3采煤工作面上覆岩层移动规律讲解

合集下载

第三章 回采工作面上覆岩层活动规律及其分析

第三章 回采工作面上覆岩层活动规律及其分析

老顶板横“O-X”型破断形式
§3 老顶初次破断时的极限跨距
一、梁式断裂时的极限跨距
极限跨距:老顶岩梁达到断裂时的跨距。(初次断 裂步距)
图3–9 岩梁上任意点的应力分析
求解过程:
M·y Jz
梁内任一点正应力为: M—该点所在断面的弯矩; y—该点离断面中性轴的距离; Jz—对中性轴的断面矩。
此假说认为工作面和采空区顶板可此假说认为工作面和采空区顶板可视为一端固定于煤壁前方岩体内另一端视为一端固定于煤壁前方岩体内另一端处于悬伸状态的梁悬臂梁弯曲下沉后处于悬伸状态的梁悬臂梁弯曲下沉后受到已垮落岩石的支撑当悬伸长度很大受到已垮落岩石的支撑当悬伸长度很大时发生有规律的周期性折断从而引起时发生有规律的周期性折断从而引起周期来压
二、悬臂梁假说 此假说认为,工作面和采空区顶板可 视为一端固定于煤壁前方岩体内,另一端 处于悬伸状态的梁,悬臂梁弯曲下沉后, 受到已垮落岩石的支撑,当悬伸长度很大 时,发生有规律的周期性折断,从而引起 周期来压。
三、铰接岩块假说
此假说认为,采场 上覆岩层分为垮落带 和裂隙带,二者的差 别在于,裂隙带岩块 间存在有规律的水平 挤压力的联系,从而 相互铰合而形成一条 多环节的铰链。
取梁单位宽度,则
任意点A:
1 Jz= bh3 (b=1) 12
= 12 ·M·y ,(y=h/2时, 最大 )
2 2 3 h 4y τxy= Qx 3 2 h 最大剪应力发生在矩形断面梁的中性轴上,
h
3
即y=0, ∴
3Qx (τxy)max= 2h
① 若根据固定梁计算:
M1 x E1 J1 E1 J1 M1 x E1 J1 ; E2 J 2 M 3 x E3 J 3 M n x En J n

第二章采煤工作面上覆岩层移动及其矿压显现规律

第二章采煤工作面上覆岩层移动及其矿压显现规律

砌体梁结构为半拱式平衡结构。块体间依靠水平挤压力产
生的摩擦力平衡岩块的自重和上覆岩层传递的载荷。支架
的载荷(支护强度):
第二章采煤工作面上覆岩层移动及其 矿压显现规律
第一节 采煤工作面上覆岩层移动规律
四、裂隙带岩层的结构形式(矿压假说) (二)传递岩梁结构
图2-4 传递岩梁 结构模型
山东科大宋振骐院士提出。一组或几组基本顶的断裂岩 块的相互咬合,形成一种能向煤壁前方和采空区矸石上 传递力的结构,称为传递岩梁。支架承担岩梁的作用力 的大小,由其对岩梁运动的控制要求而定。位态方程如 下:
初次来压步距L:由开切眼到基本顶初次垮落时工作面推进的距离。 L与岩性、厚度、载荷有关。
统计数字:10~30m 54%; 30~55m 37.5%; >55m 8.5% 特殊的砂岩、砂砾岩顶板的初次来压步距可达100~160m。
第二章采煤工作面上覆岩层移动及其 矿压显现规律
第二节 采煤工作面矿山压力显现规律
第二章采煤工作面上覆岩层移动及其 矿压显现规律
第二节 采煤工作面矿山压力显现规律
四、支承压力及其显现
采煤工作面前后 方支承压力对工作面 矿压显现有着很大影 响。采煤工作面前方 支承压力依次为原岩 应力区、应力增高区、 应力降低区和应力稳 定区。
第二章采煤工作面上覆岩层移动及其 矿压显现规律
拱的一个支点在工作面前方的煤壁上,另一支点在采 空区已垮落的矸石上。工作面支架主要承受拱内部分岩石的 重量及拱运动时的附加载荷。
英国学者伊万斯提出了支架载荷计第算二章式采煤:工作面上覆岩层移动及其 矿压显现规律
第二节 采煤工作面矿山压力显现规律
一.工作面矿压显现方式
由于采动作用促使围岩向已采动空间运动的力称为

4.(第四章)-回采工作面上覆岩层活动规律

4.(第四章)-回采工作面上覆岩层活动规律

采空区的处理方法 disposal method for gob
工艺中是如 何实现的?
煤柱支撑法(刀柱法):pillar propping method 缓慢下沉法:lentitude subsidence method 充填法:filling method 垮落法:caving method
其中全部垮落法具有回采率高、成本低、简单的优点, 在条件适宜时,尽量采用这种方法。采用全部垮落法时, 随着工作面推进,回采工作面空间形状变化见下图。
砌体梁模型与传递岩梁模型的对比
比 较 砌体梁模型
垮落步距采用梁假说 认为岩梁可以传递水平力
传递岩梁模型
考虑成层性,假定分组一致下沉
相同点
岩块的受力与平衡 梁的几何特征(双
不同点
(推断) 曲线关系,实测) 给定荷载与给定变 给定变形与限定变 形工作状态 形工作状态 顶板压力估算应防 顶板压力取决于岩 止台阶下沉 梁的位态(控制)
(岩梁位态与支架无关): A≤PT≤(A+hE·γE· A/2LK) L
位态方程式

“限定变形”工作方式: 支柱与顶板的作用结果,使岩梁在 图中所示的虚线位置接触。此时,支柱受力大小由限定的岩 梁位态(用对应的采场顶板下沉量ΔhT表示)决定,而与支 柱的刚度无关。在该方式条件下,顶板施予支架的作用力由 岩梁的位态方程得出,即: PT=A+PE· T Δh PE=B/ ΔhT B=(hE· E· A/2LK) · A γ L Δh
采场矿压假说总结
前面所介绍的一些主要的矿压假说都是
第四章 回采工作面上覆岩层活动规律
4.1 概述
在煤层或矿床开采过程中,一般把直接进行采煤 或开采有用矿物的工作空间称为回采工作面或简称 为采场coal face 。 顶板:位于煤层之上的岩层称为顶板。 按顶板与煤层的位置关系、冒落性能及冒时对回采 工作面的影响分为: (1)直接顶(immediate roof):直接顶位于 煤层上方的一层或几层性质相近的岩层;通常由具 有一定稳定性且一般随回柱放顶而垮落,由页岩或 砂页岩等岩层组成。也有人认为采空区冒落带内的 岩层统属于直接顶。

