缓和曲线各参数计算公式
缓和曲线计算公式
缓和曲线计算公式缓和曲线计算公式:缓和曲线参数: 0=A L R ⨯缓和曲线长度R A L ÷=20 缓和曲线半径÷=2A R 0L所谓完整缓和曲线就是某段缓和曲线的一端与直线连接点的曲率半径必须是无穷大(可用10的45次方代替,有时也可用“0”表示,具体情况具体分析),而缓和曲线两端无论在什么情况下与圆曲线相接时,其两端的曲率半径必须与对应连接圆曲线的半径相等。
现在我们来谈谈非完整缓和曲线,从上面的话知道,如果某段缓和曲线的一端与直线连接点曲率半径不是无穷大,而是一个实数,那么这段缓和曲线就是非完整缓和曲线。
设计图中遇到这种情况,一般会告诉这段缓和曲线的长度(我们把这段缓和曲线的长度记作L2,缺少的一段缓和曲线长度记作L1,L1+L2=完整缓和曲线长度L),如果没告诉这段缓和曲线的长度,也可以通过两端的桩号计算出来、设计参数A 及缓和曲线另一端的曲率半径R2(应该是与一个圆曲线相接,也就是说R2等于这个圆曲线的半径)。
我们在输入匝道程序时必须要知道R1(起点曲率半径),怎么办呢?那就通过计算把R1计算出来不就行了,下面就是计算过程: 由公式:R=A2÷L 推出R1= A2÷L1 => A2=R1*L1 ……………………………………………………① R2= A2÷(L1+L2) => A2=R2*(L1+L2) ……………………………………………………②R2= A2÷(L1+L2) => R2= A2÷L => L=A2÷R2 …………………………………………③由公式①②推出R1*L1=R2*(L1+L2) => R1=R2*(L1+L2)÷L1 …………………………………………④L=L1+L2 => L1=L-L2 ……………………………………………⑤由公式③④⑤推出R1=R2*L÷(L-L2) => R1= A2÷(A2÷R2-L2) …………………………………………⑥公式⑥就是我们要找的曲率半径公式,计算得到结果计算完毕。
缓和曲线知识与计算公式
缓和曲线知识与计算公式一、缓和曲线缓和曲线是设置在直线与圆曲线之间或大圆曲线与小圆曲线之间,由较大圆曲线向较小圆曲线过渡的线形 , 是道路平面线形要素之一。
1 .缓和曲线的作用1 )便于驾驶员操纵方向盘2 )乘客的舒适与稳定,减小离心力变化3 )满足超高、加宽缓和段的过渡,利于平稳行车4 )与圆曲线配合得当,增加线形美观2 .缓和曲线的性质为简便可作两个假定:一是汽车作匀速行驶;二是驾驶员操作方向盘作匀角速转动,即汽车的前轮转向角从直线上的0 °均匀地增加到圆曲线上。
S=A2/ρ( A :与汽车有关的参数)ρ=C/s C=A2由上式可以看出,汽车行驶轨迹半径随其行驶距离递减,即轨迹线上任一点的半径与其离开轨迹线起点的距离成反比,此方程即回旋线方程。
3 .回旋线基本方程即用回旋线作为缓和曲线的数学模型。
令:ρ=R , lh =s 则 lh=A2/R4 .缓和曲线最小长度缓和曲线越长,其缓和效果就越好;但太长的缓和曲线也是没有必要的,因此这会给测设和施工带来不便。
缓和曲线的最小长度应按发挥其作用的要求来确定:1 )根据离心加速度变化率求缓和曲线最小长度为了保证乘客的舒适性,就需控制离心力的变化率。
a1=0,a2=v2/ ρ ,as= Δ a/t ≤ 0.62 )依驾驶员操纵方向盘所需时间求缓和曲线长度 (t=3s)3 )根据超高附加纵坡不宜过陡来确定缓和曲线最小长度超高附加纵坡(即超高渐变率)是指在缓和曲线上设置超高缓和段后,因路基外侧由双向横坡逐渐变成单向超高横坡,所产生的附加纵坡。
4 )从视觉上应有平顺感的要求计算缓和曲线最小长度缓和曲线的起点和终点的切线角β最好在3° ——29° 之间,视觉效果好。
《公路工程技术标准》规定:按行车速度来求缓和曲线最小长度,同时考虑行车时间和附加纵坡的要求。
5 .直角坐标及要素计算1 )回旋线切线角( 1 )缓和曲线上任意点的切线角缓和曲线上任一点的切线与该缓和曲线起点的切线所成夹角。
道路勘测设计 第二章道路平面设计3
R
0
]
y P R {1 cos[( LP LS 2) 180 R]}
基本形单曲线回旋线要素计算
(二)设置缓和曲线的圆曲线:基本型单曲线 3、加密桩点坐标计算: (1)缓和曲线段内坐标计算: 切线支距法:
LP x LP 2 40 R 2 LS
L y P 6 RLS
2.4 道路平面设计方法
三、平面设计一般规定与基本步骤
道路平面布置设计的步骤:
(1)根据道路的技术等级,根据《标准》JTG B01-2003和《规范》 JTG D20-2006查出设计速度、最小半径、缓和曲线最小长度、直线 段的最大最小长度等主要技术标准的规定值
(2)根据地形、地物条件确定控制因素
(三)复曲线设计:
3、卵形复曲线:
实际工程中,应尽量避免采用这种曲线
(三)复曲线设计:
3、卵形复曲线:
①复中设置缓和曲线的特点: 缓和曲线段两端点的 曲率半径分别与相应 圆的圆曲线半径一致
曲线定位桩点计算
FZ
较小半径圆曲线相对 于大半径圆曲线内移 一段距离
即复曲线中间缓和曲 线段被原公切点中分 缓和曲线段中点(FZ 点)通过内移距离(内 移值之差PF)的中心
