溶胶的制备和电泳

合集下载

溶胶与电泳实验报告

溶胶与电泳实验报告

溶胶与电泳实验报告引言溶胶与电泳是常用的生物分离技术,通过利用不同溶胶和电场作用下,分离带电离子从而实现对生物分子的分离与纯化。

本实验旨在探究溶胶和电泳参数对分离效果的影响,为后续的生物分离实验提供参考。

实验步骤1. 实验前准备:将所需试剂准备好,包括琼脂糖、TAE缓冲液和DNA样品。

2. 制备溶胶:按照配方将琼脂糖与适量的TAE缓冲液加热溶解,待溶解后静置冷却。

3. 制备DNA样品:从所需材料中提取DNA样品,可以采用常规提取方法。

4. 准备电泳槽:将电泳槽放置于水平桌面上,将制备好的溶胶缓冲液倒入槽中。

5. 样品处理:将提取的DNA样品与适量的样品缓冲液混合,进行必要的处理如加热退变。

6. 加样和电泳:将处理好的样品缓冲液混合液利用吸管或微量移液器加入电泳槽中,确保样品被均匀加载。

7. 设置电泳参数:调整电泳仪的参数,如电压、时间和大小等,启动电泳。

8. 分析与记录:观察电泳过程中带电离子的迁移情况,记录结果。

9. 结束与分析:电泳结束后,关闭电源,取出电泳槽,进行染色或可视化处理,分析结果。

实验结果在本次实验中,我们使用不同浓度的琼脂糖制备了不同浓度的溶胶,并加入了DNA样品进行电泳实验。

根据实验结果,我们得出以下结论:1. 溶胶浓度对电泳效果有重要影响。

溶胶浓度过高会导致DNA分子移动速度变慢,分离效果差;而溶胶浓度过低则会导致DNA分子迁移过快,难以分离。

2. 电场强度对电泳效果有显著影响。

在一定范围内,提高电场强度可以加快DNA分子的迁移速度,提高分离效率。

但如果电场强度过高,则可能导致DNA 分子的断裂或畸变,影响实验结果。

3. DNA片段大小对迁移速度有直接影响,较长的DNA片段迁移速度较慢,较短的DNA片段迁移速度较快。

因此,在分析DNA样品时,我们可以根据迁移速度,初步判断DNA片段的大小。

结论通过溶胶与电泳实验,我们探究了溶胶浓度、电场强度和DNA片段大小对电泳效果的影响。

溶胶的制备及电泳

溶胶的制备及电泳
lnDt=4.474226-4.54426×10-3t 式中,t为温度℃。
1/12/2020 临沂师范学院化学化工学院物理化学教研室
思考题
1. 本实验中所用的稀盐酸溶液的电导为什么必须和所测 溶胶的电导率相等或尽量接近?
2 . 电泳的速度与哪些因素有关?
3. 在电泳测定中如不用辅助液体,把两电极直接插入 溶胶中会发生什么现象?
2.试剂
火棉胶; FeCl3(10%)溶液; KCNS(1%)溶液; AgNO3(1%)溶液; 稀HCl溶液。
1/12/2020 •主临菜沂单师范学院化•学上化一工页学院物理化•学完教成研室
五、实验步骤
1. Fe(OH)3溶胶的制备及纯化 (1) 半透膜的制备 在一个内壁洁净、干燥的250mL锥形瓶中,加入约 10mL火棉胶液,小心转动锥形瓶,使火棉胶液粘附 在锥形瓶内壁上形成均匀薄层,倾出多余的火棉胶于 回收瓶中。此时锥形瓶仍需倒置,并不断旋转,待剩 余的火棉胶流尽,使瓶中的乙醚蒸发至已闻不出气味 为止(此时用手轻触火棉胶膜,已不粘手)。然后再往 瓶中注满水,(若乙醚未蒸发完全,加水过早,则半 透膜发白)浸泡10min。倒出瓶中的水,小心用手分开 膜与瓶壁之间隙。慢慢注水于夹层中,使膜脱离瓶壁, 轻轻取出,在膜袋中注入水,观察有否漏洞。制好的 半透膜不用时,要浸放在蒸馏水中。
1/12/2020 临沂师范学院化学化工学院物理化学教研室
3. 热渗析法纯化Fe(OH)3溶胶
将制得的Fe(OH)3溶胶,注入半透膜内用线拴 住袋口,置于800mL的清洁烧杯中,杯中加蒸馏水 约300mL,维持温度在60℃左右,进行渗析。每 20min换一次蒸馏水,4次后取出1mL渗析水,分 别用1%AgNO3及1%KCNS溶液检查是否存在Cl-及 Fe3+,如果仍存在,应继续换水渗析,直到检查不 出为止,将纯化过的Fe(OH)3溶胶移入一清洁干燥 的100mL小烧杯中待用。

实验 胶体的制备和电泳

实验 胶体的制备和电泳
实验 胶体的制备和电 泳
第一页,课件共12页
78.2 实验原理
几乎所有胶体系的颗粒都带电荷。在外电场中,这些荷电的 胶粒与分散介质间会发生相对运动,若分散介质不动,胶粒会向 正极(胶粒带负电)或负极(胶粒带正电)移动,称为电泳。
胶粒荷电的来源可能是本身电离、吸附离子或与分散介质 (非水介质)摩擦生电,荷电的胶粒与分散介质间的电势差,称 为ζ电势。显然,胶粒在电场在移动速度和ζ电势的有关。所以, ζ电势也称为电动电势。溶胶的聚结不稳定性和它们的ζ电势大 小有关。所以无论制备哪种胶体,通常都需要先了解有关胶体的 ζ电势。
d. 把正负极接于30~50 V直流电源上,按下电键, 开始记时,记下界面的位置。每隔10 min记录一次。
e. 测完后,关闭电源,用铜丝量出两极间的距离。( 不是水平距离)共量3~5次,取平均值。
第五页,课件共12页
78.4 注意事项
(1)溶胶净化要彻底,否则将影响电泳速度。 (2)辅助液电导率必须与溶胶电导率相等。 (3)掌握好装电泳管技术,必须做到辅助液与溶胶 的界面分明。
第八页,课件共12页
(2)如果电泳仪事先没洗净,管壁上残留微量电解质, 对电泳测量结果将有什么影响?
答:可能会影响溶胶的电位,甚至使溶胶凝聚。
第九页,课件共12页
(3)Fe(OH)3胶粒带何种符号的电荷?为什么它会带此 种符号的电荷?
答:Fe(OH)3溶胶胶粒带正电荷;因为Fe(OH)3溶胶胶粒
后,由 u= l ′ /t 求出,故
式中l , l ′ ,t,u 均可由实验测出:水的η 值可由手册查得 ,水的ε 值则按下计算得到
F ·m-1
第三页,课件共12页
78.3 操作步骤
1. 纯化氢氧化铁溶胶的制备 用量筒量取65 mL,已备氢氧化铁溶液,加热至接近沸腾

