江苏省南京市2014届高三考前冲刺训练(南京市教研室) 数学 Word版含答案
江苏省南京市2014届高三考前冲刺训练(南京市教研室)_数学_Word版含答案
综上所述,q= .
【说明】本题主要考查等差数列等差中项的概念及等比数列中基本量的运算.
*10.数列{an}是等差数列,数列{bn}满足bn=anan+1an+2(n∈N*),设Sn为{bn}的前n项和.若a12= a5>0,则当Sn取得最大值时n的值等于___________.
【答案】{ , }.
【提示】因为公比q不为1,所以不能删去a1,a4.设{an}的公差为d,则
1若删去a2,则由2a3=a1+a4得2a1q =a1+a1q ,即2q =1+q ,
整理得q (q-1)=(q-1)(q+1).
又q≠1,则可得q =q+1,又q>0解得q= ;
2若删去a3,则由2a2=a1+a4得2a1q=a1+a1q ,即2q=1+q ,整理得q(q-1)(q+1)=q-1.
由于log2t>0,故2k=1,即k= .
【说明】本题考查对数函数的图像及简单的对数方程.注意点坐标之间的关系是建立方程的依据.
*8.已知实数a、b、c满足条件0≤a+c-2b≤1,且2a+2b≤21+c,则 的取值范围是_________.
【答案】[- , ].
【提示】由2a+2b≤21+c得2a-c+2b-c≤2,由0≤a+c-2b≤1得0≤(a-c)-2(b-c)≤1,
0<k<1).曲线C1上的点A在第一象限,过A分别作x轴、y轴的平行线交曲线C2分别于点B、D,过点B作y轴的平行线交曲线C3于点C.若四边形ABCD为矩形,则k的值是___________.
【答案】 .
【提示】设A(t,2 log2t)(t>1),则B(t2,2 log2t),D(t,log2t),C(t2,2klog2t),则有log2t=2klog2t,
南京市、盐城市2014届高三第一次模拟考试数学(WORD含答解读
南京市、盐城市 2014 届高三年级第一次模拟考试数学附加题参考答案及评分标准 2014.01 说明: 1.本解答给出的解法供参考.如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则. 2.对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分. 3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,填空题不给中间分数. 21.【选做题】在 A、B、C、D 四小题中只能选做 2 题,每小题 10 分,共计 20 分.请在答卷纸指定区......域内作答.解答应写出文字说明、证明过程或演算步骤... A.选修 4—1:几何证明选讲解:因为 P 为 AB 中点,所以 OP⊥AB.所以 PB= r2-OP2= 9 因为 PC·PD=PA·PB=PB2,PC=,8 2 所以 PD=. 3 B.选修 4—2:矩阵与变换解:设曲线 C 上一点(x′,y′对应于曲线C′上一点(x,y.………………10 分 3 .2 ………………5 分 22 由 2 2 - x′ x= ,得2x′-2y′=x,2x′+2y′=y. 2 2 2 2 y′ y 2 2 2 2 …………………5 分所以x′= 2 2 (x+y,y′= (y-x. 2 2 因为x′y′=1,所以 y2-x2=2.所以曲线C′的方程为 y2-x2=2. C.选修 4—4:坐标系与参数方程解:直线 l 的普通方程为 4x-3y-2=0,圆 C 的直角坐标方程为(x-a2+y2=a2.………………5 分由题意,得 |4a-2| 2 …………………10 分 4 +(-3 2=|a|,解得 2 a=-2 或a=.9 ………………10 分 D.选修 4—5:不等式选讲证:因为 x1,x2,x3 为正实数,2 2 2 x2 x3 x1 所以+x1++x2++x3≥2 x1 x2 x3 2 x2 ·x +2 x1 1 2 x3 ·x +2 x2 2 2 x1 ·x =2(x1+x2+x3=2. x3 32 2 2 x2 x3 x1 即++≥1.x1 x2 x3 …………………10 分 22.(本小题满分 10 分)解:(1)由点 A(1,2在抛物线 M∶y2=2px 上,得 p=2.所以抛物线 M 的方程为 y2=4x. 2 2 y1 y2 设 B( ,y1,C( ,y2. 4 4 2 2 2 2 y1 y2 y1 y2 -1 --1 4 4 4 y1+2 y2+y1 y2+2 1 1 1 4 所以-+=-+=-+=1. k1 k2 k3 y1-2 y2-y1 y2-2 4 4 4 …………………3 分…………………7 分 2 y3 1 1 1 1 y1+2 y2+y1 y3+y2 y3+2 (2)设 D( ,y3.则-+-=-+-=0.………………10 分 4 k1 k2 k3 k4 4 4 4 4 23.设m 是给定的正整数,有序数组(a1,a2,a3,…,a2m中,ai=2 或-2(1≤i≤2m. a2k-1 (1)求满足“对任意的1≤k≤m,都有=-1”的有序数组(a1,a2,a3,…,a2m 的个数 A; a2k 2l (2)若对任意的1≤k≤l≤m,都有| ∑ ai|≤4 成立,求满足“存在1≤k≤m,使得 i=2k-1 a2k-1 ≠-1”的有 a2k 序数组(a1,a2,a3,…,a2m的个数B. a2k-1 解:(1)因为对任意的1≤k≤m,都有 a2k =-1,所以(a2k-1,a2k =(2,-2或(a2k-1,a2k=(-2,2.共有 2 种情况. m 由乘法原理,得序数组(a1,a2,a3,…,a2m的个数 A=2 . 1 (2)当存在一个 k 时,那么这一组有 2Cm 种,其余的由(1)知有 2m -1 …………………5 分 1 m 种,所有共有 2Cm 2 -1 种. 2 当存在二个 k 时,因为对任意的1≤k≤l≤m,都有| ∑ ai|≤4 成立,所以这两组共有 2Cm 种, 2l i=2k-1 其余的由(1)知有2m … -2 2 m 种,所有共有 2Cm 2 -2 种. 1 m 1 2 m 2 m 依次类推得:B=2Cm 2 +2Cm 2 +…+2Cm =2(3m-2m.--…………………10 分。
江苏省南京市2024高三冲刺(高考数学)统编版质量检测(冲刺卷)完整试卷
江苏省南京市2024高三冲刺(高考数学)统编版质量检测(冲刺卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题若,则()A.6B.16C.26D.36第(2)题已知函数在处导数值为3,则的解析式可能是A.B.C.D.第(3)题已知集合,则()A.B.C.D.第(4)题已知,则下列选项中是“”的充分不必要条件的是()A.B.C.D.第(5)题若,,,,则a,b,c,d中最大的是()A.a B.b C.c D.d第(6)题在复平面内,复数满足方程,则所对应的向量的坐标为()A.B.C.D.第(7)题下列函数在区间单调递增的是().A.B.C.D.第(8)题某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是A.90B.129C.132D.138二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题高中提倡学生假期培养阅读习惯,提高阅读能力,某班级统计了假期阅读中英两本书籍的时长,其频率分布如下:则下列说法正确的是()阅读时长天7654中文书籍0.50.30.10.1英文书籍0.40.30.20.1A.从阅读的的平均时长来看,中文书籍比外文书籍更受欢迎B.中、英文书籍阅读时长的第40百分位数都是6天C.若将频率视为概率,小华阅读中文和英文两本书籍,则阅读总时长少于10天的概率为0.04D.任选一本书籍,“阅读时长低于5天”与“阅读时长为高于6天”是对立事件第(2)题已知直线,圆,则下列结论正确的是()A.直线l恒过定点B.直线l与圆C恒有两个公共点C.直线l与圆C的相交弦长的最大值为D.当时,圆C与圆关于直线l对称第(3)题二进制是计算中广泛采用的一种数制,由18世纪德国数理哲学家莱布尼兹发现,二进制数据是用0和1两个数码来表示的数.现采用类似于二进制数的方法构造数列:正整数,其中(),记.如,,则下列结论正确的有()A.B.C.D.三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题“曼哈顿距离”是人脸识别中一种重要的测距方式.其定义如下:设是坐标平面内的两点,则A,B两点间的曼哈顿距离为.在平面直角坐标系中中,下列说法中正确说法的序号为__________①.若,则;②.若O为坐标原点,且动点P满足:,则P的轨迹长度为;③.设是坐标平面内的定点,动点N满足:,则N的轨迹是以点为顶点的正方形;④.设,则动点构成的平面区域的面积为10.第(2)题当时,,则实数的取值范围为______.第(3)题已知曲线,直线,若对任意,直线始终在曲线下方,则实数的取值范围为__________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立(1)求这批产品通过检验的概率;(2)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列.第(2)题已知函数.(1)当时,求函数的单调区间;(2)当时,已知方程在时有且仅有两个根,求实数a的取值范围.第(3)题已知平面四边形,,,,现将沿边折起,使得平面平面,此时,点为线段的中点,点在线段上.(1)求证:平面;(2)若直线与平面所成角的正弦值为,求二面角的平面角的余弦值.第(4)题已知椭圆的离心率为分别为的左、右焦点,为上顶点,且的内切圆半径为.(1)求的方程;(2)是上位于直线异侧的两点,且,证明:直线经过定点.第(5)题已知函数,.(1)讨论的单调性;(2)若当时,,求a的取值范围.。
江苏省南京市2024高三冲刺(高考数学)苏教版模拟(备考卷)完整试卷
江苏省南京市2024高三冲刺(高考数学)苏教版模拟(备考卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题用数学归纳法证明不等式 (n≥2)的过程中,由n=k递推到n=k+1时,不等式的左边()A.增加了一项B .增加了两项,C.增加了两项,,又减少了一项D.增加了一项,又减少了一项第(2)题已知函数,若关于x的方程的不同实数根的个数为6,则a的取值范围为().A.B.C.D.第(3)题已知集合,,若,则实数的取值范围是()A.B.C.D.第(4)题函数的图象大致是A.B.C.D.第(5)题如图是某地某月1日至15日的日平均温度变化的折线图,根据该折线图,下列结论正确的是()A.连续三天日平均温度的方差最大的是7日,8日,9日三天B.这15天日平均温度的极差为15℃C.由折线图能预测16日温度要低于19℃D.由折线图能预测本月温度小于25℃的天数少于温度大于25℃的天数第(6)题若函数的图象关于直线对称,则的值的个数为()A.1B.2C.3D.4第(7)题设集合,,则()A.B.C.D.第(8)题已知,且,则()A.B.C.D.或二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题全班学生到工厂劳动实践,各自用,的长方体切割出四棱锥模型.产品标准要求:分别为的中点,可以是线段(不含端点)上的任意一点,有四位同学完成制作后,对自己所做的产品分别作了以下描述,你认为有可能符合标准的是( )A.使直线与平面所成角取到了最大值B.使直线与平面所成角取到了最大值C.使平面与平面的夹角取到了最大值D.使平面与平面的夹角取到了最大值第(2)题三棱锥中,平面平面ABC,,,则()A.B.三棱锥的外接球的表面积为C.点A到平面SBC的距离为D.二面角的正切值为第(3)题已知函数的定义域为,,则().A.B.C.是偶函数D.为的极小值点三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知为虚数单位,若复数,为的共轭复数,则等于___________.第(2)题某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.第(3)题已知函数,则当时,函数有最小值,则____________.此时___________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知函数,a>0.(1)求函数的最值;(2)当a>1时,证明:函数有两个零点.第(2)题已知椭圆的长轴长为,且点在椭圆上.(1)求椭圆的方程.(2)设为坐标原点,过点的直线(斜率不为0)交椭圆于不同的两点(异于点),直线分别与直线交于两点,的中点为,是否存在实数,使直线的斜率为定值?若存在,求出的值;若不存在,请说明理由.第(3)题已知函数f(x)=.(1)若f(x)在上是增函数,求实数a的取值范围;(2)若x=3是f(x)的极值点,求f(x)在上的最小值和最大值.第(4)题已知斜率为k的直线l与椭圆交于A,B两点,线段AB的中点为.(1)若,,求k的值;(2)若线段AB的垂直平分线交y轴于点,且,求直线l的方程.第(5)题如图,在平面直角坐标系中,已知椭圆:,设是椭圆上的任一点,从原点向圆:作两条切线,分别交椭圆于点,.(1)若直线,互相垂直,求圆的方程;(2)若直线,的斜率存在,并记为,,求证:;(3)试问是否为定值?若是,求出该值;若不是,说明理由.。
江苏省南京市2014届高三考前冲刺训练(南京市教研室) 化学 Word版含答案.pdf
④氯原子的结构示意图:
⑤质子数为53、中子数为78的碘原子:
⑥乙酸的结构简式: C2H4O2
⑦丙烯的结构简式:C3H6
⑧邻羟基苯甲酸的结构简式:
答案:①⑤
3
A.含有0.1 mol·L-1 Fe3+的溶液中:K+、Mg2+、SCN-、SO42-
B.c(H+)/c(OH-)=1×1014的溶液: Ca2+、Na+、ClO-、NO3-
型和球棍模型,如甲烷的球棍模型为、比例模型为;(3)关注有机物中基团的位置关系,如是间羟基苯甲酸的结构简
式;(4)严格区分常用的化学用语,如分子式、实验式、结构式、结构简式、电子式、原子结构示意图、离子结构示
意图。
下列有关化学用语表示正确的是
。
①氢氧根离子的电子式:
②NH3 的电子式:
③S2-的结构示意图:
c(H+)/ c(OH-)=1×1014 的溶液c(H+)=1mol·L-1的酸性溶液,则与H+反应的离子不能大量存在(2)依据离子
性质判断离子间是否发生反应。离子能否共存,就是看离子间能否反应,如果离子间相互反应,它们便不能大量共存。
离子间相互反应可以归纳为以下几类:
反应归类举
例生成气体H+与CO32-、HCO3-、S2-、HS-、SO32-、HSO3-,NH4+与OH-生成沉淀
Ba2+与CO32-、SO42-,Ca2+与CO32-、SO42-,Ag+与Cl-、CO32-、OH-,OH-与Mg2+、Al3+、Fe3+、Cu2+生
成弱电解质H+与OH-、CH3COO-、ClO-、F-、SiO32-、PO43-等,OH-与HCO3-、HSO3-氧化还原MnO4-、
NO3-(H+)、ClO-分别与I-、S2-、SO32-、Fe2+,
江苏省南京市2014届高三数学二轮复习 专题9 数列通项 求和 综合应用导学案
6.(1)已知数列{an}中,a1+2a2+…+nan=n2(n+1),则an=.
