解用“五点法”画正弦函数的简图的方法;
(3) 了解余弦函数的图像和性质.
能力目标:
(1) 认识周期现象,以正弦函数、余弦函数为载体,理解周期函数;
(2) 会用“五点法”作出正弦函数、余弦函数的简图;
(3) 通过对照学习研究,使学生体验类比的方法,从而培养数学思维能力.
【教学重点】
(1)正弦函数的图像及性质;
(2)用“五点法”作出函数y=sin x在[]
0,2π上的简图.
【教学难点】
周期性的理解.
【教学设计】
(1)结合生活实例,认识周期现象,介绍周期函数;
(2)利用诱导公式,认识正弦函数的周期;
(3)利用“描点法”及“周期性”作出正弦函数图像;
(4)观察图像认识有界函数,认识正弦函数的性质;
(5)观察类比得到余弦函数的性质.
【教学备品】
课件,实物投影仪,三角板,常规教具.
【课时安排】
1
2课时.(90分钟)
【教学过程】
2
及
3
,
一般地,设函数y=
,对任意的
.如果这样的M
无界函数.
4。
三角函数的图像和性质
当0<A<1时,图像在y轴方向压缩。
02
周期变换
ω表示周期变换的系数,周期T=2π/|ω|。当ω>1时,周期减小,图像
在x轴方向压缩;当0<ω<1时,周期增大,图像在x轴方向拉伸。
03
相位变换
φ表示相位变换的角度,当φ>0时,图像左移;当φ<0时,图像右移。
正弦型曲线应用举例
振动问题
在物理学中,正弦函数常用来描述简谐振动,如弹簧振子 、单摆等。通过正弦函数的振幅、周期和相位等参数,可 以描述振动的幅度、频率和初始状态。
三角函数的图像和性 质
汇报人:XX 2024-01-28
contents
目录
• 三角函数基本概念 • 正弦函数图像与性质 • 余弦函数图像与性质 • 正切函数图像与性质 • 三角函数复合与变换 • 三角函数在解决实际问题中的应用
01
三角函数基本概念
角度与弧度制
角度制
01
将圆周分为360等份,每份称为1度,用度(°)作为单位来度量
角的大小。
弧度制
02
以弧长等于半径所对应的圆心角为1弧度,用符号rad表示,是
国际通用的角度度量单位。
角度与弧度的换算
03
1° = (π/180)rad,1rad = (180/π)°。
三角函数定义及关系
正弦函数
sinθ = y/r,表示单位圆上任意 一点P(x,y)与x轴正方向形成的 角θ的正弦值。
光学
在光的反射、折射等现象中,三角函数可以 帮助计算入射角、折射角等角度问题。
在工程问题中的应用
1 2
建筑设计
在建筑设计中,三角函数可以帮助计算建筑物的 角度、高度、距离等参数,确保设计的准确性和 安全性。
三角函数图象和性质详细讲解
1 cos( ) sin 2 1 sin( ) cos 2 1 tan( ) cot 2 1 cos( ) sin 2
tan
2 tan 1 tan
2
2
2
sin 15 cos75
2 2 cos cos 2 cos cos 2 2 cos cos 2 sin sin 2 2 6 2,
公式组五 sin(2 x) sin x cos(2 x) cos x tan(2 x) tan x cot(2 x) cot x
(二)角与角之间的互换 公式组一 cos( ) cos cos sin sin
cos( ) cos cos sin sin sin( ) sin cos cos sin sin( ) sin cos cos sin
k , k 1 上为减函
数( k Z )
2
2k ]
上为增函 数 ; 单调性
[ 2k , 2 3 2k ] 2
上为增函数 [2k , 2k 1 ] 上为减函数 (kZ )
上 为 增 函 数 (kZ )
上为减函 数 (k Z )
图象
注意:① y sin x 与 y sin x 的单调性正好相反; y cos x 与 y cos x 的单调性也同样相 反.一般地,若 y f ( x) 在 [a, b] 上递增(减) ,则 y f ( x) 在 [a, b] 上递减(增).
4
sin sin 2 cos
sin
三角函数的图像和性质
4
(π ,0 )对称.
答案 D
典例剖析
题型五 三角函数综合应用
1、
典例剖析
题型五 三角函数综合应用
2、
函 函2解数数PA9法,,s24in其求A二例c:图ox1s.c已和象oxs知关sin函的于0数值点,A0.fsM,(ixnA()c3=4oxssin, (00x)x对0c+o称s)s(,in且>00在, 00区≤间k≤[0k),2是2k]kR上上z是z的单偶调
f f000sAin sin01kkzk k z
0,
2
,
函数的最大值为1,最小值为
-5,求 a 和 b 的值.
