第3章塑性加工过程的组织性能变化
第三篇(塑性加工)
纤维组织的稳定性很高,不能用热处理或其它方法加以消 除,只有经过锻压使金属变形,才能改变其方向和形状。 合理利用纤维组织
应使零件在工作中所受的最大正应力方向与纤维方向重合;
最大切应力方向与纤维方向垂直; 并使纤维分布与零件的轮廓相符合,尽量不被切断。
§1-3
金属的可锻性
金属材料通过塑性加工获得优质零件的难易程度。 (经塑性加工而不断裂) 塑性
三拐曲轴的锻造过程
§2-1 锻造方法
自由锻特点
●
坯料表面变形自由;
● 设备及工具简单,锻件重量不受限制; ● ● ●
锻件的精度低; 生产率低,适用于单件小批生产; 是大型锻件的唯一锻造方法。
§2-1 锻造方法
模锻
使加热后的金属在模膛内
受压变形以获得所需锻件 的方法。 应用: 大批量生产中小锻件。 <150Kg,如曲轴、连 杆、齿轮。
在冷加工时,形变强化使金属塑性降低,进
一步加工困难,应安排中间退火工艺。 实质:塑性变形时位错运动受阻,使交叉滑移中位错运动范围缩小,因 此,金属性能随之改变。
一、金属材料产生加工硬化
金属材料 强度和硬 度提高, 塑性和韧 性下降。
有利:加工硬化可提高产品性能! 不利:进一步的塑性变形带来困难! 加热可消除硬化现象!
压力使金属成型为各种型材和锻件等。
a)自由锻 b)模锻 c)胎模锻 胎模锻:自由锻设备上,采用不与上、下砧相连接的活动模具 成形锻件的方法。是介于自由锻和模锻之间的锻造工艺方法。 2)冲压 利用冲模将金 属板料切离或变形 为各种冲压件。
3)轧制 使金属坯料通过两个旋转轧辊之间的间隙而产生塑性变形的 加工方法。 用于生产各种型材、管材、板材等。
模锻
模锻是利用锻模使坯 料变形而获得锻件的 锻造方法。
机械制造基础-第3章锻压
单件小批生产 ----手工两箱分模造型
加工余量:上面>侧面>底面 模样放收缩率1%
大批生产 ----机器两箱分模造型 (共用同一个铸造工艺图)
上 下
作业答案:5.支撑台
表示圆周面不需要 加工,即相对来说不重要, 因此将铸件横卧下来,造 型最简单。
上 下
单件小批生产 ----手工两箱分模造型
凸模
凹 模
SHANGHAI UNIVERSITY
上海大学机自学院
2.弯曲---是利用弯曲模使工件轴线弯成一定 角度和曲率的工序。 自由弯曲 ① 弯曲方法 校正弯曲
② 弯曲件废品类型
自由弯曲 校正弯曲
外层开裂---当外侧拉应力超过板料抗拉强度时, 将在外侧转角处出现裂纹。 故应限制板料的最大弯曲变形程度(即最小弯曲 半径),一般 r min ≥t(板厚);同时注意毛坯 下料方向,最好使板料流线方向与弯曲线垂直。
SHANGHAI UNIVERSITY
例1:
例2:
SHANGHAI UNIVERSห้องสมุดไป่ตู้TY
上海大学机自学院
3.3 板料冲压
板料冲压→在冲床上用冲模使板料产生分离 或变形而获得制件的加工方法。又叫冷冲压。 冲压的优点是生产率高、成本低;成品的形 状复杂、尺寸精度高、表面质量好且刚度大、 强度高、重量轻,无需切削加工即可使用。因此 在汽车、拖拉机、电机、电器、仪表仪器、轻工 和日用品及国防工业生产中得到广泛应用。 常用的冲压材料有低碳钢、高塑性合金钢、 铝和铝合金、铜和铜合金等金属板料、带料与卷 料,还可加工纸板、塑料板、胶木板、纤维板等 非金属板料。
放收缩率1% 余量:上面>侧面>下面
作业答案:5.支撑台
金属的塑性变形与再结晶(3)
同一滑移面上若有大量的位错移出,则在晶体表 面形成一条滑移线。
位错在晶体中移动时所需切应力很小,因为当位错中心前 进一个原子间距时,一齐移动的只是位错中心少数原子, 而且其位移量都不大,形成逐步滑移,这就比一齐移动所 需的临界切应力要小得多,这称为“位错的易动性”。
研究表明,亚晶界的存在使晶体的变形抗力增加, 是引起加工硬化的重要因素之一。
3.形变织构
在塑性变形过程中,当金属按一定的方向变形量 很大时(变形量大于70%以上),多晶体中原来任 意位向的各晶粒的取向会大致趋于一致,这种有 序化结构叫作“变形织构”,又称为“择优取 向”,
金属材料的加工方式不同形成不同类型的织构: 拉拔时形成的织构称为丝织构,其特征是各个晶 粒的某一晶向平行于拉拔方向;轧制时形成的织 构称为板织构,其特征是不仅某一晶面平行于轧 制平面,而且某一晶向也平行于轧制方向。
3.变形引起的内应力
在金属塑性变形过程中,大约有10%的能量转化为内应力而残留在金属中, 使其内能增加。
这些残留于金属内部且平衡于金属内部的应力称为残余内应力。它是由于金 属在外力作用下各部分发生不均匀的塑性变形而产生的。
内应力一般可分为三种类型:Βιβλιοθήκη (1)宏观内应力(第一类内应力)
金属材料在塑性变形时,由于各部分变形不均匀,使整个工件或在较大的 宏观范围内(如表层与心部)产生的残余应力。
3.1.2多晶体金属塑性变形的特点
大多数金属材料是由多晶体组成的。 多晶体塑性变形的实质与单晶体一样。 要考虑到晶粒彼此之间在变形过程中的约束作用,以及晶界对塑性变形的影
第三章 金属塑性变形的物理基础
(1)塑性的基本概念
什么是塑性? 塑性是金属在外力作用下产生永久变形 而不破坏其完整性的能力。
塑性与柔软性的区别是什么? 塑性反映材料产生永久变形的能力。 柔软性反映材料抵抗变形的能力。
塑性与柔软性的对立统一
铅---------------塑性好,变形抗力小
不锈钢--------塑性好,但变形抗力高 白口铸铁----塑性差,变形抗力高
