常见的数量关系

合集下载

常见的数量关系

常见的数量关系

常见的数量关系1、单价×数量=总价2、单产量×数量=总产量3、速度×时间=路程4、工效×时间=工作总量5、加数+加数=和一个加数=和+另一个加数被减数-减数=差减数=被减数-差被减数=减数+差因数×因数=积一个因数=积÷另一个因数被除数÷除数=商除数=被除数÷商被除数=商×除数有余数的除法:被除数=商×除数+余数一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。

例:90÷5÷6=90÷(5×6)6、1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米1吨=1000千克1千克= 1000克= 1公斤= 1市斤1公顷=10000平方米。

1亩=666.666平方米。

1升=1立方分米=1000毫升1毫升=1立方厘米7、什么叫比:两个数相除就叫做两个数的比。

如:2÷5或3:6或1/3比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。

8、什么叫比例:表示两个比相等的式子叫做比例。

如3:6=9:189、比例的基本性质:在比例里,两外项之积等于两内项之积。

10、解比例:求比例中的未知项,叫做解比例。

如3:χ=9:1811、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。

如:y/x=k( k一定)或kx=y12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。

常用的数量关系

常用的数量关系

常用的数量关系
一些常用的数量关系包括:
1. 相等/等于:用于表达两个数或物体具有相同的数值或属性。

例如:2 + 3 = 5 表示2和3的和等于5。

2. 不等/不等于:用于表达两个数或物体具有不同的数值或属性。

例如:3 ≠ 6 表示3和6不相等。

3. 大于/大于等于:用于比较两个数中较大的数。

例如:9 > 6 表示9大于6。

4. 小于/小于等于:用于比较两个数中较小的数。

例如:4 < 7 表示4小于7。

5. 比例关系:用于表示两个数之间的比例关系。

例如:3:4表示第一个数是第二个数的0.75倍。

6. 正数/负数:用于表示数的正负。

例如:4是一个正数,而-4是一个负数。

7. 零:用于表示没有数量或数值为零。

例如:0表示没有物体或数量为零。

这些数量关系在数学和日常生活中都经常使用。

整体常见的数量关系

整体常见的数量关系

整体常见的数量关系数量关系可以用来描述物体之间的直接关系,是数学学习中最基础的概念之一,也是数学运算的基础。

数量关系可以被定义为一些物体之间的关系,其中一个物体的数量可以影响另一个物体的数量。

在数学领域,数量关系可以表达为加减乘除法,如加法关系、减法关系、乘法关系、整除关系、乘方关系等。

加法关系是一种最常见的数量关系,是指给定两个数量,加起来后可以得到总量。

其中,一个加数加上另一个加数,结果可以得到和。

例如,一个人有2元钱,另一个人有1元钱,那么他们总共有3元钱。

减法关系是一种常见的数量关系,是指将两个数量相减,从而得到差值。

即从一个减数减去另一个减数,结果可以得到差值。

例如,一个人有5元钱,另一个人有2元钱,那么他们之间的差值是3元钱。

乘法关系是一种数量关系,指将两个数量相乘,从而得到乘积。

即将一个乘数与另一个乘数相乘,结果可以得到乘积。

例如,一个人有3个苹果,另一个人有4个苹果,那么他们总共有12个苹果。

整除关系是一种数量关系,指将一个数量除以另一个数量,从而得到商。

即将一个除数除以另一个除数,结果可以得到商数。

例如,一个人有8个苹果,另一个人有4个苹果,那么他们中每个人拥有2个苹果。

乘方关系是一种数量关系,指将一个数量乘以另一个数量,从而得到幂。

即将一个乘数乘以另一个乘数,结果可以得到幂数。