(2)已知数列{an}中,a1a2…an=n2,则an=.
答案:(1)an=2n;(2)a=2n,a1=1 (n∈N*),则an=.
(2)已知数列{an}中,anan+1=2n,a1=1 (n∈N*),则an=.
3.形如an=pan-1+q(n∈N且n≥2)
方法 化为an+=p(an-1+)形式.令bn=an+,即得bn=pbn-1,转化成{bn}为等比数列,从而求数列{an}的通项公式.
4.形如an=pan-1+f(n) (n∈N且n≥2)
方法 两边同除pn,得=+,令bn=,得bn=bn-1+,转化为利用叠加法求bn(若为常数,则{bn}为等差数列),从而求数列{an}的通项公式.
(1)若a=-7,求数列{an}中的最大项和最小项的值;
(2)若对任意的n∈N*,都有an≤a6成立,求a的取值范围.
答案(1)数列{an}中的最大项为a5=2,最小项为a4=0.
(2)-10<a<-8.
〖教学建议〗
(1)主要问题归类与方法:
1.求数列的最大项与最小项问题:
方法①利用数列的单调性,即用比较法判断an+1与an的大小.
(2)已知数列an=()n-2,bn=λan-n2,若数列{bn}是单调递减数列,则实数λ的取值范围为.
答案:(1)(-17,-9);(2)λ>-1.
11.求数列an=4n2()n-1(n∈N*)的最大项.
答案:最大项为a9.
二、方法联想
1.形如an-an-1=f(n)(n∈N且n≥2)
方法叠加法,即当n∈N,n≥2时,an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1.
江苏南京市、盐城市2014届高三年级第二次模拟考试数学试卷及答案
南京市2014届高三年级第二次模拟考试数 学 2014.03注意事项:1.本试卷共4页,包括填空题(第1题~第14题)、解答题(第15题~第20题)两部分.本试卷满分为160分,考试时间为120分钟.2.答题前,请务必将自己的姓名、学校、班级、学号写在答题纸的密封线内.试题的答案写在答题..纸.上对应题目的答案空格内.考试结束后,交回答题纸. 参考公式:柱体的体积公式:V =Sh ,其中S 为柱体的底面积,h 为柱体的高. 圆柱的侧面积公式:S 侧=2πRh ,其中R 为圆柱的底面半径,h 为圆柱的高.一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上)1.函数f (x )=ln x +1-x 的定义域为 ▲ .2.已知复数z 1=-2+i ,z 2=a +2i(i 为虚数单位,a ∈R ).若z 1z 2为实数,则a 的值为 ▲ . 3.某地区教育主管部门为了对该地区模拟考试成绩进行分析,随机抽取了150分到450分之间的1000名学生的成绩,并根据这1000名学生的成绩画出样本的频率分布直方图(如图),则成绩在[300,350)内的学生人数共有 ▲ .4.盒中有3张分别标有1,2,3的卡片.从盒中随机抽取一张记下号码后放回,再随机抽取一张记下号码,则两次抽取的卡片号码中至少有一个为偶数的概率为 ▲ .5.已知等差数列{a n }的公差d 不为0,且a 1,a 3,a 7成等比数列,则a 1d的值为6.执行如图所示的流程图,则输出的k 的值为 ▲ .a(第3题图)(第6题图)7.函数f (x )=A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0,0<φ<π)错误!未找到引用源。
的图象如下图所示,则f (π3)的值为 ▲ .8.在平面直角坐标系xOy 中,双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线与抛物线y 2=4x 的准线相交于A ,B 两点.若△AOB 的面积为2,则双曲线的离心率为 ▲ .9.表面积为12π的圆柱,当其体积最大时,该圆柱的底面半径与高的比为 ▲ .10.已知|OA →|=1,|OB →|=2,∠AOB =2π3,OC →=12OA →+14OB →,则OA →与OC →的夹角大小为 ▲ .11.在平面直角坐标系xOy 中,过点P (5,3)作直线l 与圆x 2+y 2=4相交于A ,B 两点,若OA ⊥OB ,则直线l 的斜率为 ▲ .12.已知f (x )是定义在R 上的奇函数,当0≤x ≤1时,f (x )=x 2,当x >0时,f (x +1)=f (x )+f (1),且. 若直线y =kx 与函数y =f (x )的图象恰有5个不同的公共点,则实数k 的值为 ▲ .13.在△ABC 中,点D 在边BC 上,且DC =2BD ,AB ∶AD ∶AC =3∶k ∶1,则实数k 的取值范围为 ▲ . 14.设函数f (x )=ax +sin x +cos x .若函数f (x )的图象上存在不同的两点A ,B ,使得曲线y =f (x )在点A ,B 处的切线互相垂直,则实数a 的取值范围为 ▲ . 一、填空题:本大题共14小题,每小题5分,计70分.1.(0,1] 2.4 3.300 4.59 5.2 6.4 7.18. 5 9.12 10.60° 11.1或723 12.22-2 13.(53,73) 14.[-1,1]二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内) 15.(本小题满分14分)如图,在四棱锥P -ABCD 中,底面ABCD 为矩形,平面P AB ⊥平面ABCD ,P A ⊥PB , BP =BC ,E 为PC 的中点. (1)求证:AP ∥平面BDE ; (2)求证:BE ⊥平面P AC . 15.证:(1)设AC ∩BD =O ,连结OE .(第7题图)PBDEA因为ABCD 为矩形,所以O 是AC 的中点.因为E 是PC 中点,所以OE ∥AP . …………………………………………4分 因为AP /⊂平面BDE ,OE ⊂平面BDE ,所以AP ∥平面BDE . …………………………………………6分 (2)因为平面P AB ⊥平面ABCD ,BC ⊥AB ,平面P AB ∩平面ABCD =AB ,所以BC ⊥平面P AB . ………………………………………8分 因为AP ⊂平面P AB ,所以BC ⊥P A .因为PB ⊥P A ,BC ∩PB =B ,BC ,PB ⊂平面PBC ,所以P A ⊥平面PBC . …………………………………………12分 因为BE ⊂平面PBC ,所以P A ⊥BE .因为BP =PC ,且E 为PC 中点,所以BE ⊥PC . 因为PA ∩PC =P ,P A ,PC ⊂平面P AC ,所以BE ⊥平面PAC . …………………………………………14分 16.(本小题满分14分)在平面直角坐标系xOy 中,角α的顶点是坐标原点,始边为x 轴的正半轴,终边与单位圆O 交 于点A (x 1 ,y 1 ),α∈(π4,π2).将角α终边绕原点按逆时针方向旋转π4,交单位圆于点B (x 2,y 2).(1)若x 1=35,求x 2;(2)过A ,B 作x 轴的垂线,垂足分别为C ,D ,记△AOC 及 △BOD 的面积分别为S 1,S 2,且S 1=43S 2,求tan α的值.16.解:(1)解法一:因为x 1=35,y 1>0,所以y 1=1-x 21=45.所以sin α=45,cos α=35. (2)所以x 2=cos(α+π4)=cos αcos π4-sin αsin π4=-210. …………………………………6分解法二:因为x 1=35,y 1>0,所以y 1=1-x 21=45.A (35,45),则OA →=(35,45),…………2分OB →=(x 2,y 2), 因为OA →·OB →=|OA →||OB →|cos ∠AOB ,所以35x 2+45y 2= 2 2……4分(第16题图)又x 22+y 22=1,联立消去y 2得50 x 22-302x 2-7=0 解得x 2=-2 10或7210,又x 2<0,所以x 2=- 2 10. ………………………6分 解法三:因为x 1=35,y 1>0,所以y 1=1-x 21=45. 因此A (35,45),所以tan α=43.………2分所以tan(α+π4)=1+tan α1-tan α=-7,所以直线OB 的方程为y =-7x ……………4分由⎩⎨⎧y =-7x ,x 2+y 2=1.得x =± 2 10,又x 2<0,所以x 2=- 210. …………………6分(2)S 1=12sin αcos α=-14sin2α. …………………………………………8分因为α∈(π4,π2),所以α+π4∈(π2,3π4).所以S 2=-12sin(α+π4)cos(α+π4)=-14sin(2α+π2)=-14cos2α.……………………………10分因为S 1=43S 2,所以sin2α=-43cos2α,即tan2α=-43. …………………………………12分所以2tan α1-tan 2α=-43,解得tan α=2或tan α=-12. 因为α∈(π4,π2),所以tan α=2.………14分 17.(本小题满分14分)如图,经过村庄A 有两条夹角为60°的公路AB ,AC ,根据规划拟在两条公路之间的区域内建一工厂P ,分别在两条公路边上建两个仓库M 、N (异于村庄A ),要求PM =PN =MN =2(单位:千米).如何设计,使得工厂产生的噪声对居民的影响最小(即工厂与村庄的距离最远). 解法一:设∠AMN =θ,在△AMN 中,MN sin60°=AM sin(120°-θ).因为MN =2,所以AM =433sin(120°-θ) . ………………2分在△APM 中,cos ∠AMP =cos(60°+θ). …………………6分 AP 2=AM 2+MP 2-2 AM ·MP ·cos ∠AMP=163sin 2(120°-θ)+4-2×2×433 sin(120°-θ) cos(60°+θ) ………………………………8分 =163sin 2(θ+60°)-1633sin(θ+60°) cos(θ+60°)+4 =83[1-cos (2θ+120°)]-833 sin(2θ+120°)+4 =-83[3sin(2θ+120°)+cos (2θ+120°)]+203=203-163sin(2θ+150°),θ∈(0,120°). …………………………………………12分 当且仅当2θ+150°=270°,即θ=60°时,AP 2取得最大值12,即AP 取得最大值23.答:设计∠AMN 为60︒时,工厂产生的噪声对居民的影响最小.……………………………………14分APMNBC(第17题图)解法二(构造直角三角形): 设∠PMD =θ,在△PMD 中,∵PM =2,∴PD =2sin θ,MD =2cos θ. ……………2分 在△AMN 中,∠ANM =∠PMD =θ,∴MN sin60°=AMsin θ,AM =433sin θ,∴AD =433sin θ+2cos θ,(θ≥π2时,结论也正确).……………6分AP 2=AD 2+PD 2=(433sin θ+2cos θ)2+(2sin θ)2=163sin 2θ+833sin θcos θ+4cos 2θ+4sin 2θ …………………………8分 =163·1-cos2θ2+433sin2θ+4=433sin2θ-83cos2θ+203=203+163sin(2θ-π6),θ∈(0,2π3). …………………………12分 当且仅当2θ-π6=π2,即θ=π3时,AP 2取得最大值12,即AP 取得最大值23.此时AM =AN =2,∠P AB =30° …………………………14分 解法三:设AM =x ,AN =y ,∠AMN =α.在△AMN 中,因为MN =2,∠MAN =60°, 所以MN 2=AM 2+AN 2-2 AM ·AN ·cos ∠MAN ,即x 2+y 2-2xy cos60°=x 2+y 2-xy =4. …………………………………………2分 因为MN sin60°=AN sin α,即2sin60°=ysin α,所以sin α=34y ,cosα=x 2+4-y 22×2×x =x 2+(x 2-xy )4x =2x -y 4. …………………………………………6分cos ∠AMP =cos(α+60°)=12cos α-32sin α=12·2x -y 4-32·34y =x -2y4.……………………………8分在△AMP 中,AP 2=AM 2+PM 2-2 AM ·PM ·cos ∠AMP ,即AP 2=x 2+4-2×2×x ×x -2y 4=x 2+4-x (x -2y )=4+2xy .………………………………………12分因为x 2+y 2-xy =4,4+xy =x 2+y 2≥2xy ,即xy ≤4. 所以AP 2≤12,即AP ≤23.当且仅当x =y =2时,AP 取得最大值23.答:设计AM =AN =2 km 时,工厂产生的噪声对居民的影响最小.………………………………14分 解法四(坐标法):以AB 所在的直线为x 轴,A 为坐标原点,建立直角坐标系. 设M (x 1,0),N (x 2,3x 2),P (x 0,y 0).∵MN =2,A PMNBC第17题图D∴(x 1-x 2)2+3x 22=4. …………………………………………2分 MN 的中点K (x 1+x 22,32x 2).∵△MNP 为正三角形,且MN =2.∴PK =3,PK ⊥MN .