爱因斯坦对物理学的主要贡献的论文
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
爱因斯坦的一生及其贡献
120601110 刘玉娇
摘要:对于爱因斯坦,他的一身充满了传奇色彩,他对物理学作出了巨大的贡献:相对论与量子论的创立,阐述了爱因斯坦是20世纪最伟大的科学家和思想家,他以相对论和量子论这两大划时代的科学贡献奠定了现代物理学的理论基础,全面跟信了人们对时间、空间、物质和能量的看法;其哲学思想和科学思想丰富了人类的思想宝库,他的正义与人道、批判和怀疑进取精神以及高尚的人格,为学术界树立了良好得到的风范。
关键词:爱因斯坦光量子狭义相对论广义相对论诺贝尔奖
引言
爱因斯坦是继牛顿之后最伟大的科学及之一,他同时又是一位具有深邃洞察力和独立批判精神的思想家,一个关心人类命运和具有强烈社会责任感的高尚人士。他的一生做出的贡献对人那类来说是巨大的,尤其在物理学方面更是做出了卓越的贡献,下面将简述他对物理学的主要贡献。
1.爱因斯坦的生平
爱因斯坦于1879年3月14日出生在德国的一个犹太工厂主的家庭。他很晚才学会说话,他自小沉默寡言,总是喜欢一个人独自看书。上学后爱因斯坦的成绩一般,由于他的犹太血统,孤独的性格和无神论信仰,使得他不受老师和同学的喜欢。德国
当时有一种风,中产阶级的家庭往往邀请一个大学生到家里度周末。因此爱因斯坦家里也来了一个大学生。这个大学生发现爱因斯坦很爱看书,于是就每次来度周末都给他带来各种书籍,包括物理、化学、科普读物等书籍,爱因斯坦表现出极大的兴趣。这个大学生的的来访,对爱因斯坦对科学的热爱起了很大的作用,爱因斯坦还有一个常人缺少的优点:它能够长时间集中注意力,这一优点贯穿了他的一生。
爱因斯坦的父母并不是成功的是生意人,在慕尼黑的工厂破产后,全家前往意大利投靠亲友,把爱因斯坦留在慕尼黑的一所重点中学学习。爱因斯坦不喜欢这所学校的军国主义管理方式和呆板的教学方式,学校也对爱因斯坦的犹太血统、怀疑精神和自由思想感到厌恶。他也对学校感到厌恶,最后他欣然接受了校方的退学的建议爱因斯坦带着对物理学的热爱去瑞士求学,后来如愿进了苏黎世工业大学得到了极大的锻炼,后来幸运之神逐渐向爱因斯坦打开了大门,一篇篇重要论文的发表,他的生命开始走向了辉煌。爱因斯坦及物理学家、思想家、哲学家于一身,1999年12月26日爱因斯坦被美国《时代周刊》评为“世纪伟人”。
2、光量子
1900年底,德国物理学家普朗克发现,如果认为原子吸收和发出电磁辐射时是一份份的,不连续的,理论曲线就会与试验曲线符合。于是,他提出量子说,认为原子吸收和发射辐射时,辐射会以不连续的“量子”形态出现,每个量子的能量与它的频
率成正比,比例常数即所谓的普朗克常数。普朗克意识到了这一发现的重要性。他在与儿子一起出去散步的时候谈到:我最近做出了一个重要的发现,如果它是正确的,将能与牛顿的成就相媲美。然而,这一发现太不可思议了,具有崇高学术声望的的普朗克不得不谨慎行事,在初次向外披露这一发现时,塔尖的十分保守,以至于一些听报告的人认为这次白来了一趟,普朗克教授什么也没讲出来。1901年,普朗克的论文正式刊登出来,接受了这一不可思议的但又与实验符合极好的新理论。