3采煤工作面上覆岩层移动规律

3采煤工作面上覆岩层移动规律

第三章采煤工作面上覆岩层移动规律第一节概述一、煤层顶底板岩层的构成煤层处于各种岩层的包围之中。

处于煤层之上的岩层称为煤层的顶扳;处于煤层之下的岩层称为煤层的底板。

根据顶、底板岩层离煤层的距离及对开采工作的影响程度不同,煤层的顶、底板岩层可分为:(l)伪顶。

紧贴在煤层之上,极易垮落的薄岩层称为伪顶。

通常由炭质页岩等软弱岩层组成,厚度一般小于0.5m,随采随冒。

(2)直接顶。

位于伪顶或煤层之上,具有一定的稳定性,移架或回柱后能自行垮落的岩层称为直接顶。

通常由泥质页岩、页岩、砂质页岩等不稳定岩层组成,具有随回柱放顶而垮落的特征。

直接顶的厚度一般相当于冒落带内的岩层的厚度。

(3)老顶。

位于直接顶或煤层之上坚硬而难垮落的岩层称为老顶。

常由砂岩、石灰岩、砂砾岩等坚硬岩石组成。

(4)直接底。

直接位于煤层下面的岩层。

如为较坚硬的岩石时,可作为采煤工作面支柱的良好支座;如为泥质页岩等松软岩层时,则常造成底臌和支柱插入底板等现象。

二、采煤工作面上覆岩层移动及其破坏在采用长壁采煤法时,随着采工作面的不断向前推进,暴露出来的上覆岩层在矿山压力的作用下,将产生变形、移动和破坏。

根据破坏状态不同,上覆岩层可划分为三个带(图3-l)。

冒落带。

指采用全部垮落法管理顶板时,采煤工作面放顶后引起的煤层直接顶的破坏范围(图3-l,Ⅰ)。

该部分岩层在采空区内已经垮落,而且越靠近煤层的岩石就越紊乱、破碎。

在采煤工作面内这部分岩层由支架暂时支撑。

裂隙带。

指位于冒落带之上、弯曲带之下的岩层。

这部分岩层的特点是岩层产生垂直于层面的裂缝或断开,但仍能整齐排列(图3-l,Ⅱ)。

弯曲下沉带。

一般是指位于裂隙带之上的岩层,向上可发展到地表。

此带内的岩层将保持其整体性和层状结构(图3-l,Ⅲ)。

生产实践和研究表明,采煤工作面支架上受到的力远远小于其上覆岩层的重量。

只有接近煤层的一部分岩层的运动才会对工作面附近的支承压力和工作面支架产生明显的影响。

所谓采煤工作面矿山压力控制,也就是对这部分岩层的控制。

上覆岩层在采煤工作面推进方向上的运动发展规律-续三RTF 文件

上覆岩层在采煤工作面推进方向上的运动发展规律-续三RTF 文件

上覆岩层在采煤工作面推进方向上的运动发展规律(续三)
三、影响岩层运动的因素
影响岩层运动的主要因素包括岩层的强度特征、采动条件和采空区处理方法。

1、岩层的强度特征由岩层的力学性质、厚度和节理裂隙情况决定的岩层强度特征,是影响岩层运动发展的内在因素。

强度高厚度大的岩梁,周期来压步距c将较大,相对稳定步距b也较大,显著运动步距a则较小(即岩梁显著运动发展迅速)。

相反,强度低、厚度小的岩梁,周期来压步距c和相对稳定步距b则较小,显著运动步距a相对而言要较前者大(即显著运动发展较慢)。

如果岩梁在推进方向上裂隙相当发育,不仅周期来压步距c小,而且有时很难找出划分岩梁处于相对稳定和显著运动的界限。

2、采动条件采高和推进速度等采动条件对岩梁的运动发展过程也会产生重要影响。

如加大采高,而工作面垮落高度不变,则岩梁显著运动的空间增加,岩梁的显著运动则会更明显。

当岩层的强度较低时,突然提高推进速度有可能导致岩梁运动步距扩大。

有些矿井在日常推进速度条件下采煤工作面来压不明显,高产后出现大面积来压现象就是这个原因。

此时如不注意加强支护,就容易发生区域性冒顶事故。

3、采空区处理方法采用强制放顶措施处理采空区,可减岩梁厚度及运动步距(包括c值和b值)。

采用充填法处理采空区,可减少岩梁运动空间,使运动不明显。

因此采空区处理方法必须根据所控制的顶板类型和需要加以选择。

采场上覆 岩层活动规律

采场上覆 岩层活动规律

12/34
如果不发生离层,应有 即
ymax ymax n
4 4 h1 q1 L1 h L1
384E1 J1
384E2 J 2

bh13 J1 12
h h1
bh 3 J2 12
令 q1 h1

E1 1 E2 1
显然:直接顶厚度 ≤ 老顶厚度时,易发生离层。
悬臂梁平时承担岩层载荷,当其变形下沉时,一端压在
垮落矸石上,当跨度增大,断裂形成周期来压。
6/34
三、预成裂隙假说:( 1954,比利时,拉巴斯)
顶板岩层受支承压力作 用,产生相互平行的裂隙, 成为“假塑性体”,在工作面 推进过程中,产生塑性弯曲, 由相互挤压形成类似梁的平衡 结构。 顶板分为应力降低区、应 力升高区、采动影响区,三区 随工作面而移动。 工作面支架应具有足够的初 撑力和工作阻力,以阻止岩块滑 落或离层。
(对于反山,顶底板位置发生翻转)
2/34
二、回采工作空间类型: (依据采空区处理方法不同划分)
(a)完整空间——刀柱法或留煤柱开采;
(b)自弯曲空间——顶板缓慢下沉法(顶板塑性大); (c)充填空间——充填法; (d)垮落空间——全部垮落法。
3/34
三、顶板工作结构:
1、梁式结构——将顶板视为沿工作面推进方向的梁,按照 梁式结构承载变形破坏理论分析顶板破坏现象。 2、板式结构——将顶板岩层视为一个板或经断层、裂隙切 割后,多块板相互咬合组成的板,按板式结构承载变形及强 度理论分析顶板破坏现象。 3、顶板结构端部支撑条件: 固定支座——顶板被煤岩层夹持,未断裂,无自由端 ; 简支梁支座——顶板端部断裂或埋深较浅(可转动) ;
第三章

1采煤工作面上覆岩层移动及矿压显现规律 论文

1采煤工作面上覆岩层移动及矿压显现规律 论文

采煤工作面上覆岩层移动及矿压显现规律摘要:在大多数情况下,矿压显现会给地下开采工作造成不同程度的危害。

为了使矿压显现不影响正常开采工作,保证安全生产,必须采用各种技术措施加以控制。

包括对采掘空间进行支护,对松软破碎的煤层进行加固,用各种方法使巷道或回采工作空间得到卸压,对采空区进行处理等。

此外,对矿压的控制不仅在于消除和减轻矿压对开采工作造成的危害,还包括有效地利用矿压为开采服务。

研究矿压显现规律及各种控制方法的基本目的,是为了保证生产安全和取得良好的经济效益。

关键词:采煤工作面支撑压力及其显现地质因素技术因素1.绪论煤炭是我国的主要不可再生资源,它是我国工业生产必不可少的一部分。

因此,研究如何采煤及煤与岩石的关系是十分重要的。

这篇文章主要是介绍采煤工作面上覆岩层移动及其矿压显现规律,采煤工作面的围岩构成,采动岩体破坏的基本形式,裂隙带岩层的结构形式,工作面得矿压显现方式,直接顶的运动规律,基本顶的运动规律,支撑压力及其显现,地质因素,技术因素。

