集成电路封装与测试(一)
集成电路封装与测试技术
集成电路封装与测试技术在当今科技飞速发展的时代,集成电路作为现代电子技术的核心基石,其重要性不言而喻。
而集成电路封装与测试技术则是确保集成电路性能稳定、可靠运行的关键环节。
集成电路封装,简单来说,就是将通过光刻、蚀刻等复杂工艺制造出来的集成电路芯片,用一种特定的外壳进行保护,并提供与外部电路连接的引脚或触点。
这就好像给一颗珍贵的“芯”穿上了一件合适的“防护服”,使其能够在复杂的电子系统中安全、稳定地工作。
封装的首要作用是保护芯片免受外界环境的影响,比如灰尘、湿气、静电等。
想象一下,一个微小而精密的芯片,如果直接暴露在外界,很容易就会被损坏。
封装材料就像是一道坚固的屏障,为芯片遮风挡雨。
同时,封装还能为芯片提供良好的散热途径。
集成电路在工作时会产生热量,如果热量不能及时散发出去,就会影响芯片的性能甚至导致故障。
好的封装设计可以有效地将芯片产生的热量传导出去,保证芯片在正常的温度范围内工作。
此外,封装还为芯片提供了与外部电路连接的接口。
通过引脚或触点的设计,使得芯片能够与其他电子元件进行通信和数据交换,从而实现各种复杂的功能。
在封装技术的发展历程中,经历了多个阶段的变革。
从最初的双列直插式封装(DIP),到后来的表面贴装技术(SMT),如小外形封装(SOP)、薄型小外形封装(TSOP)等,再到如今的球栅阵列封装(BGA)、芯片级封装(CSP)以及系统级封装(SiP)等先进技术,封装的体积越来越小,性能越来越高,引脚数量也越来越多。
例如,BGA 封装通过将引脚变成球形阵列分布在芯片底部,大大增加了引脚数量,提高了芯片与外部电路的连接密度和数据传输速度。
而 CSP 封装则在尺寸上更加接近芯片本身的大小,具有更小的封装体积和更好的电气性能。
SiP 封装则将多个芯片和其他元件集成在一个封装体内,实现了更高程度的系统集成。
集成电路测试技术则是确保封装后的集成电路能够正常工作、性能符合设计要求的重要手段。
测试就像是给集成电路进行一次全面的“体检”,以检测其是否存在缺陷或故障。
集成电路封装与测试复习题(含答案)
集成电路封装与测试复习题(含答案)第1章集成电路封装概论2学时第2章芯片互联技术3学时第3章插装元器件的封装技术1学时第4章表面组装元器件的封装技术2学时第5章BGA和CSP的封装技术4学时第6章POP堆叠组装技术2学时第7章集成电路封装中的材料4学时第8章测试概况及课设简介2学时一、芯片互联技术1、引线键合技术的分类及结构特点?答:1、热压焊:热压焊是利用加热和加压力,使焊区金属发生塑性形变,同时破坏压焊界面上的氧化层,使压焊的金属丝与焊区金属接触面的原子间达到原子的引力范围,从而使原子间产生吸引力,达到“键合”的目的。
2、超声焊:超声焊又称超声键合,它是利用超声波(60-120kHz)发生器产生的能量,通过磁致伸缩换能器,在超高频磁场感应下,迅速伸缩而产生弹性振动经变幅杆传给劈刀,使劈刀相应振动;同时,在劈刀上施加一定的压力。
于是,劈刀就在这两种力的共同作用下,带动Al丝在被焊区的金属化层(如Al膜)表面迅速摩擦,使Al丝和Al膜表面产生塑性形变。
这种形变也破坏了Al层界面的氧化层,使两个纯净的金属面紧密接触,达到原子间的“键合”,从而形成牢固的焊接。
3、金丝球焊:球焊在引线键合中是最具有代表性的焊接技术。
这是由于它操作方便、灵活,而且焊点牢固,压点面积大,又无方向性。
现代的金丝球焊机往往还带有超声功能,从而又具有超声焊的优点,有的也叫做热(压)(超)声焊。
可实现微机控制下的高速自动化焊接。
因此,这种球焊广泛地运用于各类IC和中、小功率晶体管的焊接。
2、载带自动焊的分类及结构特点?答:TAB按其结构和形状可分为Cu箔单层带:Cu的厚度为35-70um,Cu-PI双层带Cu-粘接剂-PI三层带Cu-PI-Cu双金属3、载带自动焊的关键技术有哪些?答:TAB的关键技术主要包括三个部分:一是芯片凸点的制作技术;二是TAB载带的制作技术;三是载带引线与芯片凸点的内引线焊接和载带外引线的焊接术。
制作芯片凸点除作为TAB内引线焊接外,还可以单独进行倒装焊(FCB)4.倒装焊芯片凸点的分类、结构特点及制作方法?答:蒸镀焊料凸点:蒸镀焊料凸点有两种方法,一种是C4 技术,整体形成焊料凸点;电镀焊料凸点:电镀焊料是一个成熟的工艺。
集成电路封装和测试复习题答案
一、填空题1、将芯片及其他要素在框架或基板上布置,粘贴固定以及连接,引出接线端子并且通过可塑性绝缘介质灌封固定的过程为狭义封装;在次根基之上,将封装体与装配成完整的系统或者设备,这个过程称之为广义封装。
2、芯片封装所实现的功能有传递电能;传递电路信号;提供散热途径;构造保护与支持。
3、芯片封装工艺的流程为硅片减薄与切割、芯片贴装、芯片互连、成型技术、去飞边毛刺、切筋成形、上焊锡、打码。
4、芯片贴装的主要方法有共晶粘贴法、焊接粘贴法、导电胶粘贴发、玻璃胶粘贴法。
5、金属凸点制作工艺中,多金属分层为黏着层、扩散阻挡层、表层金保护层。
6、成型技术有多种,包括了转移成型技术、喷射成型技术、预成型技术、其中最主要的是转移成型技术。
7、在焊接材料中,形成焊点完成电路电气连接的物质叫做煤斜;;用于去除焊盘外表氧化物,提高可焊性的物质叫做助焊剂;在SMT中常用的可印刷焊接材料叫做锡直。