解 0 x , 2x 2 ,
23
33
3 sin(2x ) 1,
0,
则
2a
b
1
,
解得
a
12
6
3
;
7分
3a b 5
b 23 12 3
若a
0, 则
2a
b
5
,
解得
a
12
6
3 .
3a b 1
D.奇函数且它的图象关于点(π,0)对称
解析 据题意,当 x π 时,函数取得最小值,由
4 三角函数的图象与性质可知其图象必关于直线
x
π
对称,
4
故必有 f (0) f (π) a b,
2 故原函数f(x)=asin
x+acos
x=
2a sin( x π),
从而f (3π x)
4 2a sin x,易知其为奇函数且关于点
f(x)= Acos(x+) 为奇函数 f(x)= Acos(x+) 为偶函数
数学精华课件:三角函数的图象和性质
正切函数的图象
正切函数是奇函数,其图像关于原点对 称。
正切函数的图像是一个连续的曲线,它 在每一个开区间$(-frac{pi}{2}+kpi, frac{pi}{2}+kpi)$内是单调递增的。
正切函数的定义域为除去所有形如 $kpi+frac{pi}{2}$的点,其中$k$为整 数。正切函数没有最大值和最小值,因
06
总结与回顾
重点回顾
三角函数的基本概念
三角函数是描述三角形边长和角度之间关系的数学函数,包括正 弦、余弦、正切等。
三角函数的图象
三角函数的图象是周期性的,呈现波浪形状,具有对称性。
三角函数的性质
三角函数具有一些基本性质,如奇偶性、单调性、周期性等。
学习反馈
01
02
03
学生掌握情况
通过课堂练习和课后作业, 了解学生对三角函数图象 和性质的掌握情况。
学习目标
掌握三角函数的图象 绘制方法。
能够运用三角函数解 决实际问题,如物理、 工程等领域的问题。
理解三角函数的性质, 如周期性、奇偶性、 振幅和相位等。
02
三角函数的基本概念
正弦函数
定义
正弦函数是三角函数的 一种,定义为y=sinx,
x∈R。
周期性
正弦函数具有周期性, 其周期为2π。
奇偶性
正弦函数是奇函数,因 为f(-x)=sin(-x)=sinx=-f(x)。
布。
在工程学中的应用
01
三角函数在工程学中广 泛应用于信号处理、控 制系统等领域。
02
在信号处理中,三角函 数可以用于实现滤波、 调制和解调等操作。
03
在控制系统中,三角函 数可以用于实现PID控制、 模糊控制等算法。
【课件】第三课时+三角函数的图象变换及性质应用课件高一上学期数学人教A版(2019)必修第一册
6
)
再把正弦曲线向右平移1π8
个单位长度,得到函
O
y=sin3x
数 y=sin3(x-1π8)=sin3x-π6的图象;
最后把曲线上各点的纵坐标变为原来的 2 倍, 这时的曲线就是函数 y=2 sin3x-π6的图象,如图 5.6-7 所示.
巩固与练习 一、三角函数图象五点作图及的平移变换
பைடு நூலகம்
下面用“五点法”画函数 y=2 sin3x-π6在一个周期(T=23π )内的图象,
步骤1
步骤2
步骤3
步骤4
y
y=sinx
O
y y=sin(ωx)
x
O
y y=sin(ωx+φ)
x
x
O
y
y=Asin(ωx+φ)
O
x
φ>0 时所有点向左平移ωφ个单位 φ<0 时所有点向右平移ωφ个单位
复习引入 你能结合筒车运动的例子解释函数 y=2sin3x+π6+1.5 的实际意义吗?
筒车 筒车角 转前初 轴心距水 半径 速度 始位置 面高度
巩固与练习
分析:摩天轮上的座舱运动可以近似地看作是质点在圆周上做匀速旋 转,在旋转过程中,游客距离地面的高度 H 呈现周而复始的变化,因 此可以考虑用三角函数来刻画, 先观察运动状态动画 由右图不难看出游客距 离地面的的高度 H 随 时间 t 的变化,是一个 关于时间 t 的三角函数
巩固与练习 解
用函数的三个零点,两个最值点画出函数在一个周期内的图象. 用“五点法”作函数 y=Asin(ωx+φ)图象的步骤 第一步:列表,列出五个关键点; 第二步:在同一坐标系中描出各点; 第三步:用光滑曲线连接这些点,形成图象.