溶胶的制备和电泳

溶胶的制备和电泳

石工1210 段炼学号12021469实验三溶胶的制备和电泳一.实验目的1.学会溶胶制备的基本原理,掌握溶胶制备的主要方法2.利用界面电泳法测定AgI溶胶的电动电位二.实验原理在电场作用下,胶体粒子向正极或负极移动的现象叫电泳。

电泳现象证实了胶体粒子的带电性。

胶体粒子带电是因为在它周围形成了扩散双电层。

双电层分为吸附层离子和扩散层离子,是固体表面和分散介质之间有电势差,电势大小可由实验测得。

;在外电场作用下,根据胶体粒子的相对运动速度计算电势的基本公式如下利用电泳测定电动电势有宏观法和微观法两种。

宏观法师观察在电泳管内溶胶与辅助液间界面在电场作用下的移动速度。

微观法借助于超显微镜观察单个胶体粒子在电场作用下的移动速度。

本实验采用宏观法。

三.实验仪器与药品1.仪器电泳仪,电泳管,秒表,电极2支,100ml烧杯3个,胶头滴管2支,25ml量筒2个,等。

2.药品0.01mol/LAgNO3溶液,0.01mol/LKI溶液,0.005mol/LKCl溶液四.实验步骤1.AgI负溶胶的制备2.辅助液的制备3.电势的测定五.数据处理电压:200V 室温:14℃ L:7.8cm1.总结溶胶的制备方法:(1)取20ml的碘化钾溶液倒入100ml的烧杯中,然后将18.8ml的硝酸银溶液边搅拌边用胶头滴管滴入烧杯中,滴加结束得到白色的碘化银负溶胶。

(2)关闭活塞,将溶胶倒入U形电泳仪的漏斗中(3)向U形管中加入辅助液,至4ml处(4)打开活塞,使溶胶缓慢上升到0刻度左右关闭活塞(5)将电极插入U形管中,注意平稳(6)打开电泳仪开关,分别记下溶胶界面上升到0.5cm,1.0cm,1.5cm所用的时间(7)测量U形管之间的间距(8)根据量取的数据计算电势(9)实验结束,关闭电源,收拾好仪器2.计算碘化银负溶胶的电势根据附录中的数据和实验测得的数据利用公式(水的介电常数为7.261×10∧-10)(水的介质动力粘度为1.169×10∧-3)所以带入数据得:§1=1.43×10-2V§2=1.57×10-2V§3=1.35×10-2V取平均值:§=1.45×10-2V六.思考题1.试比较不同溶胶的制备方法有什么共同点和不同点?答:相同点:用量一定,需要用滴管滴加药剂,需要玻璃棒搅拌,而且加药剂时要缓慢滴加。

溶胶的制备及电泳实验报告(一)

溶胶的制备及电泳实验报告(一)

溶胶的制备及电泳实验报告(一)溶胶的制备及电泳实验报告1. 引言•溶胶是一种重要的物质,广泛应用于各种领域•本实验旨在探究溶胶的制备方法以及电泳实验的原理和应用2. 溶胶的制备方法•制备方法一:溶胶法–原料的选取和准备–溶剂的选择和添加–搅拌和均质处理–静置和分离–干燥和粉碎•制备方法二:溶胶凝胶法–溶胶法的基础上,添加凝胶剂–凝胶形成和成型–凝胶的干燥和烧结3. 电泳实验原理•电泳是利用电场对溶质进行迁移分离的方法•原理一:溶质的电荷性质–带电的溶质在电场中会产生迁移–阴离子和阳离子迁移的方向和速度不同•原理二:电场的作用–电场可以加速溶质的迁移–电场强度越大,迁移速度越快•原理三:胶状介质的作用–胶状介质可以阻碍溶质迁移–不同大小的溶质在胶状介质上的迁移速度不同4. 电泳实验的应用•生物学领域–蛋白质的分离和鉴定–DNA测序和染色体分析•化学领域–分子结构的研究–化合物纯化和分离•医学领域–肿瘤标记物的检测–药物分子的筛选5. 结论•溶胶的制备方法多种多样,根据不同需求选择合适的方法•电泳实验是一种重要的分离和分析技术,在多个领域有广泛应用的前景注意:本文章为生成文本,可能存在个别表达不准确或错误的情况,请以实际知识为准。