塑性指标的测量方法
拉伸试验法 压缩试验法 扭转试验法 轧制模拟试验法
拉伸试验法
Lh L0 100%
L0 F0 Fh 100%
F0
式中:L0——拉伸试样原始标距长度; Lh——拉伸试样破断后标距间的长度; F0——拉伸试样原始断面积; Fh——拉伸试样破断处的断面积
%
晶粒5 晶粒4 晶粒3
晶粒2
晶粒1
位置,mm
图5-6 多晶铝的几个晶粒各处的应变量。 垂直虚线是晶界,线上的数字为总变形量
四、合金的塑性变形
单相固溶体合金的变形 多相合金的变形
§3. 2 金属塑性加工中组织和性能变化 的基本规律
一、冷塑性变形时金属组织和性能的变化 二、热塑性变形时金属组织和性能的变化
2200
N/mm2
图4-6 正压力对摩擦系数的影响
0.5
μ
0.4
0.3
0.4
0.2 0.2
0.1
0
℃
200
400
600
800
图4-7 温度对钢的摩擦系数的影响
0
400
600
800 ℃
图4-8 温度对铜的摩擦系数的影响
测定摩擦系数的方法
夹钳轧制法 楔形件压缩法 塑性加工常用摩擦系数 圆环镦粗法
2金属在塑性加工变形中组织性能的变化
2 金属在塑性加工变形中组织性能的变化2.1 在冷加工变形中组织性能的变化一、金属组织的变化1、晶粒被拉长在冷变形中,随着金属外形的改变,其内部晶粒的形状也大体上发生相应的变化,即均沿最大主变形方向被拉长、拉细或压扁,如图2-1在晶粒被拉长的同时,晶间夹杂物和第二相也跟着被拉长或拉碎呈点链状排列,这种组织称为纤维组织。
变形程度越大,纤维组织越明显。
由于纤维组织的存在,使变形金属的横向(垂直于延伸方向)机械性能降低,而呈现各向异性。
2、亚结构亚结构是指金属经过冷变形后,其各个晶粒被分割成许多单个的小区域,如图3-2图2-1 冷轧前后晶粒形状变化(a )变形前的退火状态组织;(b )变形后的冷轧变形组织图2-2 塑性变形时的亚结构3、变形织构(1)定义:由原来位向紊乱的晶粒到出现有序化,并有严格位向关系的组织结构,称为变形织构。
(2)种类:按照坯料或产品的外形可分为丝织构和板织构。
1)丝织构在拉拔和挤压条件下形成的织构称为丝织构。
特点:各晶粒有一共同晶向相互平行,并与拉伸轴线一致,以此晶向来表示丝织构。
如图2-3所示。
2)板织构在轧制过程中形成的织构称为板织构。
特点:晶面与轧制面平行,晶向又与轧制方向一致(见图3-3)。
二、金属性能的变化1.机械性能的改变金属的变形抗力指标随变形程度的增加而升高,金属的塑性指标随变形程度的增加而降低。
2、物理及物理-化学性质的变化(1)金属的密度降低(2)金属的导电性降低(或电阻增大)(3)导热性降低(4)化学稳定性降低(5)金属与合金经冷变形后所出现的纤维组织及结构,皆会使变形后的金属与合金产生各向异性,即材料的不同方向上具有不同的性能。
(a ) (b )图2-3 多晶体晶粒的排列情况(a )晶粒的紊乱排列;(b )晶粒的整齐排列2.2 在热加工变形中对组织与性能的影响一、热加工的变形特点在一定的条件下,热加工变形较其冷加工方法,具有一系列的优点:(1)变形抗力低(2)塑性升高,产生断裂的倾向性减少(3)不易产生织构(4)生产周期短(5)组织与性能基本满足要求不足之处:(1)生产细或薄的产品时较困难(2)产品表面质量差(3)组织与性能的不均匀(4)产品的强度不高(5)金属的消耗较大(6)对含有低熔点的合金不宜加工二、金属组织性能的变化(1)使铸态组织得到压密和焊合。
《金属材料与热处理》第三章金属的塑性变形对组织性能
重冷塑性变形的金属,经1小时加热后能完全再结晶的 最低温度来表示。
最低再结晶温度:
T再=0.4T熔点 式中温度单位为绝对温度(K)。
8
学习情境三:金属的塑性变形对组织性能的影响 3.2
(3)再结晶温度影响因素:
1)变形程度 ➢2)金金属属再纯结度晶前:塑纯性度变越形高的, 最相低对再变结形晶量温称度为也预就先越变低形 度➢。3)预;加先热变速形度越大, 金属的晶体缺陷就越多, 组织越不 稳➢➢杂再定质结, 最和晶低合是再金一结元扩晶素散温(过度高程也熔, 需就点一越元定低素时;)间阻才碍能原完子成扩;散和晶 ➢界➢当提迁预高移先加, 可变热显形速著度度提达会高一使最定再低大结再小晶结后在晶,较最温高低度温再;度结下晶发温生度;趋于某 一➢高原稳纯始定度晶值铝粒。(越99粗.9大9,9再%结)最晶低温再度结越晶高温。度为80 ℃; ➢工业纯铝(99.0%)最低再结晶温度提高到290 ℃。
3
学习情境三:金属的塑性变形对组织性能的影响 3.2
3、热加工晶粒大小控制措施
(1).控制较低的加工终了温度 (2).控制较大的变形程度 (3).控制较快的冷却速度
0
学习情境三:金属的塑性变形对组织性能的影响 3.2
3、产生残余内应力 ➢定义:外力去除后,金属内部残留下来的应力。
产生原因:金属发生塑性变形时,内部变形不均匀, 位错、空位等晶体缺陷增多,会产生残余内应力。
➢1)宏观内应力 ➢2)微观残余应力 ➢3)晶格畸变应力
1
学习情境三:金属的塑性变形对组织性能的影响 3.2
3
学习情境三:金属的塑性变形对组织性能的影响 3.1
第一节 金属的塑性变形
金属在塑性变形中的组织结构与性能变化
6 材料在塑性变形中的组织结构与性能变化本章仅将简要地介绍冷形变及其后的加热过程、以及热形变过程对金属和合金的组织结构与性能的影响的主要理论。
6.1 冷形变后金属组织结构和性能的变化金属和合金在低于再结晶温度进行压力加工时,通常就称为冷形变或冷加工。
