一次函数重难点题型

合集下载

一次函数练习题难题

一次函数练习题难题

一次函数练习题难题一、选择题1. 下列函数中,是一次函数的是()A. y = 2x^2 + 1B. y = 3x + 4C. y = √x + 2D. y = 5/x2. 一次函数y = 3x 2的图象经过()A. 第一、二、三象限B. 第一、三象限C. 第一、二、四象限D. 第二、四象限3. 当k > 0时,一次函数y = kx + b的图象一定经过()A. 第一、二象限B. 第一、三象限C. 第二、四象限D. 第三、四象限二、填空题1. 一次函数的图象是一条______。

2. 一次函数y = 2x + 3的斜率为______,y轴截距为______。

3. 一次函数y = x + 5与y轴的交点坐标为______。

三、解答题1. 已知一次函数y = kx + b的图象经过点A(2, 3)和B(1, 4),求该一次函数的解析式。

2. 一次函数y = 2x + 5与x轴、y轴分别相交于点A、B,求线段AB的长度。

3. 已知一次函数y = 3x 1与y = x + 4相交于点P,求点P的坐标。

4. 在同一坐标系中,一次函数y = 2x + 3与y = x + 5的图象相交于点Q,求点Q的坐标。

5. 已知一次函数y = kx + 1的图象经过点(2, 5),且与y = x + 3平行,求k的值。

四、应用题1. 某商品的原价为1000元,商场进行打折促销,折后价格为800元。

设折后价格与原价的比例为k,求k的值。

2. 某公司生产一种产品,每件产品的成本为200元,售价为300元。

设公司每月生产x件产品,求公司每月的利润y(元)与生产数量x的函数关系式。

3. 甲、乙两地相距120公里,小明从甲地骑自行车前往乙地,速度为15公里/小时。

设小明骑行时间为t小时,求小明与甲地的距离s (公里)与时间t的函数关系式。

五、判断题1. 一次函数的图象是一条直线,所以它一定经过原点。

()2. 两个一次函数的斜率相同,则它们的图象一定平行。

初二一次函数难题

初二一次函数难题

初二一次函数难题标题: 初二一次函数难题正文:在初中数学中,一次函数是一个非常重要的概念,它是初中数学中的基础之一。

一次函数是指一个函数图像以一次的方式穿过函数的轴,并且一次函数的函数值只与一次变量有关。

对于初二学生来说,学习一次函数可能会有些难度,下面我们将探讨一些难点和解决方法。

难点一:一次函数的图像难以辨认一次函数的图像往往比较抽象,难以辨认。

在学习一次函数时,学生需要掌握函数图像的特点,例如,函数值与x轴、y轴的交点,函数的对称轴,函数的极值等。

只有掌握了这些特点,学生才能够准确地辨认一次函数的图像。

解决方法:1. 观察函数值与x轴、y轴的交点,确定函数的对称轴。

2. 观察函数的极值,确定函数的最大值和最小值。

3. 观察函数图像的特点,例如,函数值与x轴、y轴的交点,函数的对称轴,函数的极值等。

难点二:一次函数的应用一次函数在初中数学中的应用非常广泛,例如,用于计算物体的速度、距离和时间的关系,用于解决生活中的交通问题,以及用于解决物理和化学中的运动问题等。

因此,掌握一次函数的应用,对于学生来说非常重要。

解决方法:1. 了解函数的定义、性质、图像和特点。

2. 熟悉常见的一次函数,例如,y=x,y=2x-1,y=-x+3等。

3. 掌握一次函数在实际应用中的规律和技巧。

拓展:除了以上两个难点,还有一些其他的难点,例如,一次函数的参数化应用,一次函数的对称轴和对称图像的应用等。

针对这些难点,我们可以采用不同的方法来讲解和练习。

总之,一次函数是初中数学中的基础之一,对于初二学生来说,掌握一次函数的概念、图像和应用非常重要。

通过掌握函数的概念、性质、图像和特点,以及熟悉常见的一次函数,我们可以有效地解决一次函数难题。

2024年中考数学复习重难点题型训练—一次函数与几何图形综合题一(含答案解析)

2024年中考数学复习重难点题型训练—一次函数与几何图形综合题一(含答案解析)