∴PK 2=(x 0-x 1+x 22)2+(y 0-32x 2)2=3,k MN ·k PK =-1,即3x 2x 2-x 1·y 0-32x 2x 0-x 1+x 22=-1, …………………………………………6分∴y 0-32x 2=x 1-x 23x 2(x 0-x 1+x 22),∴(y 0-32x 2)2=(x 1-x 2)23x 22(x 0-x 1+x 22)2 ∴(1+(x 1-x 2)23x 22)(x 0-x 1+x 22)2=3,即43x 22(x 0-x 1+x 22)2=3,∴(x 0-x 1+x 22)2=94x 22. ∵x 0-x 1+x 22>0 ∴x 0-x 1+x 22=32x 2,∴x 0=12x 1+2x 2,∴y 0=32x 1. …………………………………………8分∴AP 2=x 20+y 20=(2x 2+12x 1)2+34x 21=x 21+4x 22+2x 1x 2=4+4x 1x 2≤4+4×2=12, …………………………………………12分 即AP ≤23.答:设计AM =AN =2 km 时,工厂产生的噪声对居民的影响最小.…………………………14分 解法五(变换法):以AB 所在的直线为x 轴,A 为坐标原点,建立直角坐标系. 设M (x 1,0),N (x 2,3x 2),P (x 0,y 0).∵MN =2,∴(x 1-x 2)2+3x 22=4.即x 21+4x 22=4+2x 1x 2∴4+2x 1x 2≥4x 1x 2,即x 1x 2≤2. …………………4分 ∵△MNP 为正三角形,且MN =2.∴PK =3,PK ⊥MN .MN →顺时针方向旋转60°后得到MP →. MP →=(x 0-x 1,y 0),MN →=(x 2-x 1,3x 2).∴⎣⎢⎡⎦⎥⎤12 32-32 12⎣⎢⎡⎦⎥⎤x 2-x 13x 2=⎣⎢⎡⎦⎥⎤x 0-x 1y 0,即 x 0-x 1=12(x 2-x 1)+32x 2,y 0=-32(x 2-x 1)+32x 2.∴x 0=2x 2+12x 1,y 0=32x 1. …………………………………………8分∴AP 2=x 20+y 20=(2x 2+12x 1)2+34x 21=x 21+4x 22+2x 1x 2 =4+4x 1x 2≤4+4×2=12, …………………………………………12分 即AP ≤23.答:设计AM =AN =2 km 时,工厂产生的噪声对居民的影响最小.…………………………14分 解法六(几何法):由运动的相对性,可使△PMN 不动,点A 在运动.由于∠MAN =60°,∴点A 在以MN 为弦的一段圆弧(优弧)上,…………4分 设圆弧所在的圆的圆心为F ,半径为R ,由图形的几何性质知:AP 的最大值为PF +R . …………8分 在△AMN 中,由正弦定理知:MN sin60°=2R ,∴R =23, …………10分 ∴FM =FN =R =23,又PM =PN ,∴PF 是线段MN 的垂直平分线. 设PF 与MN 交于E ,则FE 2=FM 2-ME 2=R 2-12=13.即FE =33,又PE =3. ……………………………12 ∴PF =43,∴AP 的最大值为PF +R =23. 答:设计AM =AN =2 km 时,工厂产生的噪声对居民的影响最小.…………………………14分 18. (本小题满分16分)在平面直角坐标系xOy 中,已知椭圆C ∶x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,焦距为2,一条准线方程为x =2.P 为椭圆C 上一点,直线PF 1交椭圆C 于另一点Q . (1)求椭圆C 的方程;(2)若点P 的坐标为(0,b ),求过P ,Q ,F 2三点的圆的方程; (3)若F 1P →=λQF 1→,且λ∈[12,2],求OP →·OQ →的最大值.(1)解:由题意得⎩⎪⎨⎪⎧2c =2,a 2c =2, 解得c =1,a 2=2,所以b 2=a 2-c 2=1.所以椭圆的方程为x 22+y 2=1. …………………………………………2分(2)因为P (0,1),F 1(-1,0),所以PF 1的方程为x -y +1=0.由⎩⎪⎨⎪⎧x +y +1=0,x 22+y 2=1, 解得⎩⎨⎧x =0,y =1,或⎩⎨⎧x =-43,y =-13,所以点Q 的坐标为(-43,-13). ……………………4分 APMNBCF E解法一:因为k PF 1·k PF 2=-1,所以△PQF 2为直角三角形. ……………………6分 因为QF 2的中点为(-16,-16),QF 2=523,所以圆的方程为(x +16)2+(y +16)2=2518. ……………………8分解法二:设过P ,Q ,F 2三点的圆为x 2+y 2+Dx +Ey +F =0, 则⎩⎨⎧1+E +F =0,1+D +F =0,179-43D -13E +F =0, 解得⎩⎨⎧D =13,E =13,F =-43.所以圆的方程为x 2+y 2+13x +13y -43=0. …………………………………………8分(3)解法一:设P (x 1,y 1),Q (x 2,y 2),则F 1P →=(x 1+1,y 1),QF 1→=(-1-x 2,-y 2).因为F 1P →=λQF 1→,所以⎩⎨⎧x 1+1=λ(-1-x 2),y 1=-λy 2,即⎩⎨⎧x 1=-1-λ-λx 2,y 1=-λy 2,所以⎩⎨⎧(-1-λ-λx 2)22+λ2y 22=1,x 222+y 22=1,解得x 2=1-3λ2λ. …………………………………………12分所以OP →·OQ →=x 1x 2+y 1y 2=x 2(-1-λ-λx 2)-λy 22=-λ2x 22-(1+λ)x 2-λ =-λ2(1-3λ2λ)2-(1+λ)·1-3λ2λ-λ=74-58(λ+1λ) . …………………………………………14分因为λ∈[12,2],所以λ+1λ≥2λ·1λ=2,当且仅当λ=1λ,即λ=1时,取等号. 所以OP →·OQ →≤12,即OP →·OQ →最大值为12. …………………………………………16分解法二:当PQ 斜率不存在时,在x 22+y 2=1中,令x =-1得y =± 22.所以11(1)(222OP OQ ⋅=-⨯-+=,此时11,22λ⎡⎤=∈⎢⎥⎣⎦…………………………2 当PQ 斜率存在时,设为k ,则PQ 的方程是y =k (x +1), 由⎩⎪⎨⎪⎧y =k (x +1),x 22+y 2=1.得(1+2k 2)x 2+4k 2x +2k 2-2=0, 韦达定理 22121222422==1212k k x x x x k k--+++,………………………………………4 设P (x 1,y 1),Q (x 2,y 2) ,则212121212(1)(1)OP OQ x x y y x x k x x ⋅=+=+++22212122222222222(1)()224(1)12122 61215122(12)2k x x k x x k k k k k k k k k k k =++++--=+++++-=⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯+=-<+分。
江苏省南京师范大学附属中学2014届高三模拟考试数学试题 (Word版含答案)
(1)求P(ξ=1);
(2)求随机变量ξ的分布列和数学期望.
23.【必做题】
有三种卡片分别写有数字1,10和100.设m为正整数,从上述三种卡片中选取若干张,
使得这些卡片上的数字之和为m.考虑不同的选法种数,例如当m=11时,有如下两种选法:“一张卡片写有1,另一张卡片写有10”或“11张写有1的卡片”,则选法种数为2.
2.对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.
3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.
4.只给整数分数,填空题不给中间分数.
一、填空题:本大题共14小题,每小题5分,计70分.
C.(坐标系与参数方程选做题)
在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系.设点A,
B分别在曲线C1: (θ为参数)和曲线C2:ρ=1上,求线段AB的最小值.
D.(不等式选做题)
设a,b,c均为正数,abc=1.求证: + + ≥ + + .
22.【必做题】
在一个盒子中放有大小质量相同的四个小球,标号分别为 , , ,4,现从这个盒
所以,当x=8 cm时,y取得极大值也是最大值.………………12分
此时y=15360,所以Vmax=32 cm3.
答:当底面边长为8 cm时,正三棱锥的最大体积为32 cm3.………………14分
18.解析:(1)由题设可知a=2.………………1分
因为e= ,即 = ,所以c= .
又因为b2=a2-c2=4-3=1,所以b=1.………………2分
江苏省南京市2024高三冲刺(高考数学)部编版测试(冲刺卷)完整试卷
江苏省南京市2024高三冲刺(高考数学)部编版测试(冲刺卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题平面向量,若,则()A.B.2C.D.第(2)题若,则()A.B.C.D.第(3)题17世纪,在研究天文学的过程中,为了简化大数运算,苏格兰数学家纳皮尔发明了对数,对数的思想方法即把乘方和乘法运算分别转化为乘法和加法运算,数学家拉普拉斯称赞“对数的发明在实效上等于把天文学家的寿命延长了许多倍”.已知,设,则所在的区间为()A.B.C.D.第(4)题已知双曲线:,O为坐标原点,、分别为的左、右焦点,点P在双曲线上,且轴,M在外角平分线上,且.若,则双曲线的离心率为()A.B.C.2D.第(5)题已知函数,将函数的图象向左平移个单位长度,得到函数的图象,若、是关于x的方程在内的两根,则()A.B.C.D.第(6)题若三棱锥的底面是以为斜边的等腰直角三角形,,则该三棱锥的外接球的表面积为A.B.C.D.第(7)题Keep是一款具有社交属性的健身APP,致力于提供健身教学、跑步、骑行、交友及健身饮食指导、装备购买等一站式运动解决方案.Keep可以让你随时随地进行锻炼,记录你每天的训练进程.不仅如此,它还可以根据不同人的体质,制定不同的健身计划.小张根据Keep记录的2022年1月至2022年11月期间每月跑步的里程(单位:十公里)数据整理并绘制了下面的折线图.根据该折线图,下列说法错误的是()A.月跑步里程逐月增加B.月跑步里程最大值出现在10月C.月跑步里程的中位数为5月份对应的里程数D.1月至5月的月跑步里程相对于6月至11月波动性更小第(8)题设A,B,C,D是曲线上的四个动点,若以这四个动点为顶点的正方形有且只有一个,则实数m的值为().A.4B.C.3D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知各项都是正数的数列的前项和为,且,则()A.是等差数列B.C.D.第(2)题设O为坐标原点,直线过抛物线的焦点,且与C交于M,N两点,l为C的准线,则().A.B.C.以MN为直径的圆与l相切D.为等腰三角形第(3)题数列{}中,设.若存在最大值,则可以是()A.B.C.D.三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题对于,将表示为,当时,,当时,为0或1.记为上述表示中为0的个数,(例如,:故)则(1)_______.(2)_______.第(2)题圆的圆心与抛物线的焦点重合,为两曲线的交点,则原点到直线的距离为______.第(3)题已知点B在点C正北方向,点D在点C的正东方向,,存在点A满足,则______(精确到0.1度)四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知函数,,.(1)当时,解不等式;(2)对任意,,若不等式恒成立,求实数a的取值范围.第(2)题如图所示,在直角坐标系xOy中,A,B是抛物线上两点,M,N是椭圆两点,若AB与MN相交于点,.(1)求实数的值及抛物线C的准线方程.(2)设的面积为S,、的重心分别为G,T,当GT平行于x轴时,求的最大值.第(3)题如图,已知椭圆经过和,过原点的一条直线l交椭圆于A,B两点(A在第一象限),椭圆C上点D满足,连直线BD与x轴、y轴分别交于M、N两点,的重心在直线的左侧.(1)求椭圆的标准方程;(2)记、面积分别为、,求的取值范围.第(4)题某乒乓球训练机构以训练青少年为主,其中有一项打定点训练,就是把乒乓球打到对方球台的指定位置(称为“准点球”),在每周末,记录每个接受训练的学员在训练时打的所有球中“准点球”的百分比(),A学员已经训练了1年,下表记录了学员最近七周“准点球”的百分比:周次(x)12345675252.853.55454.554.955.3若.(1)根据上表数据,计算与的相关系数,并说明与的线性相关性的强弱;(若,则认为与线性相关性很强;若,则认为与线性相关性一般;若,则认为与线性相关性较弱)(精确到)(2)求关于的回归方程,并预测第周“准点球”的百分比.(精确到)参考公式和数据:,,.第(5)题已知函数.(1)证明:;(2)证明:,.。
南京市2014届高三第三次模拟考试 数学
8.②9.- 10.111.(-∞,-3)∪(1,3)12.[ ,2]
13.(x-1)2+y2=114.2 -2
二、解答题:
15.(本小题满分14分)
解:(1)由 +1= 及பைடு நூலகம்弦定理,得 +1= ,………………………………………2分
所以 = ,即 = ,则 = .
即四边形ABFM为平行四边形,所以AM∥BF.………………………………………8分
在正三角形PAD中,M为PD中点,所以AM⊥PD.
因为AB⊥平面PAD,所以AB⊥AM.
又因为DC//AB,所以DC⊥AM.
因为BF//AM,所以BF⊥PD,BF⊥CD.
又因为PD∩DC=D,PD、DC平面PCD,所以BF⊥平面PCD.……………………………12分
某种树苗栽种时高度为A(A为常数)米,栽种n年后的高度记为f(n).经研究发现f(n)近似地满足f(n)= ,其中t=2 ,a,b为常数,n∈N,f(0)=A.已知栽种3年后该树木的高度为栽种时高度的3倍.
