(完整)高中数学-经典函数试题及答案,推荐文档

合集下载

高中函数试题及答案

高中函数试题及答案

高中函数试题及答案一、选择题1. 函数\( f(x) = 2x^2 - 3x + 1 \)的开口方向是:A. 向上B. 向下C. 不确定D. 无定义答案:A2. 若函数\( g(x) = \frac{1}{x} \)在区间(1, +∞)上是:A. 增函数B. 减函数C. 常数函数D. 非单调函数答案:B3. 函数\( h(x) = |x - 1| \)的对称轴是:A. \( x = 0 \)B. \( x = 1 \)C. \( x = -1 \)D. \( x = 2 \)答案:B二、填空题4. 若\( f(x) = x^3 - 6x^2 + 11x - 6 \),求\( f(2) \)的值是________。

答案:15. 已知函数\( y = \sqrt{x} \)的定义域是________。

答案:\( [0, +\infty) \)6. 若\( f(x) = 3x + 5 \)与\( y = -2x + 6 \)的图象交点的横坐标是________。

答案:1三、解答题7. 求函数\( f(x) = x^2 + 2x + 1 \)的最小值。

答案:函数\( f(x) = (x + 1)^2 \),由于平方项始终非负,所以最小值出现在\( x = -1 \)时,此时\( f(x) = 0 \)。

8. 已知函数\( y = 2x - 1 \),求当\( x \)在区间[-1, 2]时,\( y \)的最大值和最小值。

答案:当\( x = -1 \)时,\( y = -3 \);当\( x = 2 \)时,\( y = 3 \)。

因此,\( y \)的最小值为-3,最大值为3。

9. 证明函数\( f(x) = x^3 \)在实数域上是单调递增的。

答案:设\( x_1 < x_2 \),我们需要证明\( f(x_1) < f(x_2) \)。

计算差值\( f(x_2) - f(x_1) = (x_2 - x_1)(x_2^2 + x_1x_2 +x_1^2) \)。

(完整版)高中数学_经典函数试题及答案,推荐文档

(完整版)高中数学_经典函数试题及答案,推荐文档

经典函数测试题及答案(满分:150分 考试时间:120分钟)、选择题:本大题共 12小题。

每小题5分,共60分。

在每小题给出的四个选项中,只有 一项是符合题目要求的。

A. x 0 B . XA.第一象限 B .第二象限 C .第三象限D .第四象限 3•函数y Inx 2x 6的零点必定位于区间 A. (1,2) B . (2,3) C . (3,4) D . (4,5) 4.给出四个命题:(1 )当n 0时,y x n 的图象是一条直线;(2)幕函数图象都经过(0, 1 )、( 1, 1)两点;(3 )幕函数图象不可能出现在第四象限;(4)幕函数y x 在第一象限为减函数,则 n o 。

其中正确的命题个数是()A. 1 B .2 C .3 D. 45.函数y a x在[0 , 1]上的最大值与最小值的和为 「 3,则a 的值为()A.- B.2 C . 4 D. —246.设 f(x) 是奇函数, 当 x 0 时,f (x) log 2x,则当x 0时,f (x) ()1.函数yf (2x 1)是偶函数,则函数 y f (2x)的对称轴是2.已知 0 a 1,b1,则函数y a x b 的图象不经过A .A. log2xB . log 2( x) c .lo g 2 x 1 D .log 2( x)若方程2 '(m 1) 2x +4 mx 3m20的两根:同号,则 m 的取值范围为()A.2m 1B .2 m1或2 m 13c. m1或m 2 -D .2 m1或 2 m 133已知f (x)是周期为 2的奇 函 数,当0 x 1 时,f(x) lg x.f(|),b 5 f (|),c;fg),则()a b c B . ba c cc b a D c a b9.已知0 x y a 1,则有8 .7 . 设()A . log a (xy) 0 B.0log a (xy) 1 C . 1<log a (xy) 0 D . log a (xy) 210 . 已知0 a 1,log a m log a n0,则()A.1 n m B . 1m n C . mn 1 D . n m 12 x x211设 f (x)lg —,则f - f的定义域为()2 x 2 xA. (4,0) (0,4) B . ( 4, 1) (1,4) C . ( 2, 1) (1,2) D . ( 4, 2) (2,4)(3a 1)x 4a,x 112•已知f(x)是R 上的减函数,那么 a 的取值范围是()lOg a X,X 11 1 11 A. (0,1) B • (0, )C . ,—D ., 1 37 37二、填空题:本大题共 4小题,每小题4分,共16分。

高中基础函数试题及答案

高中基础函数试题及答案

高中基础函数试题及答案一、选择题(每题3分,共15分)1. 函数f(x) = 2x + 3的值域是什么?A. (-∞, +∞)B. [3, +∞)C. [0, +∞)D. (-∞, 3]答案:A2. 已知函数f(x) = x^2 - 4x + 3,求f(-1)的值。

A. 8B. 6C. 4D. 2答案:A3. 函数g(x) = 1/x的图像在哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:B4. 函数h(x) = x^3 - 3x^2 + 2x的导数是什么?A. 3x^2 - 6x + 2B. x^2 - 6x + 3C. 3x^2 - 9x + 2D. x^3 - 9x^2 + 6x答案:A5. 对于函数y = √x,其定义域是什么?A. (-∞, 0)B. (0, +∞)C. [0, +∞)D. (-∞, +∞)答案:C二、填空题(每题2分,共10分)6. 函数f(x) = x^2 + 2x + 1可以表示为完全平方的形式,即f(x) = _______。

答案:(x+1)^27. 如果f(x) = sin(x) + cos(x),那么f'(x) = _______。

答案:cos(x) - sin(x)8. 函数y = 2x - 1的反函数是 _______。

答案:y = (1/2)x + 1/29. 函数y = log(x)的底数是 _______。

答案:1010. 如果f(x) = 3x - 2,求f(1) = _______。

答案:1三、解答题(每题5分,共20分)11. 求函数f(x) = x^3 - 6x^2 + 9x - 2的极值点。

答案:首先求导数f'(x) = 3x^2 - 12x + 9,令其等于0,解得x = 1, 3。

然后计算二阶导数f''(x) = 6x - 12,判断极值点,f''(1) < 0,所以x = 1是极大值点;f''(3) > 0,所以x = 3是极小值点。

高中生数学函数试题及答案

高中生数学函数试题及答案

高中生数学函数试题及答案一、选择题(每题3分,共15分)1. 函数\( f(x) = x^2 - 4x + 4 \)的顶点坐标是:A. (0, 0)B. (2, 0)C. (2, 4)D. (-2, 4)2. 函数\( y = \log_{2}x \)的定义域是:A. \( (0, +\infty) \)B. \( (-\infty, 0) \)C. \( (-\infty, +\infty) \)D. \( [0, +\infty) \)3. 若\( f(x) = 2x - 1 \),求\( f(-2) \)的值:A. -5B. -4C. -3D. 34. 函数\( y = \frac{1}{x} \)的图像关于:A. 原点对称B. x轴对称C. y轴对称D. 对角线y=x对称5. 函数\( y = 3^x \)的值域是:A. \( (-\infty, 0) \)B. \( (0, 1) \)C. \( (1, +\infty) \)D. \( (-\infty, +\infty) \)二、填空题(每题2分,共10分)6. 若\( f(x) = x^3 + 2x^2 - x - 2 \),则\( f(-1) = ________ 。

7. 函数\( y = \log_{10}x \)的反函数是 ________ 。

8. 若\( g(x) = 5x + 7 \),则\( g^{-1}(x) = ________ 。

9. 函数\( y = \sqrt{x} \)的值域是 ________ 。

10. 函数\( y = \sin x \)的周期是 ________ 。

三、解答题(每题5分,共20分)11. 求函数\( f(x) = x^3 - 6x^2 + 11x - 6 \)的极值点。

12. 已知函数\( y = 2x^2 + 6x + 7 \),求其在x轴的截距。

13. 求函数\( y = \frac{2}{x} + 1 \)的渐近线。

最新高中数学_经典函数试题及答案资料

最新高中数学_经典函数试题及答案资料

经典函数测试题及答案(满分:150分 考试时间:120分钟)一、选择题:本大题共12小题。

每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.函数)12(-=x f y 是偶函数,则函数)2(x f y =的对称轴是 ( )A .0=xB .1-=xC .21=x D .21-=x 2.已知1,10-<<<b a ,则函数b a y x+=的图象不经过 ( )A .第一象限B .第二象限C . 第三象限D . 第四象限3.函数62ln -+=x x y 的零点必定位于区间 ( ) A .(1,2) B .(2,3) C .(3,4) D .(4,5)4.给出四个命题:(1)当0=n 时,nx y =的图象是一条直线; (2)幂函数图象都经过(0,1)、(1,1)两点; (3)幂函数图象不可能出现在第四象限;(4)幂函数nx y =在第一象限为减函数,则n 0<。