2024年中考数学复习重难点题型训练—一次函数与几何图形综合题二(含答案解析)类型一与三角形有关1.(2022·天津)如图,△OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且AB⊥x 轴,若AB=6,OA=OB=5,则点A的坐标是()A.(5,4)B.(3,4)C.(5,3)D.(4,3)【答案】D【分析】利用HL证明△ACO≌△BCO,利用勾股定理得到OC=4,即可求解.【详解】解:∵AB⊥x轴,∴∠ACO=∠BCO=90°,∵OA=OB,OC=OC,∴△ACO≌△BCO(HL),∴AC=BC=12AB=3,∵OA=5,∴=4,∴点A的坐标是(4,3),故选:D.【点睛】本题考查了坐标与图形,全等三角形的判定和性质,勾股定理,解题的关键是灵活运用所学知识解决问题.2.(2020·宁夏中考真题)如图,直线542y x =+与x 轴、y 轴分别交于A 、B 两点,把AOB 绕点B 逆时针旋转90°后得到11AO B ,则点1A的坐标是_____.【答案】(4,125)【解析】【分析】首先根据直线AB 来求出点A 和点B 的坐标,A 1的横坐标等于OB ,而纵坐标等于OB-OA ,即可得出答案.【详解】解:在542y x =+中,令x=0得,y=4,令y=0,得5042x =+,解得x=8-5,∴A (8-5,0),B (0,4),由旋转可得△AOB ≌△A 1O 1B ,∠ABA 1=90°,∴∠ABO=∠A 1BO 1,∠BO 1A 1=∠AOB=90°,OA=O 1A 1=85,OB=O 1B=4,∴∠OBO 1=90°,∴O 1B ∥x 轴,∴点A 1的纵坐标为OB-OA 的长,即为48-5=125;横坐标为O 1B=OB=4,故点A 1的坐标是(4,125),故答案为:(4,125).【点睛】本题主要考查了旋转的性质以及一次函数与坐标轴的交点问题,利用基本性质结合图形进行推理是解题的关键.3.(2021·广西贺州市·中考真题)如图,一次函数4y x =+与坐标轴分别交于A ,B 两点,点P ,C 分别是线段AB ,OB 上的点,且45OPC ∠=︒,PC PO =,则点P 的标为________.【答案】(--【分析】过P 作PD ⊥OC 于D ,先求出A ,B 的坐标,得∠ABO=∠OAB=45°,再证明△PCB ≌△OPA ,从而求出BD =,OD =,进而即可求解.【详解】如图所示,过P 作PD ⊥OC 于D ,∵一次函数4y x =+与坐标轴分别交于A ,B 两点,∴A(-4,0),B(0,4),即:OA=OB ,∴∠ABO=∠OAB=45°,∴△BDP 是等腰直角三角形,∵∠PBC=∠CPO=∠OAP=45°,∴∠PCB+∠BPC=135°=∠OPA+∠BPC,∴∠PCB=∠OPA,又∵PC=OP,∴△PCB≌△OPA(AAS),∴AO=BP=4,∴Rt△BDP中,BD=PD=2=2,∴OD=OB−BD=2,∴P(2,2).故答案是:P(2,2).【点睛】本题主要考查了一次函数图象上点的坐标特征以及等腰三角形的性质,结合等腰三角形的性质,判定全等三角形是解决问题的关键.4.(2022·湖北黄冈)如图1,在△ABC中,∠B=36°,动点P从点A出发,沿折线A→B→C 匀速运动至点C停止.若点P的运动速度为1cm/s,设点P的运动时间为t(s),AP的长度为y(cm),y与t的函数图象如图2所示.当AP恰好平分∠BAC时,t的值为________.【答案】252+##2+25【分析】根据函数图像可得AB=4=BC ,作∠BAC 的平分线AD ,∠B =36°可得∠B =∠DAC =36°,进而得到ADC BAC △△,由相似求出BD 的长即可.【详解】根据函数图像可得AB=4,AB+BC=8,∴BC=AB=4,∵∠B =36°,∴72BCA BAC ∠∠︒==,作∠BAC 的平分线AD ,∴∠BAD =∠DAC =36°=∠B ,∴AD=BD ,72BCA DAC ∠∠︒==,∴AD=BD=CD ,设AD BD CD x ===,∵∠DAC =∠B =36°,∴ADC BAC △△,∴AC DC BC AC =,∴x 4x 4x-=,解得:1225x =-+,225x =--,∴252AD BD CD ===,此时521AB BD t +==(s),故答案为:52.【点睛】此题考查了图形与函数图象间关系、相似三角形的判定与性质、解一元二次方程,关键是证明ADC BAC △△.5.(2020·四川内江?中考真题)如图,在平面直角坐标系中,点A (-2,0),直线33:33l y x =+与x 轴交于点B ,以AB 为边作等边1ABA ∆,过点1A 作11//A B x 轴,交直线l 于点1B ,以11A B 为边作等边112A B A ∆,过点2A 作22//A B x 轴,交直线l 于点2B ,以22A B 为边作等边223A B A ∆,以此类推……,则点2020A 的纵坐标是______________【答案】20203(21)2-【解析】【分析】如图,过A 1作A 1C ⊥AB 与C ,过A 2作A 2C 1⊥A 1B 1于C 1,过A 3作A 3C 2⊥A 2B 2于C 2,先根据直线方程与x 轴交于点B (-1,0),且与x 轴夹角为30º,则有AB=1,然后根据平行线的性质、等边三角形的性质、含30º的直角三角形的性质,分别求的A 1、A 2、A 3、的纵坐标,进而得到A n 的纵坐标,据此可得A 2020的纵坐标,即可解答.【详解】如图,过A 1作A 1C ⊥AB 与C ,过A 2作A 2C 1⊥A 1B 1于C 1,过A 3作A 3C 2⊥A 2B 2于C 2,先根据直线方程与x 轴交于点B (-1,0),与y 轴交于点D (0,33),∴OB=1,OD=33,∴∠DBO=30º由题意可得:∠A 1B 1B=∠A 2B 2B 1=30º,∠B 1A 1B=∠B 2A 2B 1=60º∴∠A 1BB 1=∠A 2B 1B 2=90º,∴AB=1,A 1B 1=2A 1B=21,A 2B 2=2A 2B 1=22,A 3B 3=2A 3B 2=23,…A n B n =2n∴A 1C=2AB=2×1,A 1纵坐标为32×1=13(21)2-;A 2C 1=32A 1B 1=1322⨯,A2的纵坐标为32×1+1322⨯=013(22)2+=332⨯=23(21)2-;A 3C 2=32A 2B 2=2322⨯,A 3的纵坐标为32×1+1322⨯+2322⨯=0123(222)2++=372⨯=33(21)2-;…由此规律可得:A n C n-1=1322n -⨯,A n 的纵坐标为01213(2222)2n -++++ =3(21)2n -,∴A 2020=20203(21)2-,故答案为:20203(21)2-【点睛】本题是一道点的坐标变化规律探究,涉及一次函数的图象、等边三角形的性质、含30º角的直角三角形的性质,数字型规律等知识,解答的关键是认真审题,观察图象,结合基本图形的有关性质,找到坐标变化规律.6.(2022·陕西)如图,ABC 的顶点坐标分别为(23)(30)(11)A B C ----,,,,,.将ABC 平移后得到A B C '''V ,且点A 的对应点是(23)A ',,点B 、C 的对应点分别是B C '',.(1)点A 、A '之间的距离是__________;(2)请在图中画出A B C '''V .【答案】(1)4(2)见解析【分析】(1)由(23)A -,,(23)A ',得,A 、A '之间的距离是2-(-2)=4;(2)根据题意找出平移规律,求出103-1B C ''(,),(,),进而画图即可.(1)解:由(23)A -,,(23)A ',得,A 、A '之间的距离是2-(-2)=4.故答案为:4.(2)解:由题意,得103-1B C ''(,),(,),如图,A B C '''V 即为所求.【点睛】本题考查了坐标系中两点之间的距离求解以及平移求点坐标画图,题目相对较简单,掌握平移规律是解决问题的关键.7.(2021·贵州毕节市·中考真题)如图,在平面直角坐标系中,点()11,1N 在直线:l y x =上,过点1N 作11N M l ⊥,交x 轴于点1M ;过点1M 作12M N x ⊥轴,交直线l 于点2N ;过点2N 作22N M l ⊥,交x 轴于点2M ;过点2M 作23M N x ⊥轴,交直线l 于点3N ;…;按此作法进行下去,则点2021M 的坐标为_____________.【答案】(20212,0).【分析】根据题目所给的解析式,求出对应的1M 坐标,然后根据规律求出n M 的坐标,最后根据题目要求求出最后答案即可.【详解】解:如图,过点N 作NM ⊥x 轴于M将1x =代入直线解析式y x =中得1y =∴1OM MN ==,MON ∠=45°∵1ONM =∠90°∴1ON NM =∵1ON NM ⊥∴11OM MM ==∴1M 的坐标为(2,0)同理可以求出2M 的坐标为(4,0)同理可以求出3M 的坐标为(8,0)同理可以求出n M 的坐标为(2n ,0)∴2021M 的坐标为(20212,0)故答案为:(20212,0).【点睛】本题主要考查了直线与坐标轴之间的关系,解题的关键在于能够发现规律.8.(2020·湖南湘西?中考真题)在平面直角坐标系中,O 为原点,点(6,0)A ,点B 在y 轴的正半轴上,30ABO ∠=︒.矩形CODE 的顶点D ,E ,C 分别在,,OA AB OB 上,2OD =.将矩形CODE 沿x 轴向右平移,当矩形CODE 与ABO 重叠部分的面积为时,则矩形CODE 向右平移的距离为___________.【答案】2【解析】【分析】先求出点B 的坐标(0,3),得到直线AB 的解析式为:33y =+,根据点D 的坐标求出OC 的长度,利用矩形CODE 与ABO 重叠部分的面积为63列出关系式求出3D G '=,再利用一次函数关系式求出OD '=4,即可得到平移的距离.【详解】∵(6,0)A ,∴OA=6,在Rt △AOB 中,30ABO ∠=︒,∴63tan 30OA OB ==∴B (0,63),∴直线AB 的解析式为:33y =+,当x=2时,y=43∴E (2,3,即DE=3∵四边形CODE 是矩形,∴OC=DE=43设矩形CODE 沿x 轴向右平移后得到矩形C O D E '''',D E ''交AB 于点G ,∴D E ''∥OB ,∴△AD G '∽△AOB ,∴∠AGD '=∠AOB=30°,∴∠EGE '=∠AGD '=30°,∴GE ''=,∵平移后的矩形CODE 与ABO 重叠部分的面积为,∴五边形C O D GE '''的面积为∴12O D O C EE GE ''''''⋅-⋅=,∴122EE ''⨯-⨯=,∴2EE '=,∴矩形CODE 向右平移的距离DD '=2EE '=,故答案为:2.【点睛】此题考查了锐角三角函数,求一次函数的解析式,矩形的性质,图形平移的性质,是一道综合多个知识点的综合题型,且较为基础的题型.9.(2021·浙江金华市·中考真题)在平面直角坐标系中,点A 的坐标为(,点B 在直线8:3l y x =上,过点B 作AB 的垂线,过原点O 作直线l 的垂线,两垂线相交于点C .(1)如图,点B ,C 分别在第三、二象限内,BC 与AO 相交于点D .①若BA BO =,求证:CD CO =.②若45CBO ∠=︒,求四边形ABOC 的面积.(2)是否存在点B ,使得以,,A B C 为顶点的三角形与BCO 相似?若存在,求OB 的长;若不存在,请说明理由.【答案】(1)①见解析;②552;(2)存在,44+-4,9,1【分析】(1)①等腰三角形等角对等边,则BAD AOB ∠=∠,根据等角的余角相等和对顶角相等,得到CDO COD ∠=∠,根据等角对等边,即可证明CD CO =;②添加辅助线,过点A 作AH OB ⊥于点H ,根据直线l 的解析式和角的关系,分别求出线段AB 、BC 、OB 、OC 的长,则11+22ABC CBO ABOC S S S AB BC OB OC =+=⨯⨯ 四边形;(2)分多钟情况进行讨论:①当点C 在第二象限内,ACB CBO ∠=∠时;②当点C 在第二象限内,ACB BCO ∠=∠时;③当点C 在第四象限内,ACB CBO ∠=∠时.【详解】解:(1)①证明:如图1,∵BA BO =,∴12∠=∠.∴BA BC ⊥,∴2590∠+∠=︒.而45∠=∠,∴2490∠+∠=︒.∵OB OC ⊥,∴1390∠+∠=︒.∴34∠=∠,∴CD CO =.②如图1,过点A 作AH OB ⊥于点H .由题意可知3tan 18∠=,在Rt AHO 中,3tan 18AH OH ∠==.设3m AH =,8m OH =.∵222AH OH OA +=,∴()()22238m m +=,解得1m =.∴38AH OH ==,.∵4590CBO ABC ∠=︒∠=︒,,∴45ABH ∠=︒,∴3,tan 45sin 45AH AH BH AB ====︒︒∴5OB OH BH =-=.∵45OB OC CBO ⊥∠=︒,,∴tan 455,cos 45OB OC OB BC =⨯︒===︒,∴111522ABC S AB BC =⨯=⨯= ,112555222CBO S OB OC =⨯=⨯⨯= :∴552ABC CBO ABOC S S S =+= 四边形.(2)过点A 作AH OB ⊥于点H ,则有38AH OH ==,.①如图2,当点C 在第二象限内,ACB CBO ∠=∠时,设OB t=∵ACB CBO ∠=∠,∴//AC OB .又∵AH OB OC OB ⊥⊥,,∴3AH OC ==.∵AH OB AB BC ⊥⊥,,∴12902390∠+∠=︒∠+∠=︒,,∴13∠=∠,∴AHB BOC ∽,∴AH HB BO OC=,∴383t t -=,整理得2890t t -+=,解得4t =±∴4OB =±②如图3,当点C 在第二象限内,ACB BCO ∠=∠时,延长AB CO ,交于点G ,则ACB GCB ≌,∴AB GB =.又∵AH OB OC OB ⊥⊥,,∴90AHB GOB ∠=∠=︒,而ABH GBO ∠=∠,∴ABH GBO ≌,∴142OB HB OH ===③当点C 在第四象限内,ACB CBO ∠=∠时,AC 与OB 相交于点E ,则有BE CE =.(a)如图4,点B 在第三象限内.在Rt ABC 中,1290,90ACB CAB ∠+∠=︒∠+∠=︒,∴2CAB∠=∠∴AE BE CE ==,又∵,AH OB OC OB ⊥⊥,∴90AHE COE ∠=∠=︒,而AEH CEO∠=∠∴AHE COE ≌,∴142HE OE OH ===∴225AE AH HE =+=,∴5BE =,∴9OB BE OE =+=(b)如图5,点B 在第一象限内.在Rt ABC 中90,90ACB CAB CBO ABE ∠+∠=︒∠+∠=︒∴CAB ABE ∠=∠,∴AE BE CE ==.又∵,AH OB OC OB ⊥⊥,∴90AHE COE ∠=∠=︒而AEH CEO ∠=∠,∴AHE COE≌∴142HE OE OH ===∴5AE ==,∴5BE =,∴1OB BE OE =-=综上所述,OB 的长为44+4,9,1.【点睛】本题涉及到等腰三角形、等角的余角相等、利用切割法求四边形的面积和相似三角形等知识,综合性较强.在题中已知两个三角形相似时,要分情况考虑.10.(2020·河南中考真题)小亮在学习中遇到这样一个问题:如图,点D 是弧BC 上一动点,线段8,BC cm =点A 是线段BC 的中点,过点C 作//CF BD ,交DA 的延长线于点F .当DCF ∆为等腰三角形时,求线段BD 的长度.小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题,请将下面的探究过程补充完整:()1根据点D 在弧BC 上的不同位置,画出相应的图形,测量线段,,BD CD FD 的长度,得到下表的几组对应值.操作中发现:①"当点D 为弧BC 的中点时, 5.0BD cm =".则上中a 的值是②"线段CF 的长度无需测量即可得到".请简要说明理由;()2将线段BD 的长度作为自变量x CD ,和FD 的长度都是x 的函数,分别记为CD y 和FD y ,并在平面直角坐标系xOy 中画出了函数FD y 的图象,如图所示.请在同一坐标系中画出函数CD y 的图象;()3继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当DCF ∆为等腰三角形时,线段BD 长度的近似值.(结果保留一位小数).【答案】(1)①5.0;②见解析;(2)图象见解析;(3)图象见解析;3.5cm 或5.0cm 或6.3cm ;【解析】【分析】(1)①点D 为弧BC 的中点时,△ABD ≌△ACD ,即可得到CD=BD ;②由题意得△ACF ≌△ABD ,即可得到CF=BD ;(2)根据表格数据运用描点法即可画出函数图象;(3)画出CF y 的图象,当DCF ∆为等腰三角形时,分情况讨论,任意两边分别相等时,即任意两个函数图象相交时的交点横坐标即为BD 的近似值.【详解】解:(1)①点D 为弧BC 的中点时,由圆的性质可得:AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACD ,∴CD=BD=5.0,∴ 5.0a =;②∵//CF BD ,∴BDA CFA ∠=∠,∵BDA CFA BAD CAF AD AF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACF ≌△ABD ,∴CF=BD ,∴线段CF 的长度无需测量即可得到;(2)函数CD y的图象如图所示:(3)由(1)知=CF BD x =,画出CF y 的图象,如上图所示,当DCF ∆为等腰三角形时,①CF CD =,BD 为CF y 与CD y 函数图象的交点横坐标,即BD=5.0cm ;②CF DF =,BD 为CF y 与DF y 函数图象的交点横坐标,即BD=6.3cm ;③CD DF =,BD 为CD y 与DF y 函数图象的交点横坐标,即BD=3.5cm ;综上:当DCF ∆为等腰三角形时,线段BD 长度的近似值为3.5cm 或5.0cm 或6.3cm .【点睛】本题考查一次函数结合几何的应用,学会用描点法画出函数图象,熟练掌握一次函数的性质以及三角形全等的判定及性质是解题的关键.11.(2020·河北中考真题)如图1和图2,在ABC ∆中,AB AC =,8BC =,3tan 4C =.点K 在AC 边上,点M ,N 分别在AB ,BC 上,且2AM CN ==.点P 从点M 出发沿折线MB BN-匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持APQ B∠=∠.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将ABC∆的面积分成上下4:5两部分时,求MP的长;(3)设点P移动的路程为x,当03x≤≤及39x≤≤时,分别求点P到直线AC的距离(用含x的式子表示);(4)在点P处设计并安装一扫描器,按定角APQ∠扫描APQ∆区域(含边界),扫描器随点P从M到B再到N共用时36秒.若94AK=,请直接..写出点K被扫描到的总时长.【答案】(1)3;(2)43MP=;(3)当03x≤≤时,24482525d x=+;当39x≤≤时,33355d x=-+;(4)23t s=【解析】【分析】(1)根据当点P在BC上时,PA⊥BC时PA最小,即可求出答案;(2)过A点向BC边作垂线,交BC于点E,证明△APQ∽△ABC,可得2APQABCS APS AB∆∆⎛⎫= ⎪⎝⎭,根据SS上下=45可得24=9APQABCS APS AB∆∆⎛⎫= ⎪⎝⎭,可得23APAB=,求出AB=5,即可解出MP;(3)先讨论当0≤x≤3时,P在BM上运动,P到AC的距离:d=PQ·sinC,求解即可,再讨论当3≤x≤9时,P在BN上运动,BP=x-3,CP=8-(x-3)=11-x,根据d=CP·sinC即可得出答案;(4)先求出移动的速度=936=14,然后先求出从Q 平移到K 耗时,再求出不能被扫描的时间段即可求出时间.【详解】(1)当点P 在BC 上时,PA ⊥BC 时PA 最小,∵AB=AC ,△ABC 为等腰三角形,∴PA min =tanC·2BC =34×4=3;(2)过A 点向BC 边作垂线,交BC 于点E,S 上=S △APQ ,S 下=S 四边形BPQC ,∵APQ B ∠=∠,∴PQ ∥BC ,∴△APQ ∽△ABC ,∴AP AD PQ AB AC BC==,∴2APQABC S AP S AB ∆∆⎛⎫= ⎪⎝⎭,当S S 上下=45时,24=9APQ ABC S AP S AB ∆∆⎛⎫= ⎪⎝⎭,∴23AP AB =,AE=2BC ·tan 3C =,根据勾股定理可得AB=5,∴2253AP MP AB +==,解得MP=43;(3)当0≤x≤3时,P 在BM 上运动,P 到AC 的距离:d=PQ·sinC ,由(2)可知sinC=35,∴d=35PQ ,∵AP=x+2,∴25AP x PQ AB BC+==,∴PQ=285x +⨯,∴d=23855x +⨯⨯=24482525x +,当3≤x≤9时,P 在BN 上运动,BP=x-3,CP=8-(x-3)=11-x ,d=CP·sinC=35(11-x )=-35x+335,综上()()24480325253333955x x d x x ⎧+≤≤⎪⎪=⎨⎪-+≤≤⎪⎩;(4)AM=2<AQ=94,移动的速度=936=14,①从Q 平移到K ,耗时:92414-=1秒,②P 在BC 上时,K 与Q 重合时CQ=CK=5-94=114,∵∠APQ+∠QPC=∠B+∠BAP ,APQ B∠=∠∴∠QPC=∠BAP ,又∵∠B=∠C ,∴△ABP ∽△PCQ ,设BP=y ,CP=8-y ,AB BP PC CQ =,即51184y y =-,整理得y 2-8y=554-,(y-4)2=94,解得y 1=52,y 2=112,52÷14=10秒,112÷14=22秒,∴点K 被扫描到的总时长36-(22-10)-1=23秒.