三角函数图象与性质
5、已知下图是函数
y A sin( x ) 的图象
2
1 –1
(1)求 、 的值;
(2)求函数图象的对称轴方程.
y
11 12
O
x
–2 2 0 6 ⑴ y 2sin(2 x ) 6 11 2 6 12
注意:当0<x<1,arcsinx,arccosx表示一个锐角, 而-1<x<0时,arcsinx表示一个锐角的负值,arccosx表示 一个钝角,两者不要混淆。 x>0时arctanx表示一个锐角。 x<0时arctanx表示一个锐角负值。
注意: 在给出三角函数值求角时,需注意反三角表 示的角的范围 对于不满足反三角范围的角,我们利用诱导公 式,对角 k 的整数倍,(整数倍需注意) 练习册:P43 P44 3 5
内容提要
函数图像变换
向上(b>0)或向下(b<0) 移︱b︱单位 向左(φ>0)或向右(φ<0)移︱ φ︱单位 y=f(x)+b图象
y=f(x+φ)图象
y=f(x)图象
点的纵坐标变为原来的A倍 y=Af(x)图象 横坐标不变 点的横坐标变为原来的1/ω倍 y=f(ωx)图象 纵坐标不变
3、求y=Asin(ωx+φ)+K 的解析式的方法
⑷函数的图象可以由函数 y 2 sin 2 x, x R的图象经过怎 样的变换得到。
解:y sin 2 x 2 sin x cos x 3 cos 2 x 1 sin 2 x 2 cos 2 x
1 sin 2 x cos 2 x 1 2 2 sin( 2 x ) 4 ⑶ 当2 x 2k , 即x k (k Z )时, y最大值 2 2 4 2 8 ⑷ y 2 sin 2 x 图象向左平移 8 个单位 y 2 sin( 2 x ) 4 图象向上平移2个单位 y 2 2 sin( 2 x ) 4
三角函数图像与性质
三角函数图像与性质三角函数的图像与性质一、正弦函数和余弦函数的图像:正弦函数y=sinx和余弦函数y=cosx的图像可以用五点法作图。
先取横坐标分别为-2π,-π,0,π,2π的五个点,再用光滑的曲线把这五点连接起来,就得到正弦曲线和余弦曲线在一个周期内的图像。
二、正弦函数y=sinx(x∈R)和余弦函数y=cosx(x∈R)的性质:1.定义域:都是R。
2.值域:1)都是[-1,1]。
2)正弦函数y=sinx,当x=2kπ+3π/2(k∈Z)时,y取最小值-1;当x=2kπ+π/2(k∈Z)时,y取最大值1.余弦函数y=cosx,当x=2kπ(k∈Z)时,y取最大值1;当x=2kπ+π(k∈Z)时,y取最小值-1.3.周期性:1)正弦函数y=sinx、余弦函数y=cosx的最小正周期都是2π。
2)函数f(x)=Asin(ωx+φ)和f(x)=Acos(ωx+φ)的最小正周期都是T=2π/|ω|。
4.奇偶性与对称性:1)正弦函数y=sinx是奇函数,对称中心是(2kπ,0)(k∈Z),对称轴是直线x=kπ+π/2(k∈Z)。
2)余弦函数y=cosx是偶函数,对称中心是(kπ,0)(k∈Z),对称轴是直线x=kπ(k∈Z)。
例:若函数y=a-bsin(3x+π/6)的最大值为1,最小值为-2,则a=1/2,b=1或b=-1.课堂练:1.函数y=sinx-sin2x的值域是[-1,1]。
2.已知f(x)的定义域为[0,1],求f(cosx)的定义域为[-1,1]。
3.下列函数中,最小正周期为π的是B.y=sin2x。
4.若f(x)=sin(πx/3),则f(1)+f(2)+f(3)+。
+f(2003)=0.答:1001/2)正弦型函数的对称轴为过最高点或最低点且垂直于x轴的直线,对称中心为图象与x轴的交点。
例如,函数y=sin(5π/2x)的奇偶性是偶函数。
已知函数f(x)=ax+bsin(3x)+1(a,b为常数),且f(5)=7,则f(-5)=-5.单调性方面,y=sinx在[2kπ-,2kπ+](k∈Z)上单调递增,在[2kπ+,2kπ+](k∈Z)上单调递减;y=cosx在[2kπ,2kπ+π](k∈Z)上单调递减,在[2kπ+π,2kπ+2π](k∈Z)上单调递增。
三角函数的图象与性质(解析版)