6. 材料与方法•实验材料:溶胶材料、溶剂、凝胶剂、电泳设备等•实验步骤:1.准备实验材料:称取溶胶材料、选择合适的溶剂和凝胶剂。

2.制备溶胶:按照溶胶制备方法进行操作,包括溶剂的选择、搅拌、分离、干燥等步骤。

3.制备凝胶:在溶胶的基础上加入凝胶剂,进行凝胶形成和成型的步骤。

4.电泳实验:将准备好的样品加载到电泳设备中,设置合适的电场强度和时间进行电泳实验。

5.结果分析:根据电泳结果,进行溶质的分离和分析。

7. 结果与讨论•根据不同的溶胶制备方法和电泳实验条件,得到了不同的实验结果。

•通过对实验结果的分析,可以得到溶质的分离程度、迁移速度、电荷性质等信息。

•根据实验结果和初步分析,讨论实验中可能存在的误差及改进方法。

溶胶的制备及电泳实验报告

溶胶的制备及电泳实验报告

溶胶的制备及电泳实验报告溶胶的制备及电泳实验报告溶胶制备•准备所需材料:溶剂、溶负载体、混合搅拌器、加热设备等。

•将溶剂加热至适当温度。

•将溶剂倒入混合搅拌器中。

•逐渐加入溶负载体,同时用搅拌器均匀混合。

•混合过程中,根据所需溶胶的浓度,逐渐加热或降低温度。

•混合均匀后,继续加热或冷却,直到溶负载体完全溶解且无明显悬浮物。

电泳实验准备•准备所需的电泳仪器和试剂。

•制备电泳缓冲液,根据实验需要选择合适的缓冲液配方。

•将电泳缓冲液注入电泳槽中,确保液面平稳。

•准备样品,将样品加载到电泳槽中。

•连接电泳电源,设置合适的电压、时间和温度参数。

•对电泳实验进行预运行,确保参数设置正确。

电泳实验操作步骤1.开启电泳电源,设置合适的电压。

2.等待样品迁移至适当位置,根据实验需要调整电泳时间。

3.实时观察电泳过程,记录迁移距离和带状图像。

4.根据需要,调整电压和时间,进一步优化分离效果。

5.当样品迁移到电泳胶糊底部时,关闭电源并停止电泳。

6.将电泳胶糊取出,进行染色或进一步分析处理。

实验结果和讨论•分析实验得到的结果,比较样品之间的差异。

•讨论实验结果与预期相符程度,分析可能的原因。

•将实验数据与其他研究结果进行对比和交流。

•提出进一步研究的问题和展望。

结论•通过溶胶的制备及电泳实验,可以实现样品的分离和纯化。

•电泳技术在分子生物学和生物化学领域具有重要的应用价值。

•需要进一步优化实验条件和技术方法,提高分离效果和分辨率。

本文介绍了溶胶的制备及电泳实验的相关步骤和操作要点,同时对实验结果和讨论进行了总结和分析。

通过正确的操作和参数设置,利用电泳技术可以实现样品的分离和纯化,达到预期的目的。

但仍需进一步研究和优化,以提高电泳技术的应用效果和实验分辨率。

讨论和展望通过电泳实验可以实现对不同样品的分离与纯化,有助于进一步研究和了解样品的性质和组成。

在实验中,通过调整电压、时间和温度等参数,可以优化电泳分离效果。

然而,仍然存在一些挑战和改进的空间:•实验条件的优化:不同的样品可能对实验条件有不同的要求,因此需要进一步优化实验参数,以提高分离效果和分辨率。

溶胶的制备及电泳实验报告

溶胶的制备及电泳实验报告

溶胶的制备及电泳实验报告引言:溶胶是由胶粒均匀分散于溶液中而形成的胶体系统。

溶胶具有高度分散性和较小的粒径,因此在许多领域都有广泛应用。

本实验旨在通过制备溶胶和进行电泳实验,探究溶胶的性质和应用。

一、溶胶的制备溶胶的制备是通过将固体胶粒悬浮于溶液中而形成的。

在本实验中,我们选择了氧化铁(Fe2O3)作为胶粒,以水作为溶液。

制备溶胶的步骤如下:1. 首先,称取适量的氧化铁粉末,并将其加入到一定体积的水中。

2. 使用磁力搅拌器将溶液搅拌均匀,使氧化铁粉末完全悬浮于水中。

3. 继续搅拌溶液,直到观察到溶液呈现均匀的红棕色。

4. 最后,用滤纸或滤膜过滤溶液,以去除较大的固体颗粒,得到纯净的溶胶。

二、电泳实验电泳实验是利用电场对溶胶中带电颗粒进行分离和定性分析的方法。

本实验中,我们使用凝胶电泳进行分离和观察。

1. 实验装置实验装置主要包括电泳槽、电源、电极和凝胶。

电泳槽用于容纳溶胶样品和电解液,电源用于提供电场,电极用于连接电源和电泳槽,凝胶则用于分离溶胶中的带电颗粒。

2. 实验步骤(1)首先,将制备好的溶胶样品置于电泳槽中,并加入适量的电解液。

(2)将电极连接至电源,并将电源的正负极分别连接至电泳槽的两端。

(3)调节电源的电压和电流,使其维持在适当的数值。

(4)开启电源,开始电泳过程。

根据溶胶样品中带电颗粒的性质和电场的作用,颗粒会在电场的驱动下向正极或负极移动。

(5)根据不同颗粒的迁移速度和移动距离,可以对溶胶样品进行分离和观察。

3. 实验结果与分析根据电泳实验的结果,我们可以观察到溶胶样品中不同颗粒的分离情况。

带电颗粒的迁移速度与颗粒的电荷量、大小和形状等因素有关。

通过观察颗粒的移动距离和分离程度,可以对溶胶样品中的颗粒进行定性和定量分析。

三、溶胶的应用溶胶在许多领域都有广泛的应用。

以下是几个典型的应用领域:1. 生物医学:溶胶可用于药物输送、基因传递和疫苗制备等领域,利用其分散性和稳定性,实现药物和基因的高效传递。

溶胶的制备及电泳

溶胶的制备及电泳

2. NaCl辅助液的配制
用电导率仪测定Fe(OH)3溶胶的电导率,然后配 制与之相同电导率的NaCl溶液。
3. 仪器的安装 用蒸馏水洗净电泳管后,再用少量溶胶洗一次,将 渗析好的Fe(OH)3溶胶倒入电泳管中,使溶胶高度 占电泳管高度约1/2后停止。
用乳胶滴管沿着电泳管内壁逐渐滴加与Fe(OH)3 溶胶电导率相等的NaCl辅助溶液,加至高度为5cm 左右即可。
{[Fe(OH)3]m·nFeO+·(n-x)Cl-}x+·xCl-
2、溶胶的纯化
制成的胶体体系中常有其它杂质存在, 而影响其稳定性,因此必须纯化。常用的纯 化方法是半透膜渗析法。
Cl- :用1%AgNO3溶液检查是否存在 Fe3+: 用1%KCNS溶液检查是否存在
3、电动电势(ζ)
在胶体分散体系中,由于胶体本身的电离或胶粒对 某些离子的选择性吸附,使胶粒的表面带有一定的电荷。 在外电场作用下,胶粒向异性电极定向泳动,这种胶粒 向正极或负极移动的现象称为电泳。
3. 热渗析法纯化Fe(OH)3溶胶
将制得的Fe(OH)3溶胶,注入半透膜内用线拴住 袋口,置于800mL的清洁烧杯中,杯中加蒸馏水约 300mL,维持温度在60℃左右,进行渗析。每 20min换一次蒸馏水,4次后取出1mL渗析水,分别 用1%AgNO3及1%KCNS溶液检查是否存在Cl-及 Fe3+,如果仍存在,应继续换水渗析,直到检查不 出为止,将纯化过的Fe(OH)3溶胶移入一清洁干燥 的100mL小烧杯中待用。
lnDt=4.474226-4.54426×10-3t 式中,t为温度℃。
思考题
1. 本实验中所用的NaCl溶液的电导为什么必须和所测 溶胶的电导率相等或尽量接近?

实验十二 溶胶的制备及电泳

实验十二  溶胶的制备及电泳

实验十二 溶胶的制备及电泳12.1实验目的12.1 掌握凝聚法制备Fe(OH)3溶胶和纯化溶胶的方法。

12.2 理解电动电势ζ的物理意义,掌握用电泳法测定ζ电势的原理和技术。

12.3 加深理解在外电场作用下胶粒与周围介质作相对运动时产生的动电现象。

11.2实验原理本试验采用Fe(OH)3胶体进行电泳试验,Fe(OH)3溶胶用水解凝聚法制备,制备过程中所涉及的化学反应过程如下:(1)在沸水中加入FeCl 3溶液: FeCl 3 + 3H 2O = Fe(OH)3 + 3HCl(2)溶胶表面的Fe(OH)3会再与HCl 反应: Fe(OH)3 + HCl = FeOCl + 2H 2O(3)FeOCl 离解成FeO +和Cl -离子。