采煤工作面与矿压是息息相关的,要想安全的采煤,把产量搞上去,我们必须去研究矿山压力,因为在矿山压力作用下,会引起各种力学现象,如顶板下沉、底板鼓起、巷道变形后断面缩小、岩体破坏散离甚至大量冒落、煤被积压产生片帮或突然抛出、支架严重变形或损坏、充填物受压缩以及大量岩层移动、地表发生塌陷等。

2.1采煤工作面的围岩构成在煤层或岩层中开掘巷道和进行回采工作,称为对煤层或岩层的“采动”。

采动后在煤层或岩层中形成的空间,称为“采动空间”。

直接位于煤层上方和下方的岩层分别称为煤层的顶板和底板。

根据顶底板岩层距煤层的距离和对回采工作的影响,煤层的顶、底板岩层可以分为伪顶、直接顶、基本顶和直接底。

2.1.1伪顶位于煤层之上,极易垮落的薄岩层称为伪顶。

2.1.2直接顶直接顶位于伪顶或煤层之上,具有一定的稳定性,移架或回采后能自行垮落的一层或数层岩层。

2.1.3基本顶位于直接顶之上较难垮落的厚层坚硬岩层称为基本顶。

采场上覆岩层移动规律

采场上覆岩层移动规律
3、显现特点
对采场产生明显的动压冲击,支架阻力不够易产生沿煤 壁切下的重大冒顶事故,即使不垮也会出现台阶下沉。
必须有高初撑力,其阻力能抗衡顶板沿煤壁切下,把 切断线推至控顶距之外。支架缩量按照出现台阶下沉而 不能压死支架考虑。
出现台阶下沉时支架阻力与缩量分别为:
PT A m L k k G
2LK
q
Qx
Mx
综上:老顶岩梁破坏形式有两个受弯矩作用拉断受剪力 作用剪断
二、梁式断裂时的极限跨距:
q
(一)固支情况 1、按弯矩计算:
M
任意点A 处正应力: My
Q
其中断面矩
JZ
Jz
1 h3 12
最大拉应力在梁的端部
max
M
max
h 2
Jz
1 ql 2 h 12 2
1 h3
ql 2 2h 2
12
当 max 时Rt,则岩梁被拉断裂。
说明:
1)先计算第一层载荷 q1 1h1
2)计算第二层对第一层的作用;计算至第三层时第一层载荷…… 3)一直计算到第n+1层时,第一层载荷反而小于第n层时的载荷为止 4)取第n层时的计算载荷为 q ,此值为计算过程中得到的最大值。
四、老顶运动规律 1)老顶的初次垮落 由开切眼到老顶初次垮落时工作面推进的距离称为老顶的初 次垮落步距。 2) 老顶的周期性垮落 随工作面的推进将周期性地出现,称为老顶的周期性垮落。
ql 2
ql 2 M1 M 2 12
2)任意截面剪力:(D—D’)
Qx
R1
qx
ql 2
qx
ql 1 2
2x l
ql Q |x0 2
Q |xl 0 2
Q

上覆岩层在采煤工作面推进方向上的运动发展规律RTF 文件

上覆岩层在采煤工作面推进方向上的运动发展规律RTF 文件

上覆岩层在采煤工作面推进方向上的运动发展规律随着采煤工作面的推进,煤壁前方的支承压力及支架上显现的压力都在不断的变化,采煤工作面矿压显现的发展变化规律是由对其有影响的上覆各岩层的运动发展规律决定的,除岩层运动的纵向发展规律影响外,还受推进方向的发展规律所影响,因此必须进一步研究岩层运动在推进方向上的发展规律。

一、采煤工作面上覆岩层运动的发展阶段采煤工作面在推进过程中,由于上覆各岩层承受的矿山压力大小不同支承(约束)条件的差别,就其运动发展状态来说可分为初次运动和周期性运动阶段。

1、初次动动阶段从岩层由开切眼开始悬露,到对工作面矿山压力显现有明显影响的一两个传递岩梁初次裂断运动结束为止为初次运动阶段(图2-a、图2-b)。

其中包括直接顶岩层初次垮落和基本顶的初次来压。

该阶段岩层两端由煤壁支撑,其受力状态可视为两端嵌固梁。

采煤工作面各岩层初次运动在采煤工作面的压力显现称为初次来压。

由于任何岩层初次运动步距相对正常情况下的运动步距要大得多,因此初次来压运动来压面积大,强度高,并且可能伴随有动压冲击,在控制岩层运动和矿压显现时,一定要十分注意动压的冲击,以保证采煤工作面在初次来压期间的安全。

2、周期性运动阶段从岩层初次运动结束到工作面采完,顶板岩层按一定周期有规律的断裂运动,称为周期性运动阶段(图2-c、图2f)。

在此发展阶段,岩层的约束条件发生了根本性变化,直接顶岩层在采煤工作面里为一端固定的悬壁梁,直接顶上方各岩梁为一端由煤壁支承,另一端则为由采空区矸石支承的不等高的传递岩梁。

此时,运动步距较初次运动步距小得多。

岩层周期性运动在采煤工作面引起的矿压显现称为采煤工作面的周期来压。

这个阶段岩层的完整性比初次运动前差,运动步距又比较小,因此控制岩层运动和矿压显现和要求也不同。

当两种运动来压强度差别很大时,不仅要尽可能扩大推进方向上的距离,而且支架的选型和设计必须分别处虑。

显然,如果按初次来压设计和选择支架,周期来压阶段支架的阻力不能充分发挥,将带来较大浪费。

第三章采场上覆岩层运动的基本规律

第三章采场上覆岩层运动的基本规律

3.“砌体梁” 钱鸣高院士提出的砌体梁学说认为,老顶由多块断裂后像 “砌体”一样挤铰而成的结构组成,该学说系统研究了裂隙带岩 层形成结构的可能性以及结构的平衡条件(图c)。从建立该理论 的假说条件可以看出,该理论的结论更适用于坚硬岩层的采场。 4.“传递岩梁” 宋振骐院士提出的“传递岩梁”学说认为,在一定采高、推 进速度和顶板组成的条件下,平衡结构的存在是必然的,因此它 看待平衡结构的重点是从结构向煤壁前方和老塘矸石传递力的方 面考虑的,显然,这种结构在一般的采场均存在。在进行支架围 岩关系研究时事实上加进了“存在坚硬岩层”的前提条件。因此, 该理论所建立的力学模型均以两个岩块组成的结构出现。 “传递岩梁”和“砌体梁”理论都认为,坚硬岩层能在煤壁前 方断裂,因而通过研究岩层运动与支承压力之间的关系,提出了 来压预报的机理和方法,为减少我国恶性顶板事故作出了重大贡 献。“传递岩梁”理论还认为,采场支架可以改变铰接岩梁的位 态,并以两块模型推导出了位态方程,为支护设计定量化提供了 重要思路,其成果也为广大现场所接受。“传递岩梁”还提出了 采场存在多岩梁结构,该观点解释了多岩梁采场较为复杂的矿压 现象。
直接顶厚度的计算方法。(具体方法见宋振骐教授主 编的《实用矿山压力控制》