三角函数的图象与性质(解析版)三角函数的图象与性质(解析版)三角函数是数学中重要的函数之一,它们在解析几何、物理、工程等领域中具有广泛的应用。
本文将对三角函数的图象与性质进行解析,便于读者更好地理解与掌握三角函数的特点。
一、正弦函数的图象与性质正弦函数是最基本的三角函数之一,它的图象是一条连续的波浪线。
我们可以通过数学方法推导出正弦函数的周期性、奇偶性和对称性等性质。
1. 图象特点:正弦函数的图象是一条在坐标平面上连续波动的曲线。
它的振幅表示峰值与谷值之间的差距,周期则代表两个峰值或谷值之间的距离。
2. 周期性:正弦函数的一个周期内,曲线的形状相同,并且可以无限延伸。
周期为2π,即当x增加2π时,曲线的形状重复出现。
3. 奇偶性:正弦函数是奇函数,即f(x) = -f(-x)。
这意味着当自变量x取负值时,函数值会发生变号。
4. 对称性:正弦函数关于原点对称,即f(x) = -f(x + π)。
这意味着以原点为对称中心,曲线的左右两侧完全相同。
二、余弦函数的图象与性质余弦函数也是常见的三角函数之一,它的图象是一条连续的波浪线。
与正弦函数相似,余弦函数也有周期性、奇偶性和对称性等特点。
1. 图象特点:余弦函数的图象是一条波动的曲线,与正弦函数相比,它的最高点与最低点位置不同。
余弦函数的振幅表示波峰与波谷之间的差距,周期代表两个波峰或波谷之间的距离。
2. 周期性:余弦函数的周期也是2π,当自变量x增加2π时,曲线的形状重复出现。
3. 奇偶性:余弦函数是偶函数,即f(x) = f(-x)。
这意味着当自变量x取负值时,函数值保持不变。
4. 对称性:余弦函数关于y轴对称,即f(x) = f(π - x)。
这意味着以y轴为对称中心,曲线的左右两侧完全相同。
三、正切函数的图象与性质正切函数是三角函数中的另一个重要函数,它的图象是一条连续的波动曲线。
我们也可以通过数学方法推导出正切函数的周期性、奇偶性和对称性等性质。
三角函数的图象和性质
在区间 [0,
2
]
上是单调函数,
必有
2
≤
,
即 0<≤2.
∴0<
4k+2 3
≤2(kZ).
解得 k=0 或 1.
∴=2
或
2 3
.
综上所述,
=
2
,
=2 或
2 3
.
6.如果函数 的值.
y=sin2x+acos2x
的图象关于直线
x=-
8
对称,
求a
解: y=sin2x+acos2x= a2+1 sin(2x+), 其中, tan=a.
3.周期性: ①y=sinx、y=cosx 的最小正周期都是
Asin(x+) 和 f(x)=Acos(x+)的最小正周期都是
2;
T=
2|②| .f(x)=
4.奇偶性与对称性: 正弦函数y=sinx(xR)是奇函数, 对称中心
是 (x(kR),是0)偶(k函Z数),,对对称称轴中是心直是线(kx=+k2,+02)((kkZZ)),;对余称弦轴函是数直y=线coxs=x k (kZ) (正(余)弦型函数的对称轴为过最高点或最低点且垂
性, 如果是周期函数, 求出它的一个周期.
解:
(1)由∴∵∴2kfsfs((iixnx+n))xx=的4--lcoc<定oogxss<21xx义(2s=>ik域n0,x2+为-s即ic5n4o{(xsx,x2|-k)s2≥ik4nlZ)(o≤x+g-21424<2,)x>=<0-2得k12:.+
5
4
5.6 函数y=Asin(ωx+φ)(课件)高一数学(人教A版2019必修第一册)
三角函数
第五章 三角函数
5.6 函数=(+)
情景引入,温故知新
我们知道,单位圆上的点,以(1,0)为起点,以单位速度按逆时针方向运动,其
运动规律可用三角函数加以刻画.对于一个一般的匀速圆周运动可以用怎样的数
学模型刻画呢?下面先看一个实际问题.
问题:筒车是我国古代发明的一种水利灌输工具,因其经济又环保,至今还在
+
π
3
π
3
+
, =
π
3
≤
列表如下:
π
π
+
3
3
π
3
π
2
π
3π
2
2
7π
3
0
1
2
2
7
2
5
6
2
0
−2
0
2sin
作图:
π
π
+
3
3
3
3
2π
7π
,
3
π
3
= 6,
典型例题
题型二:用五点法作函数y = Asin(ωx + φ)的图象
【对点训练2】已知函数 =
3sin2 + cos2 .