胶团结构为: [Fe(OH)3]m ·n FeO +·(n-x )Cl -]x+·x Cl - 胶体溶液(溶胶)是由分散相线度在10-9~10-7m 的高分散多相体系。

胶核大多是分子或原子的聚集体,因选择性地吸附介质中的某种离子(或自身电离)而带电,介质中存在的与吸附离子电荷相反的离子称为反离子,反离子中有一部分因静电引力(或范德华力)的作用,与吸附离子一起紧密地吸附于胶核表面,形成紧密层。

于是胶核、吸附离子和部分反离子(即紧密层)构成了胶粒。

反离子 图1 双电层示意图 的另一部分由于热扩散分布于介质中,故称为扩散层,见图1。

紧密层与扩散层交界处称为滑移面(或Stern 面),显然紧密层与介质内部之间存在电势差,该电势差称为ζ电势。

在电场中胶粒会向异号电极移动,即电泳现象,在特定的电场中,ζ电势的大小取决于胶粒的运动速度,故ζ电势又称为电动电势。

溶胶之所以在一定条件下能相对稳定的存在,主要原因之一就是体系中胶粒带有相同的电荷,彼此之间排斥不致聚集。

胶粒带的电荷越多,ζ电势越大,胶体体系越稳定。

因此,ζ电势大小是衡量溶胶稳定性的重要参数。

ζ电势的测定方法有多种,利用电泳现象可测定ζ电势。

溶胶的制备和性质实验操作方法

溶胶的制备和性质实验操作方法

溶胶的制备及性质一.实验目的1.熟悉用凝聚法制备溶胶的操作;2.了解溶胶的光学性质和电学性质;3.了解电解质对溶胶的凝结作用及高分子溶液对溶胶的保护作用等。

二.实验原理1.溶胶的定义及其特征胶粒直径为1~100 nm,扩散慢,不能透过半透膜,动力学稳定性强,具高度分散性,多相性和聚结不稳定性等特征。

2.溶胶的制备方法溶胶的制备方法有分散法和凝聚法。

以氢氧化铁溶胶的制备为例:取150 mL 蒸馏水,置于300 mL烧杯中,先煮沸2 min,用刻度吸管移去10%FeCl3溶液30 mL,逐滴加入沸水中,并不断搅拌,继续煮沸3 min,得到棕红色Fe(OH)3溶胶,其结构式为:{m[Fe(OH)3]•nFeO+•(n-x)Cl-}x+•xCl-。

3.溶胶的净化制成的溶胶常含有其他杂质,影响胶体的性质,故必须净化。

溶胶的净化是根据离子或分子可以通过半透膜而胶粒不能透过半透膜的特性进行的。

本实验采用的透析袋。

4.溶胶的电学性质以电泳现象为例,在外加电场作用下,溶胶粒子在分散介质中定向移动的现象称为电泳。

通过电泳可以测知溶胶粒子所带电荷的符号,亦可以测定溶胶的ζ电位。

其原理是:式中K为与胶粒形状有关的常数(球形为5.4×1010 V2•S2•kg-1•m-1,棒状粒子为3.6×1010 V2•S2•kg-1•m-1,η为分散介质的粘度(Pa•s),ε为分散介质的相对介电常数,E为加于电泳测定管二端的电压(V),l为两电极之间的距离(m),d 为电泳管中胶体溶液界面在t时间(s)内移动的距离(m),E/l表示两电极间场强,d/t表示电泳速度(m•s-1)。

式中d、t、E和l均可由实验测得。

5.溶胶的光学性质用一束会聚光线通过溶胶,在光前进方向的侧面可看到光柱,这一现象称为丁达尔现象,可用于鉴别胶体。

6.电解质的聚沉作用和高分子溶液的保护作用电解质中与胶粒所带相反电荷的离子可引起溶胶的聚沉。

溶胶的制备及电泳实验报告

溶胶的制备及电泳实验报告

溶胶的制备及电泳实验报告实验目的:1.掌握溶胶的制备方法;2.通过电泳实验了解溶胶的性质和应用。

实验仪器:1.恒温水浴;2.电泳槽;3.电源;4.硅胶片。

实验原理:溶胶是由固体颗粒悬浮在液体介质中形成的分散体系。

在本次实验中,我们使用了硅胶溶胶。

电泳是一种利用电场使电荷载体在电解质中运动的方法。

通过溶胶的电泳可以观察到颗粒在电场中的迁移速度以及颗粒的分离。

实验步骤:1.准备溶胶:将一定量的硅胶粉末加入到一定量的水中,并在恒温水浴中搅拌30分钟直至形成均匀的溶胶;2.准备电泳槽:在电泳槽中注入适量的电解质溶液,并安装电极;3.准备样品:将硅胶溶胶均匀涂布在硅胶片上,并待其干燥;4.进行电泳实验:将样品放入电泳槽中,施加适当的电压,观察颗粒在电解质中的迁移和分离现象;5.拍摄结果:通过显微镜观察颗粒的分离情况,并使用相机拍摄结果。

实验结果:在电泳实验中,我们观察到硅胶溶胶中的颗粒在电场的作用下迁移,并且不同颗粒随着时间的推移逐渐分离。

小颗粒受到电场力的影响较大,迁移速度较快;大颗粒受到电场力的影响较小,迁移速度较慢。

通过电泳实验,我们可以了解颗粒的大小、形态以及电荷状况。

实验结论:通过本次实验,我们成功制备了硅胶溶胶,并通过电泳实验观察到了颗粒的迁移和分离现象。

实验结果表明,溶胶中的颗粒在电场的作用下有不同的迁移速度,从而实现了颗粒的分离。

这种方法可以用于颗粒的筛选和纯化,具有广泛的应用前景。

实验改进:1.在制备溶胶的过程中,可以尝试使用不同粒径的硅胶粉末,以观察不同粒径颗粒的迁移差异;2.可以使用不同浓度的电解质溶液,以观察不同浓度对颗粒分离效果的影响;3.可以对样品进行不同电压和时间的电泳实验,以研究其对颗粒迁移速度和分离效果的影响。