8、气密性封装主要包括了金属气密性封装、陶瓷气密性封装、玻璃气密性封装。
9、薄膜工艺主要有遮射工艺、蒸发工艺、电镀工艺、光刻工艺。
10、集成电路封装的层次分为四级分别为模块元件(MOdUIe)、⅛路卡工艺(Card)、主电路板(Board)、完整电子产品。
11、在芯片的减薄过程中,主要方法有磨削、研磨、干式抛光、化学机械平坦工艺、电化学腐蚀、湿法腐蚀、等离子增强化学腐蚀等。
12、芯片的互连技术可以分为打线键合技术、载带自动键合技术、倒装芯片键合技术。
13、DBG切割方法进展芯片处理时,首先进展在硅片正面切割一定深度切口再进展反面磨削。
14、膜技术包括了薄膜技术和厚膜技术,制作较厚薄膜时常采用丝网印刷和浆料枯燥烧结的方法O15、芯片的外表组装过程中,焊料的涂覆方法有点涂、丝网印刷、钢模板印刷三种。
16、涂封技术一般包括了顺形涂封和封胶涂封。
二、名词解释1、芯片的引线键合技术(3种)是将细金属线或金属带按顺序打在芯片与引脚架或封装基板的焊垫上而形成电路互连,包括超声波键合、热压键合、热超声波键合。
集成电路封装与测试
集成电路芯片封装:是指利用膜技术及微细加工技术,将芯片及其他要素在框架或基板上布置,粘贴,固定及连接,引出接线端子并通过可塑性绝缘介质灌封固定构成整体立体结构的工艺封装工程:将封装体与基板连接固定装配成完整的系统或电子设备,并确保整个的综合性能的工程(合起来就是广义的封装概念)芯片封装实现的功能:①传递电能,主要是指电源电压的分配和导通②传递电路信号,主要是将电信号的延迟尽可能的减小,在布线时应尽可能使信号线与芯片的互联路径及通过封装的I/O接口引出的路径最短③提供散热途径,主要是指各种芯片封装都要考虑元器件部件长期工作时,如何将聚集的热量散出的问题④结构保护与支持,主要是指芯片封装可为芯片和其他连接部件提供牢固可靠的机械支撑封装工程的技术层次①第一层次,该层次又称为芯片层次的封装,是指把集成电路芯片与封装基板或引脚架之间的粘贴固定电路连线与封装保护的工艺②第二层次,将数个第一层次完成的封装与其他电子元器件组成一个电路卡的工艺③第三层次,将数个第二层次完成的封装,组装成的电路卡组合在一个主电路板上,使之成为一个部件或子系统的工艺④第四层次,将数个子系统组装成一个完整电子产品的工艺过程芯片封装的分类:按照封装中组合集成电路芯片的数目,可以分为单芯片封装与多芯片封装按照密封的材料区分,可分为高分子材料和陶瓷为主的种类按照器件与电路板互连方式,可分为引脚插入型和表面贴装型按照引脚分布形态,可分为单边引脚,双边引脚,四边引脚与底部引脚零级层次,在芯片上的集成电路元件间的连线工艺SCP,单芯片封装MCP,多芯片封装DIP,双列式封装BGA,球栅阵列式封装SIP,单列式封装ZIP,交叉引脚式封装QFP,四边扁平封装MCP,底部引脚有金属罐式PGA,点阵列式封装芯片封装技术的基本工艺流程:硅片减薄,硅片切割,芯片贴装,芯片互连,成型技术,去飞边,毛刺,切筋成型,上焊锡,打码芯片减薄:目前硅片的背面减薄技术主要有磨削,研磨,干式抛光,化学机械平坦工艺,电化学腐蚀,湿法腐蚀,等离子增强化学腐蚀,常压等离子腐蚀等芯片切割:刀片切割,激光切割(激光半切割,激光全切割)激光开槽加工是一种常见的激光半切割方式芯片贴装也称为芯片粘贴,是将IC芯片固定于封装基板或引脚架芯片的承载座上的工艺过程。
集成电路封装与测试(一)
三人获得了1956年 诺贝尔物理学奖
William B. Shockley
John Bardeen
Walter H. Brattain
1958年9月10日美国的基尔比发明了集成电 路集成电路是美国物理学家基尔比(Jack Kilby)和诺伊斯两人各自独立发明的,都拥有 发明的专利权。 1958年9月10日,基尔比的第一个安置在半 导体锗片上的电路取得了成 功,被称为“相 移振荡器”。 1957年,诺伊斯(Robort Noyce)成立了仙童 半导体公司,成为硅谷的第一家专门研制硅 晶体管的公司。 1959年2月,基尔比申请了专利。不久,得 克萨斯仪器公司宣布,他们已生产出一种比 火柴头还小的半导体固体 电路。诺伊斯虽然 此前已制造出半导体硅片集成电路,但直到 1959年7月才申请专利,比基尔比晚了半年。 法庭后来裁决,集成电路的发明专利属于基 尔比,而 有关集成电路的内部连接技术专利 权属于诺伊斯。两人都因此成为微电子学的 创始人,获得美国的“巴伦坦奖章”。
双边 引脚
SOP (小型化封装 小型化封装) 小型化封装
单边 引脚
SIP 单列引脚式封装) (单列引脚式封装) ZIP 交叉引脚式封装) (交叉引脚式封装)
四边 引脚
QFP PLCC (四侧引脚扁平封装 (无引线塑料封装载体 ) 四侧引脚扁平封装) 四侧引脚扁平封装
双边 引脚
DIP (双列式封装) 双列式封装)
4.2 技术发展趋势
芯片封装工艺: △ 芯片封装工艺: 从逐个管芯封装到出现了圆片级封装, 从逐个管芯封装到出现了圆片级封装,即先将圆片 划片成小管芯。 划片成小管芯。 再逐个封装成器件,到在圆片上完成封装划片后 再逐个封装成器件, 就成器件。 就成器件。 芯片与封装的互连:从引线键合( △ 芯片与封装的互连:从引线键合(WB)向倒装焊 ) (FC)转变。 )转变。 微电子封装和PCB板之间的互连: 板之间的互连: △ 微电子封装和 板之间的互连 已由通孔插装(PTH)为主转为表面贴装(SMT)为主。 为主转为表面贴装( 已由通孔插装 为主转为表面贴装 )为主。