钢在常温下进行的冷轧、冷拔、冷挤、冷冲等压力加工过程皆为冷形变过程。
在冷形变过程中组织和性能都会发生变化。
6.1.1 金属组织结构的变化金属塑性变形的物理实质基本上就是位错的运动,位错运动的结果就产生了塑性变形。
在位错的运动过程中,位错之间、位错与溶质原子、间隙位置原子以及空位之间、位错与第二相质点之间都会发生相互作用,引起位错的数量、分布和组态的变化。
从微观角度来看,这就是金属组织结构在塑性变形过程中或变形后的主要变化。
塑性变形对位错的数量、分布和组态的影响是和金属材料本身的性质以及变形温度、变形速度等外在条件有关的。
单晶体塑性变形时,随着变形量增加,位错增多,位错密度增加,运动位错在各种障碍前受阻,要继续运动需要增加应力,从而引起加工硬化。
变形到一定程度后产生交滑移,因而引起动态回复,这些塑性变形过程中的变化已是我们所熟知的,不再细述。
多晶体塑性变形时,随着变形量增加和单晶体变形一样,位错的密度要增加。
用测量电阻变化、储能变化的方法,或者用测量腐蚀坑的方法以及电镜直接观测的方法都可以出金属材料的位错密度。
退火状态的金属,典型的位错密度值是105~108 cm -2,而大变形后的典型数值是1010~1012cm -1。
通过实验得到的位错密度(ρ)同流变应力(σ)之间的关系是:21ρασGb = (6-1) 式中:a —等干0.2~0.3范围的常数;G —剪切弹性模量;b —柏氏矢量。
多晶体塑性变形时,因为各个晶粒取向不同,各晶粒的变形既相互阻碍又相互促进,变形量稍大就形成了位错胞状结构。
所谓胞状结构,是变形的各种晶粒中,被密集的位错缠给结区分许多个单个的小区域。
《材料成型技术与基础》全套PPT电子课件教案-第03章 单晶体与多晶体的塑性变形等
拉拔时金属应力状态
第三章金属材料的塑性变形
本章小结
锻造、轧ቤተ መጻሕፍቲ ባይዱ、挤压、冲压等都是塑性变形。这些 塑性变形的目的不仅是为了得到零件的外形和尺寸, 更重要的是为了改善金属的组织和性能。
塑性变形的主要形式是滑移和孪生,是在切应力 的作用下进行的,塑性变形将产生形变强化,形成纤 维组织,具有各向异性。塑性变形后的 金属加热时会 产生回复或再结晶及晶粒长大,其形变强化现象消除。
滑移特点:①滑移是在切 应力作用下完成的;②滑 移时移动的距离是原子间 距的整数倍;③滑移的同 时由于正应力组成的力偶 作用,推动晶体转动,力 图使滑移面转向与外力一 致的方向。④滑移的实质 是位错运动的结果。因此 滑移的实际临界切应力远 远大于理论临界切应力。
第三章金属材料的塑性变形
单晶体滑移变形示意图
定义:经冷变形的金属当加热到T再时,会在变形最激 烈的区域自发形成新的细小等轴晶粒,叫做再结 晶这一过程实质上也是一个形核和长大的过程, 但晶格类型不变,只是改变了晶粒外形. T再T熔
※金属再结晶后,消除了残余应力和形变强化现象 晶粒长大 冷变形和热变形 金属纤维组织及其应用
第三章金属材料的塑性变形
第三章金属材料的塑性变形
单晶体和多晶体的塑性变形 金属的形变强化 塑性变形金属在加热时组织和性能的变化 塑性加工性能及影响因素 本章小结
第三章金属材料的塑性变形
单晶体的塑性变形 1.滑移 2.孪生 1.晶粒取向对塑性变形的影响 2.晶界对塑性变形的影响
第三章金属材料的塑性变形
锌单晶体的滑移变形示意图
第三章金属材料的塑性变形
未变形 弹性变形 弹塑性变形 塑性变形
位错运动引起的滑移变形示意图
第三章金属材料的塑性变形
材料成型工艺学 金属塑性加工
二、模锻件的结构工艺性
1. 模锻件上必须具有一个合理的分模面 2. 零件上只有与其它机件配合的表面才需进行机械加工,
其它表面均应设计为非加工表面 (模锻斜度、圆角) 3. 模锻件外形应力求简单、平直和对称。避免截面间差别
过大, 薄壁、高筋、高台等结构 (充满模膛、减少工序) 4. 尽量避免深孔和多孔设计 5. 采用锻- 焊组合结构
自由锻设备:锻锤 — 中、小型锻件 液压机 — 大型锻件
在重型机械中,自由锻是生产大型和特大型锻件的 惟一成形方法。
1.自由锻工序 自由锻工序:基本工序 辅助工序 精整工序
(1) 基本工序 使金属坯料实现主要的变形要求, 达
到或基本达到锻件所需形状和尺寸的工序。 有:镦粗、拔长、冲孔、弯曲、
扭转、错移、切割 (2) 辅助工序
金属的力学性能的变化:
变形程度增大时, 金属的强度及硬度升高, 而塑 性和韧性下降。
原因:由于滑移面上的碎晶块和附近晶格的强烈 扭曲, 增大了滑移阻力, 使继续滑移难于进行所致。
几个现象:
▲ 加工硬化
(冷变形强化): 随变形程度增大, 强度和硬度上升而塑性下降的现象。
▲回复:使原子得以回复正常排列, 消除了晶格扭曲, 致使
§3 金属的可锻性
金属的可锻性:材料在锻造过程中经受塑性变形 而不开裂的能力。
金属的可锻性好,表明该金属适合于采用压力加工 成形; 可锻性差,表明该金属不宜于选用压力加工方法 成形。
衡量指标:金属的塑性(ψ、δ ); 变形抗力(σb、HB)。
塑性越好,变形抗力越小,则金属的可锻性好。
金属的可锻性取决于金属的本质和加工条件。
弹复:
金属塑性变形基本规律:
体积不变定律: 金属塑变后的体积与变形前的体积相等。
金属在冷和热塑性加工过程中组织和性能变化规律之回复和再结晶
12/27
2.再结晶动力学
(1)再结晶速度与温度的关系:
v Aexp(Q / RT)
(2)特点:再结晶过程有一孕育期,开始速度慢, 然后逐渐增大,在体积分数为50%最大,然后减慢。