Eh B
切线支距法: x q R sin
Lh
y P R (1 cos )
LP LS 180 [
LS 90 LS 0 (弧度) (度) 2R R
θ
LP LS / 2180
R
x q R sin[( LP LS 2) 180 R]
Eh ( R P) sec R(m) 2
Lh ( 2 0 )
缓和曲线的计算方法三种课件
b0
20
ls 3R
此外还有极坐标法、弦线支距法、长弦偏角 法。
缓和曲线的计算方法三种
要注意:点是位于缓和曲线上,还是位于圆曲线上。
位于缓和曲线
位于圆曲线
缓和曲线的计算方法三种
(1)当点位于缓和曲线上,有:
x y
l l5
40
R
2
l
2 s
l3 l7 6 Rl s 336 R
3l
3 s
(2)当点位于圆曲线上,有:
xRsinq yR(1c os)p
缓和曲线的计算方法三种
2、偏角法(整桩距、短弦偏角法) 要注意:点是位于缓和曲线,还是位于圆曲线。
位于圆曲线 位于缓和曲线
缓和曲线的计算方法三种
2、偏角法(整桩距、短弦偏角法)
(1)当点位于缓和曲线上,有:
总偏(常 角量 )0 6lR s
偏角
l2 ls2
0
距离:用曲线长l来代替弦长。放样出第1点后, 放样第2点时,用偏角和距离l交会得到。
缓和曲线的计算方法三种
(2)当点位于圆曲线上
方法:架仪HY (或YH),后视ZH(或HZ),拨角b0,即找 到了切线方向,再按单圆曲线偏角法进行。
缓和曲线的计算方法三种
(2)测设方法。(见例题)
例题:如图,设某公路的交点桩号为K0+518.66,右 转角αy=180018'36",圆曲线半径R=100m,缓和曲 线长ls=10m,试测设主点桩。(作为实习课内容)
解:(一)计算测设元素
p=0.04m;q=5.00m;
02lR s 1800205153
缓和曲线的计算方法三种
2、回旋缓和曲线(spiral curve)基本公式
缓和曲线要素及公式介绍
11.2.1 带缓和曲线的圆曲线的测设为了保障车辆行驶安全,在直线与圆曲线之间加入一段半径由∞逐渐变化到R的曲线,这种曲线称为缓和曲线。
目前常用的缓和曲线多为螺旋线,它有一个特性,曲率半径ρ与曲线长度l成反比。
数学表达为:ρ∝1/l 或ρ·l = k ( k为常数)若缓和曲线长度为l0,与它相连的圆曲线半径为R,则有:ρ·l = R·l0 = k目前我国公路采用k = 0.035V3(V为车速,单位为km/h),铁路采用k = 0.09808V3,则公路缓和曲线的长度为l0 = 0.035V3/R ,铁路缓和曲线的长度为:l0 = 0.09808V3/R 。
11.2.2 带缓和曲线的圆曲线的主点及主元素的计算带缓和曲线的圆曲线的主点有直缓点ZH、缓圆点HY、曲中点QZ、圆缓点YH、缓直点HZ 。
带缓和曲线的圆曲线的主元素及计算公式:切线长 T h = q+(R+p)·tan(α/2)曲线长 L h = 2l0+R·(α-2β0)·π/180°外矢距 E h = (R+p)·sec(α/2)-R切线加长 q = l0/2-l03/(240R2)圆曲线相对切线内移量 p = l02/(24R)切曲差 D h = 2T h -L h式中:α 为线路转向角;β0为缓和曲线角;其中q、p、β0缓和曲线参数。
11.2.3 缓和曲线参数推导dβ = dl/ρ = l/k·dl两边分别积分,得:β= l2/(2k) = l/(2ρ)当ρ = R时,则β =β0β0 = l0/(2R)若选用点为ZH原点,切线方向为X轴,垂直切线的方向为Y轴,建立坐标系,则:dx = dl·cosβ = cos[l2/(2k)]·dldy = dl·sinβ = si n[l2/(2k)]·dl考虑β很小,sinβ和cosβ即sin(l2/(2k))和cos(l2/(2k))可以用级数展开,等式两边分别积分,并把k = R·l0代入,得以曲线长度l为参数的缓和曲线方程式:X = l-l5/(40R2l02)+……Y = l3/(6Rl0)+……通常应用上式时,只取前一、二项,即:X = l-l5/(40R2l02)Y = l3/(6Rl0)另外,由图可知,q = X HY-R·sinβ0p = Y HY-R(1-cosβ0)以β0= l0/(2R)代入,并对sin[l0/(2R)]、cos[l0/(2R)]进行级数展开,取前一、二项整理可得:q = l0/2-l03/(240R2)p = l02/(24R)若仍用上述坐标系,对于圆曲线上任意一点i,则i点的坐标X i、Y i可以表示为:Xi = R·sinψi+qYi = R·(1-cosψi)+p11.2.4 带缓和曲线的圆曲线的主点桩号计算及检核ZH桩号 = JD桩号-T hHY桩号 = ZH桩号+l0QZ桩号 = HY桩号+L/2YH桩号 = QZ桩号+L/2 = HY桩号+L = ZH桩号+l0+LHZ桩号 = YH桩号+l0 = ZH桩号+L hJD桩号 = ZY桩号-T h+D h(检核)11.2.5 带缓和曲线的圆曲线的主点的测设过程:(1)在JD点安置经纬仪(对中、整平),用盘左瞄准直圆方向,将水平度盘的读数配到0°00′00″,在此方向量取T h,定出ZH点;(2)从JD沿切线方向量取T h-X HY,然后再从此点沿切线垂直方向量取Y HY , 定出HY点;(3)倒转望远镜,转动照准部到度盘读数为α,量取T h,定出HZ点;(4)从JD沿切线方向量取T h-X HY,然后再从此点沿切线垂直方向量取Y HY , 定出YH点;(5)继续转动照准部到度盘读数为(α+180°)/2,量取E h,定出QZ点。