其中正确的命题个数是 ( )A .1B .2C .3D .4 5.函数xa y =在[0,1]上的最大值与最小值的和为3,则a 的值为 ( )A .21 B .2 C .4 D .41 6.设)(x f 是奇函数,当0>x 时,,log )(2x x f =则当0<x 时,=)(x f ( )A .x 2log -B .)(log 2x -C .x 2logD .)(log 2x --7.若方程2(1+m )2x +4023=-+m mx 的两根同号,则m 的取值范围为 ( )A .12-<<-mB .12-<≤-m 或132≤<m C .1-<m 或32>m D .12-<<-m 或132<<m8.已知)(x f 是周期为2的奇函数,当10<<x 时,.lg )(x x f =设),23(),56(f b f a ==),25(f c =则 ( )A .c b a <<B . c a b <<C . a b c <<D . b a c <<9.已知01<<<<a y x ,则有 ( )A .0)(log <xy aB .1)(log 0<<xy aC .1<0)(log <xy aD .2)(log >xy a 10.已知10<<a ,,0log log <<n m a a 则 ( ) A .m n <<1 B .n m <<1 C .1<<n m D .1<<m n 11.设,22lg)(x x x f -+=则⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛x f x f 22的定义域为 ( ) A .()4,0()0,4⋃- B .)4,1()1,4(⋃-- C .()2,1()1,2⋃-- D .()4,2()2,4⋃--12.已知⎩⎨⎧≥<+-=1,log 1,4)13()(x x x a x a x f a 是R 上的减函数,那么a 的取值范围是( )A .(0,1)B .(0,)31 C .⎪⎭⎫⎢⎣⎡31,71 D .⎪⎭⎫⎢⎣⎡1,71二、填空题:本大题共4小题,每小题4分,共16分。

高中数学_经典函数试题及答案

高中数学_经典函数试题及答案

高中数学_经典函数试题及答案【第一份试题】1. 已知函数 y = f(x) 满足 f(2) = 1,f'(x) = 2x - 3。

求函数 f(x) 的解析式。

解答:根据题意,已知了 f'(x) = 2x - 3,因此函数 f(x) 的原函数为 F(x) = x^2 - 3x + C,其中 C 为常数。

根据 f(2) = 1,可得到 F(2) = 1,代入原函数求得 C = 0。

所以函数 f(x) 的解析式为 f(x) = x^2 - 3x。

2. 若函数 f(x) = 2x^3 + 4x + c 是奇函数,求常数 c 的值。

解答:根据题意,函数 f(x) 是奇函数,即满足 f(-x) = -f(x)。

代入函数 f(x) = 2x^3 + 4x + c,得到 -2x^3 - 4x - c = 2x^3 + 4x + c,整理得到 4x^3 + 8x + 2c = 0。

对比系数可得 -c = 2c,解得 c = 0。

所以常数 c 的值为 0。

3. 已知函数 f(x) = (x - 1) / (x + 1),求函数 f(x) 的反函数。

解答:要求函数 f(x) 的反函数,可以将 y(即 f(x))与 x 对调位置,并解出 x 关于 y 的表达式。

首先,将函数 f(x) 表示为 y = (x - 1) / (x + 1)。

交换 x 和 y,得到 x = (y - 1) / (y + 1)。

解以上方程,可以得到 y = (x + 1) / (x - 1)。

所以函数f(x) 的反函数为 f^(-1)(x) = (x + 1) / (x - 1)。

【第二份试题】1. 已知函数y = f(x) = 3sin(2x + π/4),求 f(x) 的周期和最大值、最小值。

解答:对于函数 y = 3s in(2x + π/4),参数 2 决定了正弦函数的周期。

周期T = 2π / 2 = π。

最大值和最小值可以通过观察正弦函数的图像得出。

完整版)高一数学函数经典习题及答案

完整版)高一数学函数经典习题及答案

完整版)高一数学函数经典习题及答案函数练题一、求函数的定义域1、求下列函数的定义域:⑴y = (x-1)/(2x^2-2x-15)⑵y = 1-[(2x-1)+4-x^2]/[1/(x+1)+1/(x+3)-3]2、设函数f(x)的定义域为[0,1],则函数f(x-2)的定义域为[-2,-1];函数f(2x-1)的定义域为[(1/2,1)]。

3、若函数f(x+1)的定义域为[-2,3],则函数f(2x-1)的定义域为[-3/2,2];函数f(2)的定义域为[1,4]。

4、已知函数f(x)的定义域为[-1,1],且函数F(x) = f(x+m)-f(x-m)的定义域存在,求实数m的取值范围。

二、求函数的值域5、求下列函数的值域:⑴y = x+2/x-3 (x∈R)⑵y = x+2/x-3 (x∈[1,2])⑶y = 2/(3x-1)-3/(x-1) (x∈R)⑷y = (x+1)/(x+1) if x≥5y = 5x^2+9x+4/2x-6 (x<5)⑸y = (x-3)/(x+2)⑹y = x-3+x+1⑺y = (x^2-x)/(2x-1)(x+2)⑼y = -x^2+4x+5⑽y = 4-1/(x^2+4x+5)⑾y = x-1-2x/(2x^2+ax+b)6、已知函数f(x) = 2x+1/(x∈R)的值域为[1,3],求a,b的值。

三、求函数的解析式1、已知函数f(x-1) = x-4x,求函数f(x),f(2x+1)的解析式。

2、已知f(x)是二次函数,且f(x+1)+f(x-1) = 2x-4x,求f(x)的解析式。

3、已知函数2f(x)+f(-x) = 3x+4,则f(x) = (3x+4)/5.4、设f(x)是R上的奇函数,且当x∈[0,+∞)时,f(x) =x/(1+x),则f(x)在R上的解析式为f(x) = x/(1+x)-2/(1-x^2)。

5、设f(x)与g(x)的定义域是{x|x∈R,且x≠±1},f(x)是偶函数,g(x)是奇函数,且f(x)+g(x) = 3x,则f(x) = x,g(x) = 3x-x^3.四、求函数的单调区间6、求下列函数的单调区间:⑴y = x+2/x+3⑵y = -x^2+2x+3⑶y = x-6/x-127、函数f(x)在[0,+∞)上是单调递减函数,则f(1-x)的单调递增区间是(0,1]。

高中数学对数函数经典练习题及答案(优秀4篇)

高中数学对数函数经典练习题及答案(优秀4篇)

高中数学对数函数经典练习题及答案(优秀4篇)对数函数练习题篇一一、选择题1、下列函数(1)y= x (2)y=2x-1 (3)y=1x (4)y=2-1-3x (5)y=x2-1中,是一次函数的有( )A.4个B.3个C.2个D.1个2、A 、B(x2,y2)是一次函数y=kx+2(k>0)图像上的不同的两点,若则( )A.t0 C.t>1 D. t≤13、直线y=x-1与坐标轴交于A、B两点,点C在坐标轴上,△ABC为等腰三角形,则满足条件的三角形最多有( )A. 5个B.6个C.7个D.8个4、把直线y=﹣x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是( )A.11 D.m0的解集是( )A.x>3B.-2-29.一次函数y=ax+1与y=bx-2的图象交于x轴上一点,那么a:b等于( )A. B.C. D.以上答案都不对10、函数y=kx+b,那么当y>1时,x的取值范围是:( )A、x>0B、x>2C、x212、在平面直角坐标系中,线段AB的端点A(-2,4),B(4,2),直线y=kx-2与线段AB有交点,则k的值不可能是( )A.5B.-5C.-2D.3二、填空题13、如果直线y = -2x+k与两坐标轴所围成的三角形面积是9,则k的值为_____.14、平面直角坐标系中,点A的坐标是(4,0),点P在直线y=-x+m上,且AP=OP=4.则m的值是。

15、直线y=kx+2经过点(1,4),则这条直线关于x轴对称的直线解析式为:。

16、已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x 轴、y轴分别交与点C、点D.若DB=DC,则直线CD的函数解析式为 .17、点A的坐标为(-2,0),点B在直线y=x-4上运动,当线段AB最短时,点B的坐标是___________。

18、已知三个一次函数y1=x,y2= x+1,y3=- x+5。

高中函数经典试题及答案

高中函数经典试题及答案

高中函数经典试题及答案一、选择题1. 函数f(x) = 2x^2 - 3x + 1在x = 1处的导数是:A. 1B. 2C. 3D. 4答案:C2. 若f(x) = x^3 - 2x^2 + x - 2,求f'(x):A. 3x^2 - 4x + 1B. x^3 - 2x^2 + 1C. 3x^2 - 4xD. 3x^2 - 4x + x - 2答案:A3. 函数y = sin(x)的周期是:A. πB. 2πC. 3πD. 4π答案:B二、填空题4. 若f(x) = x^2 + 2x + 1,则f(-1) = _______。