(1)栽种多少年后,该树木的高度是栽种时高度的8倍;
(2)该树木在栽种后哪一年的增长高度最大.
所以该树木栽种后第5年的增长高度最大.………………………………………14分
18.(本小题满分16分)
解:(1)由条件得 + =1,且c2=2b2,所以a2=3b2,解得b2= ,a2=4.
所以椭圆方程为: + =1.………………………………………3分
(2)设l1方程为y+1=k(x+1),
联立 消去y得(1+3k2)x2+6k(k-1)x+3(k-1)2-4=0.
①若α⊥β,m⊥α,则m∥β;②若m⊥α,m⊥β,则α∥β;
2014年江苏省南京市高三考前20题数学
其中正确的是___________.(填写正确命题序号)
【答案】①④.
【提示】当两平面相交时,不存在直线与它们均垂直,也不存在平面与它们均平行(否则两平面平行).
【说明】本题考查学生空间线面,面面位置关系及空间想象能力.
4.圆锥的侧面展开图是圆心角为 π,面积为2 π的扇形,则圆锥的体积是______.
当直线过点A时,t最大.由 解得A( , ),
所以x= - = .
因此 的取值范围是[- , ].
【说明】本题含三个变量,解题时要注意通过换元减少变量的个数.利用消元、换元等方法进行减元的思想是近年高考填空题中难点和热点,对于层次很好的学校值得关注.
9.已知四数a1,a2,a3,a4依次成等比数列,且公比q不为1.将此数列删去一个数后得到的数列(按原来的顺序)是等差数列,则正数q的取值集合是.
因为a15=- d>0,a18= d<0,所以a15+a18=- d+ d= d<0,
所以b15+b16=a16a17(a15+a18)>0,所以S16>S14,故Sn中S16最大.
【说明】利用等差数列及等差数列的基本性质是解题基本策略.此题借助了求等差数列前n项和最值的方法,所以在关注方法时,也要关注形成方法的过程和数学思想.
【答案】{ , }.
【提示】因为公比q不为1,所以不能删去a1,a4.设{an}的公差为d,则
1若删去a2,则由2a3=a1+a4得2a1q =a1+a1q ,即2q =1+q ,
整理得q (q-1)=(q-1)(q+1).
又q≠1,则可得q =q+1,又q>0解得q= ;
2若删去a3,则由2a2=a1+a4得2a1q=a1+a1q ,即2q=1+q ,整理得q(q-1)(q+1)=q-1.
南京市、盐城市2014届高三年级第二次模拟考试数学试题及答案
南京市2014届高三年级第二次模拟考试 数 学 2014.03 注意事项:1.本试卷共4页,包括填空题(第1题~第14题)、解答题(第15题~第20题)两部分.本试卷满分为160分,考试时间为120分钟.2.答题前,请务必将自己的姓名、学校、班级、学号写在答题纸的密封线内.试题的答案写在答题纸上对应题目的答案空格内.考试结束后,交回答题纸. 参考公式:柱体的体积公式:V =Sh ,其中S 为柱体的底面积,h 为柱体的高.圆柱的侧面积公式:S 侧=2πRh ,其中R 为圆柱的底面半径,h 为圆柱的高.一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上)1.函数f(x)=lnx +1-x 的定义域为 ▲ .2.已知复数z1=-2+i ,z2=a +2i(i 为虚数单位,a ∈R).若z1z2为实数,则a 的值为 ▲ .3.某地区教育主管部门为了对该地区模拟考试成绩进行分析,随机抽取了150分到450分之间的1000名学生的成绩,并根据这1000名学生的成绩画出样本的频率分布直方图(如图),则成绩在[300,350)内的学生人数共有 ▲ .4.盒中有3张分别标有1,2,3码,则两次抽取的卡片号码中至少有一个为偶数的概率为 5.已知等差数列{an}的公差d 不为0,且a1,a3,a76.执行如图所示的流程图,则输出的k 的值为 ▲ .7.函数f(x)=Asin (ωx +φ)(A ,ω,φ为常数,A >0,ω>0,0<φ8.在平面直角坐标系xOy 中,双曲线x2a2-y2b2=1(a >0,b A ,B 两点.若△AOB 的面积为2,则双曲线的离心率为 9.表面积为12π的圆柱,当其体积最大时,该圆柱的底面半径与高的比为 ▲ .10.已知|OA →|=1,|OB →|=2,∠AOB =2π3,OC →=12OA →+14OB →,则OA →与OC →的夹角大小为 ▲ .11.在平面直角坐标系xOy 中,过点P(5,3)作直线l 与圆x2+y2=4相交于A ,B 两点,若OA ⊥OB ,则直线l 的斜率为 ▲ .12.已知f(x)是定义在R 上的奇函数,当0≤x ≤1时,f(x)=x2,当x >0时,f(x +1)=f(x)+f(1),且.a (第7题图)若直线y =kx 与函数y =f(x)的图象恰有5个不同的公共点,则实数k 的值为 ▲ . 13.在△ABC 中,点D 在边BC 上,且DC =2BD ,AB ∶AD ∶AC =3∶k ∶1,则实数k 的取值范围为 ▲ . 14.设函数f(x)=ax +sinx +cosx .若函数f(x)的图象上存在不同的两点A ,B ,使得曲线y =f(x)在点A ,B 处的切线互相垂直,则实数a 的取值范围为 ▲ .二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内) 15.(本小题满分14分)如图,在四棱锥P -ABCD 中,底面ABCD 为矩形,平面PAB ⊥平面ABCD ,PA ⊥PB , BP =BC ,E 为PC 的中点.(1)求证:AP ∥平面BDE ; (2)求证:BE ⊥平面PAC .16.(本小题满分14分) 在平面直角坐标系xOy 中,角α的顶点是坐标原点,始边为x 轴的正半轴,终边与单位圆O 交 于点A(x1 ,y1 ),α∈(π4,π2).将角α终边绕原点按逆时针方向旋转π4,交单位圆于点B(x2,y2).(1)若x1=35,求x2;(2)过A ,B 作x 轴的垂线,垂足分别为C ,D ,记△AOC 及 △BOD 的面积分别为S1,S2,且S1=43S2,求tan α的值.17.(本小题满分14分)如图,经过村庄A 有两条夹角为60°的公路AB ,AC ,根据规划拟在两条公路之间的区域内建一工厂P ,分别在两条公路边上建两个仓库M 、N (异于村庄A),要求PM =PN =MN =2(单位:千米).如何设计,使得工厂产生的噪声对居民的影响最小(即工厂与村庄的距离最远).(第16题图) P NC PB C DE A (第15题图)18. (本小题满分16分)在平面直角坐标系xOy 中,已知椭圆C ∶x2a2+y2b2=1(a >b >0)的左、右焦点分别为F1,F2,焦距为2,一条准线方程为x =2.P 为椭圆C 上一点,直线PF1交椭圆C 于另一点Q . (1)求椭圆C 的方程;(2)若点P 的坐标为(0,b),求过P ,Q ,F2三点的圆的方程; (3)若F1P →=λQF1→,且λ∈[12,2],求OP →·OQ →的最大值.19.(本小题满分16分)已知函数f(x)=ax +bxex ,a ,b ∈R ,且a >0.(1)若a =2,b =1,求函数f(x)的极值; (2)设g(x)=a(x -1)ex -f(x).① 当a =1时,对任意x ∈(0,+∞),都有g(x)≥1成立,求b 的最大值;② 设g′(x)为g(x)的导函数.若存在x >1,使g(x)+g′(x)=0成立,求ba 的取值范围.20.(本小题满分16分)已知数列{an}的各项都为正数,且对任意n ∈N*,a2n -1,a2n ,a2n +1成等差数列, a2n ,a2n +1,a2n +2成等比数列. (1)若a2=1,a5=3,求a1的值;(2)设a1<a2,求证:对任意n ∈N*,且n ≥2,都有an +1an <a2a1.南京市2014届高三年级第二次模拟考试数学附加题 2014.03 注意事项:1.附加题供选修物理的考生使用.2.本试卷共40分,考试时间30分钟.3.答题前,考生务必将自己的姓名、学校、班级、学号写在答题纸的密封线内.试题的答案写在答题纸上对应题目的答案空格内.考试结束后,交回答题纸. 21.【选做题】在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共计20分.请在答卷卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤. A .选修4—1:几何证明选讲如图,△ABC 为圆的内接三角形,AB =AC ,BD 为圆的弦,且BD ∥AC .过点A 作圆的切线与 DB 的延长线交于点E ,AD 与BC 交于点F . (1)求证:四边形ACBE 为平行四边形;(2)若AE =6,BD =5,求线段CF 的长.B .选修4—2:矩阵与变换已知矩阵A =⎣⎡⎦⎤1 a -1 b 的一个特征值为2,其对应的一个特征向量为α=⎣⎡⎦⎤21. (1)求矩阵A ;(2)若A ⎣⎡⎦⎤x y =⎣⎡⎦⎤ab ,求x ,y 的值.C .选修4—4:坐标系与参数方程在极坐标系中,求曲线ρ=2cosθ关于直线θ=π4(ρ∈R)对称的曲线的极坐标方程.D .选修4—5:不等式选讲已知x ,y ∈R ,且|x +y|≤16,|x -y|≤14,求证:|x +5y|≤1.【必做题】第22题、第23题,每题10分,共计20分.请在答卷卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)某中学有4位学生申请A ,B ,C 三所大学的自主招生.若每位学生只能申请其中一所大学,且申请其中任何一所大学是等可能的.(1)求恰有2人申请A 大学的概率;(2)求被申请大学的个数X 的概率分布列与数学期望E(X). 23.(本小题满分10分)设f(n)是定义在N*上的增函数,f(4)=5,且满足:①任意n ∈N*,f(n)∈Z ;②任意m ,n ∈N*,有f(m)f(n)=f(mn)+f(m +n -1).A EBC F D第21题A 图(1)求f(1),f(2),f(3)的值; (2)求f(n)的表达式.南京市2014届高三年级第二次模拟考试 数学参考答案 说明:1.本解答给出的解法供参考.如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,填空题不给中间分数.一、填空题:本大题共14小题,每小题5分,计70分.1.(0,1] 2.4 3.300 4.59 5.2 6.4 7.18. 5 9.12 10.60° 11.1或723 12.22-2 13.(53,73) 14.[-1,1]二、解答题:15.证:(1)设AC ∩BD =O ,连结OE . 因为ABCD 为矩形,所以O 是AC 的中点.因为E 是PC 中点,所以OE ∥AP . …………………………………………4分 因为AP /⊂平面BDE ,OE ⊂平面BDE ,所以AP ∥平面BDE . …………………………………………6分 (2)因为平面PAB ⊥平面ABCD ,BC ⊥AB ,平面PAB ∩平面ABCD =AB ,所以BC ⊥平面PAB . …………………………………………8分 因为AP ⊂平面PAB ,所以BC ⊥PA .因为PB ⊥PA ,BC ∩PB =B ,BC ,PB ⊂平面PBC ,所以PA ⊥平面PBC . …………………………………………12分 因为BE ⊂平面PBC ,所以PA ⊥BE .因为BP =PC ,且E 为PC 中点,所以BE ⊥PC . 因为PA ∩PC =P ,PA ,PC ⊂平面PAC ,所以BE ⊥平面PAC . …………………………………………14分16.解:(1)因为x1=35,y1>0,所以y1=1-x 21=45.所以sin α=45,cos α=35. …………………………………………2分所以x2=cos(α+π4)=cos αcos π4-sin αsin π4=-210. …………………………………………6分(2)S1=12sin αcos α=-14sin2α.因为α∈(π4,π2),所以α+π4∈(π2,3π4).所以S2=-12sin (α+π4)cos (α+π4)=-14sin(2α+π2)=-14cos2α.…………………………………………8分因为S1=43S2,所以sin2α=-43cos2α,即tan2α=-43. (10)分所以2tanα1-tan2α=-43,解得tanα=2或tan α=-12.因为α∈(π4,π2),所以t anα=2. …………………………………………14分17.解法一:设∠AMN =θ,在△AMN 中,MN sin60°=AMsin(120°-θ).因为MN =2,所以AM =433sin(120°-θ) . ………………………………………2分在△APM 中,cos ∠AMP =cos(60°+θ). …………………………………………6分 AP2=AM2+MP2-2 AM·MP·cos ∠AMP =163sin2(120°-θ)+4-2×2×433 sin(120°-θ) cos(60°+θ) ………………………………8分 =163sin2(θ+60°)-1633sin(θ+60°) cos(θ+60°)+4 =83[1-cos (2θ+120°)]-833 sin(2θ+120°)+4 =-83[3sin(2θ+120°)+cos (2θ+120°)]+203=203-163sin(2θ+150°),θ∈(0,120°). …………………………………………12分 当且仅当2θ+150°=270°,即θ=60°时,AP2取得最大值12,即AP 取得最大值23.答:设计∠AMN 为60 时,工厂产生的噪声对居民的影响最小.……………………………………14分 解法二:设AM =x ,AN =y ,∠AMN =α. 在△AMN 中,因为MN =2,∠MAN =60°, 所以MN2=AM2+AN2-2 AM·AN·cos ∠MAN , 即x2+y2-2xycos60°=x2+y2-xy =4. …………………………………………2分 因为MN sin60°=AN sin α,即2sin60°=y sin α,所以sin α=34y ,cosα=x2+4-y22×2×x =x2+(x2-xy)4x =2x -y 4. …………………………………………6分cos ∠AMP =cos(α+60°)=12cos α-32sin α=12·2x -y 4-32·34y =x -2y4.……………………………8分在△AMP 中,AP2=AM2+PM2-2 AM·PM·cos ∠AMP ,即AP2=x2+4-2×2×x×x -2y4=x2+4-x(x -2y)=4+2xy .………………………………………12分因为x2+y2-xy =4,4+xy =x2+y2≥2xy ,即xy ≤4. 所以AP2≤12,即AP ≤23.当且仅当x =y =2时,AP 取得最大值23.答:设计AM =AN =2 km 时,工厂产生的噪声对居民的影响最小.