公路缓和曲线段原理及缓和曲线计算公式
程序使用说明Fx9750、9860系列程序包含内容介绍:程序共有24个,分别是:1、0XZJSCX2、1QXJSFY3、2GCJSFY4、3ZDJSFY5、4ZDGCJS6、5SPJSFY7、5ZDSPFY8、5ZXSPFY9、6ZPJSFY 10、7ZBZFS 11、8JLHFJH 12、9DBXMJJS13、9DXPCJS 14、9SZPCJS 15、GC-PQX 16、GC-SQX17、PQX-FS 18、PQX-ZS 19、ZD-FS 20、ZD-PQX21、ZD-SQX 22、ZD-ZS 23、ZDSP-SJK 24、ZXSP-SJK其中,程序2-14为主程序,程序15-24为子程序。
每个主程序都可以单独运算并得到结果,子程序不能单独运行,它是配合主程序运行所必需的程序。
刷坡数据库未采用串列,因为知道了窍门,数据库看起很多,其实很少。
程序1为调度2-8程序;程序2为交点法主线路(含不对称曲线)中边桩坐标正反计算及极坐标放样程序;程序3为主线路中边桩高程计算及路基抄平程序;程序4为线元法匝道中边桩坐标正反计算及极坐标放样程序;程序5为匝道线路中边桩高程计算及路基抄平程序;程序6为任意线型开口线及填筑边线计算放样程序;程序7专为主线路开口线及填筑边线计算放样程序,只需测量任意一点三维数据,即可马上计算出该点相对于中桩法线上的偏移量;程序8专为匝道线路开口线及填筑边线计算放样程序,只需测量任意一点三维数据,即可马上计算出该点相对于中桩法线上的偏移量;程序9为桥台锥坡计算放样程序;程序10为计算两点间的坐标正反算程序;程序11为距离后方交会计算测站坐标程序;程序12为任意多边形面积周长计算程序;程序13为导线近似平差计算程序;程序14为水准近似平差计算程序;程序2-8所用数据库采用的串列,匝道用的File 1;主线用的File 2。
第一步:先用Excel按照文字说明输入完整条线路对应数据;第二步:保存为CSV格式,然后设置单元格格式、数字格式、科学计数、小数位数设置10位以上并保存;第三步:用FA-124导入,匝道数据列表文件选择“File 1”,主线数据列表文件选择“File 2”。
铁路、公路线路测量公式
4)、圆曲线上任意点法线方向上任意点的大地坐标(X法,Y法),法线方位角α法,
如果转向角左偏取α法=α-3*β-3.1415/2,若α法<0,则计算结ห้องสมุดไป่ตู้加上2倍的圆周率即α法=α-3*β-l/R-3.1415/2+2*3.1415;
即α法=α-3(20Rls/(40R^2-ls^2)) -l/R-3.1415/2+2*3.1415
如果转向角右偏取
α法=α+3(20Rls/(40R^2-ls^2)) +l/R +3.1415/2;
若α法>360,
则α法=α+3(20Rls/(40R^2-ls^2)) +l/R +3.1415/2-2*3.1415;
如果转向角左偏取α法=α-3*β-3.1415/2,若α法<0,则计算结果加上2倍的圆周率即α法=α-3*β-3.1415/2+2*3.1415;
如果转向角右偏取α法=α+3*β+3.1415/2;若α法>360,则计算结果加上2倍的圆周率即α法=α+3*β+3.1415/2-2*3.1415;
法线上任意一点到切点的距离为D法,
X=l-l5/(40*R2*ls2)
Y= l3/(6*R*ls)
αi为直缓点到待求点直线的方位角(弧度);
如果转向角左偏取αi=(α-β)=(α-20R lsl2/3(40R2ls2- l4))
若(α-β)<0,则αi=(α-β)+2*3.1415,但在计算坐标中可不考虑;
如果转向角右偏取αi=(α+β)=(α+20R lsl2/3(40R2ls2- l4))
最大缓和曲线参数最大缓和曲线长度
最大缓和曲线参数最大缓和曲线长度【标题】最大缓和曲线参数与最大缓和曲线长度:探索道路设计的重要关键【导言】在道路设计领域中,最大缓和曲线参数和最大缓和曲线长度是两个关键概念。
它们对于确保道路安全、提高车辆行驶效率具有重要意义。
本文将深入探讨最大缓和曲线参数和最大缓和曲线长度的定义、计算方法以及其在道路设计中的作用。
通过对这两个概念的深度剖析,我们可以更好地理解道路设计的原理和要点。
【正文】一、最大缓和曲线参数的定义与计算1.1 什么是最大缓和曲线参数?在道路设计中,最大缓和曲线参数是指曲线半径与道路设计速度之间的比值。
它用来衡量道路曲线的陡峭程度和车辆行驶的平稳度。
