0届高三第一轮复习曲线运动教案完美版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
曲线运动
单元切块:
按照考纲的要求,本章内容可以分成三部分,即:运动的合成和分解、平抛运动;圆周 运动;其中重点是平抛运动的分解方法及运动规律、匀速圆周运动的线速度、角速度、向心 加速度的概念并记住相应的关系式。
难点是牛顿定律处理圆周运动问题。
运动的合成与分解
平抛物体的运动
教学目标:
1 •明确形成曲线运动的条件(落实到平抛运动和匀速圆周运动);
2 •理解和运动、分运动,能够运用平行四边形定则处理运动的合成与分解问题。
3 •掌握平抛运动的分解方法及运动规律
4•通过例题的分析,探究解决有关平抛运动实际问题的基本思路和方法,并注意到相关 物理知识的综合运用,以
提高学生的综合能力.
教学重点:平抛运动的特点及其规律 教学难点:运动的合成与分解
教学方法:讲练结合,计算机辅助教学 教学过程:
、曲线运动
知识网络:
条件:只受重力,初速水平
条件:F 合与初速V o 不在一条直线上
平抛运动
研究方法:运动的合成和分解 曲线运动
特例
规律:水平方向匀速直线运动
竖直方向自由落体运动
方向:沿切线方向
匀速圆周运动
特点:v 、a 大小不变,方向时刻变化 描述:v 、3、 T 、a 、n 、f 条件:F 合与初速V o 垂直
1 •曲线运动的条件:质点所受合外力的方向(或加速度方向)跟它的速度方向不在同一
直线上。
当物体受到的合力为恒力(大小恒定、方向不变)时,物体作匀变速曲线运动,如平抛
运动。
当物体受到的合力大小恒定而方向总跟速度的方向垂直,则物体将做匀速率圆周运
动.(这里的合力可以是万有引力——卫星的运动、库仑力——电子绕核旋转、洛仑兹力——带电粒子在匀强磁场中的偏转、弹力——绳拴着的物体在光滑水平面上绕绳的一端旋转、重
力与弹力的合力一一锥摆、静摩擦力一一水平转盘上的物体等•)
如果物体受到约束,只能沿圆形轨道运动,而速率不断变化一一如小球被绳或杆约束着
在竖直平面内运动,是变速率圆周运动•合力的方向并不总跟速度方向垂直.
2 •曲线运动的特点:曲线运动的速度方向一定改变,所以是变速运动。
需要重点掌握的
两种情况:一是加速度大小、方向均不变的曲线运动,叫匀变速曲线运动,如平抛运动,另一是加速度大小不变、方向时刻改变的曲线运动,如匀速圆周运动。
二、运动的合成与分解
1. 从已知的分运动来求合运动,叫做运动的合成,包括位移、速度和加速度的合成,由
于它们都是矢量,所以遵循平行四边形定则。
重点是判断合运动和分运动,这里分两种情况介绍。
一种是研究对象被另一个运动物体所牵连,这个牵连指的是相互作用的牵连,如船在水
上航行,水也在流动着。
船对地的运动为船对静水的运动与水对地的运动的合运动。
一般地,
物体的实际运动就是合运动。
第二种情况是物体间没有相互作用力的牵连,只是由于参照物的变换带来了运动的合成
问题。
如两辆车的运动,甲车以v甲=8 m/ s的速度向东运动,乙车以v乙=8 m /s的速度向
北运动。
求甲车相对于乙车的运动速度v甲对乙。
2 •求一个已知运动的分运动,叫运动的分解,解题时应按实际“效果”分解,或正交分
解。
3 .合运动与分运动的特征:
①等时性:合运动所需时间和对应的每个分运动时间相等
②独立性:一个物体可以同时参与几个不同的分运动,各个分运动独立进行,互不影响。
4 .物体的运动状态是由初速度状态(v o)和受力情况(F合)决定的,这是处理复杂运动的力和运动的观点•思路是:
--------------- 分解 ----------------------