………………………………14分18.(1)解:由题意得⎩⎪⎨⎪⎧2c =2,a2c =2, 解得c =1,a2=2,所以b2=a2-c2=1.所以椭圆的方程为x22+y2=1. …………………………………………2分(2)因为P(0,1),F1(-1,0),所以PF1的方程为x -y +1=0.由⎩⎪⎨⎪⎧x +y +1=0,x22+y2=1, 解得⎩⎨⎧x =0,y =1,或⎩⎨⎧x =-43,y =-13,所以点Q 的坐标为(-43,-13). ……………………4分解法一:因为kPF 1·kPF 2=-1,所以△PQF2为直角三角形. ……………………6分 因为QF2的中点为(-16,-16),QF2=523,所以圆的方程为(x +16)2+(y +16)2=2518. ……………………8分解法二:设过P ,Q ,F2三点的圆为x2+y2+Dx +Ey +F =0,则⎩⎨⎧1+E +F =0,1+D +F =0,179-43D -13E +F =0, 解得⎩⎨⎧D =13,E =13,F =-43.所以圆的方程为x2+y2+13x +13y -43=0. …………………………………………8分(3)设P(x1,y1),Q(x2,y2),则F1P →=(x1+1,y1),QF1→=(-1-x2,-y2).因为F1P →=λQF1→,所以⎩⎨⎧x1+1=λ(-1-x2),y1=-λy2,即⎩⎨⎧x1=-1-λ-λx2,y1=-λy2,所以⎩⎪⎨⎪⎧(-1-λ-λx2)22+λ2y 22=1,x 222+y 22=1,解得x2=1-3λ2λ. …………………………………………12分所以OP →·OQ →=x1x2+y1y2=x2(-1-λ-λx2)-λy 22=-λ2x22-(1+λ)x2-λ =-λ2(1-3λ2λ)2-(1+λ)·1-3λ2λ-λ=74-58(λ+1λ) . …………………………………………14分因为λ∈[12,2],所以λ+1λ≥2 λ·1λ=2,当且仅当λ=1λ,即λ=1时,取等号.所以OP →·OQ →≤12,即OP →·OQ →最大值为12. …………………………………………16分19.解:(1)当a =2,b =1时,f (x)=(2+1x)ex ,定义域为(-∞,0)∪(0,+∞).所以f ′(x)=(x +1)(2x -1)x2ex . …………………………………………2分令f ′(x)=0,得x1=-1,x2=12,列表由表知f (x)的极大值是f (-1)=e -1,f (x)的极小值是f (12)=4e .……………………………………4分(2)① 因为g (x)=(ax -a)ex -f (x)=(ax -bx -2a)ex ,当a =1时,g (x)=(x -bx-2)ex .因为g (x)≥1在x ∈(0,+∞)上恒成立,所以b≤x2-2x -xex 在x ∈(0,+∞)上恒成立. …………………………………………8分记h(x)=x2-2x -xex (x >0),则h ′(x)=(x -1)(2ex +1)ex.当0<x <1时,h ′(x)<0,h(x)在(0,1)上是减函数;当x >1时,h ′(x)>0,h(x)在(1,+∞)上是增函数. 所以h(x)min =h(1)=-1-e -1.所以b 的最大值为-1-e -1. …………………………………………10分 ② 因为g (x)=(ax -b x -2a)ex ,所以g ′(x)=(b x2+ax -bx -a)ex .由g (x)+g ′(x)=0,得(ax -b x -2a)ex +(b x2+ax -bx-a)ex =0,整理得2ax3-3ax2-2bx +b =0.存在x >1,使g (x)+g ′(x)=0成立,等价于存在x >1,2ax3-3ax2-2bx +b =0成立. …………………………………………12分 因为a >0,所以b a =2x3-3x22x -1.设u(x)=2x3-3x22x -1(x >1),则u ′(x)=8x[(x -34)2+316](2x -1)2.因为x >1,u ′(x)>0恒成立,所以u(x)在(1,+∞)是增函数,所以u(x)>u(1)=-1,所以b a >-1,即ba 的取值范围为(-1,+∞). …………………………………………16分20.解:(1)因为a3,a4,a5成等差数列,设公差为d ,则a3=3-2d ,a4=3-d .因为a2,a3,a4成等比数列,所以a2=a 23a4=(3-2d)23-d . …………………………………………3分因为a2=1,所以(3-2d)2 3-d =1,解得d =2,或d =34.因为an >0,所以d =34.因为a1,a2,a3成等差数列,所以a1=2a2-a3=2-(3-2d)=12.…………………………………5分(2)证法一:因为a2n -1,a2n ,a2n +1成等差数列,a2n ,a2n +1,a2n +2成等比数列, 所以2a2n =a2n -1+a2n +1,① a 2 2n +1=a2na2n +2.② 所以a 2 2n -1=a2n -2a2n ,n ≥2.③所以a2n -2a2n +a2na2n +2=2a2n .因为an >0,所以a2n -2 +a2n +2=2a2n . …………………………………………7分 即数列{a2n }是等差数列.所以a2n =a2 +(n -1)(a4-a2).由a1,a2及a2n -1,a2n ,a2n +1是等差数列,a2n ,a2n +1,a2n +2是等比数列,可得a4=(2a2-a1)2a2.所以a2n =a2 +(n -1)(a4-a2)=(a2-a1)n +a1a2.所以a2n =[(a2-a1)n +a1]2a2.所以a2n +2=[(a2-a1)(n +1)+a1]2a2. (10)分从而a2n +1=a2na2n +2=[(a2-a1)n +a1][(a2-a1)(n +1)+a1]a2.所以a2n -1=[(a2-a1)(n -1)+a1][(a2-a1)n +a1]a2.①当n =2m ,m ∈N*时,an +1an -a2a1=[(a2-a1)m +a1][(a2-a1)(m +1)+a1]a2[(a2-a1)m +a1]2a2-a2a1=(a2-a1)(m +1)+a1(a2-a1)m +a1-a2a1=-m(a1-a2)2a1[(a2-a1)m +a1]<0. …………………………………………14分②当n =2m -1,m ∈N*,m ≥2时,an +1an -a2a1=[(a2-a1)m +a1]2a2[(a2-a1)(m -1)+a1][(a2-a1)m +a1]a2-a2a1=(a2-a1)m +a1(a2-a1)(m -1)+a1-a2a1=-(m -1)(a1-a2)2a1[(a2-a1)(m -1)+a1]<0.综上,对一切n ∈N*,n ≥2,有an +1an <a2a1. …………………………………………16分证法二:①若n 为奇数且n ≥3时,则an ,an +1,an +2成等差数列.因为an +2an +1-an +1an =an +2an -a2n +1an +1an =(2an +1-an)an -a2n +1an +1an =-(an +1-an)2an +1an ≤0,所以an +2an +1≤an +1an .②若n 为偶数且n ≥2时,则an ,an +1,an +2成等比数列,所以an +2an +1=an +1an .由①②可知,对任意n ≥2,n ∈N*,an +2an +1≤an +1an ≤…≤a3a2.又因为a3a2-a2a1=2a2-a1a2-a2a1=2a2a1-a12-a22a2a1=-(a1-a2)2a2a1,因为a1<a2,所以-(a1-a2)2a2a1<0,即a3a2<a2a1.综上,an +1an <a2a1.南京市2014届高三年级第二次模拟考试数学附加题参考答案及评分标准 2014.03说明:1.本解答给出的解法供参考.如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,填空题不给中间分数.21.【选做题】在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共计20分.请在答卷纸指定区域内作答.解答应写出文字说明、证明过程或演算步骤.A .选修4—1:几何证明选讲解:(1)因为AE 与圆相切于点A ,所以∠BAE =∠ACB .因为AB =AC ,所以∠ABC =∠ACB .所以∠ABC =∠BAE .所以AE ∥BC .因为BD ∥AC ,所以四边形ACBE 为平行四边形.…………………………………4分(2)因为AE 与圆相切于点A ,所以AE2=EB·(EB +BD),即62=EB·(EB +5),解得BE =4. 根据(1)有AC =BE =4,BC =AE =6.设CF =x ,由BD ∥AC ,得AC BD =CF BF ,即45=x 6-x ,解得x =83,即CF =83.………………………10分 B .选修4—2:矩阵与变换解:(1)由题意,得⎣⎡⎦⎤1 a -1 b ⎣⎡⎦⎤21=2⎣⎡⎦⎤21,即⎩⎨⎧2+a =4,-2+b =2,解得a =2,b =4.所以A =⎣⎡⎦⎤1 2-1 4. ………………………………………5分 (2)解法一:A ⎣⎡⎦⎤x y =⎣⎡⎦⎤a b ,即⎣⎡⎦⎤1 2-1 4 ⎣⎡⎦⎤x y =⎣⎡⎦⎤24, 所以⎩⎨⎧x +2y =2,-x +4y =4,解得⎩⎨⎧x =0,y =1.………………………………………10分 解法二:因为A =⎣⎡⎦⎤1 2-1 4,所以A -1=⎣⎢⎡⎦⎥⎤23 -13 16 16. ………………………………………7分 因为A ⎣⎡⎦⎤x y =⎣⎡⎦⎤a b ,所以⎣⎡⎦⎤x y =A -1⎣⎡⎦⎤a b =⎣⎢⎡⎦⎥⎤23 -13 16 16 ⎣⎡⎦⎤24=⎣⎡⎦⎤01. 所以⎩⎨⎧x =0,y =1. ………………………………………10分 C .选修4—4:坐标系与参数方程解法一:以极点为坐标原点,极轴为x 轴建立直角坐标系,则曲线ρ=2cosθ的直角坐标方程为 (x -1)2+y2=1,且圆心C 为(1,0).………………………4分直线θ=π4的直角坐标方程为y =x , 因为圆心C(1,0)关于y =x 的对称点为(0,1),所以圆心C 关于y =x 的对称曲线为x2+(y -1)2=1. ………………………………………8分所以曲线ρ=2cosθ关于直线θ=π4(ρR)对称的曲线的极坐标方程为ρ=2sinθ.…………………10分 解法二:设曲线ρ=2cosθ上任意一点为(ρ′,θ′),其关于直线θ=π4对称点为(ρ,θ), 则⎩⎪⎨⎪⎧ρ′=ρ,θ′=2k π+π2-θ. ………………………………………6分 将(ρ′,θ′)代入ρ=2cosθ,得ρ=2cos(π2-θ),即ρ=2sinθ. 所以曲线ρ=2cosθ关于直线θ=π4(ρ∈R)对称的曲线的极坐标方程为ρ=2sinθ.…………………10分 D .选修4—5:不等式选讲证: 因为|x +5y|=|3(x +y)-2(x -y)|. ………………………………………5分 由绝对值不等式性质,得|x +5y|=|3(x +y)-2(x -y)|≤|3(x +y)|+|2(x -y)|=3|x +y|+2|x -y|≤3×16+2×14=1. 即|x +5y|≤1. ………………………………………10分22.(本小题满分10分)解(1)记“恰有2人申请A 大学”为事件A ,P(A)=C42×2234=2481=827. 答:恰有2人申请A 大学的概率为827. ………………………………………4分 (2)X 的所有可能值为1,2,3.P(X =1)=334=127, P(X =2)=C43×A32+3×A3234=4281=1427, P(X =3)=C42×A3334=3681=49. X所以X 的数学期望E(X)=1×127+2×1427+3×49=6527. ………………………………………10分 23.解:(1)因为f(1)f(4)=f(4)+f(4),所以5 f(1)=10,则f(1)=2.……………………………………1分 因为f(n)是单调增函数,所以2=f(1)<f(2)<f(3)<f(4)=5.因为f(n)∈Z ,所以f(2)=3,f(3)=4. ………………………………………3分(2)解:由(1)可猜想f (n)=n+1.证明:因为f (n)单调递增,所以f (n+1)>f (n),又f(n)∈Z ,所以f (n+1)≥f (n)+1.首先证明:f (n)≥n+1.因为f (1)=2,所以n =1时,命题成立.假设n=k(k≥1)时命题成立,即f(k)≥k+1.则f(k+1)≥f (k)+1≥k+2,即n=k+1时,命题也成立.综上,f (n)≥n+1.………………………………………5分由已知可得f (2)f (n)=f (2n)+f (n+1),而f(2)=3,f (2n)≥2n+1,所以3 f (n)≥f (n+1)+2n+1,即f(n+1)≤3 f (n)-2n-1.下面证明:f (n)=n+1.因为f (1)=2,所以n=1时,命题成立.假设n=k(k≥1)时命题成立,即f(k)=k+1,则f(k+1)≤3f (k)-2k-1=3(k+1)-2k-1=k+2,又f(k+1)≥k+2,所以f(k+1)=k+2.即n=k+1时,命题也成立.所以f (n)=n+1 ………………………………………10分。
江苏省南京市2024高三冲刺(高考数学)部编版考试(冲刺卷)完整试卷