例如,一个数的三次方,即将这个数与它自身相乘三次,即可得到这个数的三次方。

除了上述的几种最常见的数量关系外,还有其他一些关系,比如比例关系、对数关系、幂函数关系等。

比例关系指两个数量之间的关系,可以用其中一个数量乘以一个固定的数值来表示另一个数量。

例如,一个人有6个苹果,另一个人有3个苹果,那么他们之间的比例关系是2:1。

对数关系是一种数量关系,指两个数量之间的对数关系,即可以使用某种数量的对数来表示另一个数量。

例如,设x的20次方等于1024,则x的对数关系等于1024的以20为底的对数。

幂函数关系是一种数量关系,指一个变量的幂函数关系。

小学数学常见数量关系式

小学数学常见数量关系式

常见的数量关系式1.行程问题路程=速度×时间速度=路程÷时间时间=路程÷速度2.价钱问题总价=单价×数量单价=总价÷数量数量=总价÷单价3.工程问题工作总量=工作效率×工作时间工作效率=工作总量÷工作时间工作时间=工作总量÷工作效率4.相遇问题相遇路程=相遇时间×速度和相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间补充:追及问题:追及时间=路程÷速度差5.利润与折扣问题利润=售价-成本利润率=利润÷成本×100%利息=本金×利率×存期现价=原价×折扣原价=现价÷折扣折扣=现价÷原价6.合格率类问题合格率=合格数÷总数×100%发芽率=发芽数÷总数×100%出勤率=出勤人数÷总人数×100%合格率=合格数÷总数×100%出粉率=面粉重量÷小麦重量×100%7.鸡兔同笼问题(1)假设全是鸡,求出的是兔:(总腿数-总头数×鸡腿数)÷(4-2)=兔的只数(2)假设全是兔,求出的是鸡:(总头数×兔腿数-总腿数)÷(4-2)=鸡的只数8.流水问题顺水速度=船速+水速;逆水速度=船速—水速路程=顺水速度×顺水航行时间=逆水速度×逆水航行时间船速=(顺水速度+逆水速度)÷2;水速=(顺水速度-逆水速度)÷29.和差问题(和+差)÷2=大数(和—差)÷2=小数10.和倍问题和÷倍数和=标准数标准数×倍数= 另一个数11.差倍问题差÷倍数差=标准数标准数×倍数= 另一个数12.年龄问题:年龄差÷倍数差=结果13.植树问题(1)不封闭(直线、公路)植树:两端都种树:棵数=段数+1;只种一端:棵数=段数;两端都不种:棵数=段数—1(2)封闭(圆、四边形)植树:棵数=段数(相当于只种一端)。

数量关系公式大全

数量关系公式大全

数量关系公式大全1.百分数公式:-百分数=(所占数量/总数量)×100%2.比例公式:-比例=已知数量/未知数量3.增长率公式:-增长率=增加的数量/原始数量4.直线方程:- y = mx + c,其中m是斜率,c是y轴截距5.平均值公式:-平均值=(所有数据之和)/(数据个数)6.学生t分布公式(用于计算样本平均值的置信度):-t=(平均值-总体平均值)/标准误差7.标准差公式(用于计算数据集的离散程度):- 标准差 = sqrt((每个数据值 - 平均值)^ 2的总和 / 数据个数)8.四分位数公式(用于描述数据集分布):-第一四分位数=(n+1)/4个数据点-第二四分位数(中位数)=(n+1)/2个数据点-第三四分位数=3(n+1)/4个数据点9.正态分布公式:-正态分布=(1/根号(2πσ^2))×e^(-(x-μ)^2/2σ^2)10.欧拉公式(描述复数和三角函数之间的关系):- e^(ix) = cos(x) + i × sin(x)11.斐波那契数列公式(描述费波那契数列中的数量关系):-Fn=Fn-1+Fn-2,其中F0=0,F1=112.二项式系数公式(描述二项式展开中的系数):-nCk=n!/(k!×(n-k)!),其中n为整数,k为介于0和n之间的整数13.反比例公式:-两个量A和B成反比例关系,即A×B=k(k为常数)14.几何级数公式(描述几何级数中的数量关系):-S=a/(1-r),其中a是首项,r是公比15.面积公式:-矩形面积=长×宽-三角形面积=(底边长×高)/2-圆面积=π×半径^2以上是一些常见的数量关系公式,它们在数学和科学中经常被使用。