答案:05. 函数g(x) = 3x + 5的反函数是 _______。

答案:g^(-1)(x) = (x - 5)/3三、解答题6. 已知函数h(x) = x^3 - 6x^2 + 9x - 2,求h'(x)。

答案:h'(x) = 3x^2 - 12x + 97. 求函数f(x) = 2x^3 - 5x^2 + 3x - 1在区间[1, 2]上的最大值和最小值。

答案:首先求导得到f'(x) = 6x^2 - 10x + 3。

令f'(x) = 0,解得x = 1 或 x = 5/3。

在区间[1, 2]上,f'(x) > 0,说明f(x)在此区间单调递增。

因此,最小值为f(1) = -2,最大值为f(2) = 3。

四、综合题8. 已知函数F(x) = ln(x) + x^2,求F'(x)并讨论其单调性。

答案:首先求导得到F'(x) = 1/x + 2x。

由于x > 0,1/x > 0,2x > 0,所以F'(x) > 0,说明F(x)在(0, +∞)上单调递增。

结束语:本试题涵盖了高中数学中函数的基本概念、导数及其应用、函数的周期性、反函数、最值问题等,旨在检验学生对高中函数知识点的掌握程度和应用能力。

高中基本函数试题及答案

高中基本函数试题及答案

高中基本函数试题及答案一、选择题(每题2分,共10分)1. 函数f(x) = 2x^2 - 3x + 1的图像与x轴的交点个数是:A. 0个B. 1个C. 2个D. 3个2. 若f(x) = x^2 + 2x + 1,g(x) = 3x - 2,求f(g(x))的表达式:A. 9x^2 - 4x + 1B. 9x^2 + 2x + 1C. 3x^2 + 8x - 1D. 3x^2 + 2x - 13. 函数y = |x|的图像是:A. 一条直线B. 两条直线C. 一个V形D. 一个倒V形4. 函数y = sin(x)在区间[0, π]上的值域是:A. [-1, 0]B. [0, 1]C. [-1, 1]D. [1, 0]5. 函数y = cos(x)的周期是:A. πB. 2πC. π/2D. 4π二、填空题(每题2分,共10分)6. 若函数f(x) = 3x - 5,求f(3) = ____________。

7. 函数f(x) = x^3 - 2x^2 + x - 4的导数f'(x) = __________。

8. 函数y = 1/x的反函数是 __________。

9. 若f(x) = 2x + 3,求f^{-1}(x) = __________。

10. 函数y = log_2(x)的定义域是 __________。

三、解答题(每题5分,共20分)11. 求函数f(x) = x^3 - 6x^2 + 9x + 2的极值点。

12. 已知函数f(x) = 2x - 1,求其在区间[1, 3]上的值域。

13. 证明函数f(x) = x^2在(-∞, 0)上是单调递减的。

14. 已知函数y = √x + 1,求其在x=4时的导数。

试题答案一、选择题1. C. 2个2. B. 9x^2 + 2x + 13. C. 一个V形4. B. [0, 1]5. B. 2π二、填空题6. f(3) = 47. f'(x) = 3x^2 - 4x + 18. y = 1/x9. f^{-1}(x) = (x - 3) / 210. (0, +∞)三、解答题11. 极值点为x = 3,此时f'(x) = 0,且f''(x) = 6 > 0,所以x = 3是极小值点。