江苏省南京市2024高三冲刺(高考数学)部编版考试(冲刺卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题暑假期间,同学们参加了几何模型的制作比赛,大家的作品在展览中获得了一致好评.其中甲的作品是在球当中放置了一个圆锥,于是就产生了这样一个有趣的问题:已知圆锥的顶点和底面圆周都在球O的球面上,若圆锥的侧面展开图的圆心角为,面积为,则球O的表面积为()A.B.C.D.第(2)题在复数集中,我们把实部与实部相等,虚部与虚部互为相反数的一对具有孪生关系的复数记为和,他们也是实系数一元二次方程()在判别式小于0时的两个复数根,我们将这种关系定义为共()A.额B.呃C.扼D.轭第(3)题若集合,,则()A.B.C.D.第(4)题已知,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要第(5)题设复数z满足,则z在复平面内对应的点在第几象限.()A.一B.二C.三D.四第(6)题已知抛物线的焦点为,倾斜角为的直线过点交于两点(A在第一象限),为坐标原点,过点作轴的平行线,交直线于点,则点的横坐标为()A.B.C.D.第(7)题现有甲、乙两人参加射箭比赛,成绩如下:甲:,乙:,则下列说法错误的是()A.甲的射箭成绩的中位数为61.5B.乙的射箭成绩的平均数为78C.甲的射箭成绩的方差为26D.乙的射箭成绩的标准差为第(8)题如图所示,三棱锥的高,,,分别在和上,且,,图中的四个图象大致描绘了三棱锥的体积与的变化关系,其中正确的是()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题在正六棱锥中,已知底面边长为1,侧棱长为2,则()A.B.共有4条棱所在的直线与AB是异面直线C.该正六棱锥的内切球的半径为D.该正六棱锥的外接球的表面积为第(2)题如图,直四棱柱的底面是梯形,,是棱的中点,在直四棱柱的表面上运动,则()A.若在棱上运动,则的最小值为B.若在棱上运动,则三棱锥的体积为定值C.若,则点的轨迹为平行四边形D.若,则点的轨迹长度为第(3)题下列不等式一定成立的是()A.B.若,则C.D.三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题如图,在四边形中,,,且,则实数的值为_________,若是线段上的动点,且,则的最小值为_________.第(2)题已知,则__________.第(3)题已知圆台的上下底面半径分别是1,4,且侧面积为,则该圆台的母线长为__________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题在中,,,分别是角,,所对的边,已知,,且.(1)求角;(2)求边的大小;(3)求的值.第(2)题某市教育行政部门为开展普及法律常识的宣传教育活动,增强学生的法律意识,提高自身保护能力,在全市中小学生范围内,组织了一次法律常识知识竞赛(满分100分),现从所有参赛学生的竞赛成绩中随机抽取200份,经统计,这200份成绩全部介于之间,将数据按照,,……,分成七组,得到如下频数分布表:竞赛成绩(单位:分)人数6143074422311(单位:人)(1)试估计该市竞赛成绩的平均分(同一组中的数据用该组区间的中点值作代表)和第80百分位数(保留一位小数);(2)以样本频率值作为概率的估计值,若从该市所有参与竞赛的学生中,随机抽取3名学生进行座谈,设抽到60分及以上的学生人数为,求的分布列和数学期望.第(3)题如图,四棱锥P﹣ABCD的底面是等腰梯形,AD∥BC,BC=2AD,,E是棱PB的中点,F是棱PC上的点,且A 、D 、E 、F 四点共面.(1)求证:F 为PC 的中点;(2)若△PAD为等边三角形,二面角的大小为 ,求直线BD 与平面ADFE 所成角的正弦值.第(4)题已知函数,其中.(Ⅰ)若存在唯一极值点,且极值为0,求的值;(Ⅱ)讨论在区间上的零点个数.第(5)题在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c,,A 的角平分线交BC 于点D .(1)求B ;(2)若,,求b .。
江苏省2014届高三高考模拟专家卷 数学(2) Word版含答案
23.已知Sn=1+++…+.
(1)求S2,S4的值;
(2)若Tn=,试比较 与Tn的大小,并给出证明.
参考答案及评分标准
一、填空题:本大题共14小题,每小题5分,共70分.
1.(0,1]2.33.84.72%5.
20.(本题满分16分)
已知数列 满足 (n∈N*),且a2=6.
(1)求数列{an}的通项公式;
(2)设 (n∈N*,c为非零常数),若数列{bn}是等差数列,记cn=,Sn=c1+c2+…+cn,求Sn.
数学附加题
21.【选做题】在A、B、C、D四小题中只能选做2题,每小题10分,共20分.请在答题卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤.
A.选修4—1:几何证明选讲
如图,AB是⊙O的直径,点P在AB的延长线上,PC与⊙O相切于点C,PC=AC=1.求⊙O的半径.
B.选修4—2:矩阵与变换
已知△ABC三个顶点的坐标分别是A(0, 2),B(1,1),C(1,3).若△ABC在一个切变变换T作用下变为△A1B1C1,其中B(1,1)在变换T作用下变为点B1(1,-1).
化简,得a2+c2-b2=ac.
18.(本题满分16分)
已知椭圆C:+=1(a>b>0)的左焦点为F1(-3,0),过点F1作一条直线l交椭圆于A,B两点,点A关于坐标原点O的对称点为A1,两直线AB,A1B的斜率之积为-.
(1)求椭圆C的方程;高考资源网
(2)已知D(m,0)为F1右侧的一点,连AD,BD分别交椭圆左准线于M,N两点,若以MN为直径的圆恰好过点F1,求m的值.
江苏省2014届高考数学考前辅导之解答题(含答案)
C 江苏省2014届高考数学考前辅导之解答题1.已知向量2(3sin ,1),(cos ,cos )444x x xm n ==.(1)若1m n ⋅=,求2cos()3x π-的值;(2)记()f x m n =⋅,在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且满足C b B c a cos cos )2(=-,求函数f (A )的取值范围.1.解:(1)23sin cos cos 444x x x m n ⋅=⋅+ 1sin(262x π=++∵1m n ⋅= ∴1sin(262x π+= ┉┉┉┉┉┉┉┉┉┉┉┉┉4分211cos()12sin ()23262x x ππ+=-+= 21cos()cos()332x x ππ-=-+=- ┉┉┉┉┉7分(2)∵(2a -c )cos B =b cos C由正弦定理得(2sinA -sin C)cos B=sinBcosC ┉┉┉┉┉┉8分 ∴2sinAcosB-sinCcosB=sinBcosC ∴2sinAcosB=sin(B+C)∵A B C π++= ∴sin()sin 0B C A +=≠,∴1cos ,23B B π== ∴203A π<< ┉┉┉┉┉┉11分∴1,sin()(,1)6262262A A ππππ<+<+∈ ┉┉┉┉┉┉12分 又∵1()sin(262x f x π=++,∴1()sin(262A f A π=++ ┉┉┉┉┉┉13分故函数f (A )的取值范围是3(1,)2. ┉┉┉2.设锐角△ABC 内角A ,B ,C 的对边分别为a ,b ,c .已知边a =23,△ABC 的面积S =34(b 2+c 2-a 2).求:(1)内角A ;(2)周长l 的取值范围.3.如图,AB 为圆O 的直径,点E 、F 在圆O 上,且//AB EF ,矩形ABCD 所在的平面和圆O 所在的平面互相垂直,且2AB =,1AD EF ==.(1)求证:AF ⊥平面CBF ;(2)设FC 的中点为M ,求证://OM 平面DAF ; (3)设平面CBF 将几何体EFABCD 分成的两个锥体的体积分别为F ABCD V -,F CBE V -,求:F ABCD F CBE V V --. 3.解:(1)证明: 平面⊥ABCD 平面ABEF ,AB CB ⊥,平面 ABCD 平面ABEF =AB ,⊥∴CB 平面ABEF ,⊂AF 平面ABEF ,CB AF ⊥∴ ,又AB 为圆O 的直径,BF AF ⊥∴, ⊥∴AF 平面CBF . ………5分 (2)设DF 的中点为N ,则MN //CD 21,又AO //CD 21, 则MN //AO ,MNAO 为平行四边形,//OM ∴AN ,又⊂AN 平面DAF ,⊄OM 平面DAF ,//OM ∴平面DAF . ………9分(3)过点F 作AB FG ⊥于G , 平面⊥ABCD 平面ABEF ,⊥∴FG 平面ABCD ,FG FG S V ABCD ABCD F 3231=⋅=∴-, ………11分⊥CB 平面ABEF ,CB S V V BFE BFE C CBE F ⋅==∴∆--31FG CB FG EF 612131=⋅⋅⋅=, ………14分ABCD F V -∴1:4:=-CBE F V .4.多面体PABCD 的直观图及三视图如图所示,E 、F 、G 分别为PA 、AD 和BC 的中点,M 为PG 上的点,且:3:4PM MG =.(1)求多面体PABCD 的体积; (2)求证:PC BDE 平面; (3)求证:FM ⊥平面PBC .4.解:(14分(2)连接AC 与BD 交于点O ,连接EO则在PAC ∆中,由E 、O 分别为PA 和AC 的中点,得EO PC ………………6分 因为EO BDE ⊂平面所以PC BDE 平面 ……………………………………………… 8分 (3)连接PF 与FG ,则BC ⊥平面PFG所以BC FM ⊥ ……………………………………………… 10分 在PFG ∆中,2,PF FG PG ==:3:4PM MG =可求得MG =,FM =,故222FM MG FG += 所以FM PG ⊥ ……………………………………………… 12分 又PG BC G ⋂=所以FM ⊥平面PBC ……………………………………………… 14分5.(本小题满分15分)P A B CD E F GM 左视图主视图 俯视图在平面直角坐标系xOy 中 ,已知以O 为圆心的圆与直线l :(34)y mx m =+-,()m R ∈恒有公共点,且要求使圆O 的面积最小. (1)写出圆O 的方程;(2)圆O 与x 轴相交于A 、B 两点,圆内动点P 使||PA 、||PO 、||PB 成等比数列,求PA PB ⋅的范围; (3)已知定点Q (4-,3),直线l 与圆O 交于M 、N 两点,试判断tan QM QN MQN ⋅⨯∠ 是否有最大值,若存在求出最大值,并求出此时直线l 的方程,若不存在,给出理由.5.解:(1)因为直线l :(34)y mx m =+-过定点T (4,3)由题意,要使圆O 的面积最小, 定点T (4,3)在圆上,所以圆O 的方程为2225x y +=. ………4分(2)A (-5,0),B (5,0),设00(,)P x y ,则220025x y +< (1)00(5,)PA x y =---,00(5,)PB x y =--,由||,||,||PA PO PB 成等比数列得,2||||||PO PA PB =⋅,4[,0)2PA PB ∴⋅∈-………………………9分 (3)tan ||||cos tan QM QN MQN QM QN MQN MQN ⋅⨯∠=⋅∠⨯∠||||sin 2MQNQM QN MQN S=⋅∠= . ………11分由题意,得直线l 与圆O 的一个交点为M (4,3),又知定点Q (4-,3),直线MQ l :3y =,||8MQ =,则当(0,5)N -时MQN S 有最大值32. ………14分即tan QM QN MQN ⋅⨯∠有最大值为32,此时直线l 的方程为250x y --=. ………15分6.如图,在四棱锥A -BCDE 中,底面BCDE 是直角梯形,∠BED =90︒,BE ∥CD ,AB =6,BC =5,CD BE =13,侧面ABE ⊥底面BCDE .且∠BAE =90︒. (1)求证:平面ADE ⊥平面ABE ;(2)过点D 作平面α∥平面ABC ,分别与BE ,AE交于点F ,G ,求△DFG 的面积.7.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),直线l 为圆O :x 2+y 2=b 2的一条切线,且经过椭圆的右焦点,记椭圆离心率为e .(1)若直线l 的倾斜角为π6,求e 的值;(2)是否存在这样的e ,使得原点O 关于直线l 的对称点恰好在椭圆C 上?若存在,请求出e 的值;若不存在,请说明理由.8.如图,已知椭圆x 2a 2+y 24=1(a >0)上两点A (x 1,y 1),B (x 2,y 2),x 轴上两点M (1,0),N (-1,0).(1)若tan ∠ANM =-2,tan ∠AMN =12,求该椭圆的方程;(2)若MA →=-2MB →,且0<x 1<x 2,ABC D E求椭圆的离心率e的取值范围.9.已知线段CD =CD 的中点为O ,动点A 满足2AC AD a +=(a 为正常数). (1)求动点A 所在的曲线方程;(2)若存在点A ,使AC AD ⊥,试求a 的取值范围;(3)若2a =,动点B 满足4BC BD +=,且AO OB ⊥,试求AOB ∆面积的最大值和最小值.9.解:(1)以O 为圆心,CD 所在直线为轴建立平面直角坐标系若2AC AD a +=<0a <A 所在的曲线不存在;若2AC AD a +==a =,动点A所在的曲线方程为0(y x =≤;若2AC AD a +=>a >,动点A 所在的曲线方程为222213x y a a +=-. ……………………………………………… 4分(2)由(1)知a A ,使AC AD ⊥, 则以O为圆心,OC =26a ≤所以aa . ……………………………………………8分(3)当2a =时,其曲线方程为椭圆2214x y +=由条件知,A B 两点均在椭圆2214x y +=上,且AO OB ⊥ 设11(,)A x y ,22(,)B x y ,OA 的斜率为k (0)k ≠,则OA 的方程为y kx =, OB 的方程为1y x k=-解方程组2214y kxx y =⎧⎪⎨+=⎪⎩得212414x k =+,212414k y k =+ 同理可求得222244k x k =+,22244y k =+ …………………………………………… 10分 A O B ∆面积2S= ………………12分 令21(1)k t t +=>则S =令22991125()49()(1)24g t t t t t =-++=--+> 所以254()4g t <≤,即415S ≤< ……………………………………………… 14分当0k =时,可求得1S =,故415S ≤≤, 故S 的最小值为45,最大值为1. ……………………………………………… 10.(本小题满分15分)某工厂有216名工人接受了生产1000台GH 型高科技产品的总任务,已知每台GH 型产品由4个G 型装置和3个H 型装置配套组成.每个工人每小时能加工6个G 型装置或3个H 型装置.现将工人分成两组同时开...始.加工,每组分别加工一种装置.设加工G 型装置的工人有x 人,他们加工完G 型装置所需时间为g (x ),其余工人加工完H 型装置所需时间为h (x )(单位:小时,可不为整数). (1)写出g (x ),h (x )的解析式;(2)比较g (x )与h (x )的大小,并写出这216名工人完成总任务的时间f (x )的解析式; (3)应怎样分组,才能使完成总任务用的时间最少? 10. 解:(1)由题知,需加工G 型装置4000个,加工H 型装置3000个,所用工人分别为x 人,(216-x )人.∴g (x )=x64000,h (x )=3)216(3000⋅-x ,即g (x )=x 32000,h (x )=x-2161000(0<x <216,x ∈N *). ……………………4分 (2)g (x )-h (x )=x 32000-x-2161000=)216(3)5432(1000x x x --⋅. ∵0<x <216,∴216-x >0.