【点睛】本题考查了相似三角形的判定和性质,锐角三角函数,一次函数的应用,结合知识点灵活运用是解题关键.12.(2020·湖南衡阳?中考真题)如图1,平面直角坐标系xOy 中,等腰ABC ∆的底边BC 在x 轴上,8BC =,顶点A 在y 的正半轴上,2OA =,一动点E 从(3,0)出发,以每秒1个单位的速度沿CB 向左运动,到达OB 的中点停止.另一动点F 从点C 出发,以相同的速度沿CB 向左运动,到达点O 停止.已知点E 、F 同时出发,以EF 为边作正方形EFGH ,使正方形EFGH 和ABC ∆在BC 的同侧.设运动的时间为t 秒(0t ≥).(1)当点H 落在AC 边上时,求t 的值;(2)设正方形EFGH 与ABC ∆重叠面积为S ,请问是存在t 值,使得9136S =若存在,求出t 值;若不存在,请说明理由;(3)如图2,取AC 的中点D ,连结OD ,当点E 、F 开始运动时,点M 从点O 出发,以每秒OD DC CD DO ---运动,到达点O 停止运动.请问在点E 的整个运动过程中,点M 可能在正方形EFGH 内(含边界)吗?如果可能,求出点M 在正方形EFGH 内(含边界)的时长;若不可能,请说明理由.【答案】(1)t=1;(2)存在,143t =,理由见解析;(3)可能,3455t ≤≤或4533t ≤≤或35t ≤≤理由见解析【解析】【分析】(1)用待定系数法求出直线AC 的解析式,根据题意用t 表示出点H 的坐标,代入求解即可;(2)根据已知,当点F 运动到点O 停止运动前,重叠最大面积是边长为1的正方形的面积,即不存在t ,使重叠面积为9136S =,故t ﹥4,用待定系数法求出直线AB 的解析式,求出点H 落在BC 边上时的t 值,求出此时重叠面积为169﹤9136,进一步求出重叠面积关于t 的表达式,代入解t 的方程即可解得t 值;(3)由已知求得点D (2,1),AC=,结合图形分情况讨论即可得出符合条件的时长.【详解】(1)由题意,A(0,2),B(-4,0),C(4,0),设直线AC 的函数解析式为y=kx+b ,将点A 、C 坐标代入,得:402k b b +=⎧⎨=⎩,解得:122k b ⎧=-⎪⎨⎪=⎩,∴直线AC 的函数解析式为122y x =-+,当点H 落在AC 边上时,点E(3-t ,0),点H (3-t ,1),将点H 代入122y x =-+,得:11(3)22t =--+,解得:t=1;(2)存在,143t =,使得9136S =.根据已知,当点F 运动到点O 停止运动前,重叠最大面积是边长为1的正方形的面积,即不存在t ,使重叠面积为9136S =,故t ﹥4,设直线AB 的函数解析式为y=mx+n ,将点A 、B 坐标代入,得:402m n n -+=⎧⎨=⎩,解得:122m n ⎧=⎪⎨⎪=⎩,∴直线AC 的函数解析式为122y x =+,当t ﹥4时,点E (3-t ,0)点H (3-t ,t-3),G(0,t-3),当点H 落在AB 边上时,将点H 代入122y x =+,得:13(3)22t t -=-+,解得:133t =;此时重叠的面积为221316(3)(3)39t -=-=,∵169﹤9136,∴133﹤t ﹤5,如图1,设GH 交AB 于S ,EH 交AB 于T,将y=t-3代入122y x =+得:1322t x -=+,解得:x=2t-10,∴点S(2t-10,t-3),将x=3-t 代入122y x =+得:11(3)2(7)22y t t =-+=-,∴点T 1(3,(7))2t t --,∴AG=5-t ,SG=10-2t ,BE=7-t ,ET=1(7)2t -,211(7)24BET S BE ET t ∆==- ,21(5)2ASG S AG SG t ∆==- 所以重叠面积S=AOB BET ASG S S S ∆∆∆--=4-21(7)4t --2(5)t -=2527133424t t -+-,由2527133424t t -+-=9136得:1143t =,29215t =﹥5(舍去),∴143t =;(3)可能,35≤t≤1或t=4.∵点D 为AC 的中点,且OA=2,OC=4,∴点D (2,1),AC=,易知M 点在水平方向以每秒是4个单位的速度运动;当0﹤t ﹤12时,M 在线段OD 上,H 未到达D 点,所以M 与正方形不相遇;当12﹤t ﹤1时,12+12÷(1+4)=35秒,∴t =35时M 与正方形相遇,经过1÷(1+4)=15秒后,M 点不在正方行内部,则3455t ≤≤;当t=1时,由(1)知,点F 运动到原E 点处,M 点到达C 处;当1≤t≤2时,当t=1+1÷(4-1)=43秒时,点M 追上G 点,经过1÷(4-1)=13秒,点M 都在正方形EFGH 内(含边界),4533t ≤≤当t=2时,点M 运动返回到点O 处停止运动,当t=3时,点E 运动返回到点O 处,当t=4时,点F 运动返回到点O 处,当35t ≤≤时,点M 都在正方形EFGH 内(含边界),综上,当3455t ≤≤或4533t ≤≤或35t ≤≤时,点M 可能在正方形EFGH 内(含边界).【点睛】本题考查了一次函数与几何图形的综合,涉及求一次函数的解析式、正方形的性质、直角三角形的性质、不规则图形的面积、解一元二次方程等知识,解答的关键是认真审题,提取相关信息,利用待定系数法、数形结合法等解题方法确定解题思路,进而推理、探究、发现和计算.13.(2020·黑龙江哈尔滨?中考真题)已知,在平面直角坐标系中,点O 为坐标原点,直线AB 与x 轴的正半轴交于点A ,与y 轴的负半轴交于点B ,OA OB =,过点A 作x 轴的垂线与过点O 的直线相交于点C ,直线OC 的解析式为34y x =,过点C 作CM y ⊥轴,垂足为,9M OM =.(1)如图1,求直线AB 的解析式;(2)如图2,点N 在线段MC 上,连接ON ,点P 在线段ON 上,过P 点作PD x ⊥轴,垂足为D ,交OC 于点E ,若NC OM =,求PE OD的值;(3)如图3,在(2)的条件下,点F 为线段AB 上一点,连接OF ,过点F 作OF 的垂线交线段AC 于点Q ,连接BQ ,过点F 作x 轴的平行线交BQ 于点G ,连接PF 交x 轴于点H ,连接EH ,若,DHE DPH GQ FG ∠=∠-=,求点P 的坐标.【答案】(1)12y x =-;(2)94;(3)1236(,)55P .【解析】【分析】(1)根据题意求出A ,B 的坐标即可求出直线AB 的解析式;(2)求出N (3,9),以及ON 的解析式为y=3x ,设P (a ,3a ),表达出PE 及OD 即可解答;(3)如图,设直线GF 交CA 延长线于点R ,交y 轴于点S ,过点F 作FT ⊥x 轴于点T ,先证明四边形OSRA 为矩形,再通过边角关系证明△OFS ≌△FQR ,得到SF=QR ,进而证明△BSG ≌△QRG ,得到SG=RG=6,设FR=m ,根据GQ FG -=,以及在Rt △GQR 中利用勾股定理求出m 的值,得到FS=8,AR=4,证明四边形OSFT 为矩形,得到OT=FS=8,根据∠DHE=∠DPH ,利用正切函数的定义得到DE DH DH PD=,从而得到DH=32a ,根据∠PHD=∠FHT ,得到HT=2,再根据OT=OD+DH+HT ,列出关于a 的方程即可求出a 的值,从而得到点P 的坐标.【详解】解:(1)∵CM ⊥y 轴,OM=9,∴当y=9时,394x =,解得:x=12,∴C (12,9),∵CA ⊥x 轴,则A (12,0),∴OB=OA=12,则B (0,-12),设直线AB 的解析式为y=kx+b ,∴12012k b b +=⎧⎨=-⎩,解得:112k b =⎧⎨=-⎩,∴12y x =-;(2)由题意可得,∠CMO=∠OAC=∠MOA=90°,∴四边形MOAC 为矩形,∴MC=OA=12,∵NC=OM ,∴NC=9,则MN=MC-NC=3,∴N (3,9)设直线ON 的解析式为1y k x =,将N (3,9)代入得:193k =,解得:13k =,∴y=3x ,设P (a ,3a )∵PD ⊥x 轴交OC 于点E ,交x 轴于点D ,∴3(,)4E a a ,(a,0)D ,∴PE=39344a a a -=,OD=a ,∴9944a PE OD a ==;(3)如图,设直线GF 交CA 延长线于点R ,交y 轴于点S ,过点F 作FT ⊥x 轴于点T ,∵GF ∥x 轴,∴∠OSR=∠MOA=90°,∠CAO=∠R=90°,∠BOA=∠BSG=90°,∠OAB=∠AFR ,∴∠OSR=∠R=∠AOS=∠BSG=90°,则四边形OSRA为矩形,∴OS=AR,SR=OA=12,∵OA=OB,∴∠OBA=∠OAB=45°,∴∠FAR=90°-∠AFR=45°,∴∠FAR=∠AFR,∴FR=AR=OS,∵QF⊥OF,∴∠OFQ=90°,∴∠OFS+∠QFR=90°,∵∠SOF+∠OFS=90°,∴∠SOF=∠QFR,∴△OFS≌△FQR,∴SF=QR,∵∠SFB=∠AFR=45°,∴∠SBF=∠SFB,∴BS=SF=QR,∵∠SGB=∠RGQ,∴△BSG≌△QRG,∴SG=RG=6,设FR=m,则AR=m,∴QR=SF=12-m,∴=,-=,∵GQ FG∴66m m +-=+,∵QG 2=GR 2+QR 2,即222(6)6(12)m m +=+-,解得:m=4,∴FS=8,AR=4,∵∠OAB=∠FAR ,FT ⊥OA ,FR ⊥AR ,∴FT=FR=AR=4,∠OTF=90°,∴四边形OSFT 为矩形,∴OT=FS=8,∵∠DHE=∠DPH ,∴tan ∠DHE=tan ∠DPH ,∴DE DH DH PD=,由(2)可知,DE=34a ,PD=3a ,∴343a DH DH a=,解得:DH=32a ,∴tan ∠PHD=3232PD a DH a ==,∵∠PHD=∠FHT ,∴tan ∠FHT=2TF HT =,∴HT=2,∵OT=OD+DH+HT ,∴3282a a ++=,∴a=125,∴1236(,)55P 【点睛】本题考查了一次函数与几何综合问题,涉及了一次函数解析式的求法,矩形的判定与性质,全等三角形的判定与性质以及锐角三角函数的定义等知识点,第(3)问难度较大,解题的关键是正确做出辅助线,熟悉几何的基本知识,综合运用全等三角形以及锐角三角函数的概念进行解答.类型二与平行四边形有关14.(2022·山东泰安)如图,四边形ABCD 为平行四边形,则点B 的坐标为________.【答案】()2,1--【分析】根据平行四边形的性质以及点的平移即可得出结论.【详解】解: 四边形ABCD 为平行四边形,∴DA CB ∥,即将D 点平移到A 的过程与将C 点平移到B 的过程保持一致,将D 点平移到A 的过程是::134x --=-(向左平移4各单位长度);:220y -=(上下无平移);∴将C 点平移到B 的过程按照上述一致过程进行得到()24,1B --,即()2,1B --,故答案为:()2,1--.【点睛】本题考查平行四边形的性质及点的平移,掌握点的平移的代数表示是解决问题的关键.15.(2022·甘肃武威)如图1,在菱形ABCD 中,60A ∠=︒,动点P 从点A 出发,沿折线AD DC CB →→方向匀速运动,运动到点B 停止.设点P 的运动路程为x ,APB △的面积为y ,y 与x 的函数图象如图2所示,则AB 的长为()AB .C .D .【答案】B【分析】根据图1和图2判定三角形ABD 为等边三角形,它的面积为【详解】解:在菱形ABCD 中,∠A=60°,∴△ABD 为等边三角形,设AB=a ,由图2可知,△ABD 的面积为∴△ABD 的面积24a ==解得:a=故选B【点睛】本题考查了动点问题的函数图象,根据菱形的性质和函数图象,能根据图形得出正确信息是解此题的关键.16.(2020·黑龙江牡丹江?中考真题)如图,已知直线AB 与x 轴交于点A ,与y 轴交于点B ,线段OA 的长是方程27180x x --=的一个根,12OB OA =.请解答下列问题:(1)求点A ,B 的坐标;(2)直线EF 交x 轴负半轴于点E ,交y 轴正半轴于点F ,交直线AB 于点C .若C 是EF 的中点,6OE =,反比例函数k y x=图象的一支经过点C ,求k 的值;(3)在(2)的条件下,过点C 作CD OE ⊥,垂足为D ,点M 在直线AB 上,点N 在直线CD 上.坐标平面内是否存在点P ,使以D ,M ,N ,P 为顶点的四边形是正方形?若存在,请写出点P 的个数,并直接写出其中两个点P 的坐标;若不存在,请说明理由.【答案】(1)A (9,0),B (0,92);(2)-18;(3)存在5个,(9,12)或(9,-12)或(1,0)或(-7,4)或(-15,0).【解析】【分析】(1)解一元二次方程,得到点A 的坐标,再根据12OB OA =可得点B 坐标;(2)利用待定系数法求出直线AB 的表达式,根据点C 是EF 的中点,得到点C 横坐标,代入可得点C 坐标,根据点C 在反比例函数图像上求出k 值;(3)画出图形,可得点P 共有5个位置,分别求解即可.【详解】解:(1)∵线段OA 的长是方程27180x x --=的一个根,解得:x=9或-2(舍),而点A 在x 轴正半轴,∴A (9,0),∵12OB OA =,∴B (0,92);(2)∵6OE =,∴E (-6,0),设直线AB 的表达式为y=kx+b ,将A 和B 代入,得:0992k b b =+⎧⎪⎨=⎪⎩,解得:1292k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴AB 的表达式为:1922y x =-+,∵点C 是EF 的中点,∴点C 的横坐标为-3,代入AB 中,y=6,则C (-3,6),∵反比例函数k y x=经过点C ,则k=-3×6=-18;(3)存在点P ,使以D ,M ,N ,P 为顶点的四边形是正方形,如图,共有5种情况,在四边形DM 1P 1N 1中,M 1和点A 重合,∴M 1(9,0),此时P 1(9,12);在四边形DP 3BN 3中,点B 和M 重合,可知M 在直线y=x+3上,联立:31922y x y x =+⎧⎪⎨=-+⎪⎩,解得:14x y =⎧⎨=⎩,∴M (1,4),∴P 3(1,0),同理可得:P 2(9,-12),P 4(-7,4),P 5(-15,0).故存在点P 使以D ,M ,N ,P 为顶点的四边形是正方形,点P 的坐标为P 1(9,12),P 2(9,-12),P 3(1,0),P 4(-7,4),P 5(-15,0).【点睛】本题考查了解一元二次方程,一次函数表达式,正方形的性质,反比例函数表达式,难度较大,解题的关键是根据图像画出符合条件的正方形.类型三最值问题17.(2020·江苏宿迁?中考真题)如图,在平面直角坐标系中,Q是直线y=﹣12x+2上的一个动点,将Q绕点P(1,0)顺时针旋转90°,得到点Q',连接OQ',则OQ'的最小值为()A.455B C.523D.655【答案】B【解析】【分析】利用等腰直角三角形构造全等三角形,求出旋转后Q′的坐标,然后根据勾股定理并利用二次函数的性质即可解决问题.【详解】解:作QM⊥x轴于点M,Q′N⊥x轴于N,设Q(m,122m-+),则PM=1m﹣,QM=122m-+,∵∠PMQ=∠PNQ′=∠QPQ′=90°,∴∠QPM+∠NPQ′=∠PQ′N+∠NPQ′,∴∠QPM=∠PQ′N ,在△PQM 和△Q′PN 中,'90''PMQ PNQ QPM PQ N PQ Q P ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△PQM ≌△Q′PN(AAS),∴PN=QM=122m -+,Q′N=PM=1m ﹣,∴ON=1+PN=132m -,∴Q′(132m -,1m ﹣),∴OQ′2=(132m -)2+(1m ﹣)2=54m 2﹣5m+10=54(m ﹣2)2+5,当m=2时,OQ′2有最小值为5,∴OQ′故选:B .【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的性质,三角形全等的判定和性质,坐标与图形的变换-旋转,二次函数的性质,勾股定理,表示出点的坐标是解题的关键18.(2020·湖南永州?中考真题)已知点()00,P x y 和直线y kx b =+,求点P 到直线y kx b =+的距离d可用公式d =C 的圆心C 的坐标为()1,1,半径为1,直线l 的表达式为26y x =-+,P 是直线l 上的动点,Q 是C 上的动点,则PQ 的最小值是()A .355B .3515-C .6515-D .2【答案】B 【解析】【分析】过点C 作直线l 的垂线,交C 于点Q ,交直线l 于点P ,此时PQ 的值最小,利用公式计算即可.【详解】过点C 作直线l 的垂线,交C 于点Q ,交直线l 于点P ,此时PQ 的值最小,如图,∵点C 到直线l 的距离()00222116355112kx y b d k -+-⨯-+==++-,C 半径为1,∴PQ 的最小值是3515-,故选:B.【点睛】此题考查公式的运用,垂线段最短的性质,正确理解公式中的各字母的含义,确定点P与点Q最小时的位置是解题的关键.A B-,在x19.(2020·辽宁鞍山?中考真题)如图,在平面直角坐标系中,已知(3,6),(2,2)CD=,线段CD在x轴上平移,当轴上取两点C,D(点C在点D左侧),且始终保持1+的值最小时,点C的坐标为________.AD BC【答案】(-1,0)【解析】【分析】作点B关于x轴的对称点B′,将B′向右平移1个单位得到B″,连接AB″,与x轴交于点D,过点B′作AB″的平行线,与x轴交于点C,得到此时AD+BC的值最小,求出直线AB″,得到点D坐标,从而可得点C坐标.【详解】解:如图,作点B关于x轴的对称点B′,将B′向右平移1个单位得到B″,连接AB″,与x轴交于点D,过点B′作AB″的平行线,与x轴交于点C,可知四边形B′B″DC为平行四边形,则B′C=B″D,由对称性质可得:BC=B′C,∴AD+BC=AD+B′C=AD+B″D=AB″,则此时AB″最小,即AD+BC最小,∵A(3,6),B(-2,2),∴B′(-2,-2),∴B″(-1,-2),设直线AB″的表达式为:y=kx+b,则632k bk b=+⎧⎨-=-+⎩,解得:2kb=⎧⎨=⎩,∴直线AB″的表达式为:y=2x,令y=0,解得:x=0,即点D坐标为(0,0),∴点C坐标为(-1,0),故答案为:(-1,0).【点睛】本题考查了轴对称的性质,最短路径问题,一次函数表达式,解题的关键是找到AD+BC最小时的情形20.(2020•连云港)如图,在平面直角坐标系xOy中,半径为2的⊙O与x轴的正半轴交于点A,点B是⊙O上一动点,点C为弦AB的中点,直线y=34x﹣3与x轴、y轴分别交于点D、E,则△CDE面积的最小值为.【分析】如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.首先证明点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.求出MN,当点C与C′重合时,△C′DE的面积最小.【解析】如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.∵AC=CB,AM=OM,∴MC=12OB=1,∴点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.∵直线y=34x﹣3与x轴、y轴分别交于点D、E,∴D(4,0),E(0,﹣3),∴OD =4,OE =3,∴DE =32+42=5,∵∠MDN =∠ODE ,∠MND =∠DOE ,∴△DNM ∽△DOE ,∴MN OE=DM DE,∴MN 3=35,∴MN =95,当点C 与C′重合时,△C′DE 的面积最小,最小值=12×5×(95−1)=2,故答案为2.21.(2020·江苏连云港?中考真题)如图,在平面直角坐标系xOy 中,半径为2的O 与x 轴的正半轴交于点A ,点B 是O 上一动点,点C 为弦AB 的中点,直线334y x =-与x 轴、y 轴分别交于点D 、E ,则CDE △面积的最小值为________.【答案】2【解析】【分析】如图,连接OB ,取OA 的中点M ,连接CM ,过点M 作MN ⊥DE 于N .首先证明点C 的运动轨迹是以M 为圆心,1为半径的⊙M ,设⊙M 交MN 于C′.求出MN ,当点C 与C′重合时,△C′DE的面积最小.【详解】解:如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.∵AC=CB,AM=OM,∴MC=12OB=1,∴点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.∵直线y=34x-3与x轴、y轴分别交于点D、E,∴D(4,0),E(0,-3),∴OD=4,OE=3,∴5 DE===,∵∠MDN=∠ODE,∠MND=∠DOE,∴△DNM∽△DOE,∴MN DM OE DE=,∴3 35 MN=,∴95 MN=,当点C 与C′重合时,△C′DE 的面积最小,△C′DE 的面积最小值1951225⎛⎫=⨯⨯-= ⎪⎝⎭,故答案为2.【点睛】本题考查三角形的中位线定理,三角形的面积,一次函数的性质等知识,解题的关键是学会添加常用辅助线,构造三角形的中位线解决问题,属于中考常考题型.22.(2020·北京中考真题)在平面直角坐标系xOy 中,⊙O 的半径为1,A ,B 为⊙O 外两点,AB=1.给出如下定义:平移线段AB ,得到⊙O 的弦A B ''(,A B ''分别为点A ,B 的对应点),线段AA '长度的最小值称为线段AB 到⊙O 的“平移距离”.(1)如图,平移线段AB 到⊙O 的长度为1的弦12PP 和34P P ,则这两条弦的位置关系是;在点1234,,,P P P P 中,连接点A 与点的线段的长度等于线段AB 到⊙O 的“平移距离”;(2)若点A ,B 都在直线y =+上,记线段AB 到⊙O 的“平移距离”为1d ,求1d 的最小值;(3)若点A 的坐标为32,2⎛⎫ ⎪⎝⎭,记线段AB 到⊙O 的“平移距离”为2d ,直接写出2d 的取值范围.【答案】(1)平行,P 3;(2)32;(3)233922d ≤≤。