(精选试题附答案)高中数学第五章三角函数经典大题例题

(精选试题附答案)高中数学第五章三角函数经典大题例题

(名师选题)(精选试题附答案)高中数学第五章三角函数经典大题例题单选题1、已知角α的终边经过点P (−3,4),则sinα−cosα−11+tanα的值为( )A .−65B .1C .2D .3 答案:A分析:由三角函数的定义可得sinα=45,cosα=−35,tanα=−43,将其代入即可求解. 由√(−3)2+42=5,得sinα=45,cosα=−35,tanα=−43,代入原式得=45−(−35)−11+(−43)=−65.故选:A2、已知角α的终边与单位圆交于点P (−12,√32),则sinα的值为( ) A .−√32B .−12C .√32D .12答案:C分析:根据三角函数的定义即可求出. 因为角α的终边与单位圆交于点P (−12,√32), 所以根据三角函数的定义可知,sinα=y =√32. 故选:C .3、已知函数f(x)=sin (x +π3).给出下列结论: ①f(x)的最小正周期为2π; ②f (π2)是f(x)的最大值;③把函数y =sinx 的图象上所有点向左平移π3个单位长度,可得到函数y =f(x)的图象.其中所有正确结论的序号是( ) A .①B .①③C .②③D .①②③ 答案:B分析:对所给选项结合正弦型函数的性质逐一判断即可. 因为f(x)=sin(x +π3),所以周期T =2πω=2π,故①正确;f(π2)=sin(π2+π3)=sin5π6=12≠1,故②不正确;将函数y =sinx 的图象上所有点向左平移π3个单位长度,得到y =sin(x +π3)的图象, 故③正确. 故选:B.【点晴】本题主要考查正弦型函数的性质及图象的平移,考查学生的数学运算能力,逻辑分析那能力,是一道容易题.4、已知sinαcosα=12,则tanα+1tanα的值为( ) A .12B .−12C .−2D .2答案:D解析:根据题中条件,由切化弦,将所求式子化简整理,即可得出结果. ∵sinαcosα=12, ∴tanα+1tanα=sinαcosα+cosαsinα=sin 2α+cos 2αsinαcosα=112=2,故选:D.5、若扇形周长为20,当其面积最大时,其内切圆的半径r 为( ) A .5−1sin1B .1sin1+32C .5sin11+sin1D .5+51+sin1 答案:C分析:先根据扇形周长求解出面积取最大值时扇形的圆心角和半径,然后根据图形中的内切关系得到关于内切圆半径r的等式,由此求解出r的值.设扇形的半径为R,圆心角为α,面积为S,因为2R+αR=20,所以S=12αR2=(10−R)R≤(10−R+R2)2=25,取等号时10−R=R,即R=5,所以面积取最大值时R=5,α=2,如下图所示:设内切圆圆心为O,扇形过点O的半径为AP,B为圆与半径的切点,因为AO+OP=R=5,所以r+rsin∠BPO =5,所以r+rsin1=5,所以r=5sin11+sin1,故选:C.6、已知函数f(x)=2sin(ωx−π6)(ω>12,x∈R),若f(x)的图像的任何一条对称轴与x轴交点的横坐标均不属于区间(3π,4π),则ω的取值范围是()A.(12,23]∪[89,76]B.(12,1724]∪[1718,2924]C.[59,23]∪[89,1112]D.[1118,1724]∪[1718,2324]答案:C分析:由已知得12×2πω≥4π−3π,kπ+π2≤3ωπ−π6,且kπ+π+π2≥4ωπ−π6,解之讨论k,可得选项.因为f(x)的图像的任何一条对称轴与x轴交点的横坐标均不属于区间(3π,4π),所以12×2πω≥4π−3π,所以12<ω≤1,故排除A ,B ;又kπ+π2≤3ωπ−π6,且kπ+π+π2≥4ωπ−π6,解得3k +29≤ω≤3k +512,k ∈Z ,当k =0时,29≤ω≤512,不满足12<ω≤1, 当k =1时,59≤ω≤23,符合题意, 当k =2时,89≤ω≤1112,符合题意,当k =3时,119≤ω≤149,不满足12<ω≤1,故C 正确,D 不正确,故选:C.小提示:关键点睛:本题考查根据正弦型函数的对称性求得参数的范围,解决问题的关键在于运用整体代换的思想,建立关于ω的不等式组,解之讨论可得选项. 7、已知sinθ+sin (θ+π3)=1,则sin (θ+π6)=( )A .12B .√33C .23D .√22答案:B分析:将所给的三角函数式展开变形,然后再逆用两角和的正弦公式即可求得三角函数式的值. 由题意可得:sinθ+12sinθ+√32cosθ=1,则:32sinθ+√32cosθ=1,√32sinθ+12cosθ=√33, 从而有:sinθcos π6+cosθsin π6=√33, 即sin (θ+π6)=√33. 故选:B.小提示:本题主要考查两角和与差的正余弦公式及其应用,属于中等题.8、已知某摩天轮的旋转半径为60米,最高点距地面135米,运行一周大约30分钟,某游客在最低点的位置坐上摩天轮,则第10分钟时他距地面大约为( )A.95米B.100米C.105米D.110米答案:C分析:设函数关系式为f(t)=Asin(ωt+φ)+B(A>0,ω>0,φ∈[0,2π)),根据题意求得各参数得解析式,然后计算f(10)可得.设该游客在摩天轮上离地面高度f(t)(米)与时间t(分钟)的函数关系为f(t)=Asin(ωt+φ)+B(A>0,ω> 0,φ∈[0,2π)),由题意可知A=60,B=135−60=75,T=2πω=30,所以ω=π15,即f(t)=60sin(π15t+φ)+75.又f(0)=135−120=15,得sinφ=−1,故φ=3π2,所以f(t)=60sin(π15t+3π2)+75=−60cosπ15t+75,所以f(10)=−60×cos2π3+75=105.故选:C.9、已知函数f(x)=|cos2x|+cos x,下列四个结论中正确的是()A.函数f(x)在(0,π)上恰有一个零点B.函数f(x)在[0,π2]上单调递减C.f(π)=2D.函数f(x)的图象关于点(π2,0)对称答案:A分析:对x的范围进行分类讨论,由此判断A的正确性.利用赋值法判断BC选项的正确性.由f(π2+x)+f(π2−x)是否为0来判断D选项的正确性.x∈(0,π4),2x∈(0,π2),f(x)=cos2x+cosx=2cos2x+cosx−1=0,cosx=−1(舍去)或cosx=12,x=π3(舍去).x∈[π4,3π4],2x∈[π2,3π2],f(x)=−cos2x+cosx=−2cos2x+cosx+1=0,cosx =1(舍去)或cosx =−12,x =2π3.x ∈(3π4,π),2x ∈(3π2,2π),f (x )=cos2x +cosx =2cos 2x +cosx −1=0, cosx =−1(舍去)或cosx =12(舍去).综上所述,函数f (x )在(0,π)上恰有一个零点,A 选项正确. f (0)=2,f (π4)=√22,f (π2)=1,B 选项错误.f (π)=1−1=0,C 选项错误.f (π2+x)+f (π2−x)=|cos (π+2x )|+cos (π2+x)+|cos (π−2x )|+cos (π2−x) =2|cos2x |−sinx +sinx =2|cos2x |不恒为0, D 选项错误. 故选:A10、已知函数f (x )=sin (2x +π3),为了得到函数g (x )=cos (2x +π3)的图象只需将y =f (x )的图象( ) A .向左平移π4个单位B .向右平移π4个单位C .向左平移π2个单位D .向右平移π2个单位答案:A分析:利用三角函数的平移结合诱导公式即可求解. 解:因为sin (2x +π3+π2)=cos (2x +π3) 所以sin(2x +π3)→sin(2x +π2+π3),只需将f (x )的图象向左平移π4个单位, 故选:A. 填空题11、已知函数f (x )=Asinωx (A >0,ω>0),若至少存在两个不相等的实数x 1,x 2∈[π,2π],使得f (x 1)+f (x 2)=2A ,则实数ω的取值范围是________.答案:[94,52]∪[134,+∞)分析:当π>2T 时,易知必满足题意;当π<2T 时,根据x ∈[π,2π]可得ωx ∈[πω,2πω],由最大值点的个数可构造不等式组,结合ω>0确定具体范围.∵至少存在两个不相等的实数x 1,x 2∈[π,2π],使得f (x 1)+f (x 2)=2A , ∴当π>2T =4πω,即ω>4时,必存在两个不相等的实数x 1,x 2∈[π,2π]满足题意;当π<2T ,即0<ω<4时,ωx ∈[πω,2πω], ∴{πω≤π2+2kπ2πω≥5π2+2kπ (k ∈Z ),∴{ω≤12+2kω≥54+k(k ∈Z ); 当k ≤0时,解集为∅,不合题意;令k =1,则94≤ω≤52;令k =2,则134≤ω<4; 综上所述:实数ω的取值范围为[94,52]∪[134,+∞).所以答案是:[94,52]∪[134,+∞).小提示:关键点点睛:本题考查根据正弦型函数最值点的个数求解参数范围的问题,解题关键是能够采用整体对应的方式,根据πω的范围所需满足的条件来构造不等式组,解不等式组求得结果. 12、若cos 2θ=14,则sin 2θ+2cos 2θ的值为____. 答案:138##158分析:利用二倍角公式后,代入求解. ∵cos 2θ=14, ∴sin 2θ+2cos 2θ=1−cos 2θ2+1+cos 2θ=32+12cos 2θ=32+12×14=138.所以答案是:138. 13、求值:sin10°−√3cos10°cos40°=____________.答案:−2分析:应用辅助角公式及诱导公式化简求值即可.sin10°−√3cos10°cos40°=2(12sin10°−√32cos10°)cos40°=2sin(10°−60°)cos40°=−2sin50°cos40°=−2.所以答案是:−214、函数f(x)是定义域为R的奇函数,满足f(π2−x)=f(π2+x),且当x∈[0,π)时,f(x)=sinxx2−πx+π,给出下列四个结论:①f(π)=0;②π是函数f(x)的周期;③函数f(x)在区间(−1,1)上单调递增;④函数g(x)=f(x)−sin1(x∈[−10,10])所有零点之和为3π. 其中,正确结论的序号是___________.答案:①③④分析:由f(π2−x)=f(π2+x)可得f(π)=f(0)直接计算f(0)即可判断①;根据函数f(x)的奇偶性和对称性即可求得周期,从而可判断②;先判断f(x)在(0,1)的单调性,再根据奇函数关于原点对称的区间单调性相同即可判断③;根据对称性以及函数图象交点的个数即可判断④.对于①:由f(π2−x)=f(π2+x)可得f(π)=f(0)=sin0π=0,故①正确;对于②:由f(π2−x)=f(π2+x)可得f(x)关于直线x=π2对称,因为f(x)是定义域为R的奇函数,所以f(π+x)=f(−x)=−f(x)所以f(2π+x)=−f(x+π)=f(x),所以函数f(x)的周期为2π,故②不正确;对于③:当0<x<1时,y=sinx单调递增,且y=sinx>0,y=x2−πx+π=(x−π2)2+π−π24在0<x<1单调递减,且y>1−π+π=1,所以f(x)=sinxx2−πx+π在0<x<1单调递增,因为f(x)是奇函数,所以函数f(x)在区间(−1,1)上单调递增;故③正确;对于④:由f(π2−x)=f(π2+x)可得f(x)关于直线x=π2对称,作出示意图函数g(x)=f(x)−sin1(x∈[−10,10])所有零点之和即为函数y=f(x)与y=sin1两个函数图象交点的横坐标之和,当x∈[−π2,3π2]时,两图象交点关于x=π2对称,此时两根之和等于π,当x∈(3π2,10]时两图象交点关于x=5π2对称,此时两根之和等于5π,当x∈[−5π2,−π2)时两图象交点关于x=−3π2对称,此时两根之和等于−3π,x∈[−10,−5π2)时两图象无交点,所以函数g(x)=f(x)−sin1(x∈[−10,10])所有零点之和为3π.故④正确;所以答案是:①③④小提示:求函数零点的方法:画出函数f(x)的图象,函数f(x)的图象与x轴交点的个数就是函数f(x)的零点个数;将函数f(x)拆成两个函数,ℎ(x)和g(x)的形式,根据f(x)=0⇔ℎ(x)=g(x),则函数f(x)的零点个数就是函数y=ℎ(x)和y=g(x)的图象交点个数;零点之和即为两个函数图象交点的横坐标之和.15、已知sin(π+α)−3sin(π2−α)=0,则cos2α的值为________.答案:−45分析:根据sin(π+α)−3sin(π2−α)=0,利用诱导公式结合商数关系得到tanα=−3,然后由cos2α=cos2α−sin2α=cos2α−sin2αcos2α+sin2α求解.因为sin(π+α)−3sin(π2−α)=0,所以−sinα−3cosα=0,解得tanα=−3,所以cos2α=cos 2α−sin 2α=cos 2α−sin 2αcos 2α+sin 2α, =1−tan 2α1+tan 2α=1−(−3)21+(−3)2=−45,所以答案是:−45小提示:本题主要考查诱导公式和二倍角公式以及同角三角函数基本关系式的应用,还考查了运算求解的能力,属于中档题. 解答题16、已知函数f (x )=2sinxcosx −2√3sin 2x +√3. (1)求函数f (x )的最小正周期及其单调递增区间;(2)当x ∈[−π6,π6],时,a −f (x )≤0恒成立,求a 的最大值. 答案:(1)最小正周期π,单调递增区间为[k π−5π12,k π+π12],k ∈Z(2)最大值为0分析:(1)根据正弦和余弦的二倍角公式以及辅助角公式即可化简f (x )为f (x )=2sin (2x +π3),然后根据周期公式可求周期,整体代入法求单调增区间,(2)根据x 的范围可求2x +π3∈[0,2π3],进而可求f (x )的值域,故可求a 的范围.(1)f (x )=2sinxcosx −2√3sin 2x +√3=sin2x +√3cos2x =2sin (2x +π3) 故函数f (x )的最小正周期T =2π2=π.由2k π-π2≤2x +π3≤2k π+π2得k π−5π12≤x ≤k π+π12(k ∈Z ). ∴函数f (x )的单调递增区间为[k π−5π12,k π+π12],k ∈Z . (2)∵x ∈[−π6,π6],∴2x +π3∈[0,2π3],∴sin (2x +π3)∈[0,1],f (x )=2sin (2x +π3)∈[0,2].由a −f (x )≤0恒成立,得a ≤(f (x ))min ,即a ≤0.故a 的最大值为0.17、已知函数f(x)=√3sin(2x+π6).(1)求f(x)的最小正周期;(2)求f(x)的单调递增区间.答案:(1)π(2)单调递增区间是[−π3+kπ,π6+kπ](k∈Z)分析:(1)根据公式可求函数的最小正周期;(2)利用整体法可求函数的增区间.(1)∵f(x)=√3sin(2x+π6),∴f(x)最小正周期T=2π2=π.(2)令−π2+2kπ≤2x+π6≤π2+2kπ(k∈Z),解得−π3+kπ≤x≤π6+kπ(k∈Z),∴f(x)的单调递增区间是[−π3+kπ,π6+kπ](k∈Z).18、已知函数f(x)=√3sinωxcosωx−cos2ωx(ω>0)周期是π2. (1)求f(x)的解析式,并求f(x)的单调递增区间;(2)将f(x)图像上所有点的横坐标扩大到原来的2倍,再向左平移π6个单位,最后将整个函数图像向上平移32个单位后得到函数g(x)的图像,若π6≤x≤2π3时,|g(x)−m|<2恒成立,求m得取值范围.答案:(1)f(x)=sin(4x−π6)−12,单调递增区间为[kπ2−π12,kπ2+π6],k∈Z;(2)(0,2).解析:(1)根据正弦和余弦的二倍角公式化简可得f(x)=sin(2ωx−π6)−12,由T=2π2ω=π2,解得ω=2,带入正弦函数的递增区间2kπ−π2≤4x−π6≤2kπ+π2,化简即可得解;(2)根据三角函数的平移和伸缩变换可得g(x)=sin(2x+π6)+1,根据题意只需要[g(x)−2]max<m<[g(x)+2]min,分别在π6≤x≤2π3范围内求出g(x)的最值即可得解.(1)f(x)=√3sinωxcosωx−cos2ωx=√32sin2ωx−12(cos2ωx+1) =sin(2ωx−π6)−12由T=2π2ω=π2,解得ω=2所以,f(x)=sin(4x−π6)−12∵2kπ−π2≤4x−π6≤2kπ+π2∴2kπ−π3≤4x≤2kπ+2π3∴kπ2−π12≤x≤kπ2+π6∴f(x)的单调递增区间为[kπ2−π12,kπ2+π6],k∈Z(2)依题意得g(x)=sin(2x+π6)+1因为|g(x)−m|<2,所以g(x)−2<m<g(x)+2因为当x∈[π6,2π3]时,g(x)−2<m<g(x)+2恒成立所以只需[g(x)−2]max<m<[g(x)+2]min转化为求g(x)的最大值与最小值当x∈[π6,2π3]时,y=g(x)为单调减函数所以g(x)max=g(π6)=1+1=2,g(x)min=g(2π3)=−1+1=0,从而[g(x)−2]max=0,[g(x)+2]min=2,即0<m<2所以m的取值范围是(0,2).小提示:本题考查了三角函数的单调性和最值,考查了三角函数的辅助角公式和平移伸缩变换,有一定的计算量,属于中档题.本题关键点有:(1)三角函数基本量的理解应用;(2)三角函数图像平移伸缩变换的方法;(3)恒成立思想的理解及转化.19、已知函数f(x)=asinx+bcosx,其中ab≠0.(1)若b=1,是否存在实数a使得函数f(x)为偶函数,若存在,求出a的值;若不存在,请说明理由;(2)若x=34π为函数f(x)的对称轴,求函数f(x)的单调增区间.答案:(1)不存在,理由见解析;(2)a>0时,单调增区间是[2kπ−π4,2kπ+3π4],k∈Z,a<0时,单调增区间是[2kπ+3π4,2kπ+7π4],k∈Z.解析:(1)利用函数奇偶性的定义可得答案;(2)由条件结合辅助角公式可得√22a−√22b=±√a2+b2,化简可得b=−a,f(x)=a(sinx−cosx)=√2asin(x−π4),然后分a>0、a<0两种情况讨论.(1)当b=1时,f(x)=asinx+cosx若存在实数a使得函数f(x)为偶函数,则f(−x)=f(x)恒成立,即asin(−x)+cos(−x)=asinx+cosx恒成立,整理得asinx=0恒成立,所以a=0,与ab≠0矛盾,故不存在;(2)结合三角函数的性质知,三角函数在对称轴处取最值,又由辅助角公式知f(x)的最值为±√a2+b2,所以f(34π)=√22a−√22b=±√a2+b2,两边平方,得12a2+12b2−ab=a2+b2,所以12a2+12b2+ab=0,即12(a+b)2=0,所以b=−a,所以f(x)=a(sinx−cosx)=√2asin(x−π4),当a>0时,令2kπ−π2≤x−π4≤2kπ+π2,k∈Z,解得2kπ−π4≤x≤2kπ+3π4,k∈Z,所以单调增区间是[2kπ−π4,2kπ+3π4],k∈Z,当a<0时,令2kπ+π2≤x−π4≤2kπ+3π2,k∈Z,解得2kπ+3π4≤x≤2kπ+7π4,k∈Z,所以单调增区间是[2kπ+3π4,2kπ+7π4],k∈Z.。