当0<x ≤86时,432-5x >0,g (x )-h (x )>0,g (x )>h (x );当87≤x <216时,432-5x <0,g (x )-h (x )<0,g (x )<h (x ).∴f (x )=⎪⎪⎩⎪⎪⎨⎧∈<≤-∈≤<.,21687,2161000,,860,32000**N N x x xx x x……………………8分(3)完成总任务所用时间最少即求f (x )的最小值. 当0<x ≤86时,f (x )递减,∴f (x )≥f (86)=8632000⨯=1291000. ∴f (x )min =f (86),此时216-x =130.当87≤x <216时,f (x )递增,∴f (x )≥f (87)=872161000-=1291000.∴f (x )min =f (87),此时216-x =129. ∴f (x )min =f (86)=f (87)=1291000.∴加工G 型装置,H 型装置的人数分别为86、130或87、129……………………15分11.抛掷一枚骰子,当它每次落地时,向上的点数称为该次抛掷的点数,可随机出现1到6点中的任一个结果,连续抛掷三次,将第一次,第二次,第三次抛掷的点数分别记为c b a ,,,求长度为c b a ,,的三条线段能构成等腰三角形的概率.11.【解】连续抛掷三次, 点数分别为c b a ,,的基本事件总数为216666=⨯⨯ 长度为c b a ,,的三条线段能构成等腰三角形有下列两种情形①当c b a ==时, 能构成等边三角形,有;1,1,1;2,2,2; 6,6,6共6种可能. ②当c b a ,,恰有两个相等时,设三边长为z y x ,,,其中}6,5,4,3,2{∈x ,且y x ≠;若2=x ,则y 只能是1或3,共有2种可能; 若3=x ,则y 只以是5,4,2,1,共有4种可能; 若6,5,4=x ,则y 只以是集合}6,5,4,3,2,1{中除x 外的任一个数,共有53⨯种可能; ∴当c b a ,,恰有两个相等时,符合要求的c b a ,,共有63)5342(3=⨯++⨯ 故所求概率为722366363=+=P 12.已知关于x 的一元二次函数14)(2+-=bx ax x f .(1)设集合P={1,2, 3}和Q={-1,1,2,3,4},分别从集合P 和Q 中随机取一个数作为a 和b ,求函数)(x f y =在区间[),1+∞上是增函数的概率;(2)设点(a ,b )是区域⎪⎩⎪⎨⎧>>≤-+0008y x y x 内的随机点,求()[1,)y f x =+∞在区间上是增函数的概率.12.解:(1)∵函数14)(2+-=bx ax x f 的图象的对称轴为,2abx =要使14)(2+-=bx ax x f 在区间),1[+∞上为增函数,当且仅当a >0且a b ab≤≤2,12即 ……………………………3分 若a =1则b =-1, 若a =2则b =-1,1; 若a =3则b =-1,1; ……………………5分∴事件包含基本事件的个数是1+2+2=5∴所求事件的概率为51153=. ……………………………7分(2)由(Ⅰ)知当且仅当a b ≤2且a >0时,函数),1[14)(2+∞+-=在区是间bx ax x f 上为增函数,依条件可知试验的全部结果所构成的区域为80(,)00a b a b a b ⎧⎫+-≤⎧⎪⎪⎪>⎨⎨⎬⎪⎪⎪>⎩⎩⎭构成所求事件的区域为三角形部分. 由),38,316(208得交点坐标为⎪⎩⎪⎨⎧==-+ab b a …………11分 ∴所求事件的概率为31882138821=⨯⨯⨯⨯=P .13.如图,已知椭圆2222:1x y C a b+=(0)a b >>的左顶点,右焦点分别为,A F ,右准线为m 。
江苏省南京市2014届高三考前冲刺训练
2014年南京市高三英语热身训练题的说明命题意图:《高三英语热身训练题》旨在帮助本届考生在考前训练一些重点题和易错题,进一步强化学生审题能力和解题技巧,减少高考中不必要的失误。
重点题型:共6组题,每组包括:单项填空(15题)、完形填空(1篇)、阅读理解(2篇)和书面表达(1篇)共四项内容。
使用建议:1. 本《热身训练题》要让学生限时完成,单项选择每组(15题)8分钟,完形填空每篇15分钟,阅读理解每篇7分钟,书面表达每篇18分钟,要重点训练。
2.单选要突出核心概念理解和语境信息支撑,教师在讲评单选题时,要做到点面结合,举一反三;完形要关注叙议结合和议论文体;阅读要关注深层次设题,如:文章结构,行文走势,作者语气和态度,文体修辞等;书面表达要特别关注图示类和短文写作。
3.为了使用方便,6组试题均已编号,可以加听力整卷使用,也可以分解成专题作限时训练使用。
南京市教学研究室英语组 2014.5.102014年南京市高三英语热身训练题(一)一.单项填空21. ________ news hit ________Venice Film Festival unexpectedly: Hayao Miyazaki, the world’s most honoredcreator of animated features, was ending his movie career.A. 不填;theB. 不填;不填C. The; 不填D. The; the22. The successful candidate will be adaptable, take ownership of and develop in the role by taking initiative,being motivated and ________ high standards.A. ensuredB. to ensureC. ensuringD. to be ensured23. As the scheduled flight for Stockholm from Helsinki early Thursday was canceled, he had to _______ an airport hotel and will fly to Stockholm later Thursday if weather allows.A. check intoB. burst intoC. bump intoD. bring into24. He is never satisfied with what he has got. The grass is always greener on the other side of the ________.A. roadB. fenceC. wallD. garden25. Blog discussions may be closed to new comments, ________ a message is displayed informing you of that.A. in what caseB. in which caseC. in whose caseD. in that case26. A promising approach to reducing appetite which does not ________ taking any drugs, and is very safe, is todrink a certain amount of water before a meal.A. suggestB. involveC. preventD. practice27. Make contacts among your parents’ friends, your neighbors, your community organizations — _______ youcan find working adults, network.A. wheneverB. whateverC. whoeverD. wherever28. The question was brought to life again ________a person has the right to end his or her own life and a doctorhas the right to assist.A. whereB. in whichC. thatD. whether29. It is thought police had been called to the scene following a report of a collision involving her vehicle and________ of another motorist.A. oneB. thoseC. someD. that30. William Shakespeare is considered the greatest playwright________, and his works still influence the Englishlanguage and today’s literature.A. of the timeB. of all timesC. at timesD. over time31 According to the new rules, if a student ________ happen to damage something in the campus, he/she shouldreport it those concerned immediately.A. shouldB. willC. shallD. would32. —Miss. Miller, this is Ruben Holmen calling again. You had said I should call this week to schedule aninterview with you.—________, why don’t we say next Monday at 11:30 a.m.?A. It dependsB. All right thenC. How comeD. With pleasure33. — I wonder if you could go with me to the supermarket.—Don’t disturb me. I ________ my daily report this morning and haven’t finished yet.A. writeB. was writingC. have writtenD. have been writing34. While being shy is normal, it is when the shyness interferes with an individual’s daily communication withothers ________ it becomes a disorder.A. whichB. whenC. whereD. that35. —You look excited. What’s up?—_______ My sister is going to have a baby! That means I’ll be an aunt.A. I guess.B. No doubt.C. Guess what!D. All right.四.书面表达请你根据对下图的理解,用英语写一篇短文。
南京市、盐城市2014届高三年级第二次模拟考试数学试题及答案范文
南京市2014届高三年级第二次模拟考试数 学 2014.03参考公式:柱体的体积公式:V =Sh ,其中S 为柱体的底面积,h 为柱体的高. 圆柱的侧面积公式:S 侧=2πRh ,其中R 为圆柱的底面半径,h 为圆柱的高. 一、填空题(本大题共14小题,每小题5分,计70分. ) 1.函数f (x )=ln x +1-x 的定义域为 .2.已知复数z 1=-2+i ,z 2=a +2i(i 为虚数单位,a ∈R ).若z 1z 2为实数,则a 的值为 . 3.某地区教育主管部门为了对该地区模拟考试成绩进行分析, 随机抽取了150分到450分之间的1000名学生的成绩,并根 据这1000名学生的成绩画出样本的频率分布直方图(如图),则 成绩在[300,350)内的学生人数共有 .4.盒中有3张分别标有1,2,3的卡片.从盒中随机抽取一张记下号码后放回, 再随机抽取一张记下号码,则两次抽取的卡片号码中至少 有一个为偶数的概率为 .5.已知等差数列{a n }的公差d 不为0,且a 1,a 3,a 7则a 1d的值为 . 6.执行如图所示的流程图,则输出的k 的值为 .7.函数f (x )=A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0,0<φ<π)的图象如下图所示,则f (π3)8.在平面直角坐标系xOy 中,双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线与抛物线y 2=4x 的准线相交于A ,B 两点.若△AOB 的面积为2,则双曲线的离心率为 .9.表面积为12π的圆柱,当其体积最大时,该圆柱的底面半径与高的比为 .10.已知|OA →|=1,|OB →|=2,∠AOB =2π3,OC →=12OA →+14OB →,则OA →与OC →的夹角大小为 .11.在平面直角坐标系xOy 中,过点P (5,3)作直线l 与圆x 2+y 2=4相交于A ,B 两点,若OA ⊥OB ,则直线l 的斜率为 .12.已知f (x )是定义在R 上的奇函数,当0≤x ≤1时,f (x )=x 2,当x >0时,f (x +1)=f (x )+f (1),且. 若直线y =kx 与函数y =f (x )的图象恰有5个不同的公共点,则实数k 的值为 .13.在△ABC 中,点D 在边BC 上,且DC =2BD ,AB ∶AD ∶AC =3∶k ∶1,则实数k 的取值范围为 . 14.设函数f (x )=ax +sin x +cos x .若函数f (x )的图象上存在不同的两点A ,B ,使得曲线y =f (x )在点A ,B 处的切线互相垂直,则实数a 的取值范围为 .a(第3题图)(第6题图)(第7题图)2二、解答题(本大题共6小题,计90分.) 15.(本小题满分14分)如图,在四棱锥P -ABCD 中,底面ABCD 为矩形,平面P AB ⊥平面ABCD ,P A ⊥PB , BP =BC ,E 为PC 的中点. (1)求证:AP ∥平面BDE ; (2)求证:BE ⊥平面P AC .16.(本小题满分14分)在平面直角坐标系xOy 中,角α的顶点是坐标原点,始边为x 轴的正半轴,终边与单位圆O 交 于点A (x 1 ,y 1 ),α∈(π4,π2).将角α终边绕原点按逆时针方向旋转π4,交单位圆于点B (x 2,y 2).(1)若x 1=35,求x 2;(2)过A ,B 作x 轴的垂线,垂足分别为C ,D ,记△AOC 及 △BOD 的面积分别为S 1,S 2,且S 1=43S 2,求tan α的值.