复杂运动简单运动
(1 )存在中间牵连参照物问题:如人在自动扶梯上行走,可将人对地运动转化为人对梯和梯对地的两个分运动处理。
(2)匀变速曲线运动问题:可根据初速度(v o)和受力情况建立直角坐标系,将复杂运
动转化为坐标轴上的简单运动来处理。
如平抛运动、带电粒子在匀强电场中的偏转、带电粒子在重力场和电场中的曲线运动等都可以利用这种方法处理。
5.运动的性质和轨迹
物体运动的性质由加速度决定(加速度得零时物体静止或做匀速运动;加速度恒定时物体做匀变速运动;加速度变化时物体做变加速运动)。
物体运动的轨迹(直线还是曲线)则由物体的速度和加速度的方向关系决定(速度与加速度方向在同一条直线上时物体做直线运动;速度和加速度方向成角度时物体做曲线运动)。
两个互成角度的直线运动的合运动是直线运动还是曲线运动? 决定于它们的合速度和合加速度方向是否共线(如图所示)。
常见的类型有:
⑴a=0 :匀速直线运动或静止。
⑵a恒定:性质为匀变速运动,分为:①v、a同向,匀加速直线运动;② v、a反向,匀
减速直线运动;③v、a成角度,匀变速曲线运动(轨迹在v、a之间,和速度v的方向相切,
方向逐渐向a的方向接近,但不可能达到。
)
⑶a变化:性质为变加速运动。
如简谐运动,加速度大小、方向都随时间变化。
6 .过河问题
如右图所示,若用v i表示水速, v2表示船速,则:
①过河时间仅由V2的垂直于岸的分量V丄决定,即t —,与v
1无
v
关,所以当v2丄岸时,过河所用时间最短,最短时间为t —也与v i
V2
无关。
②过河路程由实际运动轨迹的方向决定,当v i v v2时,最短路程为
d ;当v i>v2时,最短路程程为 d (如右图所示)。
V2
7 .连带运动问题
指物拉绳(杆)或绳(杆)拉物问题。
由于高中研究的绳都是不可伸长的,杆都是不可
x
伸长和压缩的,即绳或杆的长度不会改变,所以解题原则是:把物体的实际速度分解为垂直 于绳(杆)和平行于绳(杆)两个分量,根据沿绳(杆)方向的分速度大小相同求解。
【例1】如图所示,汽车甲以速度
V 1拉汽车乙前进,乙的 速度为V 2,甲、乙都在水平面上运动,求
V 1 : V 2
解析:甲、乙沿绳的速度分别为 V 1和V 2C0S a ,两者应该相 等,所以有
V 1 : V 2=C0S a : 1
【例2】 两根光滑的杆互相垂直地固定在一起。
上面分别 穿有一个小球。
小球a 、b 间用一细直棒相连如图。
当细直棒与 竖直杆夹角为a 时,求两小球实际速度之比
V a : V b
解析:a 、b 沿杆的分速度分别为 V a cos a 和v b sin a 二 V a : V b = tan a : 1 三、平抛运动
当物体初速度水平且仅受重力作用时的运动,被称为平抛运动。
其 轨迹为抛
物线,性质为匀变速运动。
平抛运动可分解为水平方向的匀速运动和竖直方向的自 由落体运动这两个分运动。
广义地说,当物体所受的合外力恒定且与初速度垂直时,做类平 抛运动。
1、平抛运动基本规律
①
速度:V x V o , V y gt
合速度V 厂打
方向 :tan B =也 么
V x V o
1 2
② 位移x=V o t y= gt
合位移大小:s= x 2 y 2
-
1 2 12 y
③
时间由y=—gt 2得t=、 y
(由下落的高度y 决定)
2 . x
④ 竖直方向自由落体运动,匀变速直线运动的一切规律在竖直方向上都成立。
方向:
tan a"
2. 应用举例
(2 )临界问题
典型例题是在排球运动中,
出界,扣球速度的取值范围应是多少?