集成电路封装与测试
集成电路封装与测试一:封装1.集成电路封装的作用大体来说,集成电路封装有如下四个作用:(l)对集成电路起机械支撑和机械保护作用。
集成电路芯片只有依托不同类型的封装才能应用到各个领域的不同场所,以满足整机装配的需要(2)对集成电路起着传输信号和分配电源的作用。
各种输人输出信号和电源地只有通过封装上的引线才能将芯片和外部电子系统相沟通,集成电路的功能才能得到实现和发挥(3)对集成电路起着热耗散的作用。
集成电路加电工作时,会因功耗而发热,特别是功率集成电路,工作时芯片耗散热量大。
这些热量若不散发掉,就会使芯片温升过高,从而影响电路的性能或造成电路失效,因此,必须通过封装来散发芯片热量,以保证集成电路的性能和可靠性(4)对集成电路起着环境保护的作用。
集成电路芯片若无封装保护,将受污染等环境损伤,性能无法实现。
由于集成电路的应用愈来愈广泛,多数集成电路必须能耐各种恶劣环境的影响,因此,封装对集成电路各种性能的正确实现起着重要的保证作用电路的发展受广泛应用前景的驱动、而集成电路的封装又随着集成电路的发展而发展。
没有集成电路封装的发展,集成电路的发展就很难实现。
由此可见,集成电路封装对集成电路有着极其重要的作用2.集成电路封装的内容归纳起来至少有以下几个方面:(1)根据集成电路的应用要求,通过定的结构设计、工艺设计、电设计、热设计和可靠性设计制造出合格的外壳或引线框架等主要零部件,并不断提高设计、工艺技术,以适应集成电路发展的需要;(2)按照整机要求和组装需要,改进封装结构、确定外形尺寸,使之达到通用化、标准化,并向多层次、窄节距、多引线、小外形和高密度方向发展;(3)保证自硅晶圆的减薄、划片和分片开始,直到芯片粘接、引线键合和封盖等-系列封装所需工艺的正确实施,达到一定的规模化和自动化,并不断研制开发新工艺、新设备和新技术,以提高封装工艺水平和质量,同时努力降低封装成本:(4)随着集成电路封装日益发展的需要,在原有的材料基础上,需进一步提供低介电系数、高导热、高机械强度等性能优越的新型有机、无机和金属材料;(5)完善和改进集成电路封装的检验手段,统一检验方法,并加强工艺监测和质量控制,提供准确的检验测试数据,为提高集成电路封装的性能和可靠性提供有力的保证集成电路封装对器件性能的影响越来越大,某些集成电路的性能受封装技术的限制与受集成电路芯片性能的限制几乎相同,甚至更大。
集成电路封装与测试技术
集成电路封装与测试技术在当今科技飞速发展的时代,集成电路已经成为了各种电子设备的核心组件。
从我们日常使用的智能手机、电脑,到汽车、飞机中的控制系统,无一不依赖于集成电路的强大功能。
而集成电路封装与测试技术,则是确保集成电路性能、可靠性和成本效益的关键环节。
集成电路封装,简单来说,就是将制造好的集成电路芯片进行保护和连接,使其能够在外部环境中正常工作,并与其他电子元件进行通信。
这就好比给一颗珍贵的“芯”穿上一件坚固而合身的“外衣”。
封装的首要任务是提供物理保护,防止芯片受到外界的机械损伤、化学腐蚀和电磁干扰。
同时,封装还需要解决芯片的散热问题,确保芯片在工作时产生的热量能够有效地散发出去,以保证其性能和寿命。
封装的类型多种多样,常见的有双列直插式封装(DIP)、球栅阵列封装(BGA)、芯片尺寸封装(CSP)等。
每种封装类型都有其特点和适用场景。
例如,DIP 封装在早期的集成电路中应用广泛,其引脚从芯片两侧引出,安装方便,但占用空间较大;BGA 封装则通过在芯片底部形成球形引脚阵列,大大提高了引脚密度,适用于高性能、高集成度的芯片;CSP 封装则在尺寸上做到了极致,几乎与芯片本身大小相同,具有更小的体积和更好的电气性能。
在封装过程中,材料的选择也至关重要。
封装材料不仅要具备良好的绝缘性能、机械强度和热稳定性,还要与芯片和基板有良好的兼容性。
常见的封装材料包括塑料、陶瓷和金属等。
塑料封装成本较低,广泛应用于消费类电子产品;陶瓷封装具有更好的耐高温和耐湿性,常用于军事、航空航天等领域;金属封装则在散热和电磁屏蔽方面表现出色。
而集成电路测试,则是对封装好的集成电路进行质量检测和性能评估。
这就像是给集成电路进行一场严格的“考试”,只有通过了测试的产品才能进入市场。
测试的目的是确保集成电路在功能上符合设计要求,在性能上达到规定的指标,并且在可靠性方面能够满足长期使用的需求。
测试的内容包括功能测试、参数测试和可靠性测试等。
《集成电路封装与测试》芯片互连
引线键合技术
11
引线键合键合接点形状主要有楔形和球形,键合接点有两个,两 键合接点形状可以相同或不同。
球形键合
楔形键合
引线键合工艺参数
12
➢键合温度 WB 工艺对温度有较高的控制要求。过高的温度不仅会产生过多的氧化物影响键合质量,并
且由于热应力应变的影响,图像监测精度和器件的可靠性也随之下降。在实际工艺中,温控系 统都会添加预热区、冷却区,提高控制的稳定性,需要安装传感器监控瞬态温度 ➢键合时间
芯片焊区
芯片互连
I/O引线
半导体失效约有1/4-1/3是由芯片互连所引起,因此芯片互连对器件可靠性意义重大!!!