1.2 如何计算最大缓和曲线参数?最大缓和曲线参数的计算可以通过下述公式求得:最大缓和曲线参数 = 曲线半径 / 设计速度1.3 最大缓和曲线参数尺度的意义最大缓和曲线参数的数值越大,说明道路曲线越平缓,车辆行驶速度越高。
而当最大缓和曲线参数较小时,道路曲线将更加陡峭,车辆行驶速度则需要有所限制。
二、最大缓和曲线长度的定义与计算2.1 什么是最大缓和曲线长度?最大缓和曲线长度是指在曲线行驶过程中,车辆需要从初始速度逐渐减速到合适的转弯速度,然后再逐渐加速回到正常行驶速度所需的水平距离。
2.2 如何计算最大缓和曲线长度?最大缓和曲线长度的计算涉及曲线的半径、车辆速度和加减速度等参数。
其计算公式如下:最大缓和曲线长度 = (车辆速度^2) / (加减速度 * 曲线半径)2.3 最大缓和曲线长度的意义最大缓和曲线长度的数值越大,说明曲线的路径越缓和,车辆行驶过程中的速度变化越平稳。
而当最大缓和曲线长度较小时,车辆行驶过程将会出现剧烈的速度变化,不利于行车的平稳性和安全性。
三、最大缓和曲线参数和最大缓和曲线长度的综合作用最大缓和曲线参数和最大缓和曲线长度是道路设计中两个密切相关的概念。
它们在实际设计中的配合使用可以实现平稳、高效的车辆行驶。
对于同一曲线半径和车辆速度,较大的最大缓和曲线参数意味着较长的最大缓和曲线长度,推动车辆更平稳地行驶。
关于公路测量中圆曲线、缓和曲线(完整缓和曲线和非完整缓和曲线)的计算示例
关于公路测量圆曲线、缓和曲线(完整缓和曲线和非完整缓和曲线)的计算示例新浪微博:爱疯记录仪例:某道路桥梁中,A匝道线路。
已知交点桩号及坐标:SP,K9+000(2957714.490,485768.924);JD1,K9+154.745(2957811.298,485889.647);EP,K9+408.993(2957786.391,486158.713)。
SP—JD1方位角:51°16′25″;转角:右44°00′54.06″;JD1—EP方位角:95°17′20″。
由图纸上“A匝道直线、曲线及转角表”得知:K9+000—K9+116.282处于第一段圆曲线上,半径为385.75m;K9+116.282—K9+151.282处于第一段缓和曲线上,K9+151.282的半径为300m,缓和曲线要素A1=217.335,Ls1=35m;K9+151.282—K9+216.134处于第二段圆曲线上,半径为300m;K9+216.134—K9+251.134处于第二段缓和曲线上,K9+251.134的半径为1979.5,缓和曲线要素A2=111.245,Ls2=35m;K9+251.134—K9+408.933处于第三段圆曲线上,半径为1979.5m。
求:K9+130、K9+200、K9+230、K9+300的中桩坐标,切线方位角,左5米边桩的坐标,右10米边桩的坐标。
解:首先,我们知道要求一个未知点的坐标,必须知道起算点坐标,起算点至未知点的方位角,起算点至未知点的直线距离,然后利用坐标正算的计算公式,就可以直接求出未知点的坐标。
那么,关于圆曲线和缓和曲线(包括完整缓和曲线和非完整缓和曲线)的计算,我们需要知道如何求出起算点至圆曲线或缓和曲线上某点的方位角和直线距离。
下面,先列出关于圆曲线和缓和曲线中角度和距离计算的相关公式。
附:A匝道直线、曲线及转角表。
】下载地址:/view/f0677e38cdbff121dd36a32d7375a417866fc18f1 / 102 / 10y 轴。
缓和曲线各参数计算公式
缓和曲线各参数计算公式
用回旋线作为缓和曲线回旋线是一种曲率随曲线长度成比例变化的曲线,不仅可以使线形更加美观,而且与驾驶员匀速转动方向盘由圆曲线驶入直线或者由直线驶入圆曲线的轨迹线相符合其基本公式为:rl=A2;
其中:r—回旋线上某点曲率半径;
l—回旋线上其点到原点的曲线长; A—回旋线参数;由于rl是长度的二次方,故令C=A2,A表征曲率变化的缓急程度,因此在缓和曲线上,r随l的变化而变化,在缓和曲线的终点处,l=L s,r=R,=A2,即A=√;
其中:R—回旋线所连接的圆曲线半径;
Ls—回旋线形的缓和曲线长度
如图是缓和曲线敷设的基本图示,其几何元素的计算公式如下:
q =Ls/2-Ls3/(×R2) (m);L=(α-2β)πR/+2Ls(m); p=Ls2/(24R)-Ls4/(×R3) (m); E=(R+p)/(α/2) -R(m);β=/R(); J=2T-L(m);T=(R+p)(α/2)+q(m);其中:
α—路线转角; T—切线长;β—圆曲线对应角度; E—外移值; q—偏移值; J—里程差;p—原曲线与直线偏移值;
[式中α为路线设计参数,R值对于设计道路可查相关规范]。
缓和曲线要素及公式介绍
为了保障车辆行驶安全,在直线与圆曲线之间加入一段半径由∞逐渐变化到R的曲线,这种曲线称为缓和曲线。
目前常用的缓和曲线多为螺旋线,它有一个特性,曲率半径ρ与曲线长度l成反比。
数学表达为:ρ∝1/l 或ρ·l = k ( k为常数)若缓和曲线长度为l0,与它相连的圆曲线半径为R,则有:ρ·l = R·l0 = k目前我国公路采用k = (V为车速,单位为km/h),铁路采用k = ,则公路缓和曲线的长度为l0 = R ,铁路缓和曲线的长度为:l0 = R 。