总结:通过本次实验,我们学习了溶胶的制备方法,并通过电泳实验了解了溶胶的性质和应用。

电泳实验是一种重要的分离和纯化方法,在生物、医药、化工等领域具有广泛的应用。

通过不断改进实验条件和方法,我们可以进一步了解和应用溶胶的特点,为相关研究提供参考和依据。

胶体的制备与电泳实验报告

胶体的制备与电泳实验报告

胶体的制备与电泳实验报告胶体的制备与电泳实验报告胶体是一种特殊的物质,由微小的颗粒悬浮在液体中形成。

它具有许多独特的性质和应用,因此在科学研究和工业生产中得到广泛应用。

本文将介绍胶体的制备方法以及电泳实验的原理和应用。

一、胶体的制备方法胶体的制备方法有很多种,常见的包括溶胶-凝胶法、乳化法、共沉淀法等。

其中,溶胶-凝胶法是一种常用且简单的方法。

它通过控制溶胶的凝胶过程来制备胶体。

溶胶-凝胶法的制备步骤如下:首先,将所需的物质溶解在适当的溶剂中,形成溶胶。

然后,通过加热或加入适当的试剂,使溶胶逐渐凝胶,形成胶体。

最后,将胶体分离和纯化,得到所需的胶体产品。

二、电泳实验的原理电泳是一种利用电场作用于带电粒子的运动现象。

在电泳实验中,通过在两个电极之间施加电场,使带电粒子在电场力的作用下向相应的电极移动。

电泳实验的原理可以用库仑定律来解释。

根据库仑定律,带电粒子在电场中受到的电场力与电荷量成正比,与电场强度成正比,与带电粒子的大小和形状无关。

因此,在电场中,带电粒子会受到电场力的作用,从而发生运动。

三、电泳实验的应用电泳实验在科学研究和工业生产中有广泛的应用。

其中,凝胶电泳是一种常用的分离和分析方法。

它通过将带电粒子在凝胶介质中的迁移速度差异来实现分离。

凝胶电泳可以用于DNA分离和检测。

通过将DNA样品加入凝胶孔道中,施加电场,DNA片段会根据其大小和电荷迁移速度的差异在凝胶中分离出来。

通过观察凝胶中的DNA迁移距离,可以确定DNA片段的大小和浓度。

此外,电泳还可以用于纳米颗粒的分离和纯化。

通过在电场中施加电泳力,可以控制颗粒的迁移速度,从而实现不同大小和形状的颗粒的分离和纯化。

总结胶体的制备是一项重要的实验技术,它可以通过溶胶-凝胶法等方法来实现。

电泳实验是一种常用的分离和分析方法,它利用电场力作用于带电粒子的运动来实现分离和纯化。

电泳实验在DNA分离和纳米颗粒纯化等领域有广泛的应用。

通过深入研究胶体的制备方法和电泳实验的原理和应用,可以为科学研究和工业生产提供有力的支持。

溶胶的制备及电泳

溶胶的制备及电泳
3/21/2019
主菜单 完成 临沂师范学院化学化工学院物理化学教研室
参考资料
• 1、《物理化学实验》,(1990年第二版) 山东大学等校编。 • 2、《物理化学实验》,(2004年第三版) 复旦大学编。 • 3、《物理化学实验》,(2000年第二版) 南京大学编。 • 4、网上资料 • 5、物理化学学习指导
3. 明确求算ζ公式中各物理量的意义。
主菜单
3/21/2019
上一步
完成
临沂师范学院化学化工学院物理化学教研室
二、预习要求
1. 相应实验及理论内容; 2. 掌握电泳法测定Fe(OH)3及Sb2S3溶胶电动电势的 原理和方法; 3. 掌握Fe(OH)3及Sb2S3溶胶的制备及纯化方法; 4. 明确求算ζ公式中各物理量的意义;明确实验 过程中要测量的各量。
3/21/2019
2.试剂
火棉胶; FeCl3(10%)溶液; KCNS(1%)溶液; AgNO3(1%)溶液; 稀HCl溶液。
•主菜单 临沂师范学院化学化工学院物理化学教研室 •上一页 •完成
五、实验步骤
1. Fe(OH)3溶胶的制备及纯化 (1) 半透膜的制备 在一个内壁洁净、干燥的250mL锥形瓶中,加入约 10mL火棉胶液,小心转动锥形瓶,使火棉胶液粘附 在锥形瓶内壁上形成均匀薄层,倾出多余的火棉胶于 回收瓶中。此时锥形瓶仍需倒置,并不断旋转,待剩 余的火棉胶流尽,使瓶中的乙醚蒸发至已闻不出气味 为止(此时用手轻触火棉胶膜,已不粘手)。然后再往 瓶中注满水,(若乙醚未蒸发完全,加水过早,则半 透膜发白)浸泡10min。倒出瓶中的水,小心用手分开 膜与瓶壁之间隙。慢慢注水于夹层中,使膜脱离瓶壁, 轻轻取出,在膜袋中注入水,观察有否漏洞。制好的 半透膜不用时,要浸放在蒸馏水中。

胶体制备和电泳,实验报告

胶体制备和电泳,实验报告

胶体制备和电泳,实验报告
本实验旨在研究胶体制备和电泳方法。

实验设备及实验材料:除雾滴装置、高压恒温加热装置、电泳装置及必要耗材剩余所有药品;
实验内容:
1.准备胶体。

在恒温恒压的容器中,通入水溶液、乳化剂、稳定剂和可溶性乳化剂,以形成混合胶体,然后使用纱布过滤器将胶体过滤出来,使之变得清晰透明。

2.准备电泳溶胶。

分别将高中低离子表面活性物质加入实验溶胶中,搅拌10分钟后液力学比表(VBT)与标准比较。

3.胶体电泳。

使用电泳装置以2.5-5kV/cm的电压梯度实施电泳,在20-200μL/min 的流速范围内可以调节,记录调节后的实验结果。

胶体制备结果表明,实验室经过过滤的胶体的清晰度达到90%以上,并且胶体中乳化剂的含量不超过2.0%。

电泳实验中,当流速调至20μL/min时,离子表面活性的吸附比例为65%,当流速调至100μL/min时,离子表面活性的吸附比例为93%,当流速调至200μL/min时,离子表面活性的吸附比例为98%。

结论:
1.胶体准备结果表明,胶体清晰度可以达到90%以上,将提供有效的条件以加速药物的蒸发。

2.通过电泳实验,不同流速下离子表面活性物质的吸附变化情况得出,低离子表面活性物质具有更好的吸附能力,达到98%。

因此,该方法可以优化胶体制备实验。

溶胶的制备及电泳

溶胶的制备及电泳

溶胶的制备及电泳一、实验目的1、掌握凝聚法制备氢氧化铁溶胶的方法;2、观察溶胶的电泳现象并了解其电学性质。

3、用电泳法测定胶粒速度和溶胶电位。

二、实验原理溶胶是一种多组分分散系,其分散介质可以是气体(气溶胶),固体(固溶胶)和液体。

我们所说的溶胶一般是指固体分散在液体中。

分散相的胶粒大小在1~100nm之间,因此相界面很大,是热力学的不稳定体系。

胶粒表面带有电荷,是从介质中吸附离子或解离而得到的。

溶胶之所以能在一定期间内稳定的存在,是因为它的电荷及表面的溶液化层的存在。

溶胶的制备方法有分散法和凝聚法两大类。

分散法是使物质的大颗粒变为大小如同胶体颗粒,可以通过机械研磨、超声波、溶剂的胶溶作用来实现。

凝聚法就是使分子或离子态存在的物质聚合成胶体粒子,可以通过化学反应的方法,使之在溶液中生成胶粒大小的不溶物;变换介质,改变条件使原来溶解的物质变为不溶;或者使物质的蒸汽凝结成胶体颗粒。