一次函数难题经典例题及答案

一次函数难题经典例题及答案

一次函数难题经典例题及答案知识点一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。

特别地,当b=0时,y是x的正比例函数。

即:y=kx (k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b (k为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。

三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。

因此,作一次函数的图像只需知道2点,并连成直线即可。

(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。

当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。

特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

(1)设一次函数的表达式(也叫解析式)为y=kx+b。

(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。

所以可以列出2个方程:y1=kx1+b ……①和y2=kx2+b ……②(3)解这个二元一次方程,得到k,b的值。

(4)最后得到一次函数的表达式。

五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。

s=vt。

2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。

专题2一次函数的图象与性质-重难点题型(举一反三)(浙教版)(原卷版)

专题2一次函数的图象与性质-重难点题型(举一反三)(浙教版)(原卷版)

专题5.3 一次函数的图象与性质-重难点题型【浙教版】函数图像一次函数变为正比例函数,正比例函数是一次函数的特例。

)A.B.C.D.【变式1-1】函数y=ax+b﹣2的图象如图所示,则函数y=﹣ax﹣b的大致图象是()A.B.C.D.【变式1-2】(2019•杭州)已知一次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是()A.B.C.D.【变式1-3】函数y=|x﹣2|的图象大致是()A.B.C.D.【题型2 正比例函数的图象】【例2】如图,三个正比例函数的图象分别对应函数关系式:①y=ax,①y=bx,①y=cx,将a,b,c从小到大排列并用“<”连接为()A.a<b<c B.c<a<b C.c<b<a D.a<c<b【变式2-1】(2020秋•达川区期末)如图,四个一次函数y=ax,y=bx,y=cx+1,y=dx﹣3的图象如图所示,则a,b,c,d的大小关系是()A.b>a>d>c B.a>b>c>d C.a>b>d>c D.b>a>c>d【变式2-2】(2021秋•茂名期中)直线y=2kx的图象如图所示,则y=(k﹣2)x+1﹣k的图象大致是()A.B.C.D.【变式2-3】(2021春•新田县期末)如图,直线l1①x轴于点(1,0),直线l2①x轴于点(2,0),直线l3①x轴于点(3,0),…直线l n①x轴于点(n,0).函数y=x的图象与直线l1,l2,l3,…,l n分别交于点A1,A2,A3,…,A n ;函数y =3x 的图象与直线l 1,l 2,l 3,…,l n 分别交于点B 1,B 2,B 3,…,B n ,如果①OA 1B 1的面积记的作S 1,四边形A 1A 2B 2B 1的面积记作S 2,四边形A 2A 3B 3B 2的面积记作S 3,…四边形A n ﹣1A n B n B n ﹣1的面积记作S n ,那么S 2021= ..) C .第一、三、四象限D .第二、三、四象限【变式3-1】(2021•黄州区校级自主招生)已知过点(2,3)的直线y =ax +b (a ≠0)不经过第四象限,设s =a ﹣2b ,则s 的取值范围是( ) A .32≤s <6B .﹣3<s ≤3C .﹣6<s ≤32D .32≤s ≤5【变式3-2】(2021春•忠县期末)已知一次函数y =(5﹣a )x +a +1的图象不经过第四象限,且关于x 的分式方程102−x=2−axx−2有整数解,则满足条件的所有整数a 的和为( )A .6B .7C .8D .9【变式3-3】(2021•渝中区模拟)若关于x 的一元一次不等式组{23x >x −14x +1≥a恰有3个整数解,且一次函数y =(a﹣2)x +a +1不经过第三象限,则所有满足条件的整数a 的值之和是( ) A .﹣2B .﹣1C .0D .1【题型4 一次函数图象与系数的关系】【例4】(2021春•鄢陵县期末)已知A (x 1,y 1)、B (x 2,y 2)是一次函数y =(2﹣m )x +3图象上两点,且(x 1﹣x 2)(y 1﹣y 2)<0,则m 的取值范围为 .【变式4-1】如图,平面直角坐标系中,若点A (3,0)、B (4,1)到一次函数y =kx +4(k ≠0)图象的距离相等,则k 的值为 .【变式4-2】(2020•成都模拟)在平面直角坐标系xOy 中,直线l :y =kx ﹣1(k ≠0)与直线x =﹣k ,y =﹣k 分别交于点A ,B .直线x =﹣k 与y =﹣k 交于点C .记线段AB ,BC ,AC 围成的区域(不含边界)为W ;横,纵坐标都是整数的点叫做整点.(1)当k =﹣2时,区域W 内的整点个数为 ; (2)若区域W 内没有整点,则k 的取值范围是 . 【变式4-3】已知一次函数y =(6+3m )x +(n ﹣2).求(1)当m ,n 为何值时,y 值随x 的增大而减小,且与y 轴交点在x 轴下方? (2)当m ,n 为何值时,此一次函数也是正比例函数?(3)当m =﹣1,n =﹣2时,设此一次函数与x 轴交于点A ,与y 轴交于点B ,并求出①AOB 的面积(O 为坐标原点)【题型5 一次函数图象上点的坐标特征】 【例5】已知一次函数y =(6+3m )x +(n ﹣2).求(1)当m ,n 为何值时,y 值随x 的增大而减小,且与y 轴交点在x 轴下方? (2)当m ,n 为何值时,此一次函数也是正比例函数?(3)当m =﹣1,n =﹣2时,设此一次函数与x 轴交于点A ,与y 轴交于点B ,并求出①AOB 的面积(O 为坐标原点)【变式5-1】如图,直线y =2x +3与x 轴相交于点A ,与y 轴相交于点B .(1)求①AOB 的面积;(2)过B 点作直线BP 与x 轴相交于P ,①ABP 的面积是92,求点P 的坐标.【变式5-2】如图,直线y =kx +6与x 轴y 轴分别相交于点E ,F .点E 的坐标(8,0),点A 的坐标为(6,0).点P (x ,y )是第一象限内的直线上的一个动点(点P 不与点E ,F 重合). (1)求k 的值;(2)在点P 运动的过程中,求出①OP A 的面积S 与x 的函数关系式. (3)若①OP A 的面积为278,求此时点P 的坐标.【变式5-3】(2021春•青县期末)如图,直线y =﹣x +10与x 轴、y 轴分别交于点B ,C ,点A 的坐标为(8,0),P (x ,y )是直线y =﹣x +10在第一象限内一个动点.(1)求①OP A 的面积S 与x 的函数关系式,并写出自变量的x 的取值范围; (2)当①OP A 的面积为10时,求点P 的坐标.【题型6 一次函数图象与几何变换】【例6】已知一次函数y =kx +b 的图象过点A (﹣4,﹣2)和点B (2,4) (1)求直线AB 的解析式;(2)将直线AB 平移,使其经过原点O ,则线段AB 扫过的面积为 .【变式6-1】若直线y=kx+3与直线y=2x+b关于直线x=1对称,则k、b值分别为()A.k=2、b=﹣3B.k=﹣2、b=﹣3C.k=﹣2、b=1D.k=﹣2、b=﹣1【变式6-2】(2018春•沙坪坝区校级期末)如图:一次函数y=13x+2交y轴于A,交y=3x﹣6于B,y=3x﹣6交x轴于C,直线BC顺时针旋转45°得到直线CD.(1)求点B的坐标;(2)求四边形ABCO的面积;(3)求直线CD的解析式.【变式6-3】(2018•沙坪坝区模拟)如图,正比例函数y=kx(k≠0)的图象过点A(2,﹣3).直线y=x+b沿y 轴平行移动,与x轴、y轴分别交于点B、C,与直线OA交于点D.(1)若点D在线段OA上(含端点),求b的取值范围;(2)当点A关于直线BC的对称点A'恰好落在y轴上时,求①OBD的面积.。