(三)直接顶的形态及特征
我国主要矿区按组成直接顶岩层的弱面及组份情况将其形态 归纳为颗粒型、膨胀型、团块型、分层裂隙共生型、双向裂隙型、 单向裂隙型、上软下硬型、下软上硬型、分层型及整体性10种 (见下页表)。 直接顶的形态是随其组成岩层的强度、弱面及其组合关系而 变化的,它能从非常软弱一直发展到非常坚硬。 颗粒型直接顶主要存在于顶煤松软的放顶煤工作面及顶板胶 结性差的工作面(包括无顶网且胶结差的假顶)。在放顶煤工作 面,顶煤由于受超前支承压力的预先破坏和支架的“重复”支撑, 一般情况下将很破碎,如果机道上方护顶及护帮不及时,将出现 大范围漏顶及片帮。 在顶板胶结性差的采场,如护顶不及时,机道上方将出现大 的“高冒”空穴,此类采场直接顶厚度一般超过 2~3倍采高,确 切的厚度将由颗粒型岩层的厚度决定。这种顶板现场也称为“豆 腐渣”顶板(见后页图)。

第三章 采场上覆岩层运动和发展的基本规律

第三章 采场上覆岩层运动和发展的基本规律

《矿山压力与岩层控制》之第三章《矿山压力与岩层控制》之第三章采场上覆岩层运动和发展的基本规律采场上覆岩层运动和发展的基本规律山东科技大学资环学院资源工程系山东科技大学资环学院资源工程系本章提要本章特点学习难点有较多的基本概念有较多的基本规律矿岩层运动和破坏形式的判断方法岩层纵向组合运动的分析方法岩层推进方向岩层运动各阶段的参数特点上覆岩层运动和破坏的基本形式上覆岩层在推进方向上的运动规律上覆岩层纵向运动发展的基本规律上覆岩层运动参数的确定P1§ 3.1上覆岩层运动和破坏的基本形式3.1.1上覆岩层运动的两种基本形式3.1.3上覆岩层破坏形式的判断3.1.2 岩层运动发展至破坏的力学条件3.1.4岩层破坏形式的转化§3.3上覆岩层在推进方向上的运动规律§3.4 上覆岩层运动参数的确定§3.2上覆岩层纵向运动发展的基本规律P23.1.1上覆岩层运动的两种基本形式一弯拉破坏的运动形式1 运动过程上覆岩层悬露如图3.1(a)在其重力作用下弯曲如图3.1(b)端部开裂如图3.1(c)形成“假塑性岩梁”如图3.1(d)自行跨落如图3.1(e)P3(b)(a)(c)(d)P4(e)岩层运动由弯曲沉降发展至破坏的力学条件是岩层中的最大弯曲拉应力达到其抗拉强度。

即:(3.1)2 力学条件图3.1弯拉破坏的运动形式P5二剪(切)断破坏的运动形式弯曲变形端部开裂(图3.3(a))整体切断跨落(图3.3(b))1 运动过程P6(a)(b)图3.2 剪切运动的基本形式P72 剪断的充要条件当采场推进至岩梁端部开裂位置附近,剩余抗剪断面上的剪应力超过限度,虽其中部还未裂开,只要岩层下部有少量运动空间,岩层即被剪断。

3 显现特点动压冲击支架阻力不够顶板沿煤壁切下如图3.3(a)台阶下沉如图3.3(b)P8(a)(b)图3.3 剪断运动形式对工作面的威胁P93.1.2 岩层运动发展至破坏的力学条件悬跨度达到极限跨度中部裂断弯拉破坏深入煤壁的两端部断裂力学过程弯坏的力学过程,就是其支承条件由双嵌固梁向简支梁发展的过程。

第二章采煤工作面上覆岩层移动及其矿

第二章采煤工作面上覆岩层移动及其矿
p h R0 T tan( )
l
(二)传递岩梁结构
• 山东科大宋振骐院士提出。一组或几组基本顶的断裂岩 块的相互咬合,形成一种能向煤壁前方和采空区矸石上
传递力的结构,称为传递岩梁。支架承担岩梁的作用力
的大小,由其对岩梁运动的控制要求而定。位态方程如 下:
p
1hf 2
2HL
lKT

ha hi
(三)悬梁(板)结构
• 坚硬的顶板在初次来压后,可视为一端固定于工作 面前方煤体上的悬臂岩梁(岩板),随工作面推进, 悬臂长度增大,达极限长度时,悬梁破断,工作面 出现来压现象。支架的最大载荷:
1 H 2(L l) p 2 q 6l 2 (L l) Rt
(四)压力拱结构
• 松软顶板形成压力拱。拱的一个支点在工作面前 方的煤壁上,另一支点在采空区已垮落的矸石上。 工作面支架主要承受拱内部分岩石的重量及拱运 动时的附加载荷。
L初 h

2Rt q
• L与岩性、厚度、载荷有关。 统计数字:10~30m 54%
30~55m 37.5%
>55m 8.5% • 2.初次来压的显现
(1)工作面顶板剧烈下沉; (2)支架载荷增加,安全阀开启,活柱下缩; (3)煤壁片帮严重; (4)顶板的断裂声
(三)基本顶的周期来压
三、基本顶的运动规律
• (一)基本顶的运动形式 • 1.基本顶缓慢下沉 • 采高小、直接顶厚度大,采空区充满程度好,基
本顶弯曲断裂后在矸石支撑下缓慢下沉。此时, 基本顶能形成传力结构,将自身的重量和上覆岩 层的部分重量传递到前方煤壁和后方采空区矸石 上,工作面内矿压显现不明显。 • 2.基本的呈长岩梁折断 • 直接顶冒落后不能充满采空区,基本顶按一定的 跨度,周期性折断,岩梁长度较大。

03第三章 回采工作面上覆岩层活动规律

03第三章  回采工作面上覆岩层活动规律

第三章回采工作面上覆岩层活动规律本章为矿压主要规律之一。

介绍全部垮落法开采,回采工作面顶板下沉、断裂、移动规律,使学生建立顶板移动的空间概念。

在基本假设的条件下,对顶板破坏进行定量分析。

重点:顶板划分及其移动规律、工作面顶板来压产生及其过程。

难点:顶板力学结构分析第一节概述本节介绍:工作面顶底板及其力学结构一、工作面顶底板的划分:1、顶板——位于煤层上方的岩层。

伪顶——位于煤层与直接顶之间、厚度较小,随落煤而垮落的岩层(页岩、炭质页岩);直接顶——接位于煤层上方的一层或几层性质相近的岩层(页岩、砂质页岩);老顶(基本顶)——位于直接顶或煤层之上厚而坚硬的岩层(砂岩、砾岩、石灰岩)。