再结晶的体积分数/%
时间/min 经98%冷轧的纯铜(质量分数为ωCu=99.999%)在不同温度下的等温再结晶曲线
3.再结晶温度及其影响因素
(1)定义:冷变形金属开始进行再结晶的最 低温度。
经验公式
高纯金属:T再=0.25~0.35Tm 工业纯金属:T再=0.35~0.45Tm 合金:T再=0.4~0.9Tm
注:再结晶退火温度一般比上述温度高 100~200℃
15/27
(2)再结晶温度的影响因素
a. 变形量
13/27
(3)动力学方程表达式
1 2.3R lg A 2.3R lg t
TQ
Q
作1/T~lgt图,直线的斜率为2.3R/Q
(1/T)/×10-3K-1
t(φR为50%所需的时间)/min
经98%冷轧的纯铜(质量分数为ωCu=99.999%)在不同温 度下等温再结晶时的1/T~lgt图
14/27
长大方式
正常长大 异常长大(二次再结晶)
20/27
1.正常长大
(1)定义:再结晶后晶粒的均匀连续长大。
(2)驱动力:界面能差。界面能越大,曲 率半径越小,驱动力越大。
(长大方向是指向曲率中心,而再结晶晶核的 长大方向相反.)
注:由于晶粒长大是通过大角度晶界的迁移
来进行的,因而所有影响晶界迁移的因素均
(2)再结晶:是指出现无畸变的等轴新晶粒逐步 取代变形晶粒的过程;
(3)晶粒长大:是指再结晶结束之后晶粒的继续 长大。
第三章 金属的塑性变形
纯金属的最低再结晶温度 与其熔点之间的近似关系: T再≈0.4T熔 其中T再、T熔为绝对温度.
金属熔点越高, T再也越高.
T再与ε的关系
T再℃ = (T熔℃+273)×0.4–273,如Fe的T再=(1538+273)×0.4–273=451℃
影响再结晶退火后晶粒度的因素
钛合金六方相中的形变孪晶
奥氏体不锈钢中退火孪晶
二、单晶体的塑性变形 分析单晶体的塑性变形,实际上就是分析 晶内变形。 单晶体塑性变形的主要方式有滑移和孪晶。 根据晶体结构 理论,任何一块单 晶体都包含有若干 不同方向的晶面。
外 力 在 晶 面 上 的 分 解 切 应 力 作 用 下 的 变 形 锌 单 晶 的 拉 伸 照 片
580º C保温8秒后的组织
580º C保温15分后的组织 700º C保温10分后的组织
第四节
金属的热加工
• 一、冷加工与热加工的区别
• 在金属学中,冷热加工的界限是以再结晶温
度来划分的。低于再结晶温度的加工称为冷 加工,而高于再结晶温度的加工称为热加工。
轧制
模锻
拉拔
• 如 Fe 的再结晶温度为451℃,其在400℃ 以下的加 工仍为冷加工。而 Sn 的再结晶温度为-71℃,则其 在室温下的加工为热加工。 • 热加工时产生的加工硬化很快被再结晶产生的软化 所抵消,因而热加工不会带来加工硬化效果。
铁素体变形80%
碎拉长的晶粒变为完整
的等轴晶粒。
650℃加热
• 这种冷变形组织在加热
时重新彻底改组的过程
称再结晶。
670℃加热
• 再结晶也是一个晶核形成 和长大的过程,但不是相 变过程,再结晶前后新旧 晶粒的晶格类型和成分完 全相同。
第三章塑性变形
商洛学院 常亮亮
3.1 金属材料塑性变形机制与特点
塑性变形是永久性变形。常温或低温下,单晶体 的塑性变形主要有滑移、孪生,还有扭折。 滑移是晶体在切应力作用下沿一定的晶面和晶向 进行切变的过程,如面心立方结构的(111)面[101] 方向等。滑移系统越多,材料的塑性越大。
(1) 滑移的显微观察 由大量位错移动而导致晶体的一部分相对于另一部分,
3. 形变织构 (1)形变织构(deformation texture):是晶粒在空间上的择 优取向(preferred orientation), 如右上图。 (2)类型及特征 ①丝织构 ② 板织构 右图是因形变织构造成的制 耳
(二)加工硬化:金属材料在塑性变形过程中,随着变形量的增 加,强度和硬度不断上升,而塑性和韧性不断下降的现象。
10钢σs与晶粒大小的关系
晶粒直径(μm)
400
50
10
5
2
下屈服点(KN/m2) 86
121
180
242 345
锌的单晶和多晶的拉伸曲线比较
由上图锌的拉伸曲线可以看出: 比较:同一材料多晶体的强度高,但塑性较低。
单晶塑性高。
原因:多晶中各个晶粒的取向不同。在外力作用
下,某些晶粒的滑移面处于有利的位向,受到大于σk
低碳钢的σb与晶粒直径的关系
晶界对硬度的影响
3、多晶体塑性变形的特点
1)各晶粒变形的非同时性和非均匀性 ➢材料表面优先 ➢与切应力取向最佳的滑移系变形的相互协调 晶粒内不同滑移系滑移的相互协调
保证材料整体的统一
3.1.3塑性变形的特点
滑移时不仅滑移面发生转动,而滑移方向也逐渐改变, 滑移面上的分切应力也随之改变。φ=45º时分切应力最大。
第3章 金属材料成形过程中的行为与性能变化
3.1 金属的凝固(solidification of metal) 金属的凝固( metal) 3.2 铸造、焊接过程中材料行为及性能变化 铸造、 3.3 冷塑性变形过程中的材料行为及性能变化 3.4 热塑性变形过程中的材料行为及性能变化 退出
第3章 金属材料成形过程中的行为与性能变化
作业: , , , , 。 作业:3,4,6,9,10。
本章结束
返 回
图3-1 纯金结晶时冷却曲线示意图
返回
图3-2 纯金属结晶过程示意图 返回
图3-3 钢锭中的树枝状晶体
返回
图3-4 树枝状晶体生长示意图
返回
图3-5 形核率和长大速率与过冷度的关系曲线
返回
图3-6 铸件的宏观组织形成过程示意图