芯片互连技术概述
5
芯片托盘(DIE PAD)
芯片(CHIP)
L/F 内引脚 (INNER LEAD)
热固性环氧树脂 (EMC)
金线(WIRE)
L/F 外引脚 (OUTER LEAD)
IC 封装成品构造图
芯片互连常见方法
6
常见 方法
引线键合(又称打线键合)技术(WB) 载带自动键合技术(TAB)
倒装芯片键合技术(FCB)
这三种连接技术对于不同的封装形式和集成电路芯片集成度的限制各有不同的应用范围。 其中,FCB又称为C4—可控塌陷芯片互连技术。 打线键合适用引脚数为3-257;载带自动键合的适用引脚数为12-600;倒装芯片键合适用的引 脚数为6-16000。可见C4适合于高密度组装。
02 引线键合技术概述
引线键合技术
8
引线键合工程是引线架上的芯片与引线架之间用金线连接的工程。为了 使芯片能与外界传送及接收信号,就必须在芯片的接触电极与引线架的引脚 之间,一个一个对应地用键合线连接起来,这个过程称为引线键合。也称为 打线键合。
集成电路封装与测试 工艺性能
感谢聆听!
流淌和溢料
7
溢料大多发生在模具分合位置上,如模具的分界面、滑块的滑配 部位、镶件的缝隙、顶杆的孔隙等处。如不及时解决将会进一步扩大 化,从而压印模具形成局部陷塌,最终可能造成永久性的损害。
流变性、兼容性
8
流变性是指物质在外力作用下的变形和流动性质,主要指加工过 程中应力、形变、形变速率和粘度之间的联系。流体的粘性不同,施 加于流体上的剪切应力与剪切变形率(剪切速率)之间的定量关系也性指在常温下不硬化、强度很低,只 有在高于常温但低于烧结温度下可较快地硬化的 性质。
硬度计在各种力学性能试验机中应用最为广 泛,产品最多,得到人们广泛的关注。硬度计从 20世纪80年代开始,陆续推出了一批高精度全自 动硬度计,达到了机电一体化,为科学技术的发 展、产品品质的提高及布氏硬度计计量检测工作 提供了有力保障
螺旋线长度实验法是将被测熔体在一定 的温度与压力的作用下,注入阿基米德螺旋 线模具内,用熔体的流动长度来表示该塑料 的流动性,流动长度越长,熔体的流动性越 好。
凝胶时间
6
也称胶凝时间。一般是指液态树脂或胶液 在规定的温度下由能流动的液态转变成固体凝 胶所需的时间。对于热固性树脂,是指从添加 催化剂后到形成凝胶所需的时间。
流变学就是研究流体流动过程中剪切应力与剪切速率变化关系的 科学。流体的这种剪切应力与剪切速率的变化关系成为流体的流变学 特性。
固化时间和温度
9
各种固化剂的固化温度各不相同,固化物的 耐热性也有很大不同。一般地说,使用固化温度 高的固化剂可以得到耐热优良的固化物。
固化反应属于化学反应,受固化温度影响很 大,温度增高,反应速度加快,凝胶时间变短; 凝胶时间的对数值随固化温度上升大体呈直线下 降趋势,但固化温度过高,常使固化物性能下降 ,所以存在固化温度的上限;必须选择使固化速 度和固化物性能折中的温度,作为合适的固化温 度。
集成电路封装与检测报告
PLUNGER TIP
CPD
TRANSFER
Mold(封胶)
➢ 注塑封装过程 ( 4 ):
CPD
CURING
Mold(封装)
➢ 注塑封装过程 ( 5 ):
•EJECT PIN
OPEN
Mold(封胶)
➢ Mold后集成块外型图
PMC
➢ Post Mold Cure的定义及作用:
后固化是将产品放置于高温烘箱内进行烘烤,使塑封 料固化更彻底并与芯片及框架结合更紧密,以提高产 品的可靠性和稳定性。
塑料封装
• 塑料封装的设备
塑料封装
• 塑料封装由于其成本低廉、工艺简单,并适于大 批量生产,因而具有极强的生命力,自诞生起发 展得越来越快,在封装中所占的份额越来越大。 目前塑料封装在全世界范围内占集成电路市场的 95%以上。在消费类电路和器件基本上是塑料封 装的天下;在工业类电路中所占的比例也很大, 其封装形式种类也是最多。塑料封装的种类有分 立器件封装,包括A型和F型;集成电路封装包括 SOP、DIP、QFP和BGA等。
金属气密性封装
• 定义:以金属为材料的气密性封装 • 原理:金属具有最优良的水分子阻绝能力、
热传导特性与电遮蔽性 。
金属气密性封装
• 注意事项:金属封装具有较高的机械强度 和优良的散热性能,对电磁屏蔽有一定作 用。但金属封装器件如果处理不好,易造 成密封性能差,产生漏气,使腔体内的水 汽含量较高,致使可靠性降低或失效。因 水汽含量过高失效是器件失效的一种常见 模式。
• 塑料封装集成电路封装形式 DIP简介
DIP双列直插式封装
• DIP(dual in-line package)
•
双列直插式封装。插装型封装之一,引脚从封装两侧引出,封装材料有
集成电路封装与测试技术
集成电路封装与测试技术随着科技的不断发展,电子与电气工程在现代社会中扮演着至关重要的角色。
其中,集成电路封装与测试技术作为电子与电气工程领域的重要组成部分,对于电子产品的研发和生产起着关键性的作用。
本文将对集成电路封装与测试技术进行深入探讨。
一、集成电路封装技术集成电路封装技术是将裸片芯片封装在外壳中,以保护芯片并提供连接引脚的过程。