【例4】 已知网高H ,半场长L ,扣球点高h ,扣球点离网水平距离 s 、求:水平扣球速 度v 的取值范围。
解析:假设运动员用速度 V max 扣球时,球刚好不会出界,用速度 V min 扣球时,球刚好不触 网,从图中数量关系可得:
(1 )方格问题
【例3】平抛小球的闪光照片如图。
相的频闪间隔T ,求:V 。
、
g 、V c
解析:水平方向:V 。
先求C 点的水平分速度
2a 5a
V x V 。
T ,V y 2T V c
为了使从某一位置和某一高度水平扣出的球既不触网、又不
V
max
(L
S
)Y 2h
V
min
S/
2(h H) g
1
s.2(h g H)
实际扣球速度应在这两个值之间。
【例5】如图所示,长斜面 OA 的倾角为e ,放在水平地面上,现从顶点 O 以速度V 0平
抛一小球,不计空气阻力,重力加速度为g ,求小球在飞行过程中离斜 面的最大距离S 是多少?
解析:为计算简便,本题也可不用常规方法来处理,而是将速度 和加速度分别沿垂直于斜面和平行于斜面方向进行分解。
如图 15,速
度V 0沿垂直斜面方向上的分量为
V 1= V 0 sin e ,加速度g 在垂直于斜面
方向上的分量为a=g cos e ,根据分运动各自独立的原理可知,球离斜 面的最大距离仅
由和决定,当垂直于斜面的分速度减小为零时,球离
V 和竖直分速度
7竖直方向:
易可以得出结论:E /=14J 。
点评:本题也能用解析法求解。
列出竖直分运动和水平分运动的方程,注意到倾角和下 落高度和射程的关系,有:
h= — gt 2, s=v o t , — tan
2 s
卡 -1 h
或 h=
v y t , s=v o t , tan
2
s
同样可求得 v t : v 0= .7 : 3 , E /=14J
四、曲线运动的一般研究方法
研究曲线运动的一般方法就是正交分解法。
将复杂的曲线运动分解为两个互相垂直方向 上的直线运动。
一般以初速度或合外力的方向为坐标轴进行分解。
【例7】 如图所示,在竖直平面的 xoy 坐标系内,oy 表示竖直向上方向。
该平面内存在 沿x 轴正向的匀强电
场。
一个带
电小球从坐标原点沿 oy 方向竖直 向上抛出,初动能为 4J ,不计空 气阻力。
它达到的最高点位置如
2 2 ・
斜面的距离才是最大。
s 芒- v ° sin。
2a 2g cos
点评:运动的合成与分解遵守平行四边形定则,有时另辟蹊径可以收到意想不到的效果。
(3)—个有用的推论
平抛物体任意时刻瞬时时速度方向的反向延长线与初速度延 长线的交点到抛出点的距离都等于水平位移的一半。
证明:设时间t 内物体的水平位移为 s ,竖直位移为h . 度的水平分量 v x =v o =s/t ,而竖直分量 v y =2h/t ,
tan 上
所以有s
h s tan
2
6】从倾角为e =30°的斜面顶端以初动能 方向平抛出一个小球,则小球落到斜面上时的动能
【例
E=6J 向下坡 E /为
Jo
解析:以抛出点和落地点连线为对角线画出矩形 ABCD ,可 以证明末速度V t 的反向延长线必然交 AB 于其中点 0,由图中可 知AD : A0=2 :
3,由相似形可知 v t : v o = 7 :
3,因此很容
v t
D
则末速
v t
2h
-------- ?