通过掌握这些公式,我们可以更好地理解和解决各种与数量关系相关的问题。

常见数量关系式

常见数量关系式

六年级数学常见的数量关系及公式须掌握一、常见的数量关系式:1.解方程的数量关系式:一个加数+另一个加数=和一个加数 = 和-另一个加数被减数-减数=差被减数 = 减数+差减数 = 被减数-差一个因数×另一个因数=积一个因数 = 积÷另一个因数被除数÷除数=商除数 = 被除数÷商被除数 = 除数×商2.几种常用的应用题数量关系式:(1)相差关系:大数-小数 = 相差数小数=大数-相差数大数=小数+相差数(2)部总关系:部分数+部分数 = 总数部分数=总数-部分数(3)倍数关系:1倍数×倍数 = 几倍数倍数=几倍数÷1倍数 1倍数=几倍数÷倍数(4)份总关系:①单价×数量 = 总价单价=总价÷数量数量=总价÷单价②速度×时间 = 路程速度=路程÷时间时间=路程÷速度平均速度=总路程÷总时间速度和×相遇时间=相遇路程相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间③工作效率×工作时间 = 工作总量工作效率=工作总量÷工作时间工作时间=工作总量÷工作效率④每份数×份数 = 总数每份数= 总数÷份数份数=总数÷每份数(5)利息=本金×利率×时间(6)图上距离÷实际距离=比例尺图上距离=实际距离×比例尺实际距离=图上距离÷比例尺(7)比较量÷标准量=分率比较量=标准量×分率标准量=比较量÷分率3.常用的运算定律与性质:⑴①加法交换律: a+b = b+a ②加法结合律:(a+b)+c = a+(b+c)⑵减法的性质:① a-b-c = a-(b+c) a-(b+c)= a-b-c② a-b+c = a-(b-c) a-(b-c)= a-b+c⑶①乘法交换律:a×b = b×a ②乘法结合律:(a×b)×c = a×(b×c)③乘法分配律:a×c+b×c = (a+b) ×c (a+b) ×c = a×c+b×c⑷除法的性质:① a÷b÷c = a÷(b×c) a÷(b×c) = a÷b÷c② a÷b×c = a÷(b÷c) a÷(b÷c) = a÷b×c二、形体问题1 .正方形的周长=边长× 4 边长=正方形的周长÷4正方形的面积=边长×边长2 .长方形的周长=(长+宽)×2 长=周长÷2-宽宽=周长÷2-长长方形的面积=长×宽3. 三角形的面积=底×高÷2高=面积×2÷底底=面积×2÷高4. 平行四边形的面积=底×高底=平行四边形的面积÷高5. 梯形的面积=(上底+下底)×高÷2高=面积×2÷(上底+下底)上底=面积×2÷高-下底下底=面积×2÷高-上底6.长方体的棱长总和=(长+宽+高)×4 长=棱长总和÷4 -宽-高正方体的棱长总和=棱长×12 棱长=棱长总和÷12长方体的表面积=(长×宽+长×高+宽×高)×2正方体的表面积=棱长×棱长×6长方体的体积=长×宽×高长=体积÷宽÷高正方体的体积=棱长×棱长×棱长长方体或正方体统一的体积公式=底面积×高底面积=体积÷高7.直径=半径×2 半径=直径÷2圆的周长=圆周率×直径=圆周率×半径×2 c=πd= 2πr圆的面积=圆周率×半径×半径 s=πr28.圆柱的侧面积=底面圆的周长×高 S=ch=πdh= 2πrh圆柱的表面积=侧面积+上下底面面积 S= 2πrh +2πr2圆柱的体积=底面积×高 V=Sh=πr2h圆锥的体积=底面积×高÷3 V=Sh÷3=πr2h÷3三、量的计量(单位换算)1. 长度单位换算1千米=1000米 1米=10分米=100厘米 1分米=10厘米 1厘米=10毫米2. 面积单位换算1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米=10000平方厘米 1平方分米=100平方厘米1平方厘米=100平方毫米3. 重量单位换算1吨=1000千克 1千克=1000克1千克=1公斤4. 体积单位换算1立方米=1000立方分米 1立方分米=1000立方厘米 1立方米=1000000立方厘米 1升=1立方分米 1毫升=1立方厘米 1升=1000毫升5. 人民币单位换算1元=10角 1角=10分1元=100分6. 时间单位换算1世纪=100年 1年=12月一年四个季度大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天,闰年2月29天平年全年365天,闰年全年366天1日=24小时 1时=60分 1分=60秒 1时=3600秒。