封装技术的发展不仅关乎芯片的可靠性和稳定性,还与电路性能、功耗和成本等因素密切相关。
在封装技术中,常见的封装形式包括直插式封装、贴片式封装和球栅阵列封装等。
直插式封装通过引脚插入插座或焊接于印刷电路板上,适用于较大尺寸的芯片。
贴片式封装则将芯片直接粘贴在印刷电路板上,适用于小型和轻薄的电子产品。
球栅阵列封装则是一种先进的封装技术,通过微小焊球连接芯片和印刷电路板,具有较高的集成度和可靠性。
除了封装形式,封装材料也是封装技术中的重要因素。
常见的封装材料包括塑料封装、陶瓷封装和金属封装等。
塑料封装成本低、制造工艺简单,适用于大规模生产;陶瓷封装耐高温、抗冲击性好,适用于高性能芯片;金属封装具有良好的散热性能,适用于高功率芯片。
二、集成电路测试技术集成电路测试技术是对封装完成的芯片进行功能、性能和可靠性等方面的测试,以确保芯片的质量和可靠性。
测试过程主要包括芯片测试、封装测试和系统测试等。
芯片测试是对裸片芯片进行测试,以验证其设计和制造是否符合要求。
常见的芯片测试方法包括逻辑功能测试、电气特性测试和可靠性测试等。
逻辑功能测试通过输入不同的信号,验证芯片的逻辑功能是否正确;电气特性测试则测试芯片的电压、电流和功耗等性能参数;可靠性测试则通过长时间的高温、低温和振动等环境测试,验证芯片的可靠性。
封装测试是对封装完成的芯片进行测试,以验证封装过程是否正确,是否存在焊接问题和短路等缺陷。
常见的封装测试方法包括外观检查、焊接可靠性测试和封装参数测试等。
外观检查通过目视或显微镜检查封装是否完整、引脚是否正常;焊接可靠性测试通过模拟实际使用环境下的温度变化和机械振动等,验证封装的可靠性;封装参数测试则测试封装的电气参数,如引脚电阻、电容和电感等。
集成电路芯片系统封装与测试
2020/11/24
21
•测试仪
测试仪是测试集成电路的仪器。它负责按 照测试向量对集成电路加入激励,同时观 测响应。目前,测试仪一般都是同步的, 按照时钟节拍从存储器中调入测试向量。
2020/11/24
22
• 测试的分类:
– 鉴定测试 – 生产测试 – 用户测试 – 可靠性测试 – 电学性能测试
正确工作。
(2)确定电路失效的原因和所发生的具体部位,以便改 进设计和修正错误。
2020/11/24
16
•测试介绍
• 测试:就是检测出生产过程中的缺陷,并挑 出废品的过程。
• 测试的基本情况:封装前后都需要进行测试。 • 测试与验证的区别:目的、方法和条件。 • 测试的难点:复杂度和约束。 • 可测性设计:有利于测试的设计。
2020/11/24
28
• 完全测试的含义
例如:N个输入端的逻辑,它有2N个状态。 组合逻辑:在静态状态下,需要2N个顺序测试矢量。动
态测试应考虑状态转换时的延迟配合问题,仅仅顺序 测试是不够的。
时序电路:由于记忆单元的存在,电路的状态不但与当 前的输入有关,还与上一时刻的信号有关。它的测试 矢量不仅仅是枚举问题,而是一个排列问题。最坏情 况下它是2N个状态的全排列,它的测试矢量数目是一 个天文数字。
技术创新,变革未来
§1 系统封装
半导体器件复杂性和密度的急剧增加推动了更 加先进的VLSI封装和互连方式的开发。 • 印刷电路板(printed Circuit Board-PCB) • 多芯片模块(Multi-Chip Modules-MCM) • 片上系统(System on a Chip-SOC)
2020/11/24
Hale Waihona Puke 17•简单的测试例子A Z
集成电路封装与测试技术知到章节答案智慧树2023年武汉职业技术学院
集成电路封装与测试技术知到章节测试答案智慧树2023年最新武汉职业技术学院第一章测试1.集成电路封装的目的,在于保护芯片不受或少受外界环境的影响,并为之提供一个良好的工作条件,以使集成电路具有稳定、正常的功能。
()参考答案:对2.制造一块集成电路芯片需要经历集成电路设计、掩模板制造、原材料制造、芯片制造、封装、测试等工序。
()参考答案:对3.下列不属于封装材料的是()。
参考答案:合金4.下列不是集成电路封装装配方式的是()。
参考答案:直插安装5.封装工艺第三层是把集成电路芯片与封装基板或引脚架之间进行粘贴固定、电路电线与封装保护的工艺。
()参考答案:错6.随着集成电路技术的发展,芯片尺寸越来越大,工作频率越来越高,发热量越来越高,引脚数越来越多。
()参考答案:对7.集成电路封装的引脚形状有长引线直插、短引线或无引线贴装、球状凹点。
()参考答案:错8.封装工艺第一层又称之为芯片层次的封装,是指把集成电路芯片与封装基板引线架之间进行粘贴固定、电路连线与封装保护工艺。
()参考答案:对9.集成电路封装主要使用合金材料,因为合金材料散热性能好。
()参考答案:错第二章测试1.芯片互联常用的方法有:引线键合、载带自动焊、倒装芯片焊。
()参考答案:对2.载带自动焊使用的凸点形状一般有蘑菇凸点和柱凸点两种。
()参考答案:对3.去飞边毛刺工艺主要有:介质去飞边毛刺、溶剂去飞边毛刺、水去飞边毛刺。
()参考答案:对4.下面选项中硅片减薄技术正确的是()。