函数的基本性质-- 一次函数(解析版)-中考数学重难点题型专题汇总

函数的基本性质-- 一次函数(解析版)-中考数学重难点题型专题汇总

函数的基本性质-中考数学重难点题型一次函数(专题训练)1.一次函数(21)2y m x =-+的值随x 的增大而增大,则点(,)P m m -所在象限为()A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【分析】根据一次函数的性质求出m 的范围,再根据每个象限点的坐标特征判断P 点所处的象限即可.【详解】∵一次函数(21)2y m x =-+的值随x 的增大而增大,∴210m ->解得:12m >∴(,)P m m -在第二象限故选:B 【点睛】本题考查了一次函数的性质和各个象限坐标特点,能熟记一次函数的性质是解此题的关键.2.已知点)Am ,3,2B n ⎛⎫ ⎪⎝⎭在一次函数21y x =+的图像上,则m 与n 的大小关系是()A .m n>B .m n =C .m n <D .无法确定【答案】C【分析】根据一次函数的增减性加以判断即可.【详解】解:在一次函数y=2x+1中,∵k=2>0,∴y 随x 的增大而增大.∵2<94,32<.∴m<n .故选:C【点睛】本题考查了一次函数的性质、实数的大小比较等知识点,熟知一次函数的性质是解题的关键3.已知一次函数y =kx+3的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是()A .(﹣1,2)B .(1,﹣2)C .(2,3)D .(3,4)【分析】由点A 的坐标,利用一次函数图象上点的坐标特征求出k 值,结合y 随x 的增大而减小即可确定结论.【解析】A 、当点A 的坐标为(﹣1,2)时,﹣k+3=3,解得:k =1>0,∴y 随x 的增大而增大,选项A 不符合题意;B 、当点A 的坐标为(1,﹣2)时,k+3=﹣2,解得:k =﹣5<0,∴y 随x 的增大而减小,选项B 符合题意;C 、当点A 的坐标为(2,3)时,2k+3=3,解得:k =0,选项C 不符合题意;D 、当点A 的坐标为(3,4)时,3k+3=4,解得:k =13>0,∴y 随x 的增大而增大,选项D 不符合题意.故选:B .4.在平面直角坐标系中,一次函数51y x =+的图象与y 轴的交点的坐标为()A .()0,1-B .1,05⎛⎫- ⎪⎝⎭C .1,05⎛⎫ ⎪⎝⎭D .()0,1【答案】D【分析】令x=0,求出函数值,即可求解.【详解】解:令x=0,1y =,∴一次函数51y x =+的图象与y 轴的交点的坐标为()0,1.故选:D【点睛】本题主要考查了一次函数的图象和性质,熟练掌握一次函数的图象和性质是解题的关键.5.在平面直角坐标系中,若将一次函数21y x m =+-的图象向左平移3个单位后,得到个正比例函数的图象,则m 的值为()A .-5B .5C .-6D .6【答案】A【分析】根据函数图像平移的性质求出平移以后的解析式即可求得m 的值.【详解】解:将一次函数21y x m =+-的图象向左平移3个单位后得到的解析式为:2(3)1y x m =++-,化简得:25y x m =++,∵平移后得到的是正比例函数的图像,∴50m +=,解得:5m =-,故选:A .【点睛】本题主要考查一次函数图像的性质,根据“左加右减,上加下减”求出平移后的函数解析式是解决本题的关键.6.已知在平面直角坐标系xOy 中,直线y =2x+2和直线y =23x+2分别交x 轴于点A 和点B .则下列直线中,与x 轴的交点不在线段AB 上的直线是()A .y =x+2B .y =2x+2C .y =4x+2D .y =【分析】求得A 、B 的坐标,然后分别求得各个直线与x 的交点,进行比较即可得出结论.【解析】∵直线y =2x+2和直线y =23x+2分别交x 轴于点A 和点B .∴A (﹣1,0),B (﹣3,0)A 、y =x+2与x 轴的交点为(﹣2,0);故直线y =x+2与x 轴的交点在线段AB 上;B 、y =2x+2与x 轴的交点为(−2,0);故直线y =2x+2与x 轴的交点在线段AB 上;C 、y =4x+2与x 轴的交点为(−12,0);故直线y =4x+2与x 轴的交点不在线段AB 上;D 、y =与x 轴的交点为(−3,0);故直线y =与x 轴的交点在线段AB 上;故选:C .7.在直角坐标系中,已知点3,2A m ⎛⎫ ⎪⎝⎭,点,2B n ⎫⎪⎪⎝⎭是直线()0y kx b k =+<上的两点,则m ,n 的大小关系是()A .m n<B .m n >C .m n ≥D .m n≤【答案】A 【分析】因为直线()0y kx b k =+<,所以随着自变量的增大,函数值会减小,根据这点即可得到问题解答.【详解】解:∵因为直线()0y kx b k =+<,∴y 随着x 的增大而减小,∵32>2,∴322>∴m<n ,故选:A .【点睛】此题考查了一次函数的图象和性质,解题的关键是正确判断一次函数的增减性并灵活运用.8.如图,已知直线1:24l y x =-+与坐标轴分别交于A 、B 两点,那么过原点O 且将AOB 的面积平分的直线2l 的解析式为()A .12y x =B .y x =C .32y x =D .2y x=【答案】D【分析】根据已知解析式求出点A 、B 的坐标,根据过原点O 且将AOB 的面积平分列式计算即可;【详解】如图所示,当0y =时,240x -+=,解得:2x =,∴()2,0A ,当0x =时,4y =,∴()0,4B ,∵C 在直线AB 上,设(),24C m m -+,∴12OBC C S OB x =⨯⨯△,12OCA C S OA y =⨯⨯△,∵2l 且将AOB 的面积平分,∴OBC OCA S S =△△,∴y C C OB x OA ⨯=⨯,∴()4224m m =⨯-+,解得1m =,∴()1,2C ,设直线2l 的解析式为y kx =,则2k =,∴2y x =;故答案选D.【点睛】本题主要考查了一次函数的应用,准确计算是解题的关键.9.如图,一次函数y x=的图像与x轴、y轴分别交于点A、B,把直线AB绕点B顺时针旋转30°交x轴于点C,则线段AC长为()A B.C.2D【答案】A【分析】根据一次函数表达式求出点A和点B坐标,得到△OAB为等腰直角三角形和AB的长,过点C作CD⊥AB,垂足为D,证明△ACD为等腰直角三角形,设CD=AD=x,结合旋转的度数,用两种方法表示出BD,得到关于x的方程,解之即可.【详解】=+的图像与x轴、y轴分别交于点A、B,解:∵一次函数y x令x=0,则,令y=0,则x=,则A(,0),B(0),则△OAB为等腰直角三角形,∠ABO=45°,∴,过点C作CD⊥AB,垂足为D,∵∠CAD=∠OAB=45°,∴△ACD为等腰直角三角形,设CD=AD=x,∴x,∵旋转,∴∠ABC=30°,∴BC=2CD=2x ,∴x ,又BD=AB+AD=2+x ,∴2+x=,解得:+1,∴x=+1)故选A .【点睛】本题考查了一次函数与坐标轴的交点问题,等腰直角三角形的判定和性质,直角三角形的性质,勾股定理,二次根式的混合运算,知识点较多,解题的关键是作出辅助线,构造特殊三角形.10.已知112233()()()x y x y x y ,,,,,为直线23y x =-+上的三个点,且123x x x <<,则以下判断正确的是().A .若120x x >,则130y y >B .若130x x <,则120y y >C .若230x x >,则130y y >D .若230x x <,则120y y >【答案】D【分析】根据一次函数的性质和各个选项中的条件,可以判断是否正确,从而可以解答本题.【详解】解:∵直线y=−2x+3∴y 随x 增大而减小,当y=0时,x=1.5∵(x 1,y 1),(x 2,y 2),(x 3,y 3)为直线y=−2x+3上的三个点,且x 1<x 2<x 3∴若x 1x 2>0,则x 1,x 2同号,但不能确定y 1y 3的正负,故选项A 不符合题意;若x 1x 3<0,则x 1,x 3异号,但不能确定y 1y 2的正负,故选项B 不符合题意;若x 2x 3>0,则x 2,x 3同号,但不能确定y 1y 3的正负,故选项C 不符合题意;若x 2x 3<0,则x 2,x 3异号,则x 1,x 2同时为负,故y 1,y 2同时为正,故y 1y 2>0,故选项D 符合题意.故选:D .【点睛】本题考查一次函数图象上点的坐标特征,解题的关键是明确题意,利用一次函数的性质解答.11.一次函数()232y a x =++的值随x 值的增大而减少,则常数a 的取值范围是______.【答案】32a <-【分析】由题意,先根据一次函数的性质得出关于a 的不等式230a +<,再解不等式即可.【详解】解: 一次函数()232y a x =++的值随x 值的增大而减少,230a ∴+<,解得:32a <-,故答案是:32a <-.【点睛】本题考查了一次函数的图象与系数的关系,解题的关键是:熟知一次函数的增减性.12.若21x y +=,且01y <<,则x 的取值范围为______.【答案】102x <<【分析】根据21x y +=可得y =﹣2x+1,k =﹣2<0进而得出,当y =0时,x 取得最大值,当y =1时,x 取得最小值,将y =0和y =1代入解析式,可得答案.【详解】解:根据21x y +=可得y =﹣2x+1,∴k =﹣2<0∵01y <<,∴当y =0时,x 取得最大值,且最大值为12,当y =1时,x 取得最小值,且最小值为0,∴102x <<故答案为:102x <<.【点睛】此题考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.13.当自变量13x -≤≤时,函数y x k =-(k 为常数)的最小值为3k +,则满足条件的k 的值为_________.【答案】2-【分析】分1k <-时,13k -≤≤时,3k >时三种情况讨论,即可求解.【详解】解:①若1k <-时,则当13x -≤≤时,有x k >,故y x k x k =-=-,故当1x =-时,y 有最小值,此时函数1y k =--,由题意,1 3k k --=+,解得:2k =-,满足1k <-,符合题意;②若13k -≤≤,则当13x -≤≤时,0y x k =-≥,故当x k =时,y 有最小值,此时函数0y =,由题意,0 3k =+,解得:3k =-,不满足13k -≤≤,不符合题意;③若3k >时,则当13x -≤≤时,有x k <,故y x k k x =-=-,故当3x =时,y 有最小值,此时函数3y k =-,由题意,3 3k k -=+,方程无解,此情况不存在,综上,满足条件的k 的值为2-.故答案为:2-.【点睛】本题考查了一次函数的性质,绝对值的性质,分类讨论是解题的关键.14.如图,是一个“函数求值机”的示意图,其中y 是x 的函数.下面表格中,是通过该“函数求值机”得到的几组x 与y 的对应值.输人x…6-4-2-02…输出y …6-2-2616…根据以上信息,解答下列问题:(1)当输入的x 值为1时,输出的y 值为__________;(2)求k ,b 的值;(3)当输出的y 值为0时,求输入的x 值.【答案】(1)8(2)26k b =⎧⎨=⎩(3)3-【分析】对于(1),将x=1代入y=8x ,求出答案即可;对于(2),将(-2,2),(0,6)代入y=kx+b 得二元一次方程组,解方程组得出答案;对于(3),将y=0分别代入两个关系式,再求解判断即可.(1)当x=1时,y=8×1=8;故答案为:8;(2)将(-2,2),(0,6)代入y kx b =+,得226k b b -+=⎧⎨=⎩,解得26k b =⎧⎨=⎩;(3)令0y =,由8y x =,得08x =,∴01x =<.(舍去)由26y x =+,得026x =+,∴31x =-<.∴输出的y 值为0时,输入的x 值为3-.【点睛】本题主要考查了待定系数法求一次函数关系式,理解“函数求值机”的计算过程是解题的关键.15.在平面直角坐标系xOy 中,一次函数y =kx+b (k≠0)的图象由函数y =x 的图象平移得到,且经过点(1,2).(1)求这个一次函数的解析式;(2)当x >1时,对于x 的每一个值,函数y =mx (m≠0)的值大于一次函数y =kx+b 的值,直接写出m 的取值范围.【分析】(1)先根据直线平移时k 的值不变得出k =1,再将点A (1,2)代入y =x+b ,求出b 的值,即可得到一次函数的解析式;(2)根据点(1,2)结合图象即可求得.【解析】(1)∵一次函数y =kx+b (k≠0)的图象由直线y =x 平移得到,∴k =1,将点(1,2)代入y =x+b ,得1+b =2,解得b =1,∴一次函数的解析式为y =x+1;(2)把点(1,2)代入y =mx 求得m =2,∵当x >1时,对于x 的每一个值,函数y =mx (m≠0)的值大于一次函数y =x+1的值,∴m≥2.16.表格中的两组对应值满足一次函数y=kx+b,现画出了它的图象为直线1,如图.而某同学为观察k,b对图象的影响,将上面函数中的k与b交换位置后得另一个一次函数,设其图象为直线l'.x﹣10y﹣21(1)求直线1的解析式;(2)请在图上画出直线l'(不要求列表计算),并求直线l'被直线l和y轴所截线段的长;(3)设直线y=a与直线1,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接写出a的值.【分析】(1)根据待定系数法求得即可;(2)画出直线l,求得两直线的交点,根据勾股定理即可求得直线l'被直线l和y轴所截线段的长;(3)求得两条直线与直线y=a的交点横坐标,分三种情况讨论求得即可.【解析】(1)∵直线l′:y=bx+k中,当x=﹣1时,y=﹣2;当x=0时,y=1,∴−b+k=−2k=1,解得k=1b=3,∴直线1′的解析式为y=3x+1;∴直线1的解析式为y=x+3;(2)如图,解y=x+3y=3x+1得x=1y=4,∴两直线的交点为(1,4),∵直线1′:y=3x+1与y轴的交点为(0,1),∴直线l'被直线l和y轴所截线段的长为:12+(4−1)2=10;(3)把y=a代入y=3x+1得,a=3x+1,解得x=a−13;把y=a代入y=x+3得,a=x+3,解得x=a﹣3;当a﹣3+a−13=0时,a=52,当12(a﹣3+0)=a−13时,a=7,当12(a−13+0)=a﹣3时,a=175,∴直线y=a与直线1,l′及y轴有三个不同的交点,且其中两点关于第三点对称,则a的值为52或7或175.17.如图,在平面直角坐标系中,直线y=−12x﹣1与直线y=﹣2x+2相交于点P,并分别与x 轴相交于点A、B.(1)求交点P的坐标;(2)求△PAB的面积;(3)请把图象中直线y=﹣2x+2在直线y=−12x﹣1上方的部分描黑加粗,并写出此时自变量x的取值范围.【分析】(1)解析式联立,解方程组即可求得交点P 的坐标;(2)求得A 、B 的坐标,然后根据三角形面积公式求得即可;(3)根据图象求得即可.【解析】(1)由y =−12x −1y =−2x +2解得x =2y =−2,∴P (2,﹣2);(2)直线y =−12x ﹣1与直线y =﹣2x+2中,令y =0,则−12x ﹣1=0与﹣2x+2=0,解得x =﹣2与x =1,∴A (﹣2,0),B (1,0),∴AB =3,∴S △PAB =12AB ⋅|y P |=12×3×2=;(3)如图所示:自变量x 的取值范围是x <2.18.已知一次函数12y kx =+(k 为常数,k≠0)和23y x =-.(1)当k=﹣2时,若1y >2y ,求x 的取值范围;(2)当x<1时,1y >2y .结合图象,直接写出k 的取值范围.【解析】(1)当2k =-时,122y x =-+,根据题意,得223x x -+>-,解得53x <.(2)当x=1时,y=x−3=−2,把(1,−2)代入y 1=kx+2得k+2=−2,解得k=−4,当−4≤k<0时,y 1>y 2;当0<k≤1时,y 1>y 2.∴k 的取值范围是:41k -≤≤且0k ≠.19.如图,已知过点B (1,0)的直线l 1与直线l 2:y=2x+4相交于点P (-1,a ).(1)求直线l 1的解析式;(2)求四边形PAOC 的面积.【解析】(1)∵点P (-1,a )在直线l 2:y=2x+4上,∴2×(-1)+4=a ,即a=2,则P 的坐标为(-1,2),设直线l 1的解析式为:y=kx+b (k≠0),那么02k b k b +=⎧⎨-+=⎩,解得11k b =-⎧⎨=⎩.∴l 1的解析式为:y=-x+1.(2)∵直线l 1与y 轴相交于点C ,∴C 的坐标为(0,1),又∵直线l 2与x 轴相交于点A ,∴A 点的坐标为(-2,0),则AB=3,而S 四边形PAOC =S △PAB -S △BOC ,∴S 四边形PAOC =1153211222⨯⨯-⨯⨯=.20.在平面直角坐标系xOy 中,直线l :y=kx+1(k≠0)与直线x=k ,直线y=-k 分别交于点A ,B ,直线x=k 与直线y=-k 交于点C .(1)求直线l 与y 轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点,记线段AB ,BC ,CA 围成的区域(不含边界)为W .①当k=2时,结合函数图象,求区域W 内的整点个数;②若区域W 内没有整点,直接写出k 的取值范围.【解析】(1)令x=0,y=1,∴直线l 与y 轴的交点坐标(0,1).(2)由题意,A (k ,k 2+1),B (1k k--,-k ),C (k ,-k ),①当k=2时,A (2,5),B (-32,-2),C (2,-2),在W 区域内有6个整数点:(0,0),(0,-1),(1,0),(1,-1),(1,1),(1,2);②直线AB 的解析式为y=kx+1,当x=k+1时,y=-k+1,则有k 2+2k=0,∴k=-2,当0>k≥-1时,W 内没有整数点,∴当0>k≥-1或k=-2时W 内没有整数点.。

中考数学重难点专题13 一次函数的实际应用中最值问题(学生版)

中考数学重难点专题13 一次函数的实际应用中最值问题(学生版)

中考数学复习重难点与压轴题型专项突围训练(全国通用版)专题13一次函数的实际应用中最值问题【典型例题】1.(2022·河南汝阳·九年级期末)为满足市场需求,某超市在新年来临前夕,购进一款商品,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,如果每盒售价每提高1元,则每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)要使每天销售的利润为6000元,且让顾客得到最大的实惠.售价应定为多少元?(3)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?【专题训练】一、解答题1.(2022·山东青岛·模拟预测)“菊润初经雨,橙香独占秋”,如图,橙子是一种甘甜爽口的水果,富含丰维生素C.某水果商城为了了解两种橙子市场销售情况,购进了一批数量相等的“血橙”和“脐橙”供客户对比品尝,其中购买“脐橙”用了420元,购买“血橙”用了756元,已知每千克“血橙”进价比每千克“脐橙”贵8元.(1)求每千克“血橙”和“脐橙”进价各是多少元?(2)若该水果商城决定再次购买同种“血橙”和“脐橙”共40千克,且再次购买的费用不超过600元,且每种橙子进价保持不变.若“血橙”的销售单价为24元,“脐橙”的销售单价为14元,则该水果商城应如何进货,使得第二批的“血橙”和“脐橙”售完后获得利润最大?最大利润是多少?2.(2022·山东莱芜·九年级期末)2022年冬奥会即将在北京召开,某网络经销商购进了一批以冬奥会为主题的文化衫进行销售,文化衫的进价每件40元,每月销售量y(件)与销售单价x(元)之间的函数关系如图所示,设每月获得的利润为W(元).(1)求出每月的销售量y(件)与销售单价x(元)之间的函数关系式;(2)这种文化衫销售单价定为多少元时,每月的销售利润最大?最大利润是多少元?(3)为了扩大冬奥会的影响,物价部门规定这种文化衫的销售单价不高于60元,该商店销售这种文化衫每月要获得最大利润,销售单价应定为多少元?每月的最大利润为多少元?3.(2022·河南·郑州中学九年级期末)冰墩墩(Bing Dwen Dwen),是2022年北京冬季奥运会的吉祥物.将熊猫形象与富有超能量的冰晶外壳相结合,头部外壳造型取自冰雪运动头盔,装饰彩色光环,整体形象酷似航天员.冬奥会来临之际,冰墩墩玩偶非常畅销.小冬在某网店选中A,B两款冰墩墩玩偶,决定从该网店进货并销售.两款玩偶的进货价和销售价如表:(1)第一次小冬550元购进了A,B两款玩偶共30个,求两款玩偶各购进多少个.(2)第二次小冬进货时,网店规定A款玩偶进货数量不得超过B款玩偶进货数量的一半.小冬计划购进两款玩偶共30个,应如何设计进货方案才能获得最大利润,最大利润是多少?(3)小冬第二次进货时采取了(2)中设计的方案,并且两次购进的玩偶全部售出,请从利润率的角度分析,对于小冬来说哪一次更合算?(注:利润率=(利润÷成本)×100%).4.(2021·山东青岛·一模)某学校为进一步做好疫情防控工作,计划购进A,B两种口罩.已知每箱A种口罩比每箱B种口罩多10包,每箱A种口罩和每箱B种口罩的价格分别是630元和600元,而每包A种口罩和每包B种口罩的价格分别是这一批口罩平均每包价格的0.9倍和1.2倍.(1)求这一批口罩平均每包的价格是多少元.(2)如果购进A,B两种口罩共5500包,最多购进3500包A种口罩,为了使总费用最低,应购进A种口罩和B种口罩各多少包?总费用最低是多少元?5.(2022·江苏滨湖·八年级期末)小李在某网店选中A、B两款玩偶,确定从该网店进货并销售.两款玩偶的进货价和销售价如表:(1)第一次小李用1100元购进了A、B两款玩偶共30个,求两款玩偶各购进多少个?(2)第二次小李进货时,网店规定A款玩偶进货数量不得超过B款玩偶进货数量的一半,小李计划购进两款玩偶60个.设小李购进A款玩偶m个,售完两款玩偶共获得利润W元,问应如何设计进货方案才能获得最大利润?并求W的最大值.6.(2021·山东北区·一模)六一前夕,某商场采购A、B两种品牌的卡通笔袋,已知每个A品牌笔袋的进价,比每个B品牌笔袋的进价多2元;若用3000元购进A品牌笔袋的数量,与用2400元购进B品牌笔袋的数量相同.(1)求每个A品牌笔袋和每个B品牌笔袋的进价分别是多少元;(2)该商场计划用不超过7220元采购A、B两种品牌的笔袋共800个,且其中B品牌笔袋的数量不超过400个,求该商场共有几种进货方式;(3)若每个A品牌笔袋售价16元,每个B品牌笔袋售价12元,在第(1)(2)问的前提下,不计其他因素,将所采购的A、B两种笔袋全部售出,求该商场可以获得的最大利润为多少元.7.(2022·四川简阳·八年级期末)某校准备组织八年级280名学生和5名老师参加研学活动,已知用1辆小客车和2辆大客车每次可运送120人;用3辆小客车和1辆大客车每次可运送135人.(1)每辆小客车和每辆大客车各能坐多少人?(2)若学校计划租用小客车m辆,大客车n辆,一次送完,且恰好每辆车都坐满.①请你设计出所有的租车方案;②若小客车每辆需租金6000元,大客车每辆需租金7500元,总租金为W元,写出W与m的关系式,根据关系式选出最省钱的租车方案,并求出最少租金.8.(2022·山东城阳·八年级期末)七月份河南暴雨,鸿星尔克因捐款5000万爆红网络,为表达对品牌的支持,国人掀起购物潮.我区一家鸿星尔克门店有库存上衣和裤子共1450件,若上衣按每件获利50元卖,裤子按每件获利80元卖,则售完这些库存共可获利92000元.(1)该门店库存有上衣、裤子各多少件?。