s
s
a
V
A
I *
图中M点所示。
求:
⑴小球在M点时的动能E i。
⑵在图上标出小球落回x轴时的位置N。
⑶小球到达N点时的动能E2。
解析:⑴在竖直方向小球只受重力,从0宀M速度由v o减小到0;在水平方向小球只受
电场力,速度由0增大到v i,由图知这两个分运动平均速度大小之比为 2 : 3,因此v o : v i=2 : 3, 所以小球在M点时的动能E i=9J。
⑵由竖直分运动知,M和M T N经历的时间相同,因此水平位移大小之比为 1 : 3, 故N点的横坐标为12。
⑶小球到达N点时的竖直分速度为v o,水平分速度为2v i,由此可得此时动能E2=40J。
五、综合例析
【例8】如图所示,为一平抛物体运动的闪光照片示意图,照片与实际大小相比缩小10倍•对照片中小球位置进行测量得:1与4闪光点竖直距离为1.5 cm, 4与7闪光点竖直距离为
2.5 cm,各闪光点之间水平距离均为0.5 cm.则
(1)小球抛出时的速度大小为多少?
⑵验证小球抛出点是否在闪光点1处,若不在,则抛出点距闪光点1的实际水平距离和
竖直距离分别为多少?(空气阻力不计,g= 10 m/s2)
解析:
(1) 设1~4之间时间为T,
竖直方向有:(2.5-1.5) X 10-2x 10 m = gT2
所以T = 0.1 s
水平方向:0.5X 10-2X 3X 10 m = V0T
所以V0=1.5 m/s
(2) 设物体在1点的竖直分速度为V1y
1
1~4 竖直方向:1.5X 10-2X 10 m=V1y T+ gT2
解得v1y=1 m/s
因Wy M 0,所以1点不是抛出点
设抛出点为O点,距1水平位移为x m,竖直位移为y m,有
水平方向x=v0t
y - gt
竖直方向:y 2
V ly
gt
解得 t= 0.1 s ,
x=0.15 m=15 cm y=0.05 m=5 cm
即抛出点距1点水平位移为15 cm ,竖直位移为5 cm
【例9】柯受良驾驶汽车飞越黄河,汽车从最高点开始到着地为止这一过程的运动可以 看作平抛运动。
记者从侧
面用照相机通过多次曝光,拍摄到汽车在经过最高点以后的三副运 动照片如图2所示,相邻两次曝光时间间隔相等,均为△
t ,已知汽车的长度为I ,则
A .从左边一幅照片可推算出汽车的水平分速度的大小
B •从左边一幅照片可推算出汽车曾经到达的最大高度
从中间一幅照片可推算出汽车的水平分速度的大小和汽车曾经到达的最大高度
从右边一幅照片可推算出汽车的水平分速度的大小
解析:首先应动态的看照片,每幅照片中三个汽车的像是同一辆汽车在不同时刻的像, 根据题目的描述,应是由
高到低依次出现的,而且相邻两像对应的时间间隔是相等的,均为 已知的△ t 。
题目中“汽车的长度为I ”这一已知条件至关重要,我们量出汽车在照片中的长度,就能 得到照片与实际场景的比例,这样照片中各点间的真实距离都能算出。
物理知识告诉我们,汽车在通过最高点后的运动,可抽象为质点的平抛运动,因此 水平方向为匀速运动,竖
直方向为自由落体运动。
关于水平速度,由于汽车在空中相邻的两个像对应的真实距离能算出,这段运动对应的 时间△ t 已知,因此由左、中两幅照片中的任意一幅都能算出水平速度。
至于右边的一幅,因 为汽车在空中的像只有一个,而紧接着的在地上的像不一定是刚着地时的像(汽车刚着地时, 可能是在两次拍摄之间),因此在这个△ t 内,可能有一段时间做的已经不是平抛运动了,水
平方向不是匀速的。
所以用该照片无法计算出水平速度。
关于最大高度,应分析竖直方向,同时对不同照片进行比较。
左边一幅,没拍到地面, 肯定不能计算最大高度。
右边一幅,空中只有一个像,无法分析其自由落体运动。