常见数量关系

常见数量关系

常见数量关系数量是描述物质和事物之间、或客观事物与主观世界之间最基本的关联。

数量关系体现了事物间的异同,是数学理论和应用的重要基础。

一些数量关系是定量的,如奇偶性、约数、质数、完全数、立方数等,是数学基础理论之一。

定量关系是描述数量关系的基本概念,它表示数量之间具有形成等价集合的定义。

例如,定义一个奇数是一个除了1以外的大于1的正整数,则一个数是奇数的条件就完成了,这就是定量数量关系。

另一些数量关系是定性的,如大小关系、增减关系、增减分类等,它通过描述“大”“小”“增”“减”等关系来解释数量变化。

例如,当一个数比另一个数大时,可以说它的值“增加”;当一个数比另一个数小时,可以说它的值“减少”。

此外,还有一些更复杂的数量关系,如比例和比率关系、计算关系、函数关系、图像关系等,它们可以用来描述不同类型的数量关系。

例如,比例关系可以描述两个数量之间的变化比值;比率关系可以描述物质量或质量单位之间的改变;函数关系可以描述某一特定变量之间的关系;图像关系可以描述一组数据的变化趋势。

所以,数量关系的研究,可以帮助我们更好地理解客观事物的特性及其之间的关系,以及主观世界中的规律和潜在的变化。

它为科学研究提供了可靠的数学基础,为各种科学技术工作提供了有效的支持。

比较属于数量关系的一部分,主要包括排序关系、分类关系、数量比较关系等。

排序是一种有序关系,也是一种简单的数学关系。

例如,按颜色对球排序,将它们排序为红色,白色,橙色,兰色的排序,这就是排序关系。

分类关系指的是将物体分类成几类,这些分类可以根据特征或其他标准来进行。

例如,将物体按形状分类:圆形、三角形、矩形、等边形,这就是分类关系。

数量比较关系是比较两个数量的大小。

例如,比较苹果和橘子的数量,可以得出苹果数量大于橘子,这就是数量比较关系。

从上述,可以看出,数量关系是十分广泛的,它不仅可以应用在数学课堂,也可以用于生活中的比较和判断。

比如可以用数量关系来比较几件礼物的价格、服装的大小、食物的份量、事物的时间等等。

常见的数量关系式

常见的数量关系式

常见的数量关系式
数量关系式:
1,每份数×份数=总数总数÷每份数=份数总数÷份数=每份数
2,1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数
3,速度×时间=路程路程÷速度=时间路程÷时间=速度
4,单价×数量=总价总价÷单价=数量总价÷数量=单价
5,工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率
6,加数+加数=和一个加数=和-另一个加数
7,被减数-减数=差被减数-差=减数差+减数=被减数
8,因数×因数=积积÷一个因数=另一个因数
9,被除数÷除数=商被除数÷商=除数商
×除数=被除数
时间单位换算:
1世纪=100年1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天,闰年2月29天
平年全年365天,闰年全年366天
1日=24小时1时=60分
1分=60秒1时=3600秒
质量单位换算:
1吨=1000 千克1千克=1000克
1千克=1公斤
长度单位换算:
(1)1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米
相遇问题:
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间。

常见的数量关系

常见的数量关系

常见的数量关系1、单价×数量=总价2、单产量×数量=总产量3、速度×时间=路程4、工效×时间=工作总量5、加数+加数=和一个加数=和+另一个加数被减数-减数=差减数=被减数-差被减数=减数+差因数×因数=积一个因数=积÷另一个因数被除数÷除数=商除数=被除数÷商被除数=商×除数有余数的除法:被除数=商×除数+余数一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。

例:90÷5÷6=90÷(5×6)6、1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米1吨=1000千克1千克= 1000克= 1公斤= 1市斤1公顷=10000平方米。

1亩=666.666平方米。

1升=1立方分米=1000毫升1毫升=1立方厘米7、什么叫比:两个数相除就叫做两个数的比。

如:2÷5或3:6或1/3比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。

8、什么叫比例:表示两个比相等的式子叫做比例。

如3:6=9:189、比例的基本性质:在比例里,两外项之积等于两内项之积。

10、解比例:求比例中的未知项,叫做解比例。

如3:χ=9:1811、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。

如:y/x=k( k一定)或kx=y12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。

常见的数量关系

常见的数量关系

常见的数量关系 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】常见的数量关系1、单价×数量=总价2、单产量×数量=总产量3、速度×时间=路程4、工效×时间=工作总量5、加数+加数=和一个加数=和+另一个加数被减数-减数=差减数=被减数-差被减数=减数+差因数×因数=积一个因数=积÷另一个因数被除数÷除数=商除数=被除数÷商被除数=商×除数有余数的除法:被除数=商×除数+余数一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。