三顶赋存状态对顶板管理有直接影响。

伪顶影响煤质,直接顶影响顶板管理,老顶影响来压。

顶板划分主要依据岩性(强度、垮落性),与厚度关系不大(伪顶除外)。

2、底板——位于煤层之下的岩层。

直接底——直接位于煤层之下的岩层(泥岩、泥质页岩、砂页岩)(古土壤);老底——直接底以下的岩层。

直接底的强度对顶板管理形成影响。

二、回采工作空间类型:回采工作空间类型依据开采方法不同而异。

1、完整空间——刀柱法;2、自弯曲空间——顶板塑性,缓慢下沉闭合;3、充填空间——充填法;4、垮落空间——全部垮落法。

三、顶板的工作结构:1、梁式结构——顶板沿倾斜方向较长,变形相差不大,约束条件相同。

故可将顶板视为沿走向的梁(组合梁)。

按梁式结构承载、变形、破坏理论进行定量分析。

(误差较大)2、板式结构——将顶板岩层视为一个板(多块板咬合),按板式结构的变形、强度分析。

(计算较为复杂,误差小)目前,提出关键层理论,更加接近实际。

无论何种结构,采用全部垮落法,其边界支撑条件发生很大的变化,一侧为固定支撑,另一侧为垮落矸石柔软支撑,从而使顶板的原有结构发生变化,形成形形色色的破坏类型。

第二节 老顶岩层的力学分析本节介绍老顶的梁式、板式力学分析,了解老顶破坏机理及过程。

采场上覆岩层运动规律

采场上覆岩层运动规律

采场上覆岩层运动规律1.采场上覆岩层破坏的基本形式理论与实践的研究结果表明,采场上覆岩层悬露后发展到破坏有二种运动形式:弯拉破坏和剪切破坏。

弯拉破坏的发展过程是:随采场推进,上覆岩层悬露→在重力作用下弯曲→岩层悬露达一定跨度,弯曲沉降发展到一定限度后,在伸入煤壁的端部开裂→中部开裂形成“假塑性岩梁”→当其沉降值超过“假塑性岩梁”允许沉降值时,悬露岩层即自行冒落。

岩层运动由弯曲沉降发展至破坏的力学条件是岩层中的最大弯曲拉应力达到其抗拉强度。

悬露岩层中部拉开后,是否发展至冒落,则由其下部允许运动的空间高度决定。

只有其下部允许运动的空间高度超过运动岩层的允许沉降值,岩层运动才会由弯曲沉降发展至冒落。

否则,将保持“假塑性岩梁”状态。

由此,煤层上方第n个岩层弯曲破坏发展至冒落的条件为:岩层剪(切)断破坏的发展过程是:岩层悬露后只产生不大的弯曲,悬露岩层端部开裂→在岩层中部未开裂(或开裂很小)的情况下,整体切断塌垮。

2 .采场上覆岩层在纵向上的运动发展规律2.1岩层离层发生的位置和条件采场上方悬露的岩层,可视为在均布载荷作用下的多层嵌固梁。

该岩梁弯曲沉降过程中,必然在平行于轴向的各层面(或接触面)上出现剪应力。

随采场推进,剪应力随岩梁悬跨度和外载的增加而增加,当剪应力值超过层面上(或软弱夹层的接触面上)粘结力和摩擦阻力所允许的限度时,层面或软弱夹层的接触面被剪坏。

岩层的离层随即发生。

因此,离层发生和力学条件为:式中:τ——层面(或软弱夹层接触面)的剪应力;C——层面或接触面上的粘结力;φ——层面或接触面上的磨擦角;σn——层面或接触面上的压应力。

大量理论研究和工程实践表明:(1)离层一般发生于岩层的接触面或软弱夹层上;(2)接触面的破坏,只有在相应接触面上的剪应力超限时才会发生,即悬露岩层的跨度达到极限时,离层才会发生。

(3)离层出现的位置取决于组合岩梁中各岩层的弯曲刚度和各夹层的强度。

当下部岩层弯曲刚度小,夹层(或接触面)强度低时,离层在下部发生;反之,离层可能在上部夹层中出现。

采场上覆岩层移动规律

采场上覆岩层移动规律

三、直接顶的初次垮落 初次垮落——直接顶第一次垮落(初次放顶)
(标志:垮落高度>1~1.5m,长度>1/2 面长)
初次垮落步距——第一次垮落时,直接顶的跨距。
直接顶垮落距受直接顶强度、厚度、节理裂隙影响,是 描述直接顶稳定性的综合指标。
直接顶垮落前,顶板完整性一般较好,支架载荷小,稳 定性差,初次垮落易发生大面积顶板事故。
第三节 老顶的移动规律
一、老顶梁式结构分析:
1、冒落区老顶支撑条件:
1)全部充填满回采空间
0 h M
Kp 1
2)不能充填满回采空间 (老顶悬露,成梁式结构)
0
h M h KP M hKP 1
h M Kp 1
2、老顶梁式结构力学分析: (按固支)
1)支座反力:(对称)
R1
R2
二、上覆岩层运动的两种基本形式
(一) 弯拉破坏的运动形式
1、运动过程
采场推进→重力作用弯曲→一定跨度、沉降、弯曲、 端部开裂→中部开裂→冒落。
2、力学条件
岩层运动呈现弯曲沉降发展到破坏的运动形式,其力学 条件是岩层中的最大弯曲拉应力达到其抗拉强度。
t max [t]
3、显现特点 运动由于是逐渐发展,冲击不大,相对(剪切运动) 其矿压显现比较缓和。 4、控制要求 为保证岩层运动时的采场安全,支架必须承担控顶区 上方冒落岩层的全部岩重,并且把“假塑性岩梁”的 运动控制在要求的位置上。
当不需要对“假塑性岩梁”沉降进行控制时,支撑 这部分岩层的支架阻力可以为零,最大不必要超过岩 梁跨度四分之一的岩重。
A PT A mEEL0
4LK
(二)剪(切)断破坏的运动形式
1、发展过程
悬露→产生不大弯曲,端部开裂→中部未开裂(或开裂 很少) ,情况下切断塌垮。

h第三章 采场上覆岩层活动规律及其分析

h第三章 采场上覆岩层活动规律及其分析




qL2 在梁的两端(x=0;L),Mmax= 12
在梁的中部(x= L 2
12:02
),M= 1 qL2。 24
第三章 采场上覆岩层活动规律及其分析
§2 老顶岩层的稳定性
一、老顶岩层的梁式平衡
若为简支梁:
此时,剪力相同,但弯矩不同。即:
x qx M x R1 ·x qx· L x 2 2
图3–10 多层梁的载荷计算图
12:02 第三章 采场上覆岩层活动规律及其分析
§3 老顶初次破断时的极限跨距
一、梁式断裂时的极限跨距
每个岩层梁在其自重下形成的曲率不同
ki 1
i