参考答案:干式抛光技术5.封装工序一般可以分成两个部分:包装前的工艺称为装配或称前道工序,在成型之后的工艺步骤称为后道工序。
()参考答案:对6.封装的工艺流程为()。
参考答案:磨片、划片、装片、键合、塑封、电镀、切筋、打弯、测试、包装、仓检、出货7.以下不属于打码目的的是()。
参考答案:芯片外观更好看。
8.去毛飞边工艺指的是将芯片多余部分进行有效的切除。
()参考答案:错9.键合常用的劈刀形状,下列说法正确的是()。
集成电路封装与测试技术
集成电路封装与测试技术随着信息技术的快速发展和应用的广泛普及,集成电路在现代社会中扮演着重要的角色。
而集成电路封装与测试技术作为集成电路制造的重要环节,对于电子产品的性能、可靠性和稳定性起着至关重要的作用。
本文将介绍集成电路封装与测试技术的基本概念、重要性以及相关的发展趋势。
一、集成电路封装技术1.1 封装技术的定义与作用集成电路封装技术是将裸片芯片进行外包装,以提供对芯片的保护、连接和便于插拔。
其主要目标是保证芯片的电性能、机械可靠性和环境适应性,同时满足产品的体积、功耗和成本要求。
1.2 封装技术的分类根据不同的封装方式和结构,集成电路封装技术可以分为裸片封装、芯片级封装和模块级封装等多种形式。
其中,裸片封装是指将芯片直接粘贴在PCB板上,不进行封装的方式;芯片级封装是将芯片封装成单芯片或多芯片封装;模块级封装是将集成电路芯片与其他元器件进行封装。
1.3 封装技术的发展趋势随着集成电路的功能不断增强和尺寸不断缩小,封装技术也在不断创新与发展。
目前,多芯片封装、三维封装、无线封装等是集成电路封装技术的研究热点与发展方向。
这些新技术的应用将进一步提高集成电路的性能和可靠性。
二、集成电路测试技术2.1 测试技术的定义与作用集成电路测试技术是对封装好的集成电路芯片进行功能、电性能和可靠性等方面的验证和测试。
通过测试可以确保芯片的质量和性能符合设计要求,提高产品的可靠性和稳定性。
2.2 测试技术的分类根据不同的测试目的和方法,集成电路测试技术可以分为芯片测试、模块测试和系统测试等多种形式。
其中,芯片测试是对单个芯片进行测试,模块测试是对芯片封装后的模块进行测试,系统测试是对整个集成电路系统进行测试。
2.3 测试技术的发展趋势随着集成电路的复杂度不断提高,传统的测试技术已经无法满足需求。
因此,新型测试技术如板级测试、全片测试、MEMS测试等正在逐渐发展起来。
这些新技术的应用将提高测试效率、降低测试成本,并能同时满足不同级别的测试需求。
《集成电路封装和测试》
光电子封装 MEMS封装 封装
集成电路芯片封装
集成电路芯片封装技术技术流程
硅片切割 硅片减薄 芯片贴 装
芯片互连
成型技术
切筋成型 上锡焊 打码
去飞边毛刺
微系统封装
微系统相关技术: 微系统相关技术: 微电子技术 射频与无线电技术 光学技术 MEMS技术 技术
微系统封装:微电子封装 微系统封装:
3.封装失效中,约有1/3与封装有关 封装失效中,约有 与封装有关 封装失效中
器件物理性破坏分析( 器件物理性破坏分析(DPA) ) 约有1/2与封装有 测试中不合格品 约有 与封装有 关
第一章
概述
封装概念 封装的目的和要求 封装的技术层次 封装技术的历史和发展 封装涉及的学科 封装的分类 国内封装业的发展
系 统 需 求
设计
掩膜版 芯片制造 过程
芯片检测
封装
测试
封装和制造是独立的
二.封装的目的和要求
封装目的
1.传递电能 主要指电源电压的分配和导通 传递电能:主要指电源电压的分配和导通 传递电能 2.传递电路信号 主要将电信号的延迟尽可 传递电路信号:主要将电信号的延迟尽可 传递电路信号 能减小 3.提供散热途径 主要指各种芯片封装如何 提供散热途径:主要指各种芯片封装如何 提供散热途径 将聚集的热量散出 4.结构保护与支持 封装可为芯片提供机械 结构保护与支持:封装可为芯片提供机械 结构保护与支持 支撑,并能在各种条件下工作 并能在各种条件下工作. 支撑 并能在各种条件下工作
按密封材料分
陶瓷封装(Ceramic Package) 陶瓷封装 塑料封装(Plastic Package) 塑料封装 金属封装
按器件与电路的连接方式分
课程简介2010
集成电路封装与测试
© 2010 baoing
SME XIDIAN UNIVERSITY
2010增改内容
4. 航天领域封装(参考NASA)
NASA 电子封装for空间应用 NASA 外太空中的电子封装 intel 绿色封装-材料与工艺
5. 封装流程(参考公司)
南通富士通 封装流程 MEMS公司封装流程 Nokia 移动通讯系统MEMS 德国BOSCH MEMS_over_CMOS
集成电路封装与测试 © 2010 baoing
SME XIDIAN UNIVERSITY
考核方式
考试方式:研究报告(开卷)
集成电路封装与测试
© 2010 baoing
集成电路封装与测试 © 2010 baoing
SME XIDIAN UNIVERSITY
课程内容及基本要求