11.2.2 带缓和曲线的圆曲线的主点及主元素的计算带缓和曲线的圆曲线的主点有直缓点ZH、缓圆点HY、曲中点QZ、圆缓点YH、缓直点HZ 。
带缓和曲线的圆曲线的主元素及计算公式:切线长 T h = q+(R+p)·tan(α/2)曲线长 L h = 2l0+R·(α-2β0)·π/180°外矢距 E h = (R+p)·sec(α/2)-R切线加长 q = l0/2-l03/(240R2)圆曲线相对切线内移量 p = l02/(24R)切曲差 D h = 2T h -L h式中:α 为线路转向角;β0为缓和曲线角;其中q、p、β0缓和曲线参数。
11.2.3 缓和曲线参数推导dβ = dl/ρ = l/k·dl两边分别积分,得:β= l2/(2k) = l/(2ρ)当ρ = R时,则β =β0β0 = l0/(2R)若选用点为ZH原点,切线方向为X轴,垂直切线的方向为Y轴,建立坐标系,则:dx = dl·cosβ = cos[l2/(2k)]·dldy = dl·sinβ = sin[l2/(2k)]·dl考虑β很小,sinβ和cosβ即sin(l2/(2k))和cos(l2/(2k))可以用级数展开,等式两边分别积分,并把k = R·l0代入,得以曲线长度l为参数的缓和曲线方程式:X = l-l5/(40R2l02)+……Y = l3/(6Rl0)+……通常应用上式时,只取前一、二项,即:X = l-l5/(40R2l02)Y = l3/(6Rl0)另外,由图可知,q = X HY-R·sinβ0p = Y HY-R(1-cosβ0)以β0= l0/(2R)代入,并对sin[l0/(2R)]、cos[l0/(2R)]进行级数展开,取前一、二项整理可得:q = l0/2-l03/(240R2)p = l02/(24R)若仍用上述坐标系,对于圆曲线上任意一点i,则i点的坐标X i、Y i可以表示为:Xi = R·sinψi+qYi = R·(1-cosψi)+p11.2.4 带缓和曲线的圆曲线的主点桩号计算及检核ZH桩号 = JD桩号-T hHY桩号 = ZH桩号+l0QZ桩号 = HY桩号+L/2YH桩号 = QZ桩号+L/2 = HY桩号+L = ZH桩号+l0+LHZ桩号 = YH桩号+l0 = ZH桩号+L hJD桩号 = ZY桩号-T h+D h(检核)11.2.5 带缓和曲线的圆曲线的主点的测设过程:(1)在JD点安置经纬仪(对中、整平),用盘左瞄准直圆方向,将水平度盘的读数配到0°00′00″,在此方向量取T h,定出ZH点;(2)从JD沿切线方向量取T h-X HY,然后再从此点沿切线垂直方向量取Y HY , 定出HY点;(3)倒转望远镜,转动照准部到度盘读数为α,量取T h,定出HZ点;(4)从JD沿切线方向量取T h-X HY,然后再从此点沿切线垂直方向量取Y HY , 定出YH点;(5)继续转动照准部到度盘读数为(α+180°)/2,量取E h,定出QZ点。
缓和曲线半径计算公式
缓和曲线半径计算公式缓和曲线是指将两条直线或曲线段平滑地连接起来的过渡曲线。
在道路设计、铁路设计等领域中广泛应用。
计算缓和曲线半径的公式基于几何学原理和交通工程的需求。
在计算缓和曲线半径之前,首先需要了解以下几个关键参数:1.设计速度(Vd):即车辆在缓和曲线上行驶的目标速度。
2.过渡长度(L):即缓和曲线的总长度。
3.动摩擦因数(f):即车辆行驶过程中的轮胎与路面之间的摩擦系数。
4.允许超高(e):在垂直方向上,车辆离开水平线的最大允许值。
基于以上参数,可以通过以下公式计算缓和曲线半径:R=Vd^2/(127*f*e)其中,R表示缓和曲线半径。
需要注意的几点是:1.这个公式是根据欧拉公式推导得来的,适用于大多数情况。
但对于特定道路设计,如复杂弯道或高速公路等,可能需要采用更复杂的公式进行计算。
2.设计速度需要根据具体路段的要求进行选择。
一般来说,缓和曲线的设计速度应与前后道路的设计速度相匹配,以确保平稳过渡。
3.允许超高是指驶过缓和曲线过程中,车辆会偏离水平线的程度。
允许超高的值应根据实际需要进行确定。
4.确定缓和曲线总长度的计算需要根据具体情况进行。
一般来说,它被设定为车辆达到设计速度所需的时间内行驶的距离。
5.动摩擦因数是一个经验值,根据道路状况、车辆类型等因素进行选择。
一般来说,可以参考交通工程相关规范或手册中的推荐值。
需要注意的是,以上计算仅为基本公式,实际应用中还会受到其他因素的影响,如地形、道路条件、车辆特性等。
因此,在进行具体的设计和计算时,建议参考相关的交通工程规范和设计手册,确保计算结果符合实际需求。
缓和曲线公式