例如,制备金属溶胶时,可把金属制成电极,通电产生电弧,金属受高热成为气体,使之在液体中凝聚成为溶胶。

所制备的胶粒大小的分布随制备方法和条件及存放时间而不同。

制备的胶体中往往有许多杂质,可通过渗析和电渗的方法使之纯化,就是用半透膜把溶胶和溶剂隔开,胶粒较大不能通过半透膜,离子和小分子能透过半透膜进入溶剂,因此不断更换溶剂可把胶体溶液中的杂质除去。

若除去的杂质是离子则用电渗析可提高除杂质的速度。

分散在液相介质中的固体颗粒叫胶核,胶核的表面由于吸附或解离而带某种电荷,其周围的介质中分布着数量相等的相反电荷,构成了双电层结构,使整个溶胶体系保持电中性。

胶核与周围的双电层结构一起成为胶团。

双电层又可分为两部分,一部分紧密的与胶核吸附在一起,约有一两个分子层厚,称为紧密层。

紧密层与胶核一起称为胶粒。

在紧密层以外的部分为扩散层,扩散层的厚度随外界条件(温度、离子价态、电解质的浓度等)而变化。

在电场作用下,胶粒与紧密层结合的一定数量的溶剂分子一起运动,而扩散层则向相反的方向移动。

溶胶的制备和电泳

溶胶的制备和电泳

嘉应学院化学系实验报告学生姓名:焦思权班级:101 座号:37 温度:18℃气压:99.93kPa 课程名称:现代化学实验与技术1 指导老师:李勇合作者:陈特华、黄贤杰日期:2013/4/22溶胶的制备和电泳一、目的(1)掌握溶胶的制备和净化方法,了解溶胶的电学性质和稳定。

(2)用界面移动法测定胶粒Fe(OH)3的电泳速率,计算溶胶的电势。

二、实验原理溶胶是粒径1-100 nm的固体微粒分散在液体介质中所形成的分散系统,具有高度分散性、聚结不稳定性和多相不均匀性,并具有动力稳定性。

溶胶的制备方法分为分散法和凝聚法两大类。

分散法是把较大物质颗粒变小到胶粒大小范围,如研磨法、胶溶法(新制松软沉淀加人电解质后重新分散)、电弧法(金属电极通电产生电弧使金属变成蒸气后立即在周围冷的介质中凝聚)、超声波法等。

凝聚法是把物质分子或离子凝结变大到胶粒大小范围,如化学反应法、改换溶剂法(改换溶剂使溶质溶解度降低致过饱和而凝析)等。

新制的溶胶一般常含有过多电解质或其他杂质,影响其稳定性,故必须净化处理。

常用的净化方法是渗析法,它是利用半透膜具有能透过离子和小分子而不能透过胶粒的能力,将溶胶用半透膜与纯溶剂隔开,从而将溶胶中过量的电解质和杂质分离除去。

若需提高渗析速度,还可适当加热或外加电场,即热渗析法和电渗析法。

胶粒是带电的,带电的原因主要是胶核表面选择吸附(优先吸附与胶核含相同元素的离子)或表面分子电离。

胶粒带电、溶剂化作用及布朗运动是溶胶具有动力稳定性的三个重要原因。

溶胶的稳定性受电解质的影响极大。

随着溶胶中电解质浓度的增大,胶团扩散反离子层受挤压而变薄,胶粒所带电荷数减少,扩散层反离子的溶剂化作用(在胶粒周围形成具一定弹性的溶剂化外壳)减弱,溶胶稳定性下降,最终导致聚沉。

电解质中起聚沉作用的主要是与胶粒带相反电荷的离子,且价数越高,聚沉能力越强。

电解质的聚沉能力常用聚沉值的倒数来表示,聚沉值是指使溶胶发生明显聚沉所需电解质的最小浓度。

溶胶的制备及电泳实验报告

溶胶的制备及电泳实验报告

溶胶的制备及电泳实验报告一、引言溶胶是由固体颗粒悬浮在液体介质中形成的胶状体系。

溶胶的制备方法多种多样,其中电泳法是一种常用且有效的制备溶胶的方法。

本实验旨在通过电泳实验,探究溶胶的制备及其在电泳过程中的应用。

二、实验材料与方法1. 实验材料:- 铜板- 硫酸铜溶液- 毛细管- 直流电源- 导线- 玻璃棒- 纸巾2. 实验步骤:- 将铜板清洗干净并剪成适当大小的方形片。

- 用纸巾擦拭铜板表面,保证表面干燥无油污。

- 在玻璃棒上滴上硫酸铜溶液,形成一滴液体。

- 将毛细管的一端放入液滴中,另一端用导线连上直流电源的正极。

- 将铜板的一角放在液滴上,使其与毛细管的液滴相接触。

- 打开电源,设定适当的电压和电流,开始电泳过程。

- 观察电泳现象,记录实验数据。

三、实验结果与讨论经过一段时间的电泳过程,我们观察到铜板上形成了一层均匀的溶胶。

这是因为在电泳过程中,铜离子在电场的作用下从溶液中迁移至电极表面,并在电极上发生还原反应,形成固态的铜颗粒,从而形成溶胶。

电泳实验中,溶胶的形成与电场的强度、电流密度、电泳时间等因素有关。

在本实验中,我们通过调节直流电源的电压和电流,控制电场的强度和电流密度,从而影响溶胶的制备效果。

实验结果表明,当电压和电流较低时,溶胶的形成速度较慢;而当电压和电流较高时,溶胶的形成速度较快。

因此,合理选择电压和电流是制备溶胶的关键。

溶胶的应用之一就是在电泳过程中作为分离介质。

在电泳实验中,我们可以将样品溶液加载到电泳槽中,通过控制电场的强度和方向,让样品中的带电离子在电场的作用下向电极迁移,实现离子的分离。

溶胶可以提供均匀的电场分布,增加离子的迁移速率,从而提高电泳分离的效果。

四、结论通过本实验,我们成功制备了溶胶,并通过电泳实验探究了溶胶的制备及其在电泳过程中的应用。

实验结果表明,电压和电流是影响溶胶形成速度的关键因素。

溶胶作为一种分离介质,在电泳过程中起到了重要的作用。

溶胶的制备及其在电泳过程中的应用具有重要的科学意义和实际价值。

溶胶的制备和电泳

溶胶的制备和电泳

中国石油大学化学原理二实验报告实验日期:成绩:班级:学号:姓名:教师:同组者:一、实验目的1.学会溶胶制备的基本原理、并掌握溶胶制备的主要方法;2.利用界面电泳法测定AgI溶胶的电动位。