一次函数重难点题型

一次函数重难点题型

{一次函数重难点题型专题讲练※题型讲练【例 1】已知一次函数 y =(2m +1)x +m –3,分别解答下列各题: (1) 求 m 的取值范围;(2) 若该函数是正比例函数,求 m 的值;(3) 若该函数图象在 y 轴的截距为-2,求 m 的值; (4) 若该函数图象平行直线 y =3x –3,求 m 的值;(5) 若该函数图像 y 随着 x 的增大而减小,求 m 的取值范围; (6) 若该函数图像经过一、二、三象限,求 m 的范围; (7) 若该函数图像不过第二象象限,求 m 的范围; (8) 若该函数图像必过二、四象限,求 m 的范围; (9) 若函数图像必过三、四象限,求 m 的范围;(10) 若该函数图像过点(–1,–2),求函数解析式;(11) 若该函数图像是由函数 y =–5x +n –3 的图像延 y 轴向上平移2 个单位得来,求 m 和 n 的值;【例 3】已知某一直线过点(1,-4)和点(4,-2), (1) 求该直线所在的一次函数关系式;(2) 求该直线与两坐标轴所围成的三角形的面积; (3) 若函数图像上有两点(a ,m +3)、(b ,-2m +6)且 a >b ,求 m 的取值范围.【例 4】一次函数 y =kx +b 的自变量的取值范围是-3≤x ≤6, 相应函数值的取值范围是-5≤y ≤-2,求该一次函数的解析式.【例 5】如图,函数 y =ax +b 和 y =kx 的交于点 P ,则根据图象可得: (1) 方程 ax +b -kx =0 的解是 ; (2) 方程组的解是 ; (3) 不等式 ax +b<kx 的解集是 ;(4) 不等式组 kx <0ax +b <-2的解集为 .(12) 若该函数图像与函数 y =(n –5)x +2n –2 关于 x 轴对称,求 m和 n 的值;(13) 若该函数图像与函数 y =–x +3 的图像同时交于函数 y =3x +19上一点,求函数解析式;(14) 该函数图像是否过定点?若过,请求出这个定点;若不过,请说明理由.【例 2】已知 y +1 与 x +2 成正比例,且当 x =4 时,y =-4. (1) 求 y 关于 x 的函数关系式;(2) 若点(a ,2)和(2,b )均在(1)中函数图像上,求 a 、b 的值. (3) 当-2≤x ≤6 时,求 y 的取值范围.(5)若△AOP 的面积为 6,求△BOP 的面积.【例 6】某通讯公司推出①、②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间 x (分)与收费 y (元)之间的函数关系如图所示. (1) 有月租的收费方式是 (填“①”或“②”),月租费是 元;(2) 分别出①、②两种收费方式中 y 与 x 之间的函数表达式; (3) 请你根据用户通讯时间的多少,给出经济实惠的选择建议.x + 2 2 - x 4 - x 2【例 7】为了加强公民的节水意识,合理利用水资源,各地采用价格调控手段达到节约用水的目的,某市规定如下用水收费标准:每户每月的用水量不超过 6 立方米时,水费按每立方米 a 元 收费,超过 6 立方米时,不超过的部分每立方米仍按 a 元收费,超 ※课后练习1. 下列函数中,自变量 x ()A .y =B .y =过的部分每立方米按 c 元收费,该市某户今年 9、10 月份的用水量和所交水费如下表所示:设某户每月用水量 x (立方米),应交水费 y (元).(1) 求 a ,c 的值;(2) 写出 y 于 x 的函数关系式;(3) 若该户 11 月份用水量为 8 立方米,求该户 11 月份水费是多少元?【例 8】如图,直线 l 1 的解析表达式为 y =–3x +3,且 l 1 与 x 轴交于点 D ,直线 l 2 经过点 A 、B ,直线 l 1,l 2 交于点 C . (1) 求点 D 的坐标和直线 l 2 的解析表达式; (2) 求△ADC 的面积;(3) 在直线 l 2 上存在异于点 C 的另一点 P ,使得△ADP 与△ADC 的面积相等,请直接写出点 P 的坐标.C .y =D .y = · 2.直线 y =kx +b 经过一、二、四象限,则直线 y =bx –k 的图象只能是图中的()3. 如图,两直线 y 1=kx +b 和 y 2=bx +k 在同一坐标系内图象的位置可能是()4. 一辆汽车和一辆摩托车分别从 A ,B 两地去同一城市,它们离 A 地的路程随时间变化的图象如图所示.则下列结论错误的是( ) A .摩托车比汽车晚到 1 h B .A ,B 两地的路程为 20 km C . 摩托车的速度为 45 km /h D . 汽车的速度为 60 km /h5.已知 m 是整数,且一次函数 y =(m +4)x +m +2 的图象不过第二象限,则 m 为.6. 若直线 y =–x +a 和 y =x +b 的交于点(m ,8),则 a +b =.7.已知直线 y =4x –2 与直线 y =–x +3m 的交点在第四象限内,则 m 的取值范围是 . k 1k 28.若直线 y =k 1x +1 与 y =k 2x –4 交于 x 轴上一点,则 =.9.如图,直线 y 1=kx +b 过点 A (0,2), 且与直线 y 2=mx 交于点 P (1,m ),则不等 式 组 mx +2> kx + b > mx 的 解 集是 .10.一次函数 y 1 与 y 2 的图象如图所示,根据图像解决下列问题:(1) 求两个函数交点 P 的坐标; (2) 求△ABP 的面积;(3) 直接写出下列不等式的解集:①y 1≥0 ; ②0<y 2≤y 1x - 2x - 2。

第五章一次函数专题5.2 一次函数与正比例函数-重难点题型(含解析)

第五章一次函数专题5.2 一次函数与正比例函数-重难点题型(含解析)

一次函数与正比例函数6大题型【题型1 一次函数的概念】【例1】(2021春•娄星区期末)在下列函数中:①y =﹣8x ;②;③;④y =﹣8x 2+5;⑤y =﹣0.5x ﹣1,一次函数有( )A .1个B .2个C .3个D .4个【变式1-1】(2020秋•肥西县校级月考)下列函数:(1)y =3x ;(2)y =2x ﹣1;(3);(4)y =x 2﹣1;(5)中,是一次函数的有( )个A .4B .3C .2D .1【变式1-2】(2021春•汉阴县期末)在①y =﹣8x :②y :③y1;④y =﹣5x 2+1:⑤y=0.5x ﹣3中,一次函数有( )A .1个B .2个C .3个D .4个【变式1-3】下列语句中,y 与x 是一次函数关系的有( )个(1)汽车以60千米/时的速度匀速行驶,行驶路程y (千米)与行驶时间x (时)之间的关系(2)圆的面积y (厘米2)与它的半径x (厘米)之间的关系;(3)一棵树现在高50厘米,每个月长高2厘米,x 月后这个棵树的高度为y 厘米,y 与x 的关系;(4)某种大米的单价是2.2元/千克,当购买大米x 千克大米时,花费y 元,y 与x 的关系.A .1B .4C .3D .2【题型2 利用一次函数的概念求值】【例2】(2021春•昭通期末)若y =(k ﹣2)x |k ﹣1|+1表示一次函数,则k 等于( )A .0B .2C .0或2D .﹣2或0【变式2-1】(2021春•雨花区期中)若函数y =(m +2)x |m |﹣1﹣5是一次函数,则m 的值为( )A .±2B .2C .﹣2D .±1【变式2-2】(2021春•杨浦区期末)如果y =kx +x +k 是一次函数,那么k 的取值范围是 .【变式2-3】已知y =(k ﹣1)x |k |+(k 2﹣4)是一次函数.(1)求k的值;(2)求x=3时,y的值;(3)当y=0时,x的值.【题型3 正比例函数的概念】【例3】(2021春•萝北县期末)若y=(m+2)x+m2﹣4是关于x的正比例函数,则常数m = .【变式3-1】函数y=(k+1)是正比例函数,则常数k的值为 .【变式3-2】已知函数y=mx+25﹣m是正比例函数,则该函数的表达式为 .【变式3-3】已知函数y=2x2a+b+a+2b是正比例函数,则a= .定系数法。

一次函数重难点题型专题讲练

一次函数重难点题型专题讲练

一次函数重难点题型专题讲练一次函数重难点题型专题讲练一次函数作为初中数学中的重要内容,是学生学习数学的基础。

在学习一次函数的过程中,有一些重难点题型,需要我们特别重视和练习。

本文将围绕一次函数的重难点题型展开讲练,以帮助学生更好地掌握和应用一次函数的知识。

一、一次函数概念复习1.1 一次函数的概念及性质一次函数是指形式为y=ax+b的函数,其中a和b是常数且a≠0。

一次函数的图像是一条直线,斜率为a,截距为b。

学生在学习一次函数时,首先要掌握一次函数的基本概念和性质,包括斜率、截距、自变量和因变量等概念及它们之间的关系。

1.2 一次函数的图像和性质一次函数的图像是一条直线,斜率a决定了直线的倾斜程度,截距b则决定了直线与y轴的交点。

学生需要通过绘制一次函数的图像来直观地感受斜率和截距对函数图像的影响,从而掌握一次函数图像的性质。

1.3 实际问题与一次函数的应用一次函数在实际问题中有着广泛的应用,比如描述直线运动、经济增长和人口增长等问题。

学生需要通过实际问题的分析和解决来理解一次函数的应用,掌握将实际问题转化为一次函数模型的方法和技巧。

二、一次函数的重难点题型2.1 斜率和截距的计算在一次函数的学习中,学生常常会遇到需要计算斜率和截距的题型。

这些题型是学生掌握一次函数基本概念和性质的关键,也是后续应用一次函数解决实际问题的基础。

2.2 函数关系的建立与解决一次函数的应用离不开函数关系的建立和解决,这需要学生通过实际问题提取相关信息,建立数学模型,并求解相应的问题。

这类题型锻炼了学生的实际问题建模能力和解决问题的逻辑思维能力。

2.3 一次函数的综合运用综合运用是一次函数学习的高阶题型,需要学生灵活运用所掌握的知识和方法解决复杂问题。

这类题型不仅考察了学生对一次函数知识的掌握程度,也培养了学生的分析和解决实际问题的能力。

三、个人观点和理解在学习和教学一次函数的过程中,我认为对于一次函数的重难点题型,学生应该重点进行训练和练习。

专题06一次函数常考重难点题型(十大题型)(原卷版)

专题06一次函数常考重难点题型(十大题型)(原卷版)

专题06 一次函数常考重难点题型(十大题型)【题型1 函数与一次(正比例)函数的识别】【题型2 函数值与自变量的取值范围】【题型3 一次函数图像与性质综合】【题型4 一次函数过象限问题】【题型5 一次函数的增减性】【题型6 一次函数的增减性(大小比较问题)】【题型7一次函数图像判断】【题型8 一次函数图像的变换(平移与移动)】【题型9 求一次函数解析式(待定系数法)】【题型10 一次函数与一次方程(组)】【题型1 函数与一次(正比例)函数的识别】【解题技巧】(1)判断两个变量之间是否是函数关系,应考以下三点: (1)有两个变量: 2)一个变量的变化随另一个变量的变化而变化: (3)自变量每确定一个值,因变量都有唯一的值与之对应。

(2)判断正比例函数,需关于x的关系式满足:= (0),只要与这个形式不同,即不是正比例函数。

(3)一次函数必须满足k+b (0)的形式,其中不为0的任意值1.(2023春•右玉县期末)下列各曲线中不能表示y是x的函数的是()A.B.C.D.2.(2023春•临西县期末)下列函数中,y是x的一次函数的是()A.y=1B.C.y=2x﹣3D.y=x2 3.(2023春•潮阳区期末)下列函数中,表示y是x的正比例函数的是()A.y=2x+1B.y=2x2C.y2=2x D.y=2x 4.(2023春•武城县期末)已知y=(m﹣1)x|m|+4是一次函数,则m的值为()A.1B.2C.﹣1D.±1 5.(2023春•鼓楼区校级期末)正比例函数x的比例系数是()A.﹣3B.C.D.36.(2023春•南岗区校级期中)若函数y=2x2m+1是正比例函数,则m的值是.7.(2023春•岳阳楼区校级期末)已知函数y=(m﹣1)x+m2﹣1.(1)当m为何值时,y是x的一次函数?(2)当m为何值时,y是x的正比例函数?【题型2 函数值与自变量的取值范围】【解题技巧】:函数的取值范围考虑两个方面:(1)自变量的取值必须要使函数式有意义:(2)自量的取值须符合实际意义。

一次函数的图象与性质重难点

一次函数的图象与性质重难点

一次函数的图象与性质知识导航1.一般地,形如y=kx+b(k,b是常数,k≠0)的函数,叫做一次函数,当b=0时,一次函数y=kx(k≠0)也叫正比例函数。

2.一次函数的图象及性质与x轴的交点与y轴的交点图象经过的象限函数的增减性y=kx+b (k≠0)k>0b>0(-bk,0)(0,b)一、二、三y随x的增大而增大b=0(0,0)(0,0)一、三y随x的增大而增大b<0(-bk,0)(0,b)一、三、四y随x的增大而增大k<0b>0(-bk,0)(0,b)一、二、四y随x的增大而减小b=0(0,0)(0,0)二、四y随x的增大而减小b<0(-bk,0)(0,b)二、三、四y随x的增大而减小3.-次函数和正比例尿数的图象都是一条直线①一次函数y=kx+b(k,b是常数,k≠0的图象是一条直线,称为直线y=kx+b;②直线y=kx+b(k≠0)可以看做由直线y=kx(k≠0)上下平移b个单位长度而得到.当b>0时,向上平移;当b<0时,向下平移.4.想据函数图象上两个点的坐标,用待定系数法求解析式【板块】正比例函数及其性质方法技巧正比例函数要満足两个条件,一是指数为1,二是系数不为0.题型一求正比例函数的解析式【例1】函数y=(k2-4)x2+(k+1)x是正比例函数,且y随x的增大而减小,求正比例函数的解析式.【例2】如图,正比例函数y=(m-3)x1m 的图象是经过原点O的直线,点A(2,0).(1)求正比例函数的解析式;(2)求直线l与x轴正半轴的夹角的度数;(3)点B是直线l上一动点,当线段AB最短时,求点B坐标.【例3】已知y=y1+y2,y1与x成正比例,y2与x-2成正比例,当x=1时,y=0;当x=3时,y=4.(1)求y与x之间的关系式;(2)当x=-1时,求y的值。

针对练习11.如图,正方形ABCD的顶点A,D分别在正比例函数y=4x和y=kx的图象上,OB=1,顶点B,C在x轴上,则系数k的值是()A.12B.23C.34D.452.一个函数的图象是经过原点的直线,并且这条直线经过第二象限及点(-2,3),求这个函数的解析式. 3.已知2y-3与3x+1成正比例,且x=2,y=12,求y与x函数解析式。

专题 一次函数章末重难点题型(举一反三)(原卷版)

专题 一次函数章末重难点题型(举一反三)(原卷版)

专题一次函数章末重难点题型【考点1 函数的概念】【例1】(鼓楼区校级期中)下列的曲线中,表示y是x的函数的共有()个.A.1B.2C.3D.4【变式1-1】(新乐市期中)下列变量之间的关系不是函数关系的是()A.一天的气温和时间B.y2=x中的y与x的关系C.在银行中利息与时间D.正方形的周长与面积【变式1-2】(苍溪县期中)下列关系式中,y不是x的函数的是()A.y=B.y=2x2C.y=(x≥0)D.|y|=x(x≥0)【变式1-3】(如皋市期中)下列各图中能说明y是x的函数的是()A.B.C.D.【考点2 函数自变量的取值范围】【例2】(资中县期中)函数y=中自变量x的取值范围是()A.x≠2B.x≥0C.x>0且x≠2D.x≥0且x≠2【变式2-1】(乳山市期中)在函数y=中,自变量x的取值范围是()A.x≥2B.x≥2且x≠2C.x>﹣2D.x>﹣2且x≠2【变式2-2】(巴彦淖尔模拟)在关于x的函数y=+(x﹣1)0中,自变量x的取值范围是()A.x≥﹣2B.x≥﹣2且x≠0C.x≥﹣2且x≠1D.x≥1【变式2-3】(沙坪坝区校级月考)函数y=的自变量x的取值范围是()A.x≥2B.x≠3且x≠﹣3C.x≥2且x≠3D.x≥2且x≠﹣3【考点3 一次函数的概念】【方法点拨】一般地,形如y=kx+b(k,b是常数,k≠0)的函数叫做一次函数。