1905年,一个名不见经传的年轻人爱因斯坦,把普朗克的量子论说推广位光子说,并用此解释了光电效应。量子说与光子说的主要差别在哪里呢?原来,普朗克虽然认为原子吸收和发射光子时是一份份的,但却认为辐射在脱离原子时仍然是连续的。爱因斯坦的光子说则认为,辐射不仅在原子发射和吸收它时是一份份的,不连续的,而且在脱离原子而独立存在时也是一份份的,不连续的。这就是说辐射无论在与物质相互作用过程中,还是在传播过程中都是量子化的。
普朗克迈出了量子论的开创性的一步,然而由于经典力学的约束,他这一步迈得并不彻底。爱因斯坦走了重要的第二步,把量子观念彻底化。让物理界感到震惊的是,在这篇论文问世之后,《物理年鉴》在同一年又在普朗克的支持下发表了爱因斯坦的另外三篇论文。同年7月发表用分子运动解释普朗克运动的论文;9月发表“论运动的电动力学”(即狭义相对论),从今天的观点
来看,上述四篇论文差不多都可以获得诺贝尔奖的。1905年,成了震动世界的一年,一个原来无人知晓的开创了物理的新纪元。
3、创世纪的狭义相对论
建立相对论是爱因斯坦一生中最伟大的成就,1900年前后,在人们头脑中“以太观念占统治地位,大家都认为光波是以太的弹性震动,麦克斯韦就是从以太的弹性理论导出他著名的电磁方程组的。一个需要弄清的问题是,地球相对于以太是否运动?那是哥白尼的日心说和牛顿的绝对空间观都已被普遍接受。地球不是宇宙的中心,不应该先对于绝对空间静止。比较合理的想法是:以太相对于绝对空间静止,地球相对于以太运动。天文学的光行差现象支持这一观点。但是,精密的迈克尔逊实验却没有测到这一运动。斐索实验也与光行差现象矛盾。洛伦兹和费兹杰惹各自独立地注意到,如果假定钢尺在相对以太运动的方向上会有如下的长度收缩,则迈克尔逊实验检测不出地球相对于以太的运动速度,这样,迈克尔逊实验与光行差现象的矛盾就可以消除。式中V是钢尺相对于以太的运动速度,C是光速,lo是钢尺静止时的长度,l是刚吃相对于以太运动时的长度。洛伦兹注意到,从当时公认的伽利略变换T’=X-VT Y’=Y Z’=Z T’=T(3)不仅能推出(20式,而且不能使麦克斯韦方程组再次变换下不变。洛伦兹1904年给出了一个新的惯性之间的变换关系此关系可以使麦克斯韦电磁理论在坐标变换下不变,而且可以推出洛
伦兹收缩公式(2)。变换四称为洛伦兹变换,在一些特殊的情况下,质量公式m= ρv (5) 和质能方程 E=mc^2 (6)均已有人给出。但是首先正确阐述相对论的是爱因斯坦。这是因为,只有爱因斯坦在两个基本观念上同时实现了突破。
“光速不变原理”不仅是说真空中的光速均匀各向同性,是一个常数C。更重要的是说在任何惯性系中测量,真空中的光速都是同一个常数C,那么以光速V向着光源运动的观测者测到的光速将是(C+V)。而以速度V背离光源运动的观测者测到的光速将是(C-V)。爱因斯坦提出的“光速不变原理”则是说,上述三个观测者测得的光速都是C。也就是说,在爱因斯坦看来,光速是绝对的,对任何观测者都一样,与光源相对于观测者的运动无关。
爱因斯坦能够从纷乱的理论探讨和试验资料中,认识到应该把光速看做是绝对的,并坚持提出这一全新的观念,是难能可贵的。
爱因斯坦以“相对性原理”和“光速的绝对性”为基石,建立起狭义相对论的理论体系,并得到大量重要的让人难以理解的结论。其中,他指出“同时”不是一个绝对的概念,也是观念上的重要突破。即“同地”是一个相对的概念。但两个事件是否同时发生,则都认为是一个绝对的概念,即任何观测者都会有同样的结论。爱因斯坦突破了这一观念,指出“同时”也是相对,只不过我们通常接触到的参考系,运动速度较小,“同时的相对性”