中间一幅, 相邻像的两个真实距离均能知道,借用处理纸带的方法,能算出中间那个像对应的速度,进 而由自由落体运动的公式算出最高点这个位置的高度,再加上这个位置的离地高度即可得到
C . 右
中 2
左
汽车离地的最大高度。
因此该题选A、C o
点评:这是一道很典型的频闪照片的题,给我们很多分析频闪照片的启示:要能看出动态、要关注照片比例、要先确定运动的性质,以便在其指引下分析,多幅照片要进行细致的比较。
六、针对练习
1 •做平抛运动的物体,每秒的速度增量总是
A .大小相等,方向相同
B •大小不等,方向不同
C.大小相等,方向不同
D •大小不等,方向相同
2 •从倾角为e的足够长的斜面上的A点,先后将同一小球以不同的初速度水平向右抛
出•第一次初速度为V1,球落到斜面上的瞬时速度方向与斜面夹角为 a 1,第二次初速度为V2,
球落到斜面上的瞬时速度方向与斜面夹角为 a 2,若v i>V2,则
A • a i > a 2
B • a i= a 2 C. a 1 < a 2D .无法确定
3 .小球从空中以某一初速度水平抛出,落地前1s时刻,速度方向与水平方向夹30°角,落地时速度方向与水平方向夹60°角,g= 10m/s2,求小球在空中运动时间及抛出的初速度。
4 .如图所示,飞机离地面高度为H = 500m,水平飞行速度为V1= 100m/s,追击一辆速度
为V2= 20 m/s同向行驶的汽车,欲使炸弹击中汽车,飞机应在距离汽车的水平距离多远处投
弹?(g=10m/s2) 5
5 .飞机以恒定的速度v沿水平方向飞行,高度为2000m。
在飞行过程中释放一枚炸弹,
经过30s后飞行员听见炸弹落地的爆炸声。
假设此爆炸向空间各个方向的传播速度都为
330m/s,炸弹受到的空气阻力可以忽略,求该飞机的飞行速度v?
6. 如图所示,点光源S距墙MN的水平距离为L,现从O处以水平速度V0平抛一小球
P, P在墙上形成的影是P',在球做平抛运动过程中,其影P'的运动速度是多大?
7 .在离地面高为h ,离竖直光滑墙的水平距离为 s i 处,有一小球以v o 的速度向墙水平抛
出,如图所示。
小球与墙碰撞后落地,不计碰撞过程中的能量损失,也不考虑碰撞的时间, 则落地点到墙的距离 S 2为多少?
8•如图所示,光滑斜面长为 a ,宽为b ,倾角为0。
一物块沿斜面上方顶点 P 水平射入, 而从右下方顶点 Q 离开斜
面,求物块入射的初速度为多少?
参考答案:
2.
B
3 .解析:设小球的初速度为 v o ,落地前is 时刻其竖直分速度为 v i ,由图1 知: v i = v o tan30°.
落地时其竖直分速度为
V 2,同理 v 2= v o tan60°, v 2- v i = g ^t , v 0
g ,
2
3
V 2 3v °
- g gt ,所以 t=i.5s 。
2
点评:在解这类基本题型时,需要注意的是:速度、加速度、位移都是矢量,运算时遵 守平行四边形定则。
4.解析:炸弹作平抛运动,其下落的时间取决于竖直高度,由
H 如2得:
t i l2H i0s ,设距汽车水平距离为 s 处飞机投弹,则有:
.g
s (v 1 v 2 )t 800
点评:物体作平抛运动飞行的时间只与抛出点和落地点的高度差有关,与物体的质量及 初速度无关。
先确定运动所需时间有助于问题的解决。
5•解析:设释放炸弹后,炸弹经
t i 时间落地爆炸,则由平抛运动公式得:
f gt i 2,
设从炸弹爆炸到飞行员听见爆炸声所经过的时间为
t 2,则由题给条件得t= t i + t 2,由图直角三
內
0°
角形的几何关系可得(vt 2)2
(ct 2)2 h 2,解得v=262m/s 。