Mi x
Ei J i
(Hale Waihona Puke i 为曲率半径)各岩层组合在一起,曲率必然趋于一致。于是形 成了如下的关系:
M1 M2 Mn E1 J1 E2 J 2 En J n
12:02 第三章 采场上覆岩层活动规律及其分析
§2 老顶岩层的稳定性
二、老顶岩层作为板结构时弯矩分布与破断形式
(1)以四边固支的板为例,老顶岩层 X形破坏 形成过程:
12:02
第三章 采场上覆岩层活动规律及其分析
§2 老顶岩层的稳定性
二、老顶岩层作为板结构时弯矩分布与破断形式
(2)当采场处于一边采空的条件下(该边作为简支条件), 其破断规律与四周固支时相近。 (3)当老顶岩层处于两边简支两边固支时如下: 长边出现裂缝 → 工作面推进 → 长边另出现裂缝(原裂 缝闭合) → 短边出现裂缝 → 裂缝贯通,板中央出现X形破 坏。 (4)当工作面处于三边采空时,老顶岩层的破断过程与 上述情况相仿。
种梁断裂时的极限跨距为:

上覆岩层在采煤工作面推进方向上的运动发展规律-续四Microsoft Word 文档

上覆岩层在采煤工作面推进方向上的运动发展规律-续四Microsoft Word 文档

上覆岩层在采煤工作面推进方向上的运动发展规律(续四)
四、岩梁运动的基本参数
为了深入细致地研究岩层运动的发展规律,必须建立一套既符合岩层运动客观实际,又易于生产中标记的参数,对岩梁在各个运动阶段的运动状态进行描述。

(一)初次运动阶段的基本参数
1、表达岩梁运动过程的基本参数这些基本参数包括岩梁的相对稳定步距b0、岩梁的显著运动步距a0和岩梁的初次来压步距c0其相互关系为
C0=a0+b0
2、表达来压结束时刻(显著运动结束时)岩梁位置状态的参数1)来压结束时的采煤工作面下沉量△h0A
该下沉量取决于支架对顶板的工作状态(控制程度)。

当支架对岩梁运动不进行限制(即采取“给定变形”工作状态)时,来压结束时的采煤工作面顶板下沉量以△h0A表示,其大小与岩梁的初来压步距c0、采高、直接顶厚度等有关。

当支架对岩梁来压结束时的位置进行限制(即采取“限定变形”要作状态)时,以△h0表示,其大小由工作面支护强度决定。

2)来压结束时的岩梁跨度
来压结束时的岩梁跨度同样也是由支架对顶板的工作状态决定。

在“给定变形”条件下,来压结束时的岩梁跨度以L 0A 表示,其大小由岩梁运动步距决定;在“限定变形”条件下以 L 0表示,其大小由支护强度决定。

在”给定变形”条件下,来压结束时采煤工作面顶板下沉量△h 0A 和岩梁跨度L 0A 存在下列关系,即
△h 0A =
A L kA mz h Lk 0)]1([--≈0)]1([2C kA mz h Lk --
式中 h-采高,m
m z -直接顶厚度,m
3)表达来压前夕岩梁的位态参数
包括初次来压前夕岩梁的最大跨度(L 0′=b 0′)和初次来压前夕采煤工作面最小顶板下沉量h 0′。

采煤工作面上覆岩层移动规律

采煤工作面上覆岩层移动规律
第三章 采煤工作面上覆岩层移动规律
第一节
一、回采工作面顶、底板的划分:


1、顶板: 伪 顶—位于煤层之上,薄而软弱的岩层; 直接顶— 直接顶—位于煤层或伪顶之上一层或几层性质相近岩层; 老 顶—位于直接顶或煤层之上厚而坚硬的岩层(基本顶); 2、底板: 直接底——位于煤层之下的岩层(为古土壤); 直接底——位于煤层之下的岩层(为古土壤); 老 底——直接底之下的岩层。 ——直接底之下的岩层。
第三节 老顶的移动规律
1、老顶的缓慢下沉 若采高小,直接顶厚度大,直接顶可能呈不规则垮 落而充满采空区。此时,老顶可以以缓慢下沉的形式运 动。 2、老顶呈长岩梁断裂 当直接顶厚度较小或工作面采高较大时,直接顶冒 落后不能充满采空区,在已冒落矸石与老顶岩层之间有 一定的自由空间。自由空间的高度可由公式计算:
一、压力拱假说: (1928,德国,哈克) 1928,德国,哈克) 压力拱假说:
在上覆岩层中,形成一个 在上覆岩层中, 压力拱” “压力拱”,前方煤壁及后方垮 落矸石分别为拱的两脚, 落矸石分别为拱的两脚,工作面 处于拱的保护之下。 处于拱的保护之下。 “压力拱”将随工作面的推 压力拱” 进而前移。 进而前移。
五、“砌体梁”理论: (1978,钱鸣高,中国) 1978,钱鸣高,中国)
在上覆岩层中存在由断裂岩块组 成的“砌体梁”,因岩块相互挤压, 形成承载结构。 上覆岩层可以硬岩为底划分若 干组,软岩为载荷; 硬岩断裂,岩块间相互挤 压成铰接关系; 铰接岩块在某些条件下可 形成平衡体。
ห้องสมุดไป่ตู้
六、传递岩梁(宋振骐) 煤矿重大事故预测和控制决策体系建设的 指导思想应当以控制事故发生的岩层运动 条件和应力场应力大小分布条件为核心。 解决以岩层运动和应力场应力大小分布为 核心的相关信息采集(包括理论计算和现 场实测)问题。 煤矿重大事故的发生及其有效控制几乎都 同时与岩层运动和应力场应力的大小和分 布条件有机的联系在一起。与应力条件直 接相关的事故,包括瓦斯事故、冲击地压、 底板突水等,其应力条件的实现都是一定 采动条件下岩层运动和破坏的结果。