函数开放性试题及答案高中

函数开放性试题及答案高中

函数开放性试题及答案高中函数是高中数学中的一个重要概念,它描述了变量之间的依赖关系。

以下是一份针对高中学生的函数开放性试题及答案。

试题一:给定函数 \( f(x) = x^2 - 4x + 4 \),求:1. 函数的对称轴;2. 函数的顶点坐标;3. 函数的值域。

答案一:1. 对称轴为 \( x = -\frac{b}{2a} = -\frac{-4}{2} = 2 \);2. 顶点坐标为 \( (2, f(2)) = (2, 4 - 8 + 4) = (2, 0) \);3. 函数的值域为 \( [0, +\infty) \),因为这是一个开口向上的二次函数,最小值为顶点处的函数值。

试题二:已知函数 \( g(x) = 3x - 2 \),求:1. 函数的斜率;2. 函数的截距;3. 函数的图像在 \( x = 1 \) 时的值。

答案二:1. 斜率为 \( 3 \);2. 截距为 \( -2 \);3. 当 \( x = 1 \) 时,\( g(1) = 3 \times 1 - 2 = 1 \)。

试题三:考虑函数 \( h(x) = \frac{1}{x} \),讨论其定义域,并说明其图像的渐近线。

答案三:1. 函数 \( h(x) \) 的定义域为 \( x \neq 0 \) 的所有实数,因为分母不能为零;2. 函数的图像有两条渐近线,分别是 \( x = 0 \) 和 \( y = 0 \)。

当 \( x \) 接近零时,\( h(x) \) 的值会无限增大或减小,而 \( y = 0 \) 是水平渐近线,因为 \( h(x) \) 永远不会等于零。

试题四:对于函数 \( k(x) = 2^x \),求:1. 函数的值域;2. 函数是否具有奇偶性;3. 函数的图像在 \( x = -1 \) 时的值。

答案四:1. 函数 \( k(x) \) 的值域为 \( (0, +\infty) \);2. 函数 \( k(x) \) 是非奇非偶函数,因为它不满足奇偶性的定义;3. 当 \( x = -1 \) 时,\( k(-1) = 2^{-1} = 0.5 \)。

高一数学函数经典练习题(含答案详细)

高一数学函数经典练习题(含答案详细)

《函 数》复习题一、 求函数的定义域1、求下列函数的定义域:答案:x²又⑵y =答案:2111x x -⎛⎫≤ ⎪+⎝⎭, ()()22111x x -≤+, ()()2211x x -≤+,222121x x x x -+≤++,-4x ≤0, ∴x ≥0{|0}x x ≥⑶01(21)111y x x =+-+-答案:211011011210210104022x x x x x x x x x ⎧+≠⇒-≠-⇒≠⎪-⎪⎪-≠⇒≠⎨⎪-≠⇒≠⎪≥⇒-≥⇒-≤≤∴1{|220,,1}2x x x x x -≤≤≠≠≠且2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _2 f x ()-2的定义域为________;答案:函数f(x)的定义域为[0.1], 则0≤x ≤1于是0≤x ²≤1 解得-1≤x ≤1所以函数f x ()2的定义域为[-1,1]f∴4≤x ≤93、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1x 1(2)f x+的定义域为 。

答案:y=f(x+1)的定义域是【-2,3】注:y=f(x+1)的定义域是【-2,3】 指的是里面X 的定义域 不是括号内整体的定义域 即-2<=x<=3∴-1<=x+1<=4 ∴x+1 的范围为 [-1,4] f(x)括号内的范围相等y=f(2x-1)f(4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。