Xn=[(-1)(n+1)×L(4n–3)]÷[(2n-2)!×2(2n–2]×(4n-3)×(RLs)(2n–2)]Yn=[(-1)(n+1)×L(4n–1)]÷[(2n-1)!×2(2n–1)×(4n-1)×(RLs)(2n–1)]公式中符号含义:n —项数序号(1、2、3、……n)!—阶乘R —圆曲线半径Ls —缓和曲线长②现取公式前6项计算(有关书籍中一般为2-3项,不能满足小半径的缓和曲线计算精度要求,如本例中AK0+090~AK0+160段缓和曲线,如AK0+160中桩坐标带2项算误差达8cm),公式如下:X=L-L5÷[40(RLS)2]+L9÷[3456(RLS)4]–L13÷[599040(RLS)6]+L17÷[175472640(RL S)8]- L21÷[7.80337152×1010(RLS)10] (公式1)Y=L3÷[6(RLS)] - L7÷[336(RLS)3]+L11÷[42240(RLS)5] - L15÷[9676800(RLS)7]+L19÷[3530096640(RLS)9] - L23÷[1.8802409472×1012(RLS)11] (公式2)公式中L为计算点至ZH“或HZ“的弧长HZ“:AK0+368.213的坐标从YH1:AK0+223.715推算,L=LS=HZ“-YH1=368.213-223.715=144.498将L=LS 代入公式(1)、(2)得:X=117.1072 Y=59.8839L对应弦长C=√(X2+Y2)=131.5301偏角a1=arctg(Y÷X)=27°05’00.2”* 偏角计算用反正切公式,不要用其它公式。
缓和曲线计算公式
缓和曲线常数既有线元素,又有角元 素,且均 为圆曲
线半径
R 和缓和曲线长
l0 的函数。线元素要计算到 mm,角元素要计算到秒。
二、缓和曲线综合要素
切线长:T = (R + P)tan⎜⎛α ⎟⎞ + m
⎝2⎠
曲线长: L = R(α − 2β0 ) + 2l0
外视距: E0
=
R+P cos⎜⎛α ⎟⎞
垂线方向和到 B 的半径方向所形成的 圆心角,按下式计算:
αb
=
lb
− l0 R
+ β0
δβ
=
1 6Rl0
(lT
− lB )(lB
+ 2lT )
=
30 πRl0
(lT
−
lB )(lB
+
2lT
)
δt
=
lt2 6Rl0
= 30lt2 πRl0
βt
=
lt2 2Rl0
= 90lt2 πRl0
bt
=
lt2 3 Rl 0
lT — 为置镜点的缓和曲线长; lF — 为远离 ZH(HZ)点的缓和曲线长。
五、直角坐标法
1、缓和曲线参数方程:
xa
=
la
−
1 40 R 2l02
la5
ya
=
1 6Rl0
la3
−
la7 336R3l03
2、圆曲线
xb = R sinαb + m
yb = R(1 − cosα b ) + P
式中,αb 为圆心 O 到切线的
−
R
⎝2⎠
切曲差: q = 2T − L
缓和曲线长度计算公式
缓和曲线长度计算公式
1缓和曲线(Horizontal Curve)
缓和曲线(Horizontal Curve)是指在道路曲线设计中,既要满足视距要求,又要满足最小转弯半径等安全要求的曲线。
它包括各种圆弧和椭圆曲线。
曲线体系是构成道路设计、规划和施工的重要一环,它能减少驾驶员的视距,同时能增加可用轨道宽度。
2缓和曲线长度计算
缓和曲线长度的计算可以用三种椭圆曲线公式来完成,即Purvisky贴合曲线(Purvisky tangent Curve)、Stull抛物线(Stull Parabolic Curve)和Camelback立体线(Camelback Vertical Curve)。
缓和曲线长度的计算并不是一个十分复杂的过程,可以按照以下几个步骤简单地计算:
(1)计算曲线横坡。
主要参数含义分别为曲线中心角、曲线中心距、曲线转角以及曲线上两端的交叉距离;
(2)根据横坡、曲线中心角和交叉距离,通过上述三种不同的椭圆公式来计算曲线长度。
(3)计算曲线长度时,若范围较大,需要将曲线分成多段,重复(2)步骤对每一段曲线分别计算,最后累加结果和得出最终的缓和曲线长度。
3总结
缓和曲线(Horizontal Curve)是道路曲线设计中重要的一环,能达到视距要求和最小转弯半径安全要求,它包括各种圆弧和椭圆曲线。
由于椭圆曲线的复杂性,缓和曲线长度的计算并不是一个复杂的过程,通常应该按照横坡、曲线中心角和交叉距离等参数来进行,再通过Purvisky贴合曲线、Stull抛物线和Camelback立体线三种不同的椭圆公式来实现。
竖曲线、缓和曲线计算公式
第三节竖曲线纵断面上两个坡段的转折处,为方便行车,用一段曲线来缓和,称为竖曲线。
可采用抛物线或圆曲线。
一、竖曲线要素的计算公式相邻坡段的坡度为i1和i2,代数差为ω=i2 -i1ω为正时,是凹曲线;ω为负,是凸曲线。
1.二次抛物线基本方程:或ω:坡度差(%);L:竖曲线长度;R:竖曲线半径2.竖曲线诸要素计算公式竖曲线长度或竖曲线半径R: (前提:ω很小)L=Rω竖曲线切线长:T=L/2=Rω/2竖曲线上任一点竖距h:竖曲线外距:二、竖曲线最小半径(三个因素)1.缓和冲击对离心加速度加以控制。
ν(m/s)根据经验,a=0.5~0.7m/s2比较合适。
我国取a=0.278,则Rmin=V2/3.6 或Lmin=V2ω/3.62.行驶时间不过短 3s的行程Lmin=V.t/3.6=V/1.23.满足视距的要求分别对凸凹曲线计算。