第二章采煤工作面上覆岩层移动及其矿压显现规律

第二章采煤工作面上覆岩层移动及其矿压显现规律
(2)铰接岩梁(图2-11)
岩梁两端先裂开,然后中部裂开下沉,两块相互咬合形成铰接岩梁结构。
第二节 采煤工作面矿山压力显现规律
三、基本顶的运动规律
(一)基本顶的运动形式
1.基本顶缓慢下沉 采高小、直接顶厚度大且直接顶节理发育时,直 接顶呈现缓慢下沉的运动形式。 采空区充满程度好,基本顶弯曲断裂后在矸石支 撑下缓慢下沉。此时,基本顶能形成传力结构,将 自身的重量和上覆岩层的部分重量传递到前方煤壁 和后方采空区矸石上,工作面内矿压显现不明显。 2.基本的呈长岩梁折断 直接顶冒落后不能充满采空区,基本顶按一定的 跨度,周期性折断,岩梁长度较大。
直接顶垮落步距——从切眼到直接顶初次垮落的距离。是判断 直接顶稳定性的指标,可作为直接顶分类的依据。
第二节 采煤工作面矿山压力显现规律
二、直接顶的运动规律
(二)直接顶的运动形式
2.直接顶不规则垮落 直接顶冒落高度的确定 采空区充满程度的判断
h m hkp m h(kp 1)
充满条件
四、支承压力及其显现
采煤工作面前后 方支承压力对工作面 矿压显现有着很大影 响。采煤工作面前方 支承压力依次为原岩 应力区、应力增高区、 应力降低区和应力稳 定区。
第二节 采煤工作面矿山压力显现规律
四、支承压力及其显现
(二)支承压力在底板中的传播
分布规律
(1)随深度增加,支承压力逐渐减小,影响范围扩大;影响角φ
第二节 采煤工作面矿山压力显现规律
三、基本顶的运动规律
(二)基本顶的初次来压
1.初次来压的形成
基本顶视为四周固支的板,当工作面由切眼向前推进,直接顶垮落 后步,岩悬块空要面发积生越下来沉L初越垮 h大落2,。qRt 达在到这极过限程跨中度,时采,煤岩工板作发面生有断明裂显破的坏矿,压进显一现。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章采煤工作面上覆岩层移动规律第一节概述一、煤层顶底板岩层的构成煤层处于各种岩层的包围之中。

处于煤层之上的岩层称为煤层的顶扳;处于煤层之下的岩层称为煤层的底板。

根据顶、底板岩层离煤层的距离及对开采工作的影响程度不同,煤层的顶、底板岩层可分为:(l)伪顶。

紧贴在煤层之上,极易垮落的薄岩层称为伪顶。

通常由炭质页岩等软弱岩层组成,厚度一般小于0.5m,随采随冒。

(2)直接顶。

位于伪顶或煤层之上,具有一定的稳定性,移架或回柱后能自行垮落的岩层称为直接顶。

通常由泥质页岩、页岩、砂质页岩等不稳定岩层组成,具有随回柱放顶而垮落的特征。

直接顶的厚度一般相当于冒落带内的岩层的厚度。

(3)老顶。

位于直接顶或煤层之上坚硬而难垮落的岩层称为老顶。

常由砂岩、石灰岩、砂砾岩等坚硬岩石组成。

(4)直接底。

直接位于煤层下面的岩层。

如为较坚硬的岩石时,可作为采煤工作面支柱的良好支座;如为泥质页岩等松软岩层时,则常造成底臌和支柱插入底板等现象。

二、采煤工作面上覆岩层移动及其破坏在采用长壁采煤法时,随着采工作面的不断向前推进,暴露出来的上覆岩层在矿山压力的作用下,将产生变形、移动和破坏。

根据破坏状态不同,上覆岩层可划分为三个带(图3-l)。

冒落带。

指采用全部垮落法管理顶板时,采煤工作面放顶后引起的煤层直接顶的破坏范围(图3-l,Ⅰ)。

该部分岩层在采空区内已经垮落,而且越靠近煤层的岩石就越紊乱、破碎。

在采煤工作面内这部分岩层由支架暂时支撑。

裂隙带。

指位于冒落带之上、弯曲带之下的岩层。

这部分岩层的特点是岩层产生垂直于层面的裂缝或断开,但仍能整齐排列(图3-l,Ⅱ)。

弯曲下沉带。

一般是指位于裂隙带之上的岩层,向上可发展到地表。

此带内的岩层将保持其整体性和层状结构(图3-l,Ⅲ)。

生产实践和研究表明,采煤工作面支架上受到的力远远小于其上覆岩层的重量。

只有接近煤层的一部分岩层的运动才会对工作面附近的支承压力和工作面支架产生明显的影响。

所谓采煤工作面矿山压力控制,也就是对这部分岩层的控制。

这部分岩层大约相当于上述三带中的冒落带和裂隙带的总厚度,一般为采高的6~8倍。

图3-1 采煤工作面上覆岩层移动分带示意图采煤工作面上覆悬露岩层运动破坏的形式决定着矿山压力的显现规律及对控制的要求。

上覆岩层自悬露发展到破坏,基本上有两种运动形式,即弯拉破坏和剪断破坏。

岩层弯拉破坏的发展过程如图3-2所示。

随工作面的推进,上覆岩层悬露(图3-2a),在重力作用下弯曲(图3-2b),岩层弯曲沉降到一定程度后,伸入煤体的端部裂开(图3-2c),中部开裂(图3-2d),岩层冒落(图3-2e)。

图3-2 上覆岩层弯曲破坏发展过程悬露的岩层中部拉开后,是否发展至冒落,由其下部允许运动的空间高度所决定。

只有其下部允许运动的空间高度大于沉降岩层的可沉降值时,岩层运动才会由弯曲沉降发展至冒落。

否则,岩层将弯曲下沉并与煤层底板(或底部已冒落岩层)接触。

在岩层可以由弯曲发展至破坏的条件下,由于其运动是逐步发展的,所以工作面矿压显现一般比较缓和。

此时,支架应能支撑将要冒落岩层在控顶区上方的全部岩重,并能控制冒落岩层之上部分弯曲岩层的下沉量。

岩层剪断破坏的发展过程如图3-3。

岩层悬露后只产生较小弯曲下沉,悬露岩层端部即开裂(图3-3a),在岩层中部未开裂(或开裂很少)的情况下,岩层大面积的整体塌垮(图3-3b)。

产生悬露岩层剪断破坏的条件是:当工作面煤壁推进至岩梁端部开裂位置附近时,断裂面上的剪应力超过一定限度,虽然其中部尚未开裂,但只要下部有少量运动空间,岩层即可能被剪断而整体塌垮。

这类破坏形式运动范围大、速度快,采煤工作面将受到明显的动压冲击。

此时,如果支架工作阻力不足,极易发生顶板沿煤壁切下的重大冒顶事故。

即使工作面顶板不垮落,也会发生台阶下沉,使支柱回撤工作非常困难。

要控制这类顶板破坏,工作面支架必须有较高的初撑力,其工作阻力应能防止顶板沿煤壁线切断,而把切顶线推至控顶距之外。

支柱的可缩量可按在煤壁处出现台阶下沉而支柱又不被压死考虑。

图3-3 岩层的剪切破坏形式图3-4 断层对岩层破坏形式的影响岩层的两种破坏形式随地质及开采条件的变化而相互转化。

(l)当工作面推至岩层端部开裂位置附近,提高推进速度可能会使原来呈弯拉破坏的岩层转变为剪切破坏的运动形式。

这就是在日常来压比较均匀的工作面,高产后往往出现切顶事故的原因。

(2)强制放顶改变坚硬岩层的厚度,可以排除整体塌垮的威胁,从而使剪切破坏形式转化为弯拉破坏形式。

(3)分层开采的厚煤层,如果分层间采用上行式开采程序,通过下部几个分层的开采,使坚硬(可能发生剪切破坏)的顶板岩层受到重复的采动影响,产生裂缝,大大减小突然剪断的可能性,从而可转化为弯拉破坏的运动形式。