当b=0时,y=kx+b即y=kx,是正比例函数。

所以说正比例函数是一种特殊的一次函数。

【例3】(锦江区校级期末)若y=(m﹣1)x2﹣|m|+3是关于x的一次函数,则m的值为()A.1B.﹣1C.±1D.±2【变式3-1】(沧州期末)①y=kx;②y=x;③y=x2﹣(x﹣1)x;(④y=x2+1:⑤y=22﹣x,一定是一次函数的个数有()A.2个B.3个C.4个D.5个【变式3-2】(芙蓉区校级模拟)若函数y=(k+1)x+k2﹣1是正比例函数,则k的值为()A.0B.1C.±1D.﹣1【变式3-3】(定陶区期末)已知y=(k﹣3)x|k|﹣2+2是一次函数,那么k的值为()A.±3B.3C.﹣3D.无法确定【考点4 一次函数图象的判定】【方法点拨】一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.【例4】(孝义市期末)同一平面直角坐标系中,一次函数y=mx+n与y=nx+m(mn为常数)的图象可能是()A.B.C.D.【变式4-1】(西湖区期末)若实数a,b,c满足a+b+c=0,且a<b<c,则函数y=﹣cx﹣a的图象可能是()A.B.C.D.【变式4-2】(温江区期末)如果ab>0,bc<0,则一次函数y=﹣x+的图象的大致形状是()A.B.C.D.【变式4-3】(沙坪坝区校级月考)两条直线y1=ax﹣b与y2=bx﹣a在同一坐标系中的图象可能是图中的()A.B.C.D.【考点5 一次函数动点问题】【例5】(昌平区期中)如图①,在矩形MMPQ中,动点R从点N出发,沿着N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图②所示,那么下列说法不正确的是()A .当x =2时,y =5B .矩形MNPQ 的周长是18C .当x =6时,y =10D .当y =8时,x =10【变式5-1】建宁县期中)如图,正方形ABCD 的边长为4,P 为正方形边上一动点,它沿A →D →C →B →A 的路径匀速移动,设P 点经过的路径长为x ,△APD 的面积是y ,则下列图象能大致反映变量y 与变量x 的关系图象的是( )A .B .C .D .【变式5-2】(锦江区期末)如图,在四边形ABCD 中,AD ∥BC ,∠A 为直角,动点P 从点A 开始沿A →B →C →D 的路径匀速前进到D ,在这个过程中,△APD 的面积S 随时间的变化址程可以用图象近似地表示为( )A B C D .【变式5-3】(镇平县期末)如图①,四边形ABCD 中,BC ∥AD ,∠A =90°,点P 从A 点出发,沿折线AB →BC →CD 运动,到点D 时停止,已知△P AD 的面积s 与点P 运动的路程x 的函数图象如图②所示,则点P 从开始到停止运动的总路程为( )A .6 B .9 C .10 D .11【考点6 求一次函数解析式】【方法点拨】先设出函数解析式,再根据条件确定解析式中未知的系数,从而得出函数解析式的方法,叫做待定系数法。

第五章一次函数专题5.5 一次函数的应用-重难点题型(含解析)

第五章一次函数专题5.5 一次函数的应用-重难点题型(含解析)

一次函数的应用6大题型【题型1 一次函数的应用(行程问题)】【例1】(2021春•海门市期中)甲、乙两人分别从笔直道路上的A、B两地同时出发相向匀速而行,已知甲比乙先出发6分钟,两人在C地相遇,相遇后甲立即按原速原路返回A地,乙继续向A地前行,约定先到A地者停止运动就地休息.若甲、乙两人相距的路程y(米)与甲行走的时间x (分钟)之间的关系如图所示,有下列说法:①甲的速度是60米/分钟,乙的速度是80米/分钟;②甲出发30分钟时,两人在C地相遇;③乙到达A地时,甲与A地相距450米,其中正确的说法有( )A.0个B.1个C.2个D.3个【变式1-1】(2021春•巴彦淖尔期末)如图,折线ABCDE描述了一辆汽车在某一直线上的行驶过程中,汽车离出发地的距离s(km)与行驶时间t(h)之间的函数关系,根据图中提供的信息,判断下列结论正确的选项是( )①汽车在行驶途中停留了0.5h;②汽车在整个行驶过程的平均速度是40km/h;③汽车共行驶了240km;④汽车出发4h离出发地40km.A.①②④B.①②③C.①③④D.①②③④【变式1-2】(2021•沙坪坝区校级开学)某天上午,大学生小南从学校出发去重庆市图书馆查阅资料,同时他的同学小开从该图书馆看完书回学校.两人在途中相遇,于是马上就各自最近的研究课题交流了6分钟,又各自按原速前往自己的目的地.直到小开回到学校并电话告知小南后,小南决定提速25%到达图书馆(接打电话的时间忽略不计).在整个运动过程中,小南和小开之间的距离y(m)与小南所用的时间x(min)之间的函数关系如图所示,则下列说法中正确的是( )A.学校和图书馆的之间的距离为1200mB.小南提速前,小开的速度是小南的1.8倍C.m=1500D.n=62【变式1-3】(2021•蒙阴县二模)甲、乙两车从M地到480千米的N地,甲车比乙车晚出发2小时,乙车途中因故停车检修,图中线段DE、折线OABC分别表示甲、乙两车所行路程y(千米)与时间x(小时)之间的函数图象,请根据图象所提供的信息,解决如下问题:(1)求两车在途中第二次相遇时,它们距目的地的路程;(2)甲车出发多长时间,两车在途中第一次相遇?【题型2 一次函数的应用(调运问题)】【例2】(2021春•大安市期末)A城有肥料400吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡镇,从A城运往C、D两乡镇肥料费为20元/吨和25元/吨;从B城往C、D两乡镇运肥料的费用分别为15元/吨和24元/吨,C乡镇需要肥料340吨,D乡镇需要肥料360吨.设A城运往C乡镇x吨肥料,请解答下列问题:(1)根据题意,填写下列表格:城、乡/吨数C DA x B (2)设总运费为W(元),求出W(元)与x(吨)的函数关系式,并写出自变量的取值范围;(3)求怎样调运可使总运费最少?最少为多少元?【变式2-1】(2021•寻乌县模拟)疫情期间,甲、乙两个仓库要向M,N两地运送防疫物资,已知甲仓库可调出50吨防疫物资,乙仓库可调出40吨防疫物资,M地需35吨防疫物资,N地需55吨防疫物资,两仓库到M,N两地的路程和运费如下表:路程/千米运送1千米所需运费/(元/吨)甲仓库乙仓库甲仓库乙仓库M地20151212N地2520108(1)设从甲仓库运往M地防疫物资x吨,两仓库运往M,N两地的总费用为y元,求y关于x的函数关系式.(2)如何调运才能使总运费最少?总运费最少是多少?【变式2-2】(2021春•满洲里市期末)已知A地有蔬菜200t,B地有蔬菜300t,现决定将这些蔬菜全部调运给C,D两地,C,D两地分别需要调运蔬菜240t和260t.其中从A地运往C,D两处的费用分别为每吨20元和25元,从B地运往C,D两处的费用分别为每吨15元和18元.设从B 地运往C地的蔬菜为x吨.设A,B两个蔬菜基地的总运费为w元,求出w与x之间的函数关系式,并求总运费最小的调运方案.【变式2-3】(2021春•昆明期末)某市A、B两个仓库分别有救灾物资200吨和300吨,2021年5月18日起云南大理州漾濞县已连续发生多次地震,最高震级为5月21日发生的6.4级地震,为援助灾区,现需将这些物资全部运往甲,乙两个受灾村.已知甲村需救灾物资240吨,乙村需救灾物资260吨,从A仓库运往甲,乙两村的费用分别为每吨20元和每吨25元,从B仓库运往甲,乙两村的费用分别为每吨15元和24元.设A仓库运往甲村救灾物资x吨,请解答下列问题:(1)根据题意,填写下表格:仓库甲村乙村A x①B②③①= ;②= ;③= .(2)设总运费为W(元),求出W(元)与x(吨)的函数关系式.(3)求怎么调运可使总运费最少?最少运费为多少元?【题型3 一次函数的应用(利润最大化)】【例3】(2021•镇雄县二模)2020年6月1日上午,国务院总理在山东烟台考察时表示,地摊经济是就业岗位的重要来源,是人间的烟火,和“高大上”一样,是中国的生机.“地摊经济”成为了社会关注的热门话题.小明从市场得知如表信息:甲商品乙商品进价(元/件)355售价(元/件)458小明计划购进甲、乙商品共100件进行销售,设小明购进甲商品x件,甲、乙商品全部销售完后获得利润为y元.(1)求出y与x之间的函数关系式;(2)小明用不超过2000元资金一次性购进甲,乙两种商品,求x的取值范围;(3)在(2)的条件下,若要求甲,乙商品全部销售完后获得的利润不少于632.5元,请说明小明有哪些可行的进货方案,并计算哪种进货方案的利润最大.【变式3-1】(2021•青白江区模拟)在近期“抗疫”期间,某药店销售A,B两种型号的口罩,已知销售80只A型和45只B型的利润为21元,销售40只A型和60只B型的利润为18元.(1)求每只A型口罩和B型口罩的销售利润;(2)该药店计划一次购进两种型号的口罩共2000只,其中B型口罩的进货量不少于A型口罩的进货量且不超过它的3倍,则该药店购进A型、B型口罩各多少只,才能使销售总利润y最大?【变式3-2】(2021春•连山区期末)由于新能源汽车越来越受到消费者的青睐,某经销商决定分两次购进甲、乙两种型号的新能源汽车(两次购进同一种型号汽车的每辆的进价相同).第一次用270万元购进甲型号汽车30辆和乙型号汽车20辆;第二次用128万元购进甲型号汽车14辆和乙型号汽车10辆.(1)求甲、乙两种型号汽车每辆的进价;(2)经销商分别以每辆甲型号汽车8.8万元,每辆乙型号汽车4.2万元的价格销售后,根据销售情况,决定再次购进甲、乙两种型号的汽车共100辆,且乙型号汽车的数量不少于甲型号汽车数量的3倍,设再次购进甲型汽车a辆,这100辆汽车的总销售利润为W万元.①求W关于a的函数关系式;并写出自变量的取值范围;②若每辆汽车的售价和进价均不变,该如何购进这两种汽车,才能使销售利润最大?最大利润是多少?【变式3-3】(2021•鹿邑县一模)草莓是一种极具营养价值的水果,当下正是草莓的销售旺季.某水果店以2850元购进两种不同品种的盒装草莓.若按标价出售可获毛利润1500元(毛利润=售价﹣进价),这两种盒装草莓的进价、标价如表所示:价格/品种A品种B品种进价(元/盒)4560标价(元/盒)7090(1)求这两个品种的草莓各购进多少盒;(2)该店计划下周购进这两种品种的草莓共100盒(每种品种至少进1盒),并在两天内将所进草莓全部销售完毕(损耗忽略不计).因B品种草莓的销售情况较好,水果店计划购进B品种的盒数不低于A品种盒数的2倍,且A品种不少于20盒.如何安排进货,才能使毛利润最大,最大毛利润是多少?【题型4 一次函数的应用(费用最低)】【例4】(2021春•广安期末)为积极响应垃圾分类的号召,某街道决定在街道内的所有小区安装垃圾分类的温馨提示牌和垃圾箱.已知购买3个垃圾箱和2个温馨提示牌需要280元,购买2个垃圾箱和3个温馨提示牌需要270元.(1)每个垃圾箱和每个温馨提示牌各多少元?(2)若购买垃圾箱和温馨提示牌共100个(两种都买),且垃圾箱的个数不少于温馨提示牌个数的3倍,请写出总费用w(元)与垃圾箱个数m(个)之间的函数关系式,并说明当购买垃圾箱和温馨提示牌各多少个时,总费用最低,最低费用为多少元?【变式4-1】(2021春•环江县期末)某县园林局打算购买三角梅、水仙装点城区道路,负责人小李去花卉基地调查发现:购买1盆三角梅和2盆水仙需要14元,购买2盆三角梅和1盆水仙需要13元.(1)求三角梅、水仙的单价各是多少元?(2)购买三角梅、水仙共10000盆,且购买的三角梅不少于3000盆,但不多于5000盆.①设购买的三角梅种花a盆,总费用为W元,求W与a的关系式;②当总费用最少时,应选择哪一种购买方案?最少费用为多少元?【变式4-2】(2021•三水区校级二模)截至2021年4月10日,全国累计报告接种新冠疫苗16447.1万剂次,接种总剂次数为全球第二.某社区有80000人每人准备接种两剂次相同厂家生产的新冠疫苗并被分配到A、B两个接种点,A接种点有5个接种窗口,B接种点有4个接种窗口.每个接种窗口每天的接种量相同,并且在独立完成20000人的两剂次新冠疫苗接种时,A接种点比B接种点少用5天.(1)求A、B两个接种点每天接种量;(2)设A接种点工作x天,B接种点工作y天,刚好完成该社区80000人的新冠疫苗接种任务,求y关于x的函数关系式;(3)在(2)的条件下,若A接种点每天耗费6.5万元,B接种点每天耗费为4万元,且A、B两个接种点的工作总天数不超过85天,则如何安排A、B两个接种点工作的天数,使总耗费最低?并求出最低费用.【变式4-3】(2021春•大同期末)在新冠疫情防控期间,某校新购进A、B两种型号的电子体温测量仪共20台,其中A型仪器的数量不少于B型仪器的,已知A、B两种测温仪的价格如表所示,请问购买A、B两种测温仪各多少台时,可使所购仪器的总费用最少?最少需多少元?型号A B价格800元/台600元/台【题型5 一次函数的应用(工程问题)】【例5】(2021•汇川区三模)为了主题为“醉美遵义,酒都仁怀”第十三届遵义文化旅游产业发展大会召开,仁怀某社区计划对面积为2000m2的区域进行绿化,经投标,由甲、乙两个工程队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2.5倍,并且在独立完成面积为500m2区域的绿化时,甲队比乙队少用6天.(1)求甲、乙两工程队每天能完成绿化的面积.(2)设甲工程队施工x天,乙工程队施工y天,刚好完成绿化任务,求y与x的函数解析式.(3)若甲队每天绿化费用是1.5万元,乙队每天绿化费用为0.5万元,且甲乙两队施工的总天数不超过19天,则如何安排甲、乙两队施工的天数,使施工总费用最低?并求出最低费用.【变式5-1】(2021春•青羊区期末)甲、乙两个工程队分别同时铺设两条公路,所铺设公路的长度y (m)与铺设时间x(h)之间的关系如图所示,根据图象所提供的信息分析,解决下列问题:(1)在2时~6时段时,乙队的工作效率为 5 m/h;(2)分别求出乙队在0时~2时段和2时~6时段,y与x的关系式,并求出甲乙两队所铺设公路长度相等时x的值;(3)求出当两队所铺设的公路长度之差为5m时x的值.【变式5-2】(2021春•沙坪坝区校级期末)甲、乙两人同时开始共同组装一批零件,工作两小时后,乙因事离开,停止工作.一段时间后,乙重新回到岗位并提高了工作效率.最后40分钟,甲休息,由乙独自完成剩余零件的组装.甲在工作过程中工作效率保持不变,乙在每个工作阶段的工作效率保持不变.甲、乙两人组装零件的总数y(个)与工作时间x(小时)之间的图象如图.(1)这批零件一共有多少个?(2)在整个组装过程中,当甲、乙各自组装的零件总数相差40个时,求x的值.【变式5-3】(2020秋•郑州期末)工厂某车间需加工一批零件,甲组工人加工中因故停产检修机器一次,然后以原来的工作效率继续加工,由于时间紧任务重,乙组工人也加入共同加工零件.设甲组加工时间t(时),甲组加工零件的数量为y甲(个),乙组加工零件的数量为y乙(个),其函数图象如图所示.(1)求y乙与t之间的函数关系式,并写出t的取值范围;(2)求a的值,并说明a的实际意义;(3)甲组加工多长时间时,甲、乙两组加工零件的总数为480个.【题型6 一次函数的应用(其他问题)】【例6】(2021春•沙河口区期末)为预防疫情传播,学校对教室定期喷药消毒.如图为一次消毒中,某教室每立方米空气中含药量y(mg/m3)与药物在空气中的持续时间x(min)的函数图象,它是由关闭门窗集中喷药,通风前和打开门窗后通风三段不同的一次函数组成的.在下面四个选项中,错误的是( )A.经过5min集中喷药,教室每立方米空气中含药量最高达到10mg/m3B.持续11min室内空气中的含药量不低于8mg/m3C.当室内空气中的含药量不低于5mg/m3且持续时间不低于35分钟,才有效杀灭病毒.由此判断此次消毒有效D.当室内空气中的含药量低于4mg/m3时,对人体是安全的.从室内空气中的含药量达到10mg/m3开始,需经过40min后学生才能进入室内【变式6-1】(2021春•朝阳区校级期末)某地自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,超计划部分每吨按0.8元收费.(1)某月该单位用水3200吨,水费是 元;若用水2800吨,水费是 元;(2)写出该单位水费y(元)与每月用水量x(吨)之间的函数关系式;(3)若某月该单位缴纳水费1540元,则该单位这个月的用水量为多少吨?【变式6-2】(2021春•河东区期末)一个水库的水位在某段时间内持续上涨,表格中记录了连续5h 内6个时间点的水位高度,其中x表示时间,y表示水位高度.0123453 3.3 3.6 3.9 4.2 4.5(1)水位高度y是否为时间x的函数?若是,请求出这个函数解析式;(2)据估计,这种上涨规律还会持续,并且当水位高度达到8m时,水库报警系统会自动发出警报.请预测再过多久系统会发出警报?【变式6-3】(2021•涧西区三模)某大型商场为了提高销售人员的积极性,对原有的薪酬计算方式进行了修改,设销售人员一个月的销售量为x(件),销售人员的月收入为y(元),原有的薪酬计算方式y1元采用的是底薪+提成的方式,且y1=k1x+b,已知每销售一件商品另外获得15元的提成修改后的薪酬计算方式为y2(元),且y2=k2x+b,根据图象回答下列问题:(1)求y1和y2的解析式,并说明b的实际意义;(2)求两个函数图象的交点F的坐标,并说明交点F的实际意义;(3)根据函数图象请判断哪种薪酬计算方式更适合销售人员.一次函数的应用-重难点题型第3步:列函数。