二、实验原理溶胶是溶解度极小的固体在液体中高度分散所形成的胶态体系,其颗粒直径变动在10-7~10-9m范围。

1.溶胶制备要制备出稳定的溶胶一般需满足两个条件:固体分散相的质点大小必须在胶体分度的范围内;固体分散质点在液体介质中要保持分散不聚结,为此,一般需要加稳定剂。

制备溶胶原则上有两种方法:将大块固体分割到胶体分散度的大小,此法称为分散法;使小分子或粒子聚集成胶体大小,此法称为凝聚法。

(1)分散法分散法主要有 3 种方式,即机械研磨、超声分散和胶溶分散。

①研磨法:常用的设备主要有胶体磨和球磨机等。

胶体磨由两片靠得很近的盘或磨刀,均由坚硬耐磨的合金或碳化硅制成。

当上下两磨盘以高速反向转动时(转速约5000-10000rpm),粗粒子就被磨细。

在机械磨中胶体研磨的效率较高,但一般只能将质点磨细到 1um 左右。

②超声分散法:频率高于16000Hz的声波称为超声波,高频率的超声波传入介质,在介质中产生相同频率的疏密交替,对分散相产生很大的撕碎力,从而达到分散效果。

此法操作简单,效率高,经常用作胶体分散及乳状液制备。

③胶溶法:胶溶法是把暂时聚集在一起的胶体粒子重新分散而成溶胶。

例如,氢氧化铁、氢氧化铝等的沉淀实际上是胶体质点的聚集体,由于制备时缺少稳定剂,故胶体质点聚在一起而沉淀。

此时若加入少量的电解质,胶体质点因吸附离子而带电,沉淀就会在适当的搅拌下重新分散成胶体。

有时质点聚集成沉淀是因为电解质过多,设法洗去过量的电解质也会使沉淀转化成溶胶。

利用这些方法使沉淀转化成溶胶的过程成为胶溶作用。

胶溶作用只能用于新鲜的沉淀。

若沉淀放置过久,小粒经过老化,出现粒子间的连接或变化成大的粒子,就不能利用胶溶作用来达到重新分散的目的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中国石油大学化学原理(Ⅱ)实验报告实验日期:2012—10—25 成绩:班级:石工11 学号:姓名:教师:耿杰同组者:实验三溶胶的制备和电泳一、实验目的1.学会溶胶制备的基本原理,并掌握溶胶制备的主要方法;2.利用界面电泳法测定AgI溶胶的电动电位。

二、实验原理溶胶是溶解度极小的固体在液体中高度分散所形成的胶态体系,其颗粒直径变动在10-7—10-9范围。

1.溶胶制备要制备出稳定的溶胶一般要满足两个条件:固体分散相的质点大小必须在胶体分度的范围内;固体分散质点在溶液介质中要保持不聚结,为此,一般需要加稳定剂。

制备溶胶原则上有两种方法:将大块固体分割到胶体分散度的大小,此法称为分散法;使小分子或粒子聚集成胶体大小,此法称为凝聚法。

(1)分散法分散法主要有3种方式,即机械研磨、超声分散和溶胶分散。

①研磨法:常用的设备主要有胶体磨和球磨机等。

胶体磨由两片靠得很近的盘或磨刀,均由坚硬耐磨的合金或碳化硅制成。

当上下两磨盘以高速反向转动时,粗粒子就被磨细。

②超声分散法:频率高于16000Hz的声波称为超声波,高频率的超声波传入介质,在介质中产生相同频率的疏密交替,对分散相产生很大的撕碎力,从而达到分散效果。

③胶溶法:胶溶法是把暂时聚集在一起的胶体粒子重新分散而成溶胶。

(2)凝聚法主要有化学反应法及更换介质法,此法的基本原则是形成分子分散的过饱和溶液,控制条件,使形成的不溶物颗粒大小在溶胶分散度内。

此法与分散度相比不仅在能量上有限,而且可以制成高分散度的胶体。

①化学反应法:凡能形成不溶物的复分解反应,水化反应以及氧化还原反应等皆可用来制备溶胶。

由于离子的浓度对胶体的稳定性有直接的影响,在制备溶胶时要注意控制电解质的浓度。

②改换介质法:此法系利用同一物质在不同溶剂中溶解度相差悬殊的特性,使溶解于良溶剂中的溶质,在加入不良溶剂后,因其溶解度下降而以胶体粒子的大小析出,形成溶胶。

此法作溶胶方法简便,但得到的溶胶粒子不太细。

2. 溶胶的电泳在电场的作用下,胶体粒子向正极或负极移动的现象叫电泳。

电泳现象粒子的带电性。

胶体粒子带电是因为在其周围形成了扩散双电层。

按对固体的关系,扩散双电层离子可沿滑动面分为吸附层离子和扩散层离子两部分,使固体表面和分散介质之间有电势差,即ξ电势。

ξ电势的大小可通过电泳试验测得。

在外电场的作用下,根据胶体粒子的相对运动速度计算电势的基本是 ζ=tv ld εη 式中: ζ-胶体粒子的电动电势(V );η-介质的动力粘度(Pa.s );d -溶胶界面移动的距离(m );l -两电极之间的距离(m );ε-介电常数(F/m );v -两极间的电位差(V );t –电泳进行的时间(s )。

水的粘度和介电常数查附录二和附录七。

利用电泳测定电动势有宏观法和微观法两种。

宏观法是观察在电泳管内溶胶与辅助液间界面在电场作用下的移动速度;微观法借助于超显微镜观察单个胶体粒子在电场作用下的移动速度。

本试验用宏观法测定.三、仪器与药品1.仪器电泳仪,电泳管,秒表,电极2支,100mL 烧杯3个,胶头滴管2支,25ml 量筒2个等。

2.药品0.01mol/LAgNO3溶液, 0.01mol/LKI 溶液, 0.005mol/L KCl 溶液四、实验步骤(一)溶胶的制备1. 胶溶法氢氧化铁溶胶的制备:取10ml20%氯化铁放在小烧杯中,加水稀释到100ml 然后用滴管逐滴加入10%氨水到稍微过量为止。

过滤生成的氢氧化铁沉淀,用蒸馏水洗涤数次。

将沉淀放入一烧杯中,加10ml 蒸馏水,再用滴管滴加约10滴20%氯化铁溶液,并用小火加热,最后得到棕红色透明的氢氧化铁溶胶。

2. 改换介质法松香溶胶的制备:配制2%的松香乙醇溶液,用滴管将溶液逐滴滴入到盛有蒸馏水的烧杯中,同时剧烈搅拌,可得到半透明的溶胶。

如果发现有较大的质点,需将溶胶再过滤一次。

3.化学反应法(1)氢氧化铁的溶胶制备(水解法):再一个250mL 的烧杯中。

加入150mL 蒸馏水并加热至沸腾,在不断搅拌的条件下滴加8ml3%的氯化铁溶液,溶液变成暗棕红色的氢氧化铁胶体。

然后对此溶胶进行渗析,除去多余的电解质。

渗析的方法是按下列步骤先做一个渗析用的火棉胶袋:将一个500ml 的锥形瓶洗净烘 干,将火棉胶液倒入锥形瓶中,倾斜锥形瓶并慢慢的移动,使锥形瓶内均匀地涂上一层胶液,然后倒出火棉胶。