(一)凸形竖曲线最小半径和最小长度按视距满足要求计算1.当L<ST时,Lmin = 2ST - 4/ω2.当L≥ST时,ST为停车视距。
以上两个公式,第二个公式计算值大,作为有效控制。
按缓和冲击、时间行程和视距要求(视距为最不利情况)计算各行车速度时的最小半径和最小长度,见表4-13。
表中:(1)一般最小半径为极限最小半径的1.5~2倍;(2)竖曲线最小长度为3s行程的长度。
(二)凹曲线最小半径和长度1.夜间行车前灯照射距离要求:1)L<ST2) L≥STL<ST Lmin = 2ST - 26.92/ω (4-14)L≥STω /26.92 (4-15)3s时间行程为有效控制。
例:设ω=2%=0.02;则L=ωR竖曲线最小长度L=V/1.2速度V=120km/h V=40km/h 一般最小半径R凸17000 700一般最小半径R凹6000 700 L凸340 14L凹120 14 例题4-3ω=-0.09 凸形;L=Rω=2000*0.09=180mT=L/2=90mE=T2/2R=2.03m起点桩号=k5+030 - T =K4+940起始高程=427.68 - 5%*90=423.18m桩号k5+000处:x1=k5+000-k4+940=60m切线高程=423.18+60*0.05=426.18m h1=x21/2R=602/2*2000=0.90m设计高程=426.18 - 0.90=425.28m 桩号k5+100处:x2=k5+100-k4+940=160m切线高程=423.18+160*0.05=431.18m h2=x22/2R=1602/2*2000=6.40m设计高程=431.18 - 6.40=424.78m第一节平面线形概述一、路线路线指路的中心线;路线在水平面上的投影叫路线的平面;路线设计:确定路线空间位置和各部分几何尺寸的工作;可分为平面设计、纵断面设计、横断面设计。
缓和曲线公式(仅供参考)
缓和曲线计算(仅供参考)一、概念曲率半径从某一个值连续匀变为另一个值的曲线称为缓和曲线。
二、缓和曲线的已知参数和特征参数1、已知参数(1) 转角α(2) 圆曲线半径R(3) 缓和曲线长度l s2、缓和曲线特征参数与表达式为了便于说明缓圆曲线特征参数,预先建立直角坐标系ZH点是坐标系原点,ZH至JD点为X轴,过ZH点作X轴的垂直方向为Y轴,形成一个直角坐标系,ZH-HY、HY-ZH是缓圆曲线如图所示。
图、对称缓圆曲线(1) 回旋曲线参数:取图一部分放大如图中,曲线段ZH-HY是缓圆曲线。
回旋曲线是我国应用缓圆曲线的常用线型。
根据一般曲线曲率半径的表达特征,回旋曲线曲率半径表达式为ρ=c/l (3-01)而半径的表达式为 c =Rl s (3-02)(2) 切线角:过缓圆曲线上P 点的切线与缓圆曲线ZH 点切线夹角,称为切线角用β表示。
设P 点附近存在dl 对应的d β为dβ=dl/ρ整理得d β=dl/Rl s积分上式得切线角表达式β=l 2/2Rl s (3-03)角度表达式 β=l 290°/Rl s (3-04)当l=ls 时,有 βs =l s /2R (3-05)角度表达式 βs=l s 90°/R(3-06) (3) 缓圆曲线HY 点的点位坐标:图中,把过ZH 点的切线设为X 轴,过ZH 点作X 轴的垂直方向的直线设为Y 轴,形成缓圆曲线直角坐标系。
在P 点处相对于dl 的变化引起P 点的坐标变化,即dx=dl , dy=dl (3-07)积分处理,舍高次项得缓和曲线上任一点点坐标为x=l-l 5/40R 2l 2s +l 9/3456R 4l 4s -l 13/599040R 6l 6s +l 17/175472640R 8l 8s -l 21/78033715200R 10l10s (3-13) y=l 3/6Rl s -l 7/336R 3l 3s +l 11/42240R 5l 5s -l 15/9676800R 7l 7s +l 19/3530096640R 9l 9s -l 23/1880240947200R 11l11s (3-14)舍去第4项以后各项,有 x=l-l 5/40R 2l 2 s +l 9/3456R 4l 4 sy=l 3/6Rl s -l 7/336R 3l 3s +l 11/42240R 5l 5s (3-15)当l=l s 时,缓圆曲线HY 点的坐标为x s =l s -l 3 s /40R 2+l 5 s /3456R 4,y s =l 2 s /6R-l 4 s /336R 3+l 6 s /42240R 5(3-18) (4) 缓圆曲线内移参数p 与切线增值参数q:图中,在路线中线转弯处如果只设计缓圆曲线,路线中线的F,G 点分别是缓圆曲线(虚线)的ZY,YZ 点.在这种情况 下, 车辆沿AF 直线段运行后在F 处处转入圆曲线,这时的线型必须有相应的变化。
缓和曲线
在此引入一个“虚拟延伸”的观点,让这段这不完整的缓和曲线延伸成一段完整的缓和
曲线至 HZ′(桩号 K40+440.720,注意这点不在设计线路上)
知β=(90×33.5302)/(190×π×63.530)= 2°40′5.89″
B?