答案解1:知函数f(x)的定义域为[-1.1],则对函数F (X )=f(m+x)-f(x-m)来说 -1≤m+x ≤1 -1≤x-m ≤11. 由-1≤m+x 和x-m ≤1 两式相加-1+x-m ≤m+x+1 解得2m ≥-2 m ≥-12. 由m+x ≤1和-1≤x-m 两式相加 m+x-1≤x-m+12m ≤2 解得m ≤1综上:-1≤m ≤1答案解2: -1<x+m<1 →→-1-m < x<1-m-1<x-m<1 → -1+m<x<1+m定义域存在,两者的交集不为空集,(注:则只需(-m-1,1-m )与(m-1,1-m )有交集即可。

高中数学函数练习题(完整版)

高中数学函数练习题(完整版)

高中数学函数练习题(完整版).doc1、在A、B、C、D四个函数中,只有函数y=1/(x+1)的值域是(0,+∞),因此答案为A。

2、由题意可得:f(-2)=f(2)=3,即2a+12a+a=3,解得a=-1/2.在闭区间[-2,2]上,f(x)的最小值是f(0)=-a=1/2,因此答案为A。

3、对于函数y=x-2x^2+3,在[0,m]上有最大值3,最小值2,因此其开口向下,且顶点在[0,m]上。

由于开口向下,顶点为最大值,因此m=1,即答案为A。

4、设函数f(x)=log_a(x),则f(a)=1,f(2a)=log_a(2a)=1+log_a2,由题意可得:f(2a)=3f(a),即1+log_a2=3,解得a=1/4,因此答案为B。

5、在区间[0,1]上,f(x)的最大值为a+log_a2,最小值为a+log_a1=a,因此有:a+log_a2+a=2a,解得a=2,因此答案为D。

6、由题意可得:y-2xy/(x-1)^3的最小值为-1/3,1/(x-1)的最大值为正无穷,因此答案为正无穷和-1/3.7、由于XXX(ax+2x+1)的值域为R,因此ax+2x+1>0,解得a>-1/2.又因为XXX(ax+2x+1)=lg(a)+lg(x+2x+1/a)>0,解得a>0.因此a的取值范围为(0,1/2)。

8、将x=y=1代入f(x+y)=f(x)+f(y)+2xy,得f(2)=f(1)+f(1)+2=4.又因为f(1)=2,因此f(0)=f(1)+f(-1)+2(1)(-1)=0.9、将x=0代入f(x+1)=(1/3)(1/(x^2-1)),得f(1)=(1/3)(1/2)=1/6.因此f(x)=f(x+1-1)=f(x+1)-2(x+1-1)=f(x+1)-2x-2,代入f(x+1)=(1/3)(1/(x^2-1)),得f(x)=(1/3)(1/[(x-1)(x+1)])-2x-2,因此函数f(x)的值域为R。

高中数学函数经典复习题含答案

高中数学函数经典复习题含答案

高中数学函数经典复习题含答案1、求函数的定义域1)y=(x-1)/(x^2-2x-15)先求分母为0的解:x^2-2x-15=0x-5)(x+3)=0得到:x=5或x=-3但是x=-3不在定义域内,因为分母为0时分式无意义,所以定义域为(-∞,-3)∪(-3,5)∪(5,+∞)2)y=1-((x+1)/(x+3))-3先求分母为0的解:x+3=0得到:x=-3但是x=-3不在定义域内,因为分母为0时分式无意义,所以定义域为(-∞,-3)∪(-3,-1)∪(-1,+∞)2、设函数1/(x-1)+(2x-1)+4-x^2的定义域为[1,∞),则函数f(x^2)的定义域为[1,∞);函数f(x-2)的定义域为[3,∞)。

3、若函数f(x+1)的定义域为[-2,3],则函数f(2x-1)的定义域为[-1,2],函数f(2x-1)的值域为[-2,3]。

4、已知函数f(x)的定义域为[-1,1],且函数F(x)=f(x+m)-f(x-m)的定义域存在,求实数m的取值范围。

因为F(x)的定义域存在,所以f(x+m)和f(x-m)的定义域必须都存在,即:1≤x+m≤11≤x-m≤1将两个不等式联立,得到:1≤x≤1m≤x≤m所以m的取值范围为[-1,1]。

二、求函数的值域5、求下列函数的值域:1)y=x+2/x-3 (x∈R)先求分母为0的解:x-3=0得到:x=3但是x=3不在定义域内,因为分母为0时分式无意义,所以定义域为(-∞,3)∪(3,+∞)当x→±∞时,y→±∞,所以值域为(-∞,-2]∪[2,+∞)2)y=x+2/x-3 (x∈[1,2])先求分母为0的解:x-3=0得到:x=3但是x=3不在定义域内,因为分母为0时分式无意义,所以定义域为[1,3)∪(3,2]∪(2,+∞)当x→1+时,y→-∞,当x→2-时,y→+∞,所以值域为(-∞,-2]∪[2,+∞)3)y=22/(3x-13x-1)先求分母为0的解:3x-13x-1=0得到:x=4但是x=4不在定义域内,因为分母为0时分式无意义,所以定义域为(-∞,4)∪(4,+∞)当x→±∞时,y→0,所以值域为(0,+∞)4)y=(5x^2+9x+4)/(2x-6) (x≥5)当x→+∞时,y→+∞,当x→5+时,y→+∞,所以值域为[5,+∞)5)y=(x-3)/(x+1)+x+1先求分母为0的解:x+1=0得到:x=-1但是x=-1不在定义域内,因为分母为0时分式无意义,所以定义域为(-∞,-1)∪(-1,+∞)化简得到y=x-2,所以值域为(-∞,-2]∪[-2,+∞)6)y=(x-3+x+1)/(2x-1x+2)先求分母为0的解:2x-1=0或x+2=0得到:x=1/2或x=-2但是x=1/2不在定义域内,因为分母为0时分式无意义,所以定义域为(-∞,1/2)∪(1/2,-2)∪(-2,+∞)化简得到y=1/2,所以值域为{1/2}7)y=x^2-x/(x+2)先求分母为0的解:x+2=0得到:x=-2但是x=-2不在定义域内,因为分母为0时分式无意义,所以定义域为(-∞,-2)∪(-2,+∞)化简得到y=x-2-5/(x+2),所以值域为(-∞,-13/4]∪[1/4,+∞)8)y=(2-x^2-x)/(3x+6)先求分母为0的解:3x+6=0得到:x=-2但是x=-2不在定义域内,因为分母为0时分式无意义,所以定义域为(-∞,-2)∪(-2,+∞)化简得到y=-1/3,所以值域为{-1/3}三、求函数的解析式1、已知函数f(x-1)=x-4x,求函数f(x),f(2x+1)的解析式。

(完整版)高考数学历年函数试题及答案

(完整版)高考数学历年函数试题及答案

设(x )是定义在R 上的偶函数, 其图象关于直线x=1对称, 对任意x1,x2∈[0, ]都有 (Ⅰ)设);41(),21(,2)1(f f f 求 (Ⅱ)证明)(x f 是周期函数。