•零件常用的成形方法: 零件常用的成形方法: 零件常用的成形方法 整体凝固成形。 铸 件——整体凝固成形。 整体凝固成形 焊 件——局部熔化(凝固)连接成形。 局部熔化( 局部熔化 凝固)连接成形。 其它件——塑性成形(包括切削成形), 塑性成形(包括切削成形) 其它件 塑性成形 如锻件、冲压件及机制件。 如锻件、冲压件及机制件。 •成形过程中材料内部组织结构有变化 材料行 成形过程中材料内部组织结构有变化→材料行 成形过程中材料内部组织结构有变化 为、性能变化。 性能变化。
3.2铸造、焊接过程中材料行为及性能变化 3.2铸造、焊接过程中材料行为及性能变化
3.2.1 铸锭组织(ingot microstructure) 铸锭组织( microstructure) •实际结晶时,液态金属在模腔中凝固,存在①模壁作用 实际结晶时,液态金属在模腔中凝固,存在① 实际结晶时 方向性散热,最终形成三晶区的铸锭组织。 ②方向性散热,最终形成三晶区的铸锭组织。 图3-6 表面细等轴晶区:模壁激冷( 及非自发形核→细 表面细等轴晶区:模壁激冷(大△T )及非自发形核 细 小晶粒薄层,无实用价值。 小晶粒薄层,无实用价值。 且方向性散热→垂直模壁单相长 柱 状 晶 区:△T↓且方向性散热 垂直模壁单相长 且方向性散热 柱晶, 大 →柱晶 , 致密但粗大 , 性能有方向 柱晶 致密但粗大, 性且柱晶间为薄弱环节。 性且柱晶间为薄弱环节。 晶区:温度均匀,到处同时形核、各向长大, 中心 等轴 晶区:温度均匀,到处同时形核、各向长大, 晶粒较小,性能较好。 晶粒较小,性能较好。
(金属塑性成形原理课件)第3讲冷热加工组织变化
加工硬化是金属材料的一项重要特性,可被 用作强化金属的途径。特别是对那些不能通 过热处理强化的材料如纯金属,以及某些合 金,如奥氏体不锈钢等,主要是借冷加工实 现强化的。
2020/10/4
20
Lesson Three
单晶体的切应力一应变曲线 显示塑性变形的三个阶段
2020/10/4
21
Lesson Three
2020/10/4
7
TEM and EBSDmicrographs of the 87% deformed sample.
(a), (b)TEMmicrographs with
different magnification; (c)EBSD-micrographs
ห้องสมุดไป่ตู้
Lesson Three
Huang Y C, Liu Y, Li Q, et al. Relevance between microstructure and texture during cold rolling of AA83104 aluminum alloy[J]. Journal of Alloys and Compounds, 2016, 673: 383-389.
2020/10/4
14
轧辊
Lesson Three
轧面
(a)
(b)
(c)
轧制过程中择优取向的形成
各晶粒中的“→”表示某晶向
(a)、(b)、(c)分别表示轧制前、轧制时与轧制后的晶粒取向
2020/10/4
15
Lesson Three
板织构示意图
(a) 轧制前 (b)轧制后
2020/10/4
16
2020/10/4
工程材料及成型技术基础第3章 金属的塑性变形
吊钩内部的纤 维组织 (左:合理; 右:不合理, 应使纤维流线 方向与零件工 作时所受的最 大拉应力的方 向一致)
43
3)热加工常会使复相合金中的各个相沿着加工变形 方向交替地呈带状分布,称为带状组织。 带状组织会使金属材料的力学性能产生方向性,特 别是横向塑性和韧性明显降低。一般带状组织可以通过 正火来消除。
滑移面 +
滑移方向
=
滑移系
原子排列 密度最大的 晶面
滑移面和 该面上的一 个滑移方向
三种典型金属晶格的滑移系
晶格 滑移面 {110}
体心立方晶格 {111} {110}
面心立方晶格
密排六方晶格
{111}
滑移 方向
滑移系
6个滑移面
×
2个滑移方向
=
12个滑移系
BCC
4个滑移面
×
3个滑移方向
=
12个滑移系
35
这是因为此时的变形量较小,形 成的再结晶核心较少。当变形度 大于临界变形度后,则随着变形度 的增大晶粒逐渐细化。当变形度 和退火保温时间一定时,再结晶 退火温度越高,再结晶后的晶粒 越粗大。
36
再结晶晶粒大小随加热温 度增加而增加。
临界变形度处的再结晶 晶粒特别粗大
变形度大于临界变形 度后,随着变形度的增 大晶粒逐渐细化
41
(2) 出现纤维组织 在热加工过程中铸态金属的偏析、 夹杂物、第二相、晶界等逐渐沿变 形方向延展,在宏观工件上勾画出 一个个线条,这种组织也称为纤维 组织。纤维组织的出现使金属呈现 各向异性,顺着纤维方向强度高, 而在垂直于纤维的方向上强度较低。 在制订热加工工艺时,要尽可能使 纤维流线方向与零件工作时所受的 最大拉应力的方向一致。
第三章 金属材料的塑性变形
二、再结晶 1. 再结晶过程及其对金属组织、性能的影 响 变形后的金属在较高温度加热时,由于原 子扩散能力增大,被拉长(或压扁)、破碎的 晶粒通过重新生核、长大变成新的均匀、细小 的等轴晶。这个过程称为再结晶。变形金属进 行再结晶后,金属的强度和硬度明显降低,而 塑性和韧性大大提高,加工硬化现象被消除, 此时内应力全部消失,物理、化学性能基本上 恢复到变形以前的水平。再结晶生成的新的晶 粒的晶格类型与变形前、变形后的晶格类型均 一样。