484443.327 EXE
Y=484448.4151
EXE
I=222.6015582
在圆曲线段,你正反算都可以,所要注意是起始方位角的不同,半径正负号的变化。
以上讨论了基本曲线的六种情况的中桩坐标计算,应该说上面两套程序都可以解决了,
如果对于不对称的缓和曲线所组成的基本曲线以上程序完全适用。
以上都是讨论的完整的缓和曲线,如果对于一段不完整的缓和曲线(在卵形曲线中经常
-39703.767 EXE
R?
以上同理
35 EXE
M?
30 EXE
N?
191°52′45″-180 EXE
I=15.81260512 注意这是反向方位角
EXE
A?
3103847.328 EXE
T?
36.497 EXE
X=3103823.3
EXE
B?
484443.327 EXE
Y=484438.5534.
L5 I=N+( L-K-M/2)×180/R/ π◢
L6 GOTO 0 R——曲线半径 L——待求点桩号 K——ZH 点桩号 M——缓和曲线长
姚永庆
N——起始方位角
T——切线长
I——待求点切线方位角
第 L3,L4 行太长太复杂,仔细看一下它有好多相同的计算语段,只要多用几个存储键
就行了。
操作
显示
说明
缓和曲线
§11-6 虚交点的测设 11一、单圆曲线虚交的测设 1.圆外基线法
a T ′ = Rtg 4
测设时由ZY和YZ点分别沿切线 量出T’得M点和N点,再由M点或N 点沿MN或NM方向量T’即得QZ点。 曲线主点定出后,即可用切线 切线 支距法或偏角法进行曲线详细测设。 支距法或偏角法
§11-6 虚交点的测设 11一、单圆曲线虚交的测设
①在ZH点安置经纬仪(对中、整平),用盘左瞄准JD,将水 ZH点安置经纬仪(对中、整平),用盘左瞄准JD, 点安置经纬仪 ),用盘左瞄准JD 平度盘的读数配到0 00′00″; 平度盘的读数配到0°00′00″; ②转动照准部到度盘读数为δ1,从ZH点量取分段弦长C,定 转动照准部到度盘读数为δ1, ZH点量取分段弦长C δ1 点量取分段弦长 出1点; δi,从第i ③转动照准部到度盘读数为 δi,从第i-1点量取分段弦长 与此方向交出第i C,与此方向交出第i点; ④另一半缓和曲线在HZ点上按同样方法测设。 另一半缓和曲线在HZ点上按同样方法测设。 HZ点上按同样方法测设
dx = dl ⋅ cos β dy = dl ⋅ sin β
l5 x =l − 2 2 40R ls 3 l y= 6Rls
dy x dx
§11-5 带有缓和曲线的平曲线测设 11一、缓和曲线
2.回旋线型缓和曲线公式 (3) 缓和曲线的参数方程
l5 x =l − 40R2ls2 l3 y= 6Rls
3 ls x0 = ls − 40R2 2 l y0 = s 6R
y
y0 x0 x
§11-5 带有缓和曲线的平曲线测设 11二、带有缓和曲线的平曲线主点测设 内移值p与切线增值q 1.内移值p与切线增值q的计算
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用回旋线(放射螺旋型)作为缓和曲线。
回旋线是一种曲率随曲线长度成比例变化的曲线,不仅可以使线形更加美观,而且与驾驶员匀速转动方向盘由圆曲线驶入直线或者由直线驶入圆曲线的轨迹线相符合。
其基本公式为:rl=A2;
其中:r—回旋线上某点曲率半径(m);
l—回旋线上其点到原点的曲线长(m);
A—回旋线参数;
由于rl是长度的二次方,故令C=A2,A表征曲率变化的缓急程度,因此在缓和曲线上,r随l的变化而变化,在缓和曲线的终点处,l=L s,r=R,RL s=A2,即A=√(RL s);
其中:R—回旋线所连接的圆曲线半径;
L s—回旋线形的缓和曲线长度。
如图是缓和曲线敷设的基本图示,其几何元素的计算公式如下:
q =L s/2-L s3/(240×R2) (m);
p=L s2/(24R)-L s4/(2384×R3) (m);β=28.6479L s/R(。
);
T=(R+p)tan(α/2)+q(m);L=(α-2β)πR/180+2Ls(m);E=(R+p)/cos(α/2) -R(m);J=2T-L(m);
其中:
α—路线转角(。
);
β—圆曲线对应角度(。
);q—偏移值(m);
p—原曲线与直线偏移值(m);T—切线长(m);E—外移值(m);J—里程差(m);
[式中α为路线设计参数,R值对于设计道路可查相关规范]。