2.设函数(Ⅰ)判断函数)(x f 的奇偶性; (Ⅱ)求函数)(x f 的最小值.3. 已知函数(Ⅰ)求函数()f x 的最小正周期和最大值;(Ⅱ)在给出的直角坐标系中, 画出函数 在区间 上的图象4. (本小题满分12分)求函数 的最小正周期、最大值和最小值.5. (本小题满分12分)已知在R上是减函数, 求的取值范围.6.△ABC的三个内角为A.B.C, 求当A为何值时, 取得最大值, 并求出这个最大值7.设a为实数, 函数在和都是增函数, 求a的取值范围.8.设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.(Ⅰ)求a、b的值;(Ⅱ)若对于任意的x 都有f(x)<c2成立, 求c的取值范围.9.已知函数 , .(Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数 在区间 内是减函数, 求 的取值范围.10.在 中, 内角A.b 、c 的对边长分别为a 、b 、c.已知 , 且 , 求b.11. 已知函数42()36f x x x =-+. (Ⅰ)讨论()f x 的单调性;(Ⅱ)设点P 在曲线 上, 若该曲线在点P 处的切线 通过坐标原点, 求 的方程12.设函数 图像的一条对称轴是直线 (Ⅰ)求ϕ;(Ⅱ)求函数)(x f y =的单调增区间; (Ⅲ)画出函数)(x f y =在区间],0[π上的图像13.已知二次函数 的二次项系数为 , 且不等式 的解集为 (Ⅰ)若方程 有两个相等的根, 求 的解析式; (Ⅱ)若 的最大值为正数, 求 的取值范围解答: 2.解: (Ⅰ) 由于),2()2(),2()2(f f f f -≠-≠- 故 既不是奇函数, 也不是偶函数.(Ⅱ)⎪⎩⎪⎨⎧<+-≥-+=.2,1,2,3)(22x x x x x x x f由于),2[)(+∞在x f 上的最小值为)2,(,3)2(-∞=在f 内的最小值为.43)21(=f故函数),()(+∞-∞在x f 内的最小值为.433.解)42sin(21)4sin 2cos 4cos 2(sin 21πππ-+=-⋅+=x x x所以函数 的最小正周期为π, 最大值为 .(Ⅱ)由(Ⅰ)知x83π-8π-8π 83π 85π y121-121+1故函数)(x f y =在区 间]2,2[ππ-上的图象是4.解:.212sin 41)cos sin 1(21)cos sin 1(2cos sin 122+=+=--=x x x x x x x所以函数 的最小正周期是 , 最大值是 最小值是 5.解: 函数f(x)的导数: .(Ⅰ)当 ( )时, 是减函数.)(01632R x x ax ∈<-+ .3012360-<⇔<+=∆<⇔a a a 且所以, 当 是减函数;(II )当 时, =由函数 在R 上的单调性, 可知当 时, )是减函数;(Ⅲ)当 时, 在R 上存在一个区间, 其上有 所以, 当 时, 函数 不是减函数. 综上, 所求 的取值范围是 6.解: 由,222,A C B C B A -=+=++ππ得所以有 .2sin 2cosAC B =+ 2sin 2cos 2cos 2cos AA CB A +=++2sin 22sin 212A A +-=.23)212(sin 22+--=A 当.232cos 2cos ,3,212sin取得最大值时即C B A A A ++==π 7.解:),1(23)('22-+-=a ax x x f其判别试.81212124222a a a -=+-=∆ (ⅰ)若,26,08122±==-=∆a a 即 当.),()(,0)(',),3()32,(为增函数在时或+∞-∞>+∞∈-∞∈x f x f a x x所以.26±=a (ⅱ) 若,08122<-=∆a .),()(,0)('为增函数在恒有+∞-∞>x f x f 所以 ,232>a即 ).,26()26,(+∞--∞∈ a (ⅲ)若,08122>-=∆a 即,0)(',2626=<<-x f a 令 解得 .323,3232221a a x a a x -+=--=当;)(,0)(',)(),(21为增函数时或x f x f x x x x >∞+∈-∞∈ 当.)(,0)(',),(21为减函数时x f x f x x x <∈ 依题意1x ≥0得2x ≤1. 由1x ≥0得a ≥,232a - 解得 1≤.26<a 由2x ≤1得,232a -≤3,a - 解得 .2626<<-a 从而 .)26,1[∈a 综上, a 的取值范围为 即 ∈a ).,1[]26,(+∞--∞ 9.解: (1) 求导: 当 时, , , 在 上递增; 当 , 由 求得两根为 即 在 递增, 递减,⎫+∞⎪⎪⎝⎭递增; (2)(法一)∵函数 在区间 内是减函数, 递减, ∴ , 且 , 解得: 。

高中函数考试题及答案

高中函数考试题及答案

高中函数考试题及答案一、选择题(每题3分,共30分)1. 函数f(x) = 2x^2 - 3x + 1的图像是:A. 一个开口向上的抛物线B. 一个开口向下的抛物线C. 一个上升的直线D. 一个下降的直线答案:A2. 如果函数g(x) = √x在区间[0, +∞)上是增函数,那么g(4)与g(9)的大小关系是:A. g(4) > g(9)B. g(4) < g(9)C. g(4) = g(9)D. 不能确定答案:B3. 函数h(x) = 1/x在区间(-∞, 0)和(0, +∞)上是:A. 增函数B. 减函数C. 常数函数D. 既不是增函数也不是减函数答案:B4. 函数f(x) = |x - 2| + |x + 3|的最小值出现在:A. x = -3B. x = 2C. x = -2D. x = 0答案:D5. 函数f(x) = sin(x) + cos(x)的周期是:A. πB. 2πC. 4πD. 1答案:B6. 如果函数f(x) = x^3 - 3x^2 + 2x - 1在x = 1处取得极值,那么这个极值是:A. 极大值B. 极小值C. 不是极值D. 无法确定答案:A7. 函数f(x) = ln(x)的定义域是:A. (-∞, 0)B. (0, +∞)C. (-∞, +∞)D. [0, +∞)答案:B8. 函数f(x) = e^x在x = 0处的导数是:A. 0B. 1C. -1D. 无法确定答案:B9. 函数f(x) = x^2 - 4x + 4的图像与x轴的交点个数是:A. 0B. 1C. 2D. 3答案:A10. 函数f(x) = sin(x)cos(x)的图像是:A. 一个周期为π的正弦函数B. 一个周期为2π的正弦函数C. 一个周期为π/2的正弦函数D. 一个周期为π/4的正弦函数答案:D二、填空题(每题2分,共20分)1. 函数f(x) = x^2 + 2x + 1可以写成完全平方的形式:f(x) = __________。

(完整版)高考文科数学函数专题讲解及高考真题精选(含答案)

(完整版)高考文科数学函数专题讲解及高考真题精选(含答案)

函 数【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <. (3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:利用常见函数的值域来求一次函数y=ax+b(a ≠0)的定义域为R ,值域为R ; 反比例函数)0(≠=k xky 的定义域为{x|x ≠0},值域为{y|y ≠0}; 二次函数)0()(2≠++=a c bx ax x f 的定义域为R ,当a>0时,值域为{ab ac y y 4)4(|2-≥};当a<0时,值域为{ab ac y y 4)4(|2-≤}②配方法:③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.转化成型如:)0(>+=k xkx y ,利用平均值不等式公式来求值域;⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象. (7)求函数解析式的题型有:1)已知函数类型,求函数的解析式:待定系数法;2)已知()f x 求[()]f g x 或已知[()]f g x 求()f x :换元法、配凑法;3)已知函数图像,求函数解析式;4)()f x 满足某个等式,这个等式除()f x 外还有其他未知量,需构造另个等式解方程组法;5)应用题求函数解析式常用方法有待定系数法等yxo〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法函数的 性 质定义图象判定方法函数的单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)xy f(x )1f(x )2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yx ox x 2f(x )f(x )211(1)利用定义 (2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象下降为减)(4)利用复合函数增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减. (2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、]a 上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.1 (4)证明函数单调性的一般方法:①定义法:设2121,x x A x x <∈且;作差)()(21x f x f -,判断正负号②用导数证明: 若)(x f 在某个区间A 内有导数,则()0f x ≥’,)x A ∈(⇔)(x f 在A 内为增函数;⇔∈≤)0)(A x x f ,(’)(x f 在A 内为减函数 (5)求单调区间的方法:定义法、导数法、图象法(6)复合函数[])(x g f y =在公共定义域上的单调性:①若f 与g 的单调性相同,则[])(x g f 为增函数;②若f 与g 的单调性相反,则[])(x g f 为减函数注意:先求定义域,单调区间是定义域的子集(7)一些有用的结论:①奇函数在其对称区间上的单调性相同;②偶函数在其对称区间上的单调性相反; ③在公共定义域内:增函数+)(x f 增函数)(x g 是增函数;减函数+)(x f 减函数)(x g 是减函数; 增函数-)(x f 减函数)(x g 是增函数;减函数-)(x f 增函数)(x g 是减函数④函数)0,0(>>+=b a x bax y 在,,b b a a ⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢ ⎪⎝⎦⎣⎭或上单调递增;在,00b b a a ⎡⎫⎛⎤-⎪ ⎢⎥⎪ ⎣⎭⎝⎦或,上是单调递减【1.3.2】奇偶性①定义及判定方法函数的 性 质定义图象判定方法 函数的奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于y 轴对称)②若奇函数()f x 的定义域包含0,则(0)0f =.()f x 为偶函数()(||)f x f x ⇔=③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反. ④在公共定义域内,奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶,奇⨯偶=奇判断函数的奇偶性有时可以用定义的等价形式:()()0f x f x ±-=,()1()f x f x =±- 函数周期性定义:若T 为非零常数,对于定义域内的任一x ,使)()(x f T x f =+恒成立,则f(x)叫做周期函数,T 叫做这个函数的一个周期〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象 ()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去①y=f(x) 轴x →y= -f(x); ②y=f(x) 轴y →y=f(-x);③y=f(x) ax =→直线y=f(2a -x); ④y=f(x) xy =→直线y=f -1(x);⑤y=f(x) 原点→y= -f(-x)(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章 基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次当n 是偶数时,正数a 的正的n负的n次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根.这里n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当n 为奇数时,a =;当n 为偶数时,(0)|| (0) a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,mna a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)rsr sa a aa r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r rab a b a b r R =>>∈【2.1.2】指数函数及其性质(4)指数函数〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)xa x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a aM M N N-= ③数乘:log log ()na a n M M n R =∈ ④log a N a N =⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a =>≠且【2.2.2】对数函数及其性质设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y fx -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()x fy -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质①原函数()y f x =与反函数1()y fx -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y fx -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x =是奇函数,若p 为奇数q 为偶数时,则q py x =是偶函数,若p 为偶数q 为奇数时,则qpy x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a--. ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a-+∞上递增,当2bx a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2ba -+∞上递减,当2bx a=-时,2max 4()4ac b f x a -=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点11221212(,0),(,0),||||||M x M x M M x x a =-=. (4)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=- ③判别式:∆ ④端点函数值符号.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上)①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a ->,则()m f q = ①若02b x a -≤,则()M f q = ②02bx a ->,则()M f p =(Ⅱ)当0a <时(开口向下)①若2bp a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2bq a ->,则()M f q =①若02bx a -≤,则()m f q = ②02bx a ->,则()m f =.>O -=f (p) f (q) ()2b f a -x>O -=f (p) f (q) ()2b f a -x >O -=f(p)f (q) ()2bf a -x>O -=f(p)f (q) ()2bf a -0x x >O -=f (p) f (q) ()2b f a -0x x <O -=f (p) f (q) ()2b f a -x <O -=f (p) f(q) ()2bf a -x <O -=f (p) f (q) ()2b f a -0xx <O -=f(p) f (q)()2bf a -x<O-=f(p) f (q)()2bfa -0x第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。