点评:根据题中描述的物理情景,画出相应的示意图,充分利用几何关系是处理平抛运 动相关问题通常采用的方
法。
6 •解析:设小球经过一段时间运动到某一位置时的水平位移为 h L
1 影的长度为h ,由图知:一一,而 x= v o t , y= — g t
2 ;所以
y x
2
h
-gL t ,由此看出影子的运动是匀速直线运动,其速度为
x 2v o
点评:本题将平抛运动与光学有机结合起来,在思考时注意 子是由于光的直线传播形成的。
点评:由于碰撞无能量损失,故反弹速度与原速度关于墙面对称,可用平抛运动全程求 解是本题的一个亮点。
8 •解析:物体在光滑斜面上只受重力和斜面对物体的支持力,因此物体所受到的合力大 小为F = mg sin ,方向沿斜面向下;根据牛顿第二定律,则物体沿斜面方向的加速度应为 a
加
=F g sin ,又由于物体的初速度与 a 加垂直,所以物体的运动可分解为两个方向的运动,
m
即水平方向是速度为 v o 的匀速直线运动,沿斜面向下的是初速度为零的匀加速直线运动。
因 此在水平方向上有 a= v o t ,沿斜面向下的方向上有 b = 1 a 加t 2;故v °旦a 、
一。
2 t A 2b
点评:初速度不为零,加速度恒定且垂直于初速度方向的运动,我们称之为类平抛运动。
x ,竖直位移为y ,对应的
gL
--- (:
2v o
7 •解析:如图所示,小球撞墙的速度 v 斜向下,其水平分
量为v o ,由于碰撞无能量损失,故碰撞后小球的速度大小不变, v?与 v 关于墙面对称,故 V?的水平分量仍为 v o , S 2故等于小球没 有撞墙时的水平位移
S 2?,所以S 2 = S - S 1, S 为平抛运动的整个位
移,由 S= v o t , h
—
gt 2 有 S 2
V o S 2
S —。
在解决类平抛运动时,方法完全等同于平抛运动的解法,即将类平抛运动分解为两个相互垂直、且相互独立的分运动,然后按运动的合成与分解的方法去解,本题的创新之处在于解题思维方法的创新,即平抛运动的解题方法推广到类平抛运动中去。
教学随感
掌握平抛运动的分解方法及运动规律,通过例题的分析,探究解决有关平抛运动实际,问题的基本思路和方法,并注意到相关物理知识的综合运用,以提高学生的综合能力
圆周运动
教学目标:
1 •掌握描述圆周运动的物理量及相关计算公式;
2 •学会应用牛顿第二定律解决圆周运动问题
3 •掌握分析、解决圆周运动动力学问题的基本方法和基本技能
教学重点:匀速圆周运动
教学难点:应用牛顿第二定律解决圆周运动的动力学问题
教学方法:讲练结合,计算机辅助教学
教学过程:
一、描述圆周运动物理量:
1、线速度
s
(1 )大小:v= - (s是t时间内通过的弧长)
t
(2)方向:沿圆周的切线方向,时刻变化
(3)物理意义:描述质点沿圆周运动的快慢
2、角速度:
(1)大小: =7(是t时间内半径转过的圆心角
(2) 方向:沿圆周的切线方向,时刻变化
(3) 物理意义:描述质点绕圆心转动的快慢
3、周期T、频率f:
作圆周运动的物体运动一周所用的时间,叫周期;单位时间内沿圆周绕圆心转过的圈数,
叫频率。
即周期的倒数。
4、v 、 、T 、 f 的关系
2 r
v= — =
r=2 rf
点评: 、T 、 f ,若一个量确定,其余两个量也就确定了,而
v 还和r 有关。
(2)方向:总指向圆心,时刻变化 (3)物理意义:描述线速度方向改变的快慢。
【例1】如图所示装置中,三个轮的半径分别为 r 、
2r 、4r ,b 点到圆心的距离为 r ,求图中a 、b 、c 、d 各 点的线速
度之比、角速度之比、加速度之比。