二、再结晶 1. 再结晶过程及其对金属组织、性能的影 响 变形后的金属在较高温度加热时,由于原 子扩散能力增大,被拉长(或压扁)、破碎的 晶粒通过重新生核、长大变成新的均匀、细小 的等轴晶。这个过程称为再结晶。变形金属进 行再结晶后,金属的强度和硬度明显降低,而 塑性和韧性大大提高,加工硬化现象被消除, 此时内应力全部消失,物理、化学性能基本上 恢复到变形以前的水平。再结晶生成的新的晶 粒的晶格类型与变形前、变形后的晶格类型均 一样。
3.3 塑性变形后的金属在加热时组织和性能的 变化 金属经塑性变形后,组织结构和性能发生 很大的变化。如果对变形后的金属进行加热, 金属的组织结构和性能又会发生变化。随着加 热温度的提高,变形金属将相继发生回复、再 结晶和晶粒长大过程。
一、回复 变形后的金属在较低温度进行加热,会发生回复 过程。 产生回复的温度T回复为: T回复=(0.25~0.3)T熔点 式中T熔点表示该金属的熔点, 单位为绝对温度 (K)。 由于加热温度不高, 原子扩散能力不很大, 只是 晶粒内部位错、空位、间隙原子等缺陷通过移动、复 合消失而大大减少,而晶粒仍保持变形后的形态, 变 形金属的显微组织不发生明显的变化。此时材料的强 度和硬度只略有降低,塑性有增高,但残余应力则大 大降低。工业上常利用回复过程对变形金属进行去应 力退火、以降低残余内应力,保留加工硬化效果。
(5)金属塑性变形过程中组织与性能的变化规律
热变形过程中的回复与再结晶
(1)热变形时的动态回复与动态再结晶
动态回复
(a)
动态再结晶
100μ m
热变形过程中的回复与再结晶
(a)
(b) 动态回复 (c)
动态回复
静态回复
静态回复
(d) 静态再结晶 静态再结晶 动态回复
动态回复
静态再结晶
静态再结晶 静态再结晶 静态再结晶
动态再结晶 动态再结晶
热变形过程中的回复与再结晶
三、晶粒长大
当变形金属再结晶完成之后,若继续加热保温,则新生 晶粒之间还会大晶粒吞并小晶粒,使晶粒长大,见图 4-15。 晶粒长大会减少晶体中晶界的总面积,降低界面能。因 此,只要有足够原子扩散的温度和时间条件,晶粒长 大是自发的、不可避免的。 晶粒长大其实质是一种晶界的位移过程。在通常情况下, 这种晶粒的长大是逐步的缓慢进行的,称为正常长大。 但是,当某些因素(如:细小杂质粒子、变形织构等) 阻碍晶粒正常长大,一旦这种阻碍失效常会出现晶粒 突然长大,而且长大很大。对这种晶粒不均匀的现象 称为二次结晶。对于机械工程结构材料是不希望出现 二次结晶的。但是对硅钢片等电气材料常利用这个二 次结晶得到粗晶来获得高的物理性能。
二、再结晶
1.变形金属的结晶 当变形金属被加工到一定高度,原 子活动能力较强时,会在变形晶粒或晶粒内的亚晶界 处以不同于一般结晶的特殊成核方式产生新晶核。随 着原子的扩散移动新晶核的边界面不断向变形的原晶 粒中推进,使新晶核不断消耗原晶粒而长大。最终是 一批新生的等轴晶粒取代了原来变形的晶粒,完成了 一次新的结晶过程。这种变形金属的重新结晶称为再 结晶。再结晶没发生晶格类型的变化,只是晶粒形态 和大小的变化。也可以说只有显微组织变化而没有晶 格结构变化,故称为再结晶,以有别于各种相变的结 晶(重结晶)。 变形金属再结晶后,显微组织由破碎拉长的晶粒变成新 的细小等轴晶粒,残余内应力全部消除、加工硬化现 象也全部消失。金属恢复到变形前的力学性能,物理 化学等性能也恢复到变形前的水平。
塑性加工过程的组织性能变化
丝织构
丝织构系在拉拔和挤压加工中 形成,这种加工都是在轴对称情 况下变形,其主变形图为两向压 缩一向拉伸。变形后晶粒有一共 同晶向趋向与最大主变形方向平 行,以此晶向来表示丝织构。
经较大变形程度的拉拔后:面心立方金属: <111>和 <100>
体心立方金属:<110>
板织构
板织构是某一特定晶面平行于板面,某一特定晶向平行于 轧制方向,因此,板织构用其晶面和晶向共同表示。例如 体心立方金属,当其(100)晶面平行于轧面,[011]晶向平 行于轧向时,此板织构可用(100)[0l1]来表示。
〔1〕金属在热加工变形时,变形抗力较低, 消耗能量较少。
〔2〕金属在热加工变形时,其塑性升高,产 生断裂的倾向性减小。
〔3〕与冷加工相比较,热加工变形一般不易 产生织构。
〔4〕在生产过程中,不需要像冷加工那样 的中间退火,从而可使生产工序简化, 生产效率提高。
〔5〕热加工变形可引起组织性能的变化, 以满足对产品某些组织与性能的要求。
〔1〕纤维组织 〔2〕亚构造 〔3〕变形织构 〔4〕晶内及晶间的破坏
3. 冷变形时金属性能的变化
〔1〕物化性能 a. 密度 金属经冷变形后,晶内及间晶出现了显 微裂纹、裂口、空洞等缺陷致使金属的 密度降低。 b. 电阻 冷变形一般使金属材料的电阻增加。 c. 化学稳定性 冷变形后,金属的剩余应力和内能增加,
可见,恰当地利用冷变形-退火循环可以将金 属加工到任意形状和大小,以及任意程度的硬 化或软化状态的制品。
冷变形的优点是制品外表光洁、尺寸准确、 形状规整;
可以得出具有任意硬化程度和软化程度的 产品,以满足工业对材料的不同要求,而 这是热变形很难实现的。
顺便指出,用退火工作来进展对硬化材料的局 部软化制取半硬、3/4硬等制品时,因为再结晶 过程进展很快,受炉温的波动很敏感,不如用 冷变形以控制变形程度严格(特别是那些不可热 处理强化的金属和合金)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.冷变形时金属性能的变化
1.