(二) 封装工艺( 6学时) 具体内容:封装工艺概述,圆片级检测,贴片技术,引 线键合工艺;BGA;COB组装;倒片安装;气密金属封 装;陶瓷封装(单片与MCM);塑料封装。 1.基本要求 (1)了解芯片互连技术及特点。 (2)了解各种封装工艺特点。 2.重点、难点 重点:芯片互连技术 。
集成电路封装与测试
© 2010 baoing
SME XIDIAN UNIVERSITY
2010增改内容
6. 封装设计(参考国外)
BGA_再流焊点形状预测 Georgia Tech 封装热应力模拟全流程 佛罗里达大学:芯片的3D封装技术
集成电路封装与测试Байду номын сангаас
© 2010 baoing
SME XIDIAN UNIVERSITY
集成电路封装与测试 © 2010 baoing
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
产品
1.1.2 封装的出现 “封装(Packaging)”用于电子工程的历史并不 很久。在真空电子管时代,将电子管等器件安装 在管座上构成电路设备,一般称为“组装或装
配”,当时还没有“Packaging”这一概念。
60多年前的三极管,40多年前的IC半导体元件的出现,一方面,这些
毫米级的 工程领域 100 μm的 工程领域
半导体
部 件
存 储 装 置
50 μm的工程领域
水晶振子、散热器、小型马达、传感器
按特征尺寸的量级,电子封装工程可分为四个层次,其中从半导体芯片到50
μm的工程领域为狭义的封装
1.3.2 电子封装的分级
硅圆片 0级
1级
2级
管芯 3级 4级
印制板
器件
常规组合的电路封装
电能传递
主要是电源电压的分配和导通
散热 各种芯片封装都要考虑元 器件、部件长期工作时如 何将聚集的热量散出的问 题
封装保护 芯片封装可为芯片和其他连 接部件提供牢固可靠的机械 支撑,并能适应各种工作环 境和条件的变化
1.4 IC封装的分类
IC封装的主要类型:
① 按照器件与电路板的互连方式可分为: 通孔插装式 PTH (Pin through hole) 表面贴装式 SMT (Suface mount technology) 目前表面贴装式封装已占IC封装总量的 80%以上。
塑料双列直插式封装
带引脚的芯片载体
陶瓷DIP
球栅阵列封装
芯片尺寸封装
目前世界上产量较多的几类封装 SOP (小外形封装) PDIP(塑料双列封装) QFP (PLCC ) (四边引线扁平封装) BGA (球栅阵列封装) 55~57% 14% 12% 4~5%
1.5. IC封装的发展趋势
16.8~27.4%
三人获得了1956年 诺贝尔物理学奖
William B. Shockley
John Bardeen
Walter H. Brattain
1958年9月10日美国的基尔比发明了集成电 路集成电路是美国物理学家基尔比(Jack Kilby)和诺伊斯两人各自独立发明的,都拥有 发明的专利权。 1958年9月10日,基尔比的第一个安置在半 导体锗片上的电路取得了成 功,被称为“相 移振荡器”。 1957年,诺伊斯(Robort Noyce)成立了仙童 半导体公司,成为硅谷的第一家专门研制硅 晶体管的公司。 1959年2月,基尔比申请了专利。不久,得 克萨斯仪器公司宣布,他们已生产出一种比 火柴头还小的半导体固体 电路。诺伊斯虽然 此前已制造出半导体硅片集成电路,但直到 1959年7月才申请专利,比基尔比晚了半年。 法庭后来裁决,集成电路的发明专利属于基 尔比,而 有关集成电路的内部连接技术专利 权属于诺伊斯。两人都因此成为微电子学的 创始人,获得美国的“巴伦坦奖章”。
相移振荡器
Jack Kilby
Robort Noyce
1.2.2 Moore 定律
Gordon Moore 作出的原始预测
1971-2008年CPU晶体管数量随时间的变换情况 与Moore定律的符号程度
1.3 从半导体和电子元器件到电子机器设备
前工程
后工程 封装工程
利用光刻制版等加 工制作电极、开发 材料的电子功能
材料部分 基板部分
参考书籍
• 《集成电路芯片封装技术》李可为著,电子工业
出版社出版
• 《微电子器件封装-封装材料与封装技术》周良知
著,化学工业出版社出版 • 相关的文献
本章概要
• • • • • 基本概念 封装的发展过程 封装的层次及功能 封装的分类 封装的发展现状
1.1 封装概念
• 按 Tummala 教授一书中的定义
半导体元件细小柔嫩;另一方面,其性能又高,而且多功能、多规格。
为了充分发挥其功能,需要补强、密封、扩大,以便实现与外电路可
靠的电气连接并得到有效的机械、绝缘等方面的保护作用。基于这样
的工艺技术要求,“封装”便随之出现。
crystal triode (晶体三极管)
IC半导体元件
需 要 的 设 计 技 术 封 装 技 术
1950
58年 IC出 现 1960
61年二 者市场占 有率相等
多层 PCB 板
75年二者相同
积层式 多层板
1920
1970
1980
1990
2000
2010
1.2.1 重要事件