解析:V a = V c ,而 V b : V c : V d =1 : 2 : 4,所以 V a :
V b : V c : V d =2 : 1 : 2 : 4 ; 3 a - 3 b =2 : 1,而 3 b = CO c =
CO d ,所以 3 a : 3 b : 3 c : 3 d =2 : 1: 1: 1 ;再利用
a= V 3,可彳得 a a - a b : a c : a d =4 : 1 : 2 - 4
点评:凡是直接用皮带传动(包括链条传动、摩擦传动)的两个轮子,两轮边缘上各点 的线速度大小相等;凡是同一个轮轴上(各个轮都绕同一根轴同步转动)的各点角速度相等 (轴上的点除外)。
小轮,小轮与自行车车轮的边缘接触。
当车轮 转动时,因摩擦而带动小轮转动,从而为发电 机提供动力。
自行车车轮的半径
R 1=35cm ,小
齿轮的半径 R 2=4.0cm ,大齿轮的半径 R 3=10.0cm 。
求大齿轮的转速
n 1和摩擦小轮的
转速n 2之比。
(假定摩擦小轮与自行车轮之间 无相对滑动)
解析:大小齿轮间、摩擦小轮和车轮之间和皮带传动原理相同,两轮边缘各点的线速度 大小相等,由v=2 n nr 可知转速n 和半径r 成反比;小齿轮和车轮同轴转动,两轮上各点的转 速相同。
由这三次传动可以找出大齿轮和摩擦小轮间的转速之比
n 1 : n 2=2 : 175
5、向心加速度 a :
(1)
大小:
v 2 a = 一
r
2
r
【例2】如图所示,一种向自行车车灯供电的小发电机的上端有一半径 r o =1.0cm 的摩擦
二、牛顿运动定律在圆周运动中的应用(圆周运动动力学问题)
1.向心力
(2)方向:总指向圆心,时刻变化
点评:"向心力”是一种效果力。
任何一个力,或者几个力的合力,或者某一个力的某 个分力,只要其效果是使物体做圆周运动的,都可以作为向心力。
“向心力”不一定是物体 所受合外力。
做匀速圆周运动的物体,向心力就是物体所受的合外力,总是指向圆心。
做变 速圆周运动的物体,向心力只是物体所受合外力在沿着半径方向上的一个分力,合外力的另 一个分力沿着圆周的切线,使速度大小改变。
2 .处理方法:
一般地说,当做圆周运动物体所受的合力不指向圆心时,可以将它沿半径方向和切线方 向正交分解,其沿半径方向的分力为向心力,只改变速度的方向,不改变速度的大小;其沿 切线方向的分力为切向力,只改变速度的大小,不改变速度的方向。
分别与它们相应的向心 加速度描述速度方向变化的快慢,切向加速度描述速度大小变化的快慢。
做圆周运动物体所受的向心力和向心加速度的关系同样遵从牛顿第二定律:
F n 方程时,根据物体的受力分析,在方程左边写出外界给物体提供的合外力,右边写出物体需
如果沿半径方向的合外力大于做圆周运动所需的向心力,物体将做向心运动,半径将减 小;如果沿半径方向的合外力小于做圆周运动所需的向心力,物体将做离心运动,半径将增 大。
如卫星沿椭圆轨道运行时,在远地点和近地点的情况。
3 •处理圆周运动动力学问题的一般步骤:
(1) 确定研究对象,进行受力分析;
(2) 建立坐标系,通常选取质点所在位置为坐标原点,其中一条轴与半径重合; (3 )用牛顿第二定律和平衡条件建立方程求解。
4 .几个特例
(1)圆锥摆
圆锥摆是运动轨迹在水平面内的一种典型的匀速圆周运动。
其特点是由物体所受的重力 与弹力的合力充当向心力,向心力的方向水平。
也可以说是其中弹力的水平分力提供向心力 (弹力的竖直分力和重力互为平衡力)。
(1)大小:F ma 向
2R
mJ R T 2
m4 2f 2R
ma n 在列
要的向心力(可选用
2
mv 卡 或m R
2
R 等各种形式)。