例:90÷5÷6=90÷(5×6)6、1公里=1千米 1千米=1000米1米=10分米 1分米=10厘米 1厘米=10毫米1平方米=100平方分米 1平方分米=100平方厘米1平方厘米=100平方毫米1立方米=1000立方分米 1立方分米=1000立方厘米1立方厘米=1000立方毫米1吨=1000千克 1千克= 1000克= 1公斤= 1市斤1公顷=10000平方米。

1亩=平方米。

1升=1立方分米=1000毫升 1毫升=1立方厘米7、什么叫比:两个数相除就叫做两个数的比。

如:2÷5或3:6或1/3比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。

8、什么叫比例:表示两个比相等的式子叫做比例。

如3:6=9:189、比例的基本性质:在比例里,两外项之积等于两内项之积。

10、解比例:求比例中的未知项,叫做解比例。

如3:χ=9:1811、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。

如:y/x=k( k一定)或kx=y12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。

《常见的数量关系》课件

《常见的数量关系》课件

数量关系的分类
比例关系
表示两个数量之间的相对 大小,通常用分数或百分 数表示。
倍数关系
表示一个数量是另一个数 量的几倍,通常用乘法表 示。
百分比关系
表示部分与整体的关系, 通常用于表示某一比例或 部分所占的比重。
PART 02
常见的数量关系类型
REPORTING
正比例关系
01
02
03
04
定义
当两个量之间的比值保持恒定 时,它们之间的关系被称为正
概念
数量关系是数学和逻辑推理的基 础,是日常生活和工作中必不可 少的思维工具。
数量关系的重要性
01
02
03
解决实际问题
数量关系能够帮助我们解 决实际问题,如计算成本 、预算、评估等。
提高思维能力
掌握数量关系能够提高我 们的逻辑思维和推理能力 ,有助于更好地理解和分 析问题。
促进交流与合作
在商业、工程和其他领域 ,掌握数量关系能够促进 有效的交流与合作。
比例关系。
公式
y/x=k(k为常数)
特性
当一个量增加时,另一个量也 相应增加,且它们的比值不变

实例
当路程一定时,速度与时间成 正比;当时间一定时,速度与
路程成正比。
反比例关系
定义
当两个量之间的乘积保持恒定 时,它们之间的关系被称为反
比例关系。
公式
xy=k(k为常数)
特性
当一个量增加时,另一个量相 应减少,且它们的乘积不变。
总结词
比例计算是常见的数量关系之一,用于描述两个量之间的相对大小。
详细描述
比例计算通常用于比较两个量之间的相对大小,其计算公式为“比例 = 相对数量 / 总量”。例如,如果某公司去年销售额为100万元,今年销售额为120万元,那 么今年销售额与去年之比为120/100=1.2,表示今年销售额增长了20%。