用“五点作图法”在给定的坐标系中,画出函数 在 0, π 上的图像;
1
函数 = ( + )的图象;然后把曲线上各点的横坐标变为原来的 倍(纵坐标不
变),得到 = ( + )的图象;最后把曲线上各点的纵坐标变为原来的倍(横
坐标不变),这时的曲线就是函数 = ( + )的图象.
思考:请同学们结合着以上内容,做出这一过程的流程图.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【课题】5.6三角函数的图像和性质
【教学目标】
知识目标:
(1) 理解正弦函数的图像和性质;
(2) 理解用“五点法”画正弦函数的简图的方法;
(3) 了解余弦函数的图像和性质.
能力目标:
(1) 认识周期现象,以正弦函数、余弦函数为载体,理解周期函数;
(2) 会用“五点法”作出正弦函数、余弦函数的简图;
(3) 通过对照学习研究,使学生体验类比的方法,从而培养数学思维能力.
情感目标:
(1)经历利用“图像法”分析三角函数的性质的探究过程,体验“数形结合”的探究方法,享受成功的喜悦。
(2)体验三角函数的性质,特别经历对周期现象的研究,感受科学思维方法。
(3)结识正弦、余弦曲线,感受数学图形的曲线美、对称美、和谐美
【教学重点】
(1)正弦函数的图像及性质;
(2)用“五点法”作出函数y=sin x在[]
0,2π上的简图.
【教学难点】
周期性的理解.
【教学设计】
(1)结合生活实例,认识周期现象,介绍周期函数;
(2)利用诱导公式,认识正弦函数的周期;
(3)利用“描点法”及“周期性”作出正弦函数图像;
【教学备品】
课件,实物投影仪,三角板,常规教具.
【课时安排】
2课时.(90分钟)
【教学过程】
过 程
行为 行为 意图 间
观察发现,正弦函数x y sin =在[]0,2π上的图像中有五个关键点:(0,0), ,12π⎛⎫ ⎪⎝⎭, (),0π, 3,12π⎛⎫
- ⎪⎝⎭
, ()2,0π.
描出这五个点后,正弦函数x y sin =,[]0,2π在上的图像的形状就基本上确定了.因此,在精确度要求不高时,经常首先描出这关键的五个点,然后用光滑的曲线把它们联结起来,从而得到正弦函数在[]0,2π上的简图.这种作图方法叫做“五点法”.
质疑 引领 总结
观察 思考 体会
五点 可以 教给 学生 自我 发现 总结
35
*巩固知识 典型例题
例1 利用“五点法”作函数x y sin 1+=在[]0,2π上的图像. 分析 x y sin =图像中的五个关键点的横坐标分别是0,2
π
,π,23π
,2π,这里要求出x y sin 1+=在五个相应的函数值,
从而得到五个点的坐标,最后用光滑的曲线联结这五个点,得到图像. 解 列表
x
0 π
2 π
3π2 2π
x sin 0
1 0 −1 0 x y sin 1+= 1
2
1
1
以表5-6中每组对应的x ,y 值为坐标,描出点),(y x ,用光滑的曲线顺次联结各点,得到函数
x y sin 1+=在[]0,2π上的图像.
例2 已知sin 4x a =-, 求a 的取值范围. 解 因为x sin ≤1,所以4a -≤1,即
141a --剟,
解得 35a
剟.
说明
讲解
引领 质疑
分析 归纳
观察 思考 主动 求解 理解 讨论 求解 思考
安排 与知 识点 对应 例题 巩固 新知 注重 画图 时对 细节 的强 调和 引领 不等 式的 求解 过程 可以 教给
过 程
行为 行为 意图 间
x y cos -=
−1 0
1
−1
以表中的y x ,值为坐标,描出点(,)x y ,然后用光滑的曲线顺次联结各点,得到函数x y cos -=[]0,2π在上的图像
汇总 总结
理解 领悟
75
*运用知识 强化练习 教材练习5.6.2
用“五点作图法”作出函数x y cos 1-=在 []0,2π上的图像.
提问
巡视 指导 动手 求解 交流 纠错 答疑
80 *归纳小结 强化思想
本次课学了哪些内容?重点和难点各是什么?
*自我反思 目标检测
本次课采用了怎样的学习方法? 你是如何进行学习的? 你的学习效果如何? 引导 提问
回忆 反思 交流
培养 学生 总结 反思 学习 过程 能力
85 *继续探索 活动探究
(1)读书部分: 教材章节5.6; (2)书面作业: 学习与训练习题5.6; (3)实践调查: 探究其他作图的方法. 说明
记录
90。