浅谈高中数学解析几何中的对称问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈高中数学解析几何中的对称问题
发表时间:2019-12-10T17:34:32.223Z 来源:《教育学文摘》2019年12期作者:龚杨熙
[导读] 新课标改革开展后,我国的教育事业也在不断发展
摘要:新课标改革开展后,我国的教育事业也在不断发展,其中高中数学也乘着改革开放的快车,发展迅猛。在高中数学中,数学解析几何中的对称问题受到了广泛的关注与讨论。研究对称问题不仅能增强我们解决问题的能力,同时可以培养发散思维,锻炼空间想象力等,而且还能提高在日常生活当中的审美能力,提高创新意识。下面我将结合自己的学习理解,对高中数学解析几何中对称问题进行简要分析,希望能在这方面为同学们的学习提供一些帮助。
关键字:高中数学解析几何对称问题
高中数学解析几何中的对称问题,是高中数学的一个重要内容,也是平时学习的难点,它的运用非常广泛,不仅体现在数学应用上,有时还会渗透到物理学科的应用方面。在对称问题中,主要研究的问题有:点关于点对称、点关于直线对称、直线关于点对称、直线关于直线对称、曲线关于点对称、曲线关于直线对称等问题。不过在对称问题中,最基础的问题为点关于点,点关于直线的对称问题,线(直线、曲线)关于点的对称问题可转化为点关于点对称。线(直线、曲线)关于直线对称的问题可转化为点关于直线对称。
一、关于点的对称问题
点与点之间的对称问题,在初步接触对称问题时,较为常见,也较为简单。在关于点的对称问题中,也有不同的类型,包括了点与点之间的关系、点与点关于直线对称的关系,线与线关于直线对称的关系,每种不同的关系之间,解题思路既有相同点,也有不同的点,均需要答题者,认真思考,得出答案。下面我将针对不同的种类进行分析。
(一)点关于定点对称问题
这类问题,一般是知道一个点A,知道A点的坐标,给出另外一个中心点Q,告诉Q点的位置坐标,最后让大家求出A点关于Q点对称的点B。这类题的求解办法较为单一统一。例如:已知点A(x1,y1),已知中心点Q(x0,y0),求出A点关于Q点对称的点B,在坐标中,这三个点的横纵坐标,应该满足怎么样的条件呢?根据条件可知,Q点为A、B点的中点,于是得2x0=x1+x2,2y0=y1+y2,由此可以得到x2,y2的值,得到B点位置坐标。关于定点对称问题,表面看上去是多个类型题中,最简单的一类题目,但是却是后续题目的基础,在许多不同类型、不一样表述的题目,表面上比较难也很有深度,但是随着理解领悟的加深,基础知识掌握牢固后,大家会发现,运用的知识,大部分仍然是定点对称问题的方法与策略,所以基础知识必须掌握牢固,才能解决其他难题。
(二)线关于点的对称问题
在线关于点的对称问题中,无论是曲线还是直线,都可以把每条线看作是满足某条件的动点的集合,看作是动点沿着一定的限制条件运动形成的轨迹,所以在遇到线关于点对称的问题时,我们不妨设对称曲线上任一点的坐标为A(x,y),点A关于中心点Q(x0,y0)的对称点为B,根据点与点对称之间的法则,求出对称点B的坐标,利用对称点B在已知曲线上坐标满足方程最终求得是对称曲线的轨迹方程。这样就成功的将线关于点的对称问题转化为点关于点的对称问题,将困难化解。在解决线的问题时,大家需要明白一个道理,就是所有的线都可以看作是满足某个条件的点的集合,无论是直线还是曲线,解题时将点关于点的对称问题掌握好即可。
二、点关于线的对称问题
在解决点关于线的对称问题中,相比较点,要复杂很多,需要利用更多几何性质,譬如轴对称的性质,在前面的学习中知道,两个图案在关于直线对称时,可以观察到,图案相应两点的连线会被该直线垂直平分,所以在解决关于线之间的对称问题时,要将此问题简化,回到线关于点,点关于点之间的对称问题中,在应用这个办法求解时,需要注意的问题是,点关于线的对称问题需要满足两个条件,第一是两个对称轴对称的点,连接起来,应该垂直于对称轴所在直线。第二是:两个对称点的中点应该在对称轴上。在解决线关于线的对称问题时,只要能将点关于线的问题处理好,线关于线的对称问题也可以迎刃而解,在高中数学对称问题中,关于曲线C,直线L的对称问题,最终都可以化归为点与点之间的对称问题,在解决此类问题时,需要打开思维,充分利用点关与点对称、点关与线对称的处理方法,融会贯通,举一反三,不断提升自己的解题能力。
三、实际应用
实践出真知,理论知识无论有多丰富,只有回归到实际问题中,才能体现其真正的价值,只有在解决问题的过程中,才能真正发现是否将理论知识熟练的掌握运用。应用举例:(线关于线对称问题)已知两直线L1,L2,两直线关于直线L0对称,L0方程为:2x-2y+1=0,其中L1的方程为3x-2y+1=0,求L2的方程?分析:在这道题目中,虽然是线关于线对称的问题,但是仍然可以转化为点关与点的对称问题,在解题过程中,可以在L1上,随意找出一点A(x1, y1)关于直线对称点设为B(x2,y2),利用A,B两点关于L0对称,求出对称点B的坐标,同理再求出一个对称点的坐标,就可以求出对称线的方程。如果是求曲线关于直线的对称曲线则可设对称曲线上任一点的坐标A(x, y), A(x, y)关于直线对称点设为B(x0,y0),利用A,B两点关于L0对称,求出对称点B的坐标,利用对称点B在已知曲线上代入曲线方程即可求得对称曲线的轨迹方程。除了这一类型题目以外,还有许多与这类题目相关的问题,但是万变不离其宗。
这篇文章主要是从点关与点对称,点关于线对称的角度出发,简要分析讨论了解析几何中对称问题。要想真正解决这类问题,首先要深刻理解基础知识,灵活把握线与点之间的对称关系,有的题目还存在图形,此时也不能忽视图形的重要性,在许多题型例如直线、圆、椭圆的对称问题中,图形均可以反映出大量的解题信息,解题时需要抓住图形中的细节,数形结合,解决难题。参考文献:
[1]许悦. 高中数学解析几何中对称问题分析[J]. 2018(2).
[2]苏明亮. 高三数学复习中要善于借“题”发挥——解析几何中与对称相关的试题分析[J]. 高中数学教与学, 2016(8).