(4)在工作面推进方向上遇到与煤壁平行的断层,使原来弯拉破坏的岩层可能向整体切断的运动形式转化(图3-4)。

这是因为断层破坏了岩层的连续性,当工作面推到断层部位时,岩层悬露尚未达到中部裂断所必须的跨度,可能出现整体切断的危险。

第二节直接顶的移动规律选择采煤工作面顶板管理方法、支架设计和选型,日常顶板管理等问题,都与采煤工作面直接顶有关。

直接顶厚度(顶板冒落高度)的大小,决定着裂隙带发展的高度,也决定着各岩层稳定期的长短,对“三下采煤”、地表移动的控制设计等都有重要影响。

采煤工作面自开切眼开始推进后,直接顶岩层一般并不立即垮落。

待推进一定距离,直接顶悬露面积超过其允许值后,才会大面积垮落下来。

这称为直接顶的初次垮落(初次放顶)。

初次放顶后,直接顶岩层随采煤工作面的推进而冒落。

在正常推进过程中,直接顶是一种由采煤工作面支架支撑的悬臂梁。

其结构特点是在推进方向上不能保持水平力的传递。

因此,控制直接顶的基本要求是当其运动时,支架应能承担其全部重量。

一、直接顶厚度(冒高)的确定直接顶的冒落高度有一定规律性,在一定的采动条件下有确定的数值。

在同一岩层条件下,不同的采动条件、不同的开采程序和时空关系,可能有不同的冒高值。

在此,我们仅讨论开采单一煤层或开采煤层顶分层时冒高值的预计方法。

目前,有关推断冒高值的方法基本上有两种:1. 不考虑岩梁本身沉降值的推断方法如图3-5所示,悬空的直接顶岩层由下而上冒落,一直发展到自然接顶为止。

在自然冒落的发展过程中不考虑岩层本身的沉降值。

其冒高表达式推导如下:∑h z +m =K ∑h z由此导出的直接顶厚度∑h z 为:∑h z 1-=K m (3-1) 式中 m —采高,m ;K —已冒落岩层的碎胀系数。

图3-5 不考虑岩层弯曲沉降时的冒高这种推断方法对于厚度不大,强度不高的岩层覆盖的采煤工作面,特别是第一次来压阶段,计算结果与实际情况比较接近。

但是,这种方法没有考虑多数岩层冒落是由弯曲沉降发展而来的实际情况,没有考虑未冒落岩层本身的沉降。

因此,还没有能完善地解释和表达冒高变化的各种情况。

例如,对于实际冒落值为零的缓沉型采煤工作面,用该公式就无法做出解释。

2. 考虑岩层本身沉降的推断方法这种方法认为,除整体切断岩层外,所有岩层的冒落都是由弯曲沉降运动发展而来的。

因此,确定冒落高度必须考虑岩梁的沉降值和岩层变形能力的影响,以及下部允许运动空间的高度。

这种推断方法的几何模型如图3-6所示。

图中未冒落岩梁(h E )的沉降值满足下列表达式:S A =m -∑h z (K A -1)≤S 0 (3-2)式中 S A —岩梁实际沉降值;S 0—该岩梁保持假塑性允许的沉降值;m —采高;∑h z —直接顶厚度(即冒落高度);K A —岩梁触矸处已冒落岩层的碎胀系数。

由式3-2可推导出直接顶厚度∑h z 的表达式:∑h z 1--=A A K S m (3-3) 其中 S A ≤S 0对照图3-6可以发现,当用式3-3推断冒落高度时,要遵守S A 值与K A 值在同一地点选择的原则。

可以用离煤壁任何位置处的数值代入都不影响计算结果。

但是,绝不能认为S A 与K A 的值可以在任意位置选取。

因为公式中规定S A ≤S 0,而S 0是保持该岩梁处于“假塑性”状态的运动极限值(沉降极限值)。

因此,原则上S A 的取值位置是固定的,该位置应当是岩梁显著运动发生后,从下部开始触矸位置起,到运动被迫停止时整个触矸范围的反力中心。

图中A 点。

一般取K A =1.25~1.35。

图3-6 考虑岩层弯曲沉降时的冒落高度二、影响直接顶厚度的主要因素从式3-3可以看出,影响直接顶厚度的主要因素有:1. 采高m 的影响由式3-3可知,如果上覆岩层厚度都不大,强度和变形能力基本相同,则冒落高度与采高近似成正比。

因此,在生产现场经常用改变采高的方法来控制采煤工作面矿山压力显现和上覆岩层破坏的范围。

应当注意的是,冒落高度并不随采高的变化而连续变化,一般说来,上覆岩层的冒落高度是跳跃式变化的。

在推断冒高时应充分考虑上覆各岩层的厚度、岩性、强度、变形能力及层理等情况,注意找到冒高发生突变的位置。

2. 岩梁允许沉降值S 0及岩梁实际沉降值S A 的影响由式3-3可知,在一定采高(m )条件下,S 0值对冒落高度影响很大。

例如,当采高m =2m 时,如果取K A =1.25,则:当S 0=S A =0时,m 84125.11==-=--=∑m m K S m h A A z 当S 0=S A =0.5m 时, m 42125.15.01==--=--=∑m m m K S m h A A z 当S 0=S A =m 时, m 0125.11=--=--=∑m m K S m h A A z 因此,必须对各类岩层的假塑性沉降值S 0进行认真的分析。

一般认为,S 0的大小主要由岩层的厚度、强度及在推进方向上裂隙发育情况等因素决定。

图3-7 岩梁允许沉降值S 0研究证明,对于结构简单的均质岩层,在不出现整体切断运动形式的情况下,岩层厚度越大,可能的S 0值也将越大。

如图3-7所示,一般可认为,岩层断裂后形成三铰拱结构,当中部铰高于两端铰时,岩层保持传递岩梁状态;随着岩层弯曲沉降,当中部铰与两端铰在同一条直线上时,达到岩梁的极限沉降值S 0。

S 0可由下式表示:)tg cos(01-0C h h S •= (3-4) 式中 S 0—岩梁的允许沉降值;h —岩层厚度;C 0—岩梁的运动步距。

当h 值相对于C 0小得很多时,0tg 01-≈C h 则S 0≈h 。

显然,只要知道上覆岩层的厚度分布情况,就可以确定冒落高度。

例如图3-8所示的采场,采高为2.5m ,上覆岩层厚度分布情况为:h 1=1.5m ;h 2=1.0m ;h 3=3.0m ;h 4=5.0m 。

根据以上原理,不难推断出该采场的冒高为2.5m ,即冒到h 2为止,h 3仍处于假塑性岩梁状态,这是因为:对h 1层:S 0=h 1=1.5m ,如保持h 1层不冒,则下部必须的冒落岩层厚度为:m 4125.15.15.210=--=--=A z K S m h 而该岩层下部实际冒落厚度为零,因此h 1必然冒落。

相关文档
最新文档