冷变形的概念
变形温度低于回复温度,在变形中只有加工硬化作用
而无回复与再结晶现象,通常把这种变形称为冷变形或冷 加工。冷变形时金属的变形抗力较高,且随着所承受的变 形程度的增加而持续上升,金属的塑性则随着变形程度的 增加而逐渐下降,表现出明显的硬化现象。
抗力
抗力
变形抗力与塑性
(2)热变形制品晶粒度的控制 在热变形过程中,为了保证产品性能及使用条件 对热加工制品晶粒尺寸的要求,控制热变形产品的晶 粒度是很重要的。 热变形后制品晶粒度的大小,取决于变形程度和
变形温度(主要是加工终了温度)。第二类再结晶全 图,是描述晶粒大小与变形程度及变形温度之间关系 的。如图6-14所示。根据这种图即可确定为了获得均 匀的组织和一定尺寸晶粒时,所需要保持的加工终了 温度及应施加的变形程度。
第3章 塑性加工过程的组织性能变化
§3.1
塑性加工中金属的组织与性能
§3.2
§3.3
金属塑性变形的温度——速度效应
形变热处理
§3. 1
塑性加工中金属的组织与性能 冷变形
3. 1. 1
3. 1. 2
3. 1. 3
热变形
塑性变形对固态相变的影响
3. 1. 1
冷变形
1.冷变形的概念 2.冷变形时金属显微组织的变化
塑性
塑性
冷加工率
退火温度
2.冷变形时金属显微组织的变化
(1)纤维组织
多晶体金属经冷变形后,原来等轴的晶粒沿着主变 形的方向被拉长。变形量越大,拉长的越显著。当变 形量很大时,各个晶粒已不能很清楚地辨别开来,呈 现纤维状,故称纤维组织。被拉长的程度取决于主变 形图和变形程度。
问题:为什么锻件质量优于铸件质量?
现不同类型的织构。由于织构的存在而使金属呈现各 向异性。
轧 向 冷 轧 横 向 再结晶 0.8 1.6 1.2 0.4 0.4 0.8 1.2 1.6 105MPa
(a)
(b)
冷轧和再结晶铜片的弹性模量值
深冲件上的制耳
冷变形强化(加工硬化)
金属材料在冷塑性变形时,其强度、硬 度升高,而塑性、韧性下降的现象——冷变 形强化.
(3)热加工后产品的组织及性能不如冷加工时均匀。因为 热加工结束时,工件各处的温度难于均匀一致。
(4)不依赖热加工提高材料强度。
(5)有些金属具有热脆的不进行热加工。
确定热变形的温度范围,最少需要该合金的相图、塑 性图(图6-12)及变形抗力随温度而变化的图形(图 6-13)等资料。 根据合金相图及塑性图,可这样来选择热变形温度范 围:
图6-13 各种有色金属、合金加热温度对强度极限的影响 铜镍合金;2—镍;3—锡青铜QSn7—0.4;4—LY11;5—铜;6—锰铜; 7—锌;8—铅;9—H68;10—H62;11—H59;12—LY12;13—MB5;14—铝
2.
热变形对金属组织性能的影响
(1)热变形对铸态组织的改造 一般来说,金属在高温下塑性高、抗力小,加之原子 扩散过程加剧,伴随有完全再结晶时,更有利于组织的改
及出现第二、三类残余应力等,故经受冷变形后的金 属及合金,其塑性指标随所承受的变形程度的增加而 下降,在极限情况下可达到接近于完全脆性的状态。 另外,由于晶格畸变、出现应力、晶粒的长大、细化 以及出现亚结构等,金属的抗力指标则随变形程度的 增加而提高。金属力学性能与变形程度的曲线称硬化 曲线。
(3)织构与各向异性 金属材料经塑性变形以后,在不同加工方式下,会出
原因?
产生原因:滑移面上产生了微小碎晶,晶格畸变。 (内应力)
提高强度
加工硬化的应用
使变形均匀 提高安全性
n =A
硬化指数n是冷变形硬化参数,反 映材料的变形抗力。
n
3. 1. 2
热变形
1.热变形的概念 2.热变形对金属组织性能的影响 3.热变形过程中的回复与再结晶
1.