一次函数章节重难点复习(加配套习题)

一次函数章节重难点复习(加配套习题)

咨询1.热如线图:2,778l4A55l0B 分27别784表66示0 A 步行与 B 骑车在同一路5 上行驶的路地址程:S老与宝安时中间学对t 面的关系。
(1)B 出发时与 A 相距
千米。
( (2)走了一段路后,自行车发生故障,进行
S(千米)
lB
教师课后小 结
签字
教师:
学生:
聚贤育能
咨询热线:27784550 27784660
3
地址:老宝安中学对面
(2)把自变量与函数的对应值代入函数解析式中 (3)求出待定系数的值,从而写出正比例或一次函数的解析式。
聚贤育能
考点3:正比例函数和一次函数表达式的确定 用待定系数法求正比例函数和一次函数解析式是中考中的热点,也是必考内容之一。
1、 已知一次函数 y kx 3 的图像过点(2,-1),求这个函数的解析式。
于点 C(0,2),直线 PB 交 y 轴于点 D,△AOP 的面积为 6;
(1)求△COP 的面积; (2)求点 A 的坐标及 p 的值; (3)若△BOP 与△DOP 的面积相等,求直线 BD 的函数解析式。
y
D
E C
P (2,p)
A
OF
B
x
知识点 6.一次函数在实际问题中的应用
1:一、行程类应用题
2、 已知某个一次函数的图像与 x 轴、y 轴的交点坐标分别是(-2,0)、(0,4),求这个函数的 解析式。
3、已知某个一次函数的图像如图所示,则该函数的解析式为__________。
y
2
知识点 4、平移问题 (1)若两条直线 y1 k1x b1 平行 y2 k2x b2 ,那么 k1 k2 ,b1 b2 (2) (“左加右减、上加下减”) . 向右平移 n 个单位 y=k(x-n)+b

一次函数重难点基本考点

一次函数重难点基本考点

考点1:一次函数的概念.相关知识:一次函数是形如y kx b =+(k 、b 为常数,且0k ≠)的函数,特别的当0=b 时函数为)0(≠=k kx y ,叫正比例函数.1、已知一次函数k x k y )1(-=+3,则k = .2、函数n m xm y n +--=+12)2(,当m= ,n= 时为正比例函数;当m= ,n 时为一次函数.考点2:一次函数图象与系数相关知识:一次函数)0(≠+=k b kx y 的图象是一条直线,图象位置由k 、b 确定,0>k 直线要经过一、三象限,0<k 直线必经过二、四象限,0>b 直线与y 轴的交点在正半轴上,0<b 直线与y 轴的交点在负半轴上.1. 直线y=x -1的图像经过象限是( )A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限2. 一次函数y=6x+1的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 3. 关于x 的一次函数y=kx+k 2+1的图像可能是( )4.若一次函数m x m y 23)12(-+-=的图像经过 一、二、四象限,则m 的取值范围是 .考点3:一次函数的增减性相关知识:一次函数)0(≠+=k b kx y ,当0>k 时,y 随x 的增大而增大,当0<k 时,y 随x 的增大而减小.规律总结:从图象上看只要图象经过一、三象限,y 随x 的增大而增大,经过二、四象限,y 随x 的增大而减小.1.一次函数y=-2x+3中,y 的值随x 值增大而____ ___.(填“增大”或“减小”)2.若一次函数()22--=x m y 的函数值y 随x 的增大而减小,则m 的取值范围是( )A. 0<mB. 0>mC. 2<mD. 2>m3.已知一次函数的图象经过点(0,1),且满足y 随x 增大而增大,则该一次函数的解析式可以为______________(写出一个即可).考点4:函数图象经过点的含义相关知识:函数图象上的点是由适合函数解析式的一对x 、y 的值组成的,因此,若已知一个点在函数图象上,那么以这个点的横坐标代x ,纵坐标代y ,方程成立。

一次函数重难点

一次函数重难点

一次函数重、难点一、填空题:1、已知水池的容量为50立方米,灌水量为每小时n 立方米,灌满水所需时间为t 小时,那么t 与n 之间的函数关系式为_____________________.2、汽车由南京驶往300千米处的上海,它的平均速度为100千米/小时,则汽车距上海的距离s (千米)与行驶的时间t (小时)的函数关系式为________________________.3、函数y =中,自变量x 的取值范围是_____________________.4、①0)y x =<②0)y x =≥③0)y x =≥④0)y x =≥中,不是函数关系的是_____________.5、当m =_______________时,232m y x m -=++是正比例函数.6、一次函数y =kx +b 中,k 取___________________ b 取______________.7、若(3)y m x m =-+是关于x 的一次函数,则m =___,若y 是x 的正比例函数,则m =___8、水池蓄水1000立方米,每小时排水p 立方米,t 小时蓄水池中的水为Q 立方米,则Q 与t 之间的函数关系式为_______________________,Q 是t 的_______________函数9、一次函数y =-3x +1的图像经过_____________________象限10、已知直线y =x +b ,当b<0时,直线不经过___________象限11、函数y =-x +2中,y 随x 的减小而_________,函数图像与x 轴的交点坐标是______,与y 轴的交点坐标是_________.12、函数y =3mx +m +1的图像经过原点,则m =________,y 随x 的增大而减小,则m_________.13、 14、已知一次函数y =kx -k ,若y 随x 的增大而减小,则该函数的图像经过_______________象限.15、若一次函数y =kx -2的图像经过(-2,3),则该函数图像与x 轴的交点坐标是_________,与y 轴的交点坐标是_________.16、若一次函数y =kx +b ,与y 轴的交点的纵坐标为-2,且与两坐标轴围成的三角形的面积为1,则k =________.17、一次函数y =kx +3的图像与两坐标轴的两个交点之间的距离为5,则k =________.18、点A (2,4)在正比例函数的图像上,这个正比例函数的解析式为_______________.19、当m =__________时,函数233(1)m y m x -=+-是一次函数且y 随x 的增大而减小 20、直线y =kx +b 与直线y =3x +1平行,则k________,b__________.二、解答题:21、已知一条直线经过点(9,10)和点(24,20),求该直线的解析式22、已知一次函数2(2)14m y m x =--+,①m 为何值时,函数图像过原点?一次函数的图像如图所示,则k_____0, b_____0②m 为何值时,函数图像过点(0,-3)?③m 为何值时,函数图像平行于y =2x ?24已知直线(13)21y k x k =-+-:①k 为何值时,直线过原点;②k 为何值时,直线与y 轴的交点坐标是(0,-2);③k 为何值时,直线与x 轴的交点坐标为(34,0);④k 为何值时,y 随x 的增大而增大;⑤k 为何值时,该直线与直线35y x =--平行?25、某移动公司为用户提供两种资费方式打市话,甲:拨打和接听市话0.4元/分钟,但每月要交50元月租费;乙:拨打和接听市话0.6元/分钟,不收月租费,①分别写出两种资费方法下的费用y (元)与拨打或接听电话时间t (分钟)之间的关系式 ②在同一直角坐标系中作出它们的图像 ③若某人每月需使用手机200分钟,选择那种付费方式合算一些?例1、甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y (m )与挖掘时间x (h )之间的关系如图11所示,请根据图象所提供的信息解答下列问题:(1)乙队开挖到30m 时,用了_____h .开挖6h 时甲队比乙队多挖了_____m ;(2)请你求出:①甲队在0≤x ≤6的时段内,y 与x 之间的函数关系式;②乙队在2≤x ≤6的时段内,y 与x 之间的函数关系式;(3)当x 为何值,甲、乙两队在施工过程中所挖河渠的长度相等?例2、某市推出电脑上网包月制,每月收取费用y (元)与上网时间x (小时)的函数关系如右下图所示,其中BA 是线段,且BA ∥x 轴,AC 是射线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

{
一次函数重难点题型专题讲练
※题型讲练
【例 1】已知一次函数 y =(2m +1)x +m –3,分别解答下列各题: (1) 求 m 的取值范围;
(2) 若该函数是正比例函数,求 m 的值;
(3) 若该函数图象在 y 轴的截距为-2,求 m 的值; (4) 若该函数图象平行直线 y =3x –3,求 m 的值;
(5) 若该函数图像 y 随着 x 的增大而减小,求 m 的取值范围; (6) 若该函数图像经过一、二、三象限,求 m 的范围; (7) 若该函数图像不过第二象象限,求 m 的范围; (8) 若该函数图像必过二、四象限,求 m 的范围; (9) 若函数图像必过三、四象限,求 m 的范围;
(10) 若该函数图像过点(–1,–2),求函数解析式;
(11) 若该函数图像是由函数 y =–5x +n –3 的图像延 y 轴向上平移
2 个单位得来,求 m 和 n 的值;
【例 3】已知某一直线过点(1,-4)和点(4,-2), (1) 求该直线所在的一次函数关系式;
(2) 求该直线与两坐标轴所围成的三角形的面积; (3) 若函数图像上有两点(a ,m +3)、(b ,-2m +6)且 a >b ,求 m 的取值范围.
【例 4】一次函数 y =kx +b 的自变量的取值范围是-3≤x ≤6, 相应函数值的取值范围是-5≤y ≤-2,求该一次函数的解析式.
【例 5】如图,函数 y =ax +b 和 y =kx 的交于点 P ,则根据图象可得: (1) 方程 ax +b -kx =0 的解是 ; (2) 方程组的解是 ; (3) 不等式 ax +b<kx 的解集是 ;
(4) 不等式组 kx <0
ax +b <-2
的解集为 .
(12) 若该函数图像与函数 y =(n –5)x +2n –2 关于 x 轴对称,求 m
和 n 的值;
(13) 若该函数图像与函数 y =–x +3 的图像同时交于函数 y =3x +19
上一点,求函数解析式;
(14) 该函数图像是否过定点?若过,请求出这个定点;若不
过,请说明理由.
【例 2】已知 y +1 与 x +2 成正比例,且当 x =4 时,y =-4. (1) 求 y 关于 x 的函数关系式;
(2) 若点(a ,2)和(2,b )均在(1)中函数图像上,求 a 、b 的值. (3) 当-2≤x ≤6 时,求 y 的取值范围.
(5)若△AOP 的面积为 6,求△BOP 的面积.
【例 6】某通讯公司推出①、②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间 x (分)与收费 y (元)之间的函数关系如图所示. (1) 有月租的收费方式是 (填“①”或“②”),月租费是 元;
(2) 分别出①、②两种收费方式中 y 与 x 之间的函数表达式; (3) 请你根据用户通讯时间的多少,给出经济实惠的选择建议.
x + 2 2 - x 4 - x 2
【例 7】为了加强公民的节水意识,合理利用水资源,各地采用价格调控手段达到节约用水的目的,某市规定如下用水收费标准:每户每月的用水量不超过 6 立方米时,水费按每立方米 a 元 收费,超过 6 立方米时,不超过的部分每立方米仍按 a 元收费,超 ※课后练习
1. 下列函数中,自变量 x (
)
A .y =
B .y =
过的部分每立方米按 c 元收费,该市某户今年 9、10 月份的用
水量和所交水费如下表所示:
设某户每月用水量 x (立方米),应交水费 y (元).
(1) 求 a ,c 的值;
(2) 写出 y 于 x 的函数关系式;
(3) 若该户 11 月份用水量为 8 立方米,求该户 11 月份水费是多少元?
【例 8】如图,直线 l 1 的解析表达式为 y =–3x +3,且 l 1 与 x 轴交于点 D ,直线 l 2 经过点 A 、B ,直线 l 1,l 2 交于点 C . (1) 求点 D 的坐标和直线 l 2 的解析表达式; (2) 求△ADC 的面积;
(3) 在直线 l 2 上存在异于点 C 的另一点 P ,使得△ADP 与△ADC 的面积相等,请直接写出点 P 的坐标.
C .y =
D .y = · 2.
直线 y =kx +b 经过一、二、四象限,则直线 y =bx –k 的图
象只能是图中的(
)
3. 如图,两直线 y 1=kx +b 和 y 2=bx +k 在同一坐标系内图象
的位置可能是(
)
4. 一辆汽车和一辆摩托车分别从 A ,B 两地去同一城市,它们离 A 地的路程随时间变化的图象如图所示.则下列结论错误的是( ) A .摩托车比汽车晚到 1 h B .A ,B 两地的路程为 20 km C . 摩托车的速度为 45 km /h D . 汽车的速度为 60 km /h
5.
已知 m 是整数,且一次函数 y =(m +4)x +m +2 的图象不过第
二象限,则 m 为

6. 若直线 y =–x +a 和 y =x +b 的交于点(m ,8),则 a +b =

7.
已知直线 y =4x –2 与直线 y =–x +3m 的交点在第四象限内,
则 m 的取值范围是 . k 1
k 2
8.
若直线 y =k 1x +1 与 y =k 2x –4 交于 x 轴上一点,则 =
.
9.
如图,直线 y 1=kx +b 过点 A (0,2), 且与直线 y 2=mx 交于点 P (1,m ),则不等 式 组 mx +2> kx + b > mx 的 解 集是 .
10.
一次函数 y 1 与 y 2 的图象如图所示,根据图像解决下列问
题:
(1) 求两个函数交点 P 的坐标; (2) 求△ABP 的面积;
(3) 直接写出下列不等式的解集:
①y 1≥0 ; ②0<y 2≤y 1
x - 2
x - 2。

相关文档
最新文档