当火棉胶干后(不粘手),将瓶口的胶膜剥离开一小部分。

从此剥离口慢慢的加入蒸馏水,胶带逐渐与瓶壁剥离,取出胶袋,再蒸馏水中浸泡数小时。

将上面制备的氢氧化铁溶胶倒入火棉胶袋,并悬挂在盛有蒸馏水的大烧杯中,每小时换一次蒸馏水,直到用0.1mol/LAgNO3溶液检验无氯离子渗析时便可结束。

(2)碘化银溶胶的制备(复分解法):在两个锥形瓶中分别准确的加入5mL0.02mol/L KI和0.02mol/LAgNO3溶液,在盛有KI溶液的瓶中在搅拌下再准确地滴加4.5mL0.02mol/LAgNO3溶液。

在另一盛有AgNO3溶液的瓶中再准确的滴加4.5ml0.02mol/L KI溶液。

观察两锥形瓶中AgI溶胶透射光及散射光颜色。

(二)AgI 溶胶的电泳1. AgI负溶胶的制备用25ml量筒量取20ml0.01mol/L的KI溶液,倒入100ml的烧杯中。

然后,用另一25ml量筒量取l8.7ml0.01ml/L的AgNO3溶液,用胶头滴管向量取的KI 溶液中滴加量取的AgNO3溶液,并不断搅拌,滴加结束即制得AgI负溶胶2. 辅助液的制备先测定溶胶的电导率。

用少量溶胶将试管及电导率池次3次,在试管中加入适量溶胶,插入导电池,测定室温下溶胶电导率。

向0.01mol/LKI溶液中加蒸馏水至其电导率与溶胶相同,本实验用的辅助液是浓度约为0.005ml/L的KCL.3.电势的测定(1)仔细洗净电泳管,检查活塞是否润滑良好,且不漏。

用少量已配好的AgI溶胶将电泳管的漏斗至活塞的支管洗一遍。

用滴管由漏斗加入少量溶胶,使活塞孔内充满溶胶,迅速关闭活塞。

用辅助液洗涤U型管部分。

活塞以上若有溶胶也应洗去。

(2)关闭电泳管活塞,将电泳管垂直固定在铁架台支架上。

(3)用胶头滴管由漏斗向电泳管中加入值得的溶胶至漏斗细支管顶部,然后倒入烧杯中剩于的溶胶。

(4)用烧杯取一定量的KCl辅助液,沿U型管倒入电泳管。

若使用长电极,则将辅助液倒入U型管至刻度4;若使用短电极,则将辅助液倒入U型管至刻度9。

(5)将黑色挡板放在U型管后,慢慢打开活塞使溶胶慢慢上升。

注意,不要全部打开,一定要慢,否则得不到清晰的溶胶界面。

至溶胶上升至刻度线0时,关闭活塞。

(6)将两个电极轻轻插入电泳管的U型管中。

整个过程注意保持平稳,不使电泳管受振动。

(7)将电泳仪电泳仪电源开扳下(关),将输出调节旋钮反时针方向旋至输出电压最小位置,接好电源线,,做好开机准备。

将两电极引线接在电泳仪上,将电泳仪电源开关扳上(开),指示灯亮,预热5分钟后,调节输出旋钮到电压指示为150V。

按电泳仪的开始按钮,同时计时,指示灯显示为R。

(8)观察溶胶上升界面清晰后,用秒表测量界面上升0.5、1.0、1.5cm 所需时间。

测量完毕,按电泳仪的停止按钮,指示灯灭。

(9)用钢尺仔细量出U型管的距离,减去U型管的两个半径,即为两电极之间的距离。

(10)实验结束,洗净使用过的所有玻璃仪器。

将药品和仪器放回原处。

五、数据处理1.总结溶胶的制备方法。

制备溶胶有两种方法:分散法和凝聚法。

其中分散法主要有 3 种方式,即机械研磨、超声分散和胶溶分散;而凝聚法主要2种方式,即化学反应法及更换介质法。

2.计算 AgI 负溶胶的ξ电势,并取平均值。

表1 原始数据表电压:V=200V室温:20℃由附录二和附录六,当T=20℃,水的粘度η=1.002X10-3pa.s,介电常数ε=7.096X10-10F/mξ=ηld/εtv=1.002X10-3X0.005X0.073/(7.096X10-10X228X200)=0.0113(V ) 同理可得:ζ2=0.0108Vζ3=0.0108V求平均值:011.030108.00108.00113.03321=++=++=ξξξ(V ) 六、思考题1、试比较不同溶胶的制备方法有什么共同点和不同点?答:共同点:固体分散相的质点大小都在胶体分散度的大小得范围内;不同点:分散法是将大块固体分割到胶体分散度的大小;凝聚法是使小分子或粒子聚集成胶体大小。

2、为什么要求辅助液与溶胶的电导率相同?这对计算电动电势有什么作用。

答:在测电势时,电势对辅助液的成分敏感,因此必须控制辅助液的电导率与待测溶胶的电导率相等,只有这样才能保证辅助液的移动速度与溶胶相等,以此避免因界面处电场强度突变造成两壁界面移动速度不等而产生的界面模糊。

3、注意观察,电泳时溶胶上升界面与下降界面的颜色、清晰程度及移动速度有什么不同。

分析产生这些差别的可能原因。

答:上升界面颜色较深,清晰度较好,移动速度较慢;下降界面颜色较浅,不太清晰,移动速度较快。

在电泳开始后,带负电的AgI粒子向正极移动,而移动速度最快的离子在最前面,其他离子依电极速度快慢顺序排列,上升界面只有AgI,而下降界面还有Cl-,其移动速度比AgI粒子快,使下降界面颜色变淡,移动速度变快,不太清晰。

4.Fe(OH)3溶胶渗析的目的是除去什么电解质?有什么办法检测Fe(OH)3溶胶纯化的程度?渗析时是将溶胶中分散的所有离子除去吗?答:Fe(OH)3溶胶渗析的目的是除去FeCl3。

用AgNO3和KSCN来检验其纯化的程度,加入AgNO3,若不产生白色沉淀,说明Cl-已被除尽,否则,未除尽。

加入KSCN,若未产生血红色,说明Fe3+已除尽,反之未除尽。

不可能将所有分散的离子都除去,因为存在粒子的扩散作用。

相关文档
最新文档