小学常用的数量关系

小学常用的数量关系

【常用的数量关系】1、每份数×份数=总数;总数÷每份数=份数;总数÷份数=每份数2、1倍数×倍数=几倍数;几倍数÷1倍数=倍数;几倍数÷倍数=1倍数3、速度×时间=路程;路程÷速度=时间;路程÷时间=速度4、单价×数量=总价;总价÷单价=数量;总价÷数量=单5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间;工作总量÷工作时间=工作效率;6、加数+加数=和;和-一个加数=另一个加数7、被减数-减数=差;被减数-差=减数;差+减数=被减数8、因数×因数=积;积÷一个因数=另一个因数9、被除数÷除数=商;被除数÷商=除数;商×除数=被除数【小学数学图形计算公式】1、正方形(C:周长, S:面积, a:边长)周长=边长×4; C=4a 面积=边长×边长; S=a×a2、正方体(V:体积, a:棱长)表面积=棱长×棱长×6; S表=a×a×6 体积=棱长×棱长×棱长; V= a×a×a3、长方形(C:周长, S:面积, a:边长, b:宽)周长=(长+宽)×2; C=2(a+b)面积=长×宽; S=a ×b4、长方体(V:体积, S:面积, a:长, b:宽, h:高)(1)表面积=(长×宽+长×高+宽×高)×2;S=2(ab+ah+bh)(2)体积=长×宽×高; V=abh 5、三角形(S:面积, a:底, h:高)面积=底×高÷2 ; S=ah÷2 三角形的高=面积×2÷底三角形的底=面积×2÷高 6、平行四边形(S:面积, a:底, h:高)面积=底×高; S=ah 7、梯形(S:面积, a:上底, b:下底, h:高)面积=(上底+下底)×高÷2; S=(a+b)×h÷28、圆形(S:面积, C:周长,π:圆周率, d:直径, r:半径)(1)周长=π×直径π=2×π×半径; C=πd=2πr (2)面积=π×半径×半径;S= πr29、圆柱体(V:体积, S:底面积, C:底面周长, h:高, r:底面半径)(1)侧面积=底面周长×高=Ch=πdh=2πrh (2)表面积=侧面积+底面积×2 (3)体积=底面积×高10、圆锥体(V:体积, S:底面积, h:高, r:底面半径)体积=底面积×高÷311、总数÷总份数=平均数12、相遇问题:相遇路程=速度和×相遇时间;相遇时间=相遇路程速度和;速度和=相遇路程÷相遇时间13、浓度问题溶质的重量+溶剂的重量=溶液的重量;溶液的重量×浓度=溶质的重量;溶质的重量÷溶液的重量×100%=浓度;溶质的重量÷浓度=溶液的重量14、利润与折扣问题:利润=售出价-成本;利润率=利润÷成本×100%;利息=本金×利率×时间;税后利息=本金×利率×时间×(1-利息税)【常用单位换算】(一)长度单位换算1千米=1000米; 1米=10分米; 1分米=10厘米;1米=100厘米;1厘米=10毫米(二)面积单位换算: 1平方千米=100公顷; 1公顷=10000平方米;1平方米=100平方分米; 1平方分米=100平方厘米; 1平方厘米=100平方毫米(三)体积(容积)单位换算:1立方米=1000立方分米; 1立方分米=1000立方厘米;1立方分米=1升; 1立方厘米=1毫升; 1立方米=1000升(四)重量单位换算: 1吨=1000千克; 1千克=1000克; 1千克=1公斤1日=24小时; 1时=60分=3600秒; 1分=60秒;(四)分数的基本性质分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。

(完整版)常用的数量关系式

(完整版)常用的数量关系式

常用的数量关系式1、速度×时间=路程路程÷速度=时间路程÷时间=速度2、单价×数量=总价总价÷单价=数量总价÷数量=单价3、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率4、加数+加数=和和-一个加数=另一个加数5、被减数-减数=差被减数-差=减数差+减数=被减数6、因数×因数=积积÷一个因数=另一个因数6、被除数÷除数=商被除数÷商=除数商×除数=被除数在有余数的除法中: (被除数-余数)÷除数=商7、总数÷总份数=平均数8、相遇问题相遇路程=速度和×相遇时间或相遇路程=快车速度×相遇时间+慢车速度×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间9、利息=本金×利率×时间10、收入-支出=结余单产量×数量=总产量量的计量在日常生活、生产劳动和科学研究中,经常要进行各种量的计量,我国法定计量单位与国际计量单位一致。

名数;数和单位名称合起来叫做名数。

单名数:只含有一种单位名称的名数叫单名数。

复名数:含有两种或两种以上单位名称的名数叫复名数。

×进率高级单位的名数低级单位的名数÷进率长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米面积单位换算1平方千米=1000000平方米1公顷=10000平方米1平方千米=100公顷1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体积(容积)单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米1立方分米=1升1立方厘米=1毫升1升=1000毫升质量单位换算1吨=1000 千克1千克=1000克1千克=1公斤人民币单位换算1元=10角1角=10分1元=100分时间单位换算1世纪=100年1年=12月=4个季度大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒练习:填空(1). 1时30分=()时40分=()时时=()分0.7时=()分平方米=()平方分米125克=()千克2 立方分米=()升=()毫升10 吨=()吨()千克()元=50元8角1分(2).1米∶ 10厘米=()∶()=()∶()100毫升∶1升=()∶()=()∶ ()(3).填上适当的计量单位名称。