热变形的概念
(3)与冷加工相比较,热加工变形一般不易产生织构。
(4)在生产过程中,不需要像冷加工那样的中间退火,从而 可使生产工序简化,生产效率提高。 (5)热加工变形可引起组织性能的变化,以满足对产品某些 组织与性能的要求。
同其他加工方法相比也有如下的不足:
(1)对薄或细的轧件,由于散热较快,在生产中保持热加 工的温度条件比较困难。因此,目前对生产薄的或细的 金属材料来讲,一般仍采用冷加工(如冷轧、冷拉)的 方法。 (2)热加工后轧件的表面不如冷加工生产的尺寸精确和光 洁。因为在加热时,由于轧件表面生成氧化皮和冷却时 收缩的不均匀。
图6-12
确定热变形温度的必需资料
(a)相图;(b)塑性图(HPb59-1)
60 55 50 45
强度极限,×10MPa
40 35 30 25 20 15 10 5 0 100 14 4
1 2
3 5 6 7 8 200 300 400 500 600 温度,℃ 700 800 900 1000 12 13 10 9
(3)变形织构
多晶体塑性变形时,各个晶粒滑移的同时,也伴随着晶 体取向相对于外力有规律的转动,使取向大体趋于一致叫做 “择优取向”。具有择优取向的物体,其组织称为“变形织 构”。
金属及合金经过挤压、拉拔、锻造和轧制以后,都会 产生变形织构。塑性加工方式不同,可出现不同类型的织构。 通常,变形织构可分为丝织构和板织构。
(a)
(b)
图6-14
第二类再结晶全图(LY2) (b)在锻锤下压缩0
(a)在压力机上压缩
(3)热变形时的纤维组织
金属内部所含有的杂质、第二相和各种缺陷,在热变形过 程中,将沿着最大主变形方向被拉长、拉细而形成纤维组织或 带状结构。这些带状结构是一系列平行的条纹,也称为流线。 纤维组织一般只能在变形时通过不断地改变变形的方向来避免, 很难用退火的方法去消除。当夹杂物(或晶间夹杂层)数量不 多时,可用长时高温退火的方法,依靠成分地均匀化,和组织 不均匀处的消失以去除。在个别情况下,当这些晶间夹杂物能 溶解或凝聚时,纤维组织也可以被消除。
所谓热变形(又称热加工)是指变形金属在完全再 结晶条件下进行的塑性变形。一般在热变形时金属所处温 度范围是其熔点绝对温度的0. 75~0. 95倍,在变形过程中, 同时产生软化与硬化,且软化进行的很充分,变形后的产 品无硬化的痕迹。
与其它加工方法相比,如冷加工,具有自己一系列的优点, 诸如: (1)金属在热加工变形时,变形抗力较低,消耗能量较少。 (2)金属在热加工变形时,其塑性升高,产生断裂的倾向性 减小。
射电子显微镜观察,这些位错在变形晶粒中的分布是很不均 匀的。只有在变形量比较小或者在层错能低的金属中,由于 位错难以产生交滑移和攀移,在位错可动性差的情况下,位 错的分布才是比较分散和比较均匀的。在变形量大而且层错 能较高的金属中,位错的分布是很不均匀的。纷乱的位错纠 结起来,形成位错缠结的高位错密度区(约比平均位错密度 高五倍),将位错密度低的部分分隔开来,好像在一个晶粒 的内部又出现许多“小晶粒”似的,只是它们的取向差不大 (几度到几分),这种结构称为亚结构。
(4)晶内及晶间的破坏 在冷变形过程中不发生软化过程的愈合作用,因 滑移(位错的运动及其受阻、双滑移、交叉滑移等), 双晶等过程的复杂作用以及各晶粒所产生的相对转动 与移动,造成了在晶粒内部及晶粒间界处出现一些显 微裂纹、空洞等缺陷使金属密度减少,是造成金属显 微裂纹的根源。
3. 冷变形时金属性能的变化
σ σS
ε σ σm σ
S
S
ε (a)
ε
m
ε S (b)
ε
图6-17
动态流变曲线
实验研究表明:
1)发生动态回复有一个临界变形程度,只有达到此值才能 形成亚晶。 2)当变形达到平稳态后,亚晶也保持一个平衡形状。在低 的变形温度(0. 3 ~0. 6Tm)下,即使变形量很小,亚晶 形状是长条的;而在高的变形温度(0.6~0.7 Tm)下,即 使变形量很大,亚晶也能构成等轴的形状。 3)热变形达到平稳态后,亚晶的平均尺寸有一个平衡值,
晶粒直径,微米
400 350 200 300 100 250 变形温度,℃ 0 200 0 10 20 30 40 50 60 70 80 90 300 变形程度,%
晶粒直径,微米
500 450
500 450 300 200 100 400 350 300 250 0 变形温度,℃ 0 10 20 30 40 50 60 70 80 90200 变形程度,%
(1)温度的上限,大致取该合金熔点绝对温度(Tm)的 0.95倍,即应比液相线低50℃左右。
(2)温度的下限,是要求保证在变形的过程中再结晶能
充分迅速地进行,并且整个变形过程是在单相系统内 完成。
冲击韧性,公斤 /毫米 2
0.95 T熔 T 0.75 T熔
9 7 5 3 1 100 300 500 700 900
金属中的空穴(包括凝固时的缩孔和气眼等), 在变形时也会被拉长,当变形量很大、温度足够高时,
这些孔穴可能被压紧、焊合,如果变形量不够大,这 些孔穴就形成了头发状的裂纹称为“发裂”。
显著的纤维组织也能引起分层,使变形金属得到
层状或板状的断口,例如HPb59-1,QA10-3-1.5的层状 断口,消除的方法是铸造时细化晶粒,改善铅、Al2O3 分布状况,防止氧化吸气以减少Al2O3的生成。
消除加工硬化,提高 塑性。 在结晶速度取决于加 热温度和变形程度。 再结晶是一个形核、 长大过程。
保持加工硬化,消 除内应力。如冷卷 弹簧进行去应力退 火。
(2)亚结构
随着冷变形的进行,位错密度迅速提高。经强烈冷变形后, 可由原来退火状态的106~107/cm2增至1011~1012/cm2。经透
3.热变形过程中的回复与再结晶