(第16题图) PBCDEA(第15题图)如图,经过村庄A 有两条夹角为60°的公路AB ,AC ,根据规划拟在两条公路之间的区域内建一工厂P ,分别在两条公路边上建两个仓库M 、N (异于村庄A ),要求PM =PN =MN =2(单位:千米).如何设计,使得工厂产生的噪声对居民的影响最小(即工厂与村庄的距离最远).18. (本小题满分16分)在平面直角坐标系xOy 中,已知椭圆C ∶x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,焦距为2,一条准线方程为x =2.P 为椭圆C 上一点,直线PF 1交椭圆C 于另一点Q . (1)求椭圆C 的方程;(2)若点P 的坐标为(0,b ),求过P ,Q ,F 2三点的圆的方程; (3)若F 1P →=λQF 1→,且λ∈[12,2],求OP →·OQ →的最大值.APMNBC(第17题图)4已知函数f (x )=ax +b x e x,a ,b ∈R ,且a >0.(1)若a =2,b =1,求函数f (x )的极值; (2)设g (x )=a (x -1)e x -f (x ).① 当a =1时,对任意x ∈(0,+∞),都有g (x )≥1成立,求b 的最大值;② 设g′(x )为g (x )的导函数.若存在x >1,使g (x )+g′(x )=0成立,求ba 的取值范围.20.(本小题满分16分)已知数列{a n }的各项都为正数,且对任意n ∈N *,a 2n -1,a 2n ,a 2n +1成等差数列, a 2n ,a 2n +1,a 2n +2成等比数列.(1)若a 2=1,a 5=3,求a 1的值;(2)设a 1<a 2,求证:对任意n ∈N *,且n ≥2,都有a n +1a n <a 2a 1.南京市2014届高三年级第二次模拟考试数学参考答案一、填空题:本大题共14小题,每小题5分,计70分.1.(0,1] 2.4 3.300 4.59 5.2 6.4 7.18. 5 9.12 10.60° 11.1或723 12.22-2 13.(53,73) 14.[-1,1]二、解答题: 15.省略16.解:(1)x 2=cos(α+π4)=cos αcos π4-sin αsin π4=-210. ……………6分(2)tan α=2. …………………………………………14分 17.解:设∠AMN =θ,在△AMN 中,MN sin60°=AMsin(120°-θ).因为MN =2,所以AM =433sin(120°-θ) . ………………………………………2分在△APM 中,cos ∠AMP =cos(60°+θ). …………………………………………6分 AP 2=AM 2+MP 2-2 AM ·MP ·cos ∠AMP=163sin 2(120°-θ)+4-2×2×433 sin(120°-θ) cos(60°+θ) ………………………………8分 =203-163sin(2θ+150°),θ∈(0,120°). …………………………………………12分 当且仅当2θ+150°=270°,即θ=60°时,AP 2取得最大值12,即AP 取得最大值23.答:设计∠AMN 为60︒时,工厂产生的噪声对居民的影响最小.……………………………………14分 18.(1)解:由题意得⎩⎪⎨⎪⎧2c =2,a 2c =2, 解得c =1,a 2=2,所以b 2=a 2-c 2=1.所以椭圆的方程为x 22+y 2=1. …………………………………………2分(2)因为P (0,1),F 1(-1,0),所以PF 1的方程为x -y +1=0.由⎩⎪⎨⎪⎧x +y +1=0,x 22+y 2=1, 解得⎩⎨⎧x =0,y =1,或⎩⎨⎧x =-43,y =-13,所以点Q 的坐标为(-43,-13). ……………………4分 解法一:因为k PF 1·k PF 2=-1,所以△PQF 2为直角三角形. ……………………6分 因为QF 2的中点为(-16,-16),QF 2=523,所以圆的方程为(x +16)2+(y +16)2=2518. ……………………8分(3)设P (x 1,y 1),Q (x 2,y 2),则F 1P →=(x 1+1,y 1),QF 1→=(-1-x 2,-y 2).6因为F 1P →=λQF 1→,所以⎩⎨⎧x 1+1=λ(-1-x 2),y 1=-λy 2,即⎩⎨⎧x 1=-1-λ-λx 2,y 1=-λy 2,所以⎩⎨⎧(-1-λ-λx 2)22+λ2y 22=1,x 222+y 22=1,解得x 2=1-3λ2λ. …………………………………………12分所以OP →·OQ →=x 1x 2+y 1y 2=x 2(-1-λ-λx 2)-λy 22=-λ2x 22-(1+λ)x 2-λ =-λ2(1-3λ2λ)2-(1+λ)·1-3λ2λ-λ=74-58(λ+1λ) . …………………………………………14分因为λ∈[12,2],所以λ+1λ≥2λ·1λ=2,当且仅当λ=1λ,即λ=1时,取等号. 所以OP →·OQ →≤12,即OP →·OQ →最大值为12. …………………………………………16分19.解:(1)当a =2,b =1时,f (x )=(2+1x)e x ,定义域为(-∞,0)∪(0,+∞).所以f ′(x )=(x +1)(2x -1)x 2e x. …………………………………………2分令f ′(x )=0,得x 1=-1,x 2=12,列表由表知f (x )的极大值是f (-1)=e -1,f (x )的极小值是f (12)=4e .……………………………………4分(2)① 因为g (x )=(ax -a )e x -f (x )=(ax -bx -2a )e x ,当a =1时,g (x )=(x -bx-2)e x .因为g (x )≥1在x ∈(0,+∞)上恒成立,所以b ≤x 2-2x -xe x 在x ∈(0,+∞)上恒成立. …………………………………………8分记h (x )=x 2-2x -xe x (x >0),则h ′(x )=(x -1)(2e x +1)e x.当0<x <1时,h ′(x )<0,h (x )在(0,1)上是减函数; 当x >1时,h ′(x )>0,h (x )在(1,+∞)上是增函数. 所以h (x )min =h (1)=-1-e -1.所以b 的最大值为-1-e -1. …………………………………………10分② 因为g (x )=(ax -b x -2a )e x ,所以g ′(x )=(b x 2+ax -bx -a )e x .由g (x )+g ′(x )=0,得(ax -b x -2a )e x +(b x 2+ax -bx -a )e x =0,整理得2ax 3-3ax 2-2bx +b =0.存在x >1,使g (x )+g ′(x )=0成立,等价于存在x >1,2ax 3-3ax 2-2bx +b =0成立. …………………………………………12分因为a >0,所以b a =2x 3-3x22x -1.设u (x )=2x 3-3x22x -1(x >1),则u ′(x )=8x [(x -34)2+316](2x -1)2. 因为x >1,u ′(x )>0恒成立,所以u (x )在(1,+∞)是增函数,所以u (x )>u (1)=-1,所以b a >-1,即ba 的取值范围为(-1,+∞). …………………………………………16分20.解:(1)因为a 3,a 4,a 5成等差数列,设公差为d ,则a 3=3-2d ,a 4=3-d .因为a 2,a 3,a 4成等比数列,所以a 2=a 23a 4=(3-2d )23-d . …………………………………………3分因为a 2=1,所以(3-2d )2 3-d =1,解得d =2,或d =34. 因为a n >0,所以d =34.因为a 1,a 2,a 3成等差数列,所以a 1=2a 2-a 3=2-(3-2d )=12.…………………………………5分 (2)证:①若n 为奇数且n ≥3时,则a n ,a n +1,a n +2成等差数列.因为a n +2a n +1-a n +1a n =a n +2a n -a 2n +1a n +1a n =(2a n +1-a n )a n -a 2n +1a n +1a n =-(a n +1-a n )2a n +1a n ≤0,所以a n +2a n +1≤a n +1a n.②若n 为偶数且n ≥2时,则a n ,a n +1,a n +2成等比数列,所以a n +2a n +1=a n +1a n .由①②可知,对任意n ≥2,n ∈N *,a n +2a n +1≤a n +1a n≤…≤a 3a 2.又因为a 3a 2-a 2a 1=2a 2-a 1a 2-a 2a 1=2a 2a 1-a 12-a 22a 2a 1=-(a 1-a 2)2a 2a 1,因为a 1<a 2,所以-(a 1-a 2)2a 2a 1<0,即a 3a 2<a 2a 1.综上,a n +1a n <a 2a 1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【答案】 .
【提示】设A(t,2 log2t)(t>1),则B(t2,2 log2t),D(t,log2t),C(t2,2klog2t),则有log2t=2klog2t,
【答案】x+y-2=0.
【说明】本题考查直线与圆相切问题和最值问题.
6.已知双曲线 - =1(a>0,b>0)的离心率等于2,它的右准线过抛物线y2=4x的焦点,则双曲线的方程为.
【答案】 - =1.
【解析】本题主要考查了双曲线、抛物线中一些基本量的意义及求法.
7.在平面直角坐标系xOy中,已知曲线C1、C2、C3依次为y=2log2x、y=log2x、y=klog2x(k为常数,
【答案】π.
【提示】设圆锥的底面半径为r,母线长为l,由题意知 = π,且 ·2πr·l=2 π,解得l=2,r= ,所以圆锥高h=1,则体积V= πr2h=π.
【说明】本题考查圆锥的侧面展开图及体积的计算.
5.设圆x2+y2=2的切线l与x轴正半轴,y轴正半轴分别交于点A,B.当线段AB的长度最小值时,切线l的方程为____________.
当直线过点A时,t最大.由 解得A( , ),
所以tmax= - = .
因此 的取值范围是[- , ].
【说明】本题含三个变量,解题时要注意通过换元减少变量的个数.利用消元、换元等方法进行减元的思想是近年高考填空题中难点和热点,对于层次很好的学校值得关注.
9.已知四数a1,a2,a3,a4依次成等比数列,且公比q不为1.将此数列删去一个数后得到的数列(按原来的顺序)是等差数列,则正数q的取值集合是.
因为a15=- d>0,a18= d<0,所以a15+a18=- d+ d= d<0,
所以b15+b16=a16a17(a15+a18)>0,所以S16>S14,故Sn中S16最大.
【说明】利用等差数列及等差数列的基本性质是解题基本策略.此题借助了求等差数列前n项和最值的方法,所以在关注方法时,也要关注形成方法的过程和数学思想.
南京市2014届高三数学综合题
一、填空题
1.已知函数y=sinωx(ω>0)在区间[0, ]上为增函数,且图象关于点(3π,0)对称,则ω的取值集合为.
【答案】{ , ,1}.
【提示】由题意知, 即 ,其中k Z,则k= 或k= 或k=1.
【说明】本题考查三角函数的图象与性质(单调性及对称性).三角函数除关注求最值外,也适当关注其图象的特征,如周期性、对称性、单调性等.
③必存在平面γ与两平面α、β均平行;④必存在平面γ与两平面α、β均垂直.
其中正确的是___________.(填写正确命题序号)
【答案】①④.
【提示】当两平面相交时,不存在直线与它们均垂直,也不存在平面与它们均平行(否则两平面平行).
【说明】本题考查学生空间线面,面面位置关系及空间想象能力.
4.圆锥的侧面展开图是圆心角为 π,面积为2 π的扇形,则圆锥的体积是______.
【说明】本题主要考查平面向量的数量积,体现化归转化思想.另本题还可通过建立平面直角坐标系将向量“坐标化”来解决.向量问题突出基底法和坐标法,但要关注基底的选择与坐标系位置选择的合理性,两种方法之间的选择.
3.设α、β为空间任意两个不重合的平面,则:
①必存在直线l与两平面α、β均平行;②必存在直线l与两平面α、β均垂直;
于是有1≤2(a-c)-2(b-c)≤2,即1≤ ≤2.设x=2b-c,y=2a-c,
则有x+y≤2,x2≤y≤2x2,x>0,y>0, =y-x.
在平面直角坐标系xOy中作出点(x,y)所表示的平面区域,并设y-x=t.
如图,当直线y-x=t与曲线y=x2相切时,t最小.
此时令y′=2x=1,解得x= ,于是y= ,所以tmin= - =- .
【答案】{ , }.
【提示】因为公比q不为1,所以不能删去a1,a4.设{an}的公差为d,则
1若删去a2,则由2a3=a1+a4得2a1q =a1+a1q ,即2q =1+q ,
整理得q (q-1)=(q-1)(q+1).
又q≠1,则可得q =q+1,又q>0解得q= ;
2若删去a3 ,整理得q(q-1)(q+1)=q-1.
又q≠1,则可得q(q+1)=1,又q>0解得q= .
综上所述,q= .
【说明】本题主要考查等差数列等差中项的概念及等比数列中基本量的运算.
*10.数列{an}是等差数列,数列{bn}满足bn=anan+1an+2(n∈N*),设Sn为{bn}的前n项和.若a12= a5>0,则当Sn取得最大值时n的值等于___________.
【答案】16.
【提示】设{an}的公差为d,由a12= a5>0得a1=- d,d>0,所以an=(n- )d,
从而可知1≤n≤16时,an>0,n≥17时,an<0.
从而b1>b2>…>b14>0>b17>b18>…,b15=a15a16a17<0,b16=a16a17a18>0,
故S14>S13>……>S1,S14>S15,S15<S16.
由于log2t>0,故2k=1,即k= .
【说明】本题考查对数函数的图像及简单的对数方程.注意点坐标之间的关系是建立方程的依据.
*8.已知实数a、b、c满足条件0≤a+c-2b≤1,且2a+2b≤21+c,则 的取值范围是_________.
【答案】[- , ].
【提示】由2a+2b≤21+c得2a-c+2b-c≤2,由0≤a+c-2b≤1得0≤(a-c)-2(b-c)≤1,
2.如图:梯形ABCD中,AB//CD,AB=6,AD=DC=2,若 · =-12,则 · =.
【答案】0.
【提示】以 , 为基底,则 = + , = - ,
则 · = 2- · - 2=4-8cos∠BAD-12=-12,
所以cos∠BAD= ,则∠BAD=60o,
则 · = ·( - )= ·( - )= 2- · =4-4=0.