高中数学_经典函数试题及答案

高中数学_经典函数试题及答案

高中数学_经典函数试题及答案一、考点:一次函数试题:已知函数 $y=2x-1$,求该函数在 $x=3$ 时的函数值。

解答:将 $x=3$ 代入 $y=2x-1$ 中,得到 $y=2(3)-1=5$,因此该函数在 $x=3$ 时的函数值为 $5$。

二、考点:二次函数试题:已知函数 $y=x^2-4x+5$,求该函数的 $x$ 轴截距和顶点坐标。

解答:要求 $x$ 轴截距,可以令 $y=0$,则 $x^2-4x+5=0$。

通过求解,可以得到该二次函数的两个根 $x=1$ 和$x=3$,因此 $x$ 轴截距为 $(1,0)$ 和 $(3,0)$。

要求顶点坐标,可以通过求解完成平方后的式子 $y=(x-2)^2+1$ 得到,因此该函数的顶点坐标为 $(2,1)$。

三、考点:指数函数试题:已知函数 $y=2^x$,求该函数在 $x=3$ 时的函数值和在 $x=0$ 时的函数值。

解答:将 $x=3$ 代入 $y=2^x$ 中,得到 $y=2^3=8$,因此该函数在 $x=3$ 时的函数值为 $8$。

将 $x=0$ 代入$y=2^x$ 中,得到 $y=2^0=1$,因此该函数在 $x=0$ 时的函数值为 $1$。

四、考点:对数函数试题:已知函数 $y=\log_3x$,求该函数在 $x=27$ 时的函数值和在 $x=1$ 时的函数值。

解答:将 $x=27$ 代入 $y=\log_3x$ 中,得到$y=\log_3(27)=3$,因此该函数在 $x=27$ 时的函数值为 $3$。

将 $x=1$ 代入 $y=\log_3x$ 中,得到 $y=\log_31=0$,因此该函数在 $x=1$ 时的函数值为 $0$。

五、考点:三角函数试题:已知函数 $y=\sin x$,求该函数在 $x=\frac{\pi}{2}$ 时的函数值和在 $x= \pi$ 时的函数值。

解答:将 $x= \frac{\pi}{2}$ 代入 $y=\sin x$ 中,得到 $y=\sin (\frac{\pi}{2})=1$,因此该函数在 $x=\frac{\pi}{2}$ 时的函数值为 $1$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2) 画出它的图像,并说明其图像由 y 4x2 的图像经过怎样平移得来;
(3) 求函数的最大值或最小值; (4) 分析函数的单调性。
21.(本小题满分 14 分)
已知函数 f (x) log a (x 1), g(x) log a (1 x)(其中a 0,且a 1) ⑴求函数 f (x) g(x) 的定义域; ⑵判断函数 f (x) g(x) 的奇偶性,并予以证明; ⑶求使 f (x) g(x) <0 成立的 x 的集合。
(3a 1)x 4a, x 1
12. 已知 f (x)
loga x, x 1
是 R 上的减函数,那么 a 的取值范围是( )
A.(0,1) B.(0, 1) C. 1 , 1 D. 1
3
7 3
7 ,1
二、填空题:本大题共 4 小题,每小题 4 分,共 16 分。把答案填在题中横线上。
⑴求 a 的值;
⑵证明: f (x) 在0,上是增函数。
18.(本小题满分 12 分)
记函数 f (x) 2 x 3 的定义域为 A, g(x) lg[(x a 1)(2a x)](a 1) 的定义 x 1
域为 B。 ⑴求 A;
⑵若 B A ,求实数 a 的取值范围。
19.(本小题满分 12 分)
2
2
2. 已知 0 a 1,b 1,则函数 y a x b 的图象不经过
() ()
A. 第一象限 B.第二象限 C. 第三象限 D. 第四象限
3.函数 y ln x 2x 6 的零点必定位于区间
()
A.(1,2) B.(2,3) C.(3,4) D.(4,5) 4.给出四个命题:
(1)当 n 0 时, y xn 的图象是一条直线;
设函数 y f (x) 是定义在 R 上的减函数,并且满足 f (xy) f (x) f ( y) ,
f
1 3
1,(1)求
f
(1) 的值,
(2)如果
f
(x)
f
(2
x)
2 ,求
x 的取值范围。
3
20.(本小题满分 14 分)
对于二次函数 y 4x2 8x 3 ,
(1) 指出图像的开口方向、对称轴方程、顶点坐标;
10
3
少有这样的玻璃板
块。(参考数据: lg 2 0.3010, lg 3 0.4771)
16. 给出下列命题:
①函数 y a x (a 0, a 1) 与函数 y loag a x (a 0, a 1) 的定义域相同;
②函数 y x3 与 y 3x 的值域相同;
③函数 y 1
D.
2
4
6. 设 f (x) 是奇函数,当 x 0 时, f (x) log2 x, 则当 x 0 时, f (x)
() ()
()
A. log2 x B. log2 (x) C. log 2 x D. log2 (x)
7. 若方程 2( m 1 ) x 2 +4 mx 3m 2 0 的两根同号,则 m 的取值范围为 ( )
()
2
A. a b c B. b a c C. c b a D. c a b
9.已知 0 x y a 1,则有
()
A. log a (xy) 0 B. 0 loga (xy) 1 C. 1< loga (xy) 0 D. log a (xy) 2
1
10. 已知 0 a 1, loga m loga n 0, 则
(2) 幂函数图象都经过(0,1)、(1,1)两点; (3) 幂函数图象不可能出现在第四象限;
(4)幂函数 y xn 在第一象限为减函数,则 n 0 。
其中正确的命题个数是
A.1a x 在[0,1]上的最大值与最小值的和为 3,则 a 的值为
1
1
A.
B.2
C.4
2
A. 2 m 1 B. 2 m 1或 m 1
3
C. m 1 或 m 2 D. 2 m 1或 2 m 1
3
3
6
3
8. 已知 f (x) 是周期为 2 的奇函数,当0 x 1 时, f (x) lg x. 设 a f ( ), b f ( ),
5
2
c f ( 5), 则
(满分:150 分 考试时间:120 分钟) 一、选择题:本大题共 12 小题。每小题 5 分,共 60 分。在每小题给出的四个选项中,只
有一项是符合题目要求的。
1. 函数 y f (2x 1) 是偶函数,则函数 y f (2x) 的对称轴是
1
1
A. x 0 B. x 1 C. x D. x
13.若函数 y log a (kx2 4kx 3) 的定义域是 R,则 k 的取值范围是

14. 函数 f (x) 2ax 2a 1, x [1,1], 若 f (x) 的值有正有负,则实数 a 的取值范围为

1
1
15. 光线透过一块玻璃板,其强度要减弱 ,要使光线的强度减弱到原来的 以下,至
4
22.(本小题满分 12 分)
函数 f (x) 对任意 a,b R 都有 f (a b) f (a) f (b) 1,并且当 x 0 时 f (x) 1。 求证:函数 f (x) 是 R 上的增函数。
5
《初等函数测试题》〉参考答案 一、选择题
⒈D ⒉ A ⒊B ⒋B ⒌B ⒍A ⒎B ⒏D ⒐D ⒑A ⒒ B ⒓ C
二、填空题
⒔ 0, 3 ⒕ a 1
A.1 n m B.1 m n C.m n 1 D.n m 1
2 x x 2
11. 设 f (x) lg
, 则 f f 的定义域为
2x 2 x
() ()
A.( 4,0) (0,4) B. (4,1) (1,4) C.( 2,1) (1,2) D.( 4,2) (2,4)
1
(1 2 x )2
与函数 y
均是奇函数;
2 2x 1
x2x
④函数 y (x 1)2 与 y 2x 1 在 R 上都是增函数。
其中正确命题的序号是

三、解答题:本大题共 6 小题,共 74 分。解答应写出文字说明、证明过程或演算步骤。
2
17.(本小题满分 12 分)
设 a 0 , f (x) ex a 是 R 上的偶函数。 a ex
相关文档
最新文档