1947年12月16日,美国贝尔实验室的肖克莱 (William B. Shockley)、巴丁(John Bardeen) 和布拉顿(Walter H. Brattain)组成的研究小组, 研制出一种点接触型的锗晶体管。晶体管的问世, 是20世纪的一项重大发 明,是微电子革命的先 声。晶体管出现后,人们就能用一个小巧的、消 耗功率低的电子器件,来代替体积大、功率消耗 大的电子管了。 晶体管的发明,最早可以追溯到1929年,当时工 程师利莲费尔德就已经取得一种晶体管的专利。 但是,限于当时的技术水平,制造这种器件的材 料达不到足够的纯度,而使这种晶体管无法制造 出来。
电子封装的分级
零级封装: 芯片上的互连; 一级封装: 器件级封装;
二级封装: PCB (PWB)级封装;
三级封装: 分机柜内母板的组装;
四级封装: 分机柜。
我们这里讨论的封装是指“一级封装”, 即IC器件的封装。
1.3.3 电子封装的范围
从工艺上讲,电子封装包括薄厚膜技术、基板技术、微 细连接技术、封接及封装技术等四大基础技术 从材料上讲,电子封装包括各类材料,如焊丝、框架、 金属超细粉、玻璃超细粉、陶瓷粉材、表面活性剂、有机 粘结剂、有机溶剂、金属浆料、导电填料、感光性树脂、 热硬化树脂、聚酰亚胺薄膜、感光性浆料,还有导体、电 阻、介质以及各种功能用的薄厚膜材料等 从设计、评价、解析技术上讲,其涉及膜特性、电气特 性、热特性、结构特性及可靠性等方面的分析评价和检测
CAD/CAM/CAT系统及发展
设计、评价、解析技术
膜 特性 电气 特性 热 特性 结构 特性
电 子 设 备 系 统 等 的 发 展 动 向
封装工艺技术
薄 厚 膜 技 术
基 板 技 术
微细 连接 技 术
封接 封装 技 术
电子 部件 动向 电子元器件 回路部件 功能部件
材料科学与工程 可靠性评价解析技术
集成电路封装与测试
主讲:杨伟光
课程大纲
基础部分 第一章 集成电路芯片封装概述 第二章 封装工艺流程 第三章 厚/薄膜技术 第四章 焊接材料 第五章 印刷电路板 第六章 元器件与电路板的结合 第七章 封胶材料与技术 封装部分 第八章 陶瓷封装 第九章 塑料封装 第十章 气密性封装 第十一章 先进封装技术 测试部分 第十二章 封装可靠性以及缺陷分析
“Introduction to Microsystems Packaging” Georgia Institute of Technology
Prof. Rao R. Tummala
“Integrated Circuit (IC)” is defined as a miniature or microelectronic device that integrates such elements as transistors, dielectrics, and capacitors into an electrical circuit possessing a special function. “集成电路(IC)“是指微小化的或微电子的器件,它将这样的一些元 件如三极管、电阻、介电体、电容等集成为一个电学上的电路,使致 具有专门的功能。 “Packaging” is defined as the bridge that interconnects the ICs and other components into a system-level board to form electronic products
制造、生产装置动向
1.3.4 电子封装工程的各个方面
功能部件 搭载元器件 LSI 回路部件
布线基板
封装关键技术
键合
布线
连接
散热 冷却
保护
目的
难易程度 需考虑的问题
使各种元器件、功能部件相组合形成功能电路 依据电路结构、性能要求、封装类型而异 苛刻的工程条件(温度、湿度、振动、冲击、放射性等) 超高要求
封装密度正愈来愈高 封装密度的提高体现在下列三方面:
硅片的封装效率 = 硅芯片面积/封装所占印制板面积
= Sd/Sp不断提高(见表1);
封装的高度不断降低(见表2);
引线节距不断缩小(见表3); 引线布置从封装的两侧发展到封装的四周,到封装的底面。 这样使单位封装体积的硅密度和引线密度都大大提高。 国际上IC封装的发展趋势如表4所示。
对元件进行包覆、 连接封入元件盒中、 引出引线端子,完 成封装体
封装体与基板连 接固定、装配成 完整的系统或电 子机器设备
实现所要求的 元件的性能
确保元件可 靠性,完成 器件、部件 狭义的封装从此开始
确保整个系 统的综合性 能
1.3.1 封装工程的四个层次
输入输出装置 L、C、R分 立式半导体 器件变压器 LED 芯片0.25 μm的工程 领域 电子元器件 机器设备 基板
1.2 封装的发展过程
系统设计及软件设计 逻辑设计
电器机械设计
电路设计 封装或装配 封装 电子封 装工程
79年(表面贴装)SMT扩广 真空管 分立式 元器件 半导体 IC
电 子 元 器 件
PCB 实用 化 1937年金 属喷涂印 制电路板 (PCB) 诞生 1930 1940
1947年 晶体管 的诞生