常见数量关系

常见数量关系

小学四年级常用数量关系汇总
1、每份数×份数=总数总数÷每份数=份数
总数÷份数=每份数
2、 1倍数×倍数=几倍数几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3、速度×时间=路程路程÷速度=时间路程÷时间=速度
4、单价×数量=总价总价÷单价=数量总价÷数量=单价
5、工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6、加数+加数=和和-一个加数=另一个加数
7、被减数-减数=差被减数-差=减数差+减数=被减数
8 、因数×因数=积积÷一个因数=另一个因数
9、被除数÷除数=商被除数÷商=除数商×除数=被除数
10、总数量÷总份数=平均数
11、和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数
12、和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)
13、差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常见的数量关系
1、单价×数量=总价
2、单产量×数量=总产量
3、速度×时间=路程
4、工效×时间=工作总量
5、加数+加数=与一个加数=与+另一个加数
被减数-减数=差减数=被减数-差被减数=减数+差
因数×因数=积一个因数=积÷另一个因数
被除数÷除数=商除数=被除数÷商被除数=商×除数
有余数的除法: 被除数=商×除数+余数
一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。

例:90÷5÷6=90÷(5×6)
6、1公里=1千米1千米=1000米
1米=10分米1分米=10厘米1厘米=10毫米
1平方米=100平方分米1平方分米=100平方厘米
1平方厘米=100平方毫米
1立方米=1000立方分米1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1吨=1000千克1千克= 1000克= 1公斤= 1市斤
1公顷=10000平方米。

1亩=666、666平方米。

1升=1立方分米=1000毫升1毫升=1立方厘米
7、什么叫比:两个数相除就叫做两个数的比。

如:2÷5或3:6或1/3
比的前项与后项同时乘以或除以一个相同的数(0除外),比值不变。

8、什么叫比例:表示两个比相等的式子叫做比例。

如3:6=9:18
9、比例的基本性质:在比例里,两外项之积等于两内项之积。

10、解比例:求比例中的未知项,叫做解比例。

如3:χ=9:18
11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。

如:y/x=k( k一定)或kx=y
12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。

如:x×y = k( k一定)或k / x = y
百分数:表示一个数就是另一个数的百分之几的数,叫做百分数。

百分数也叫做百分率或百分比。

13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。

其实,把小数化成百分数,只要把这个小数乘以100%就行了。

把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。

把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。

15、要学会把小数化成分数与把分数化成小数的化发。

16、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。

(或几个数公有的约数,叫做这几个数的公约数。

其中最大的一个,叫做最大公约数。

)
17、互质数: 公约数只有1的两个数,叫做互质数。

18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个
数的最小公倍数。

19、通分:把异分母分数的分别化成与原来分数相等的同分母的分数,叫做通分。

(通分用最小公倍数)
20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。

(约分用最大公约数)
21、最简分数:分子、分母就是互质数的分数,叫做最简分数。

分数计算到最后,得数必须化成最简分数。

个位上就是0、2、4、6、8的数,都能被2整除,即能用2进行
约分。

个位上就是0或者5的数,都能被5整除,即能用5进行约分。

在约分时应注意利用。

22、偶数与奇数:能被2整除的数叫做偶数。

不能被2整除的数叫做奇数。

23、质数(素数):一个数,如果只有1与它本身两个约数,这样的数叫做质数(或素数)。

24、合数:一个数,如果除了1与它本身还有别的约数,这样的数叫做合数。

1不就是质数,也不就是合数。

28、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)
29、利率:利息与本金的比值叫做利率。

一年的利息与本金的比值叫做年利率。

一月的利息与本金的比值叫做月利率。

30、自然数:用来表示物体个数的整数,叫做自然数。

0也就是自然数。

31、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。

如3、141414……
32、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。

如3、141592654
33、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。

如3、141592654……
34、什么叫代数? 代数就就是用字母代替数。

35、什么叫代数式?用字母表示的式子叫做代数式。

如:3x =ab+c。

相关文档
最新文档