高考物理牛顿运动定律的应用解题技巧及练习题

合集下载

高中物理牛顿运动定律的应用题20套(带答案)及解析

高中物理牛顿运动定律的应用题20套(带答案)及解析

高中物理牛顿运动定律的应用题20套(带答案)及解析一、高中物理精讲专题测试牛顿运动定律的应用1.一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m ,如图(a )所示.0t =时刻开始,小物块与木板一起以共同速度向右运动,直至1t s =时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1s 时间内小物块的v t -图线如图(b )所示.木板的质量是小物块质量的15倍,重力加速度大小g 取10m/s 2.求(1)木板与地面间的动摩擦因数1μ及小物块与木板间的动摩擦因数2μ; (2)木板的最小长度;(3)木板右端离墙壁的最终距离.【答案】(1)10.1μ=20.4μ=(2)6m (3)6.5m 【解析】(1)根据图像可以判定碰撞前木块与木板共同速度为v 4m/s = 碰撞后木板速度水平向左,大小也是v 4m/s =木块受到滑动摩擦力而向右做匀减速,根据牛顿第二定律有24/0/1m s m sg sμ-=解得20.4μ=木板与墙壁碰撞前,匀减速运动时间1t s =,位移 4.5x m =,末速度v 4m/s = 其逆运动则为匀加速直线运动可得212x vt at =+ 带入可得21/a m s =木块和木板整体受力分析,滑动摩擦力提供合外力,即1g a μ= 可得10.1μ=(2)碰撞后,木板向左匀减速,依据牛顿第二定律有121()M m g mg Ma μμ++= 可得214/3a m s =对滑块,则有加速度224/a m s =滑块速度先减小到0,此时碰后时间为11t s = 此时,木板向左的位移为2111111023x vt a t m =-=末速度18/3v m s =滑块向右位移214/022m s x t m +== 此后,木块开始向左加速,加速度仍为224/a m s =木块继续减速,加速度仍为214/3a m s =假设又经历2t 二者速度相等,则有22112a t v a t =- 解得20.5t s =此过程,木板位移2312121726x v t a t m =-=末速度31122/v v a t m s =-= 滑块位移24221122x a t m == 此后木块和木板一起匀减速.二者的相对位移最大为13246x x x x x m ∆=++-= 滑块始终没有离开木板,所以木板最小的长度为6m(3)最后阶段滑块和木板一起匀减速直到停止,整体加速度211/a g m s μ==位移23522v x m a==所以木板右端离墙壁最远的距离为135 6.5x x x m ++= 【考点定位】牛顿运动定律【名师点睛】分阶段分析,环环相扣,前一阶段的末状态即后一阶段的初始状态,认真沉着,不急不躁2.如图所示,质量为m=2kg 的物块放在倾角为θ=37°的斜面体上,斜面质量为M=4kg ,地面光滑,现对斜面体施一水平推力F ,要使物块m 相对斜面静止,求:(取sin37°=0.6,cos37°=0.8,g=10m/s 2)(1)若斜面与物块间无摩擦力,求m 加速度的大小及m 受到支持力的大小; (2)若斜面与物块间的动摩擦因数为μ=0.2,已知物体所受滑动摩擦力与最大静摩擦力相等,求推力F 的取值.(此问结果小数点后保留一位) 【答案】(1)7.5m/s 2;25N (2)28.8N≤F≤67.2N 【解析】 【分析】(1)斜面M 、物块m 在水平推力作用下一起向左匀加速运动,物块m 的加速度水平向左,合力水平向左,分析物块m 的受力情况,由牛顿第二定律可求出加速度a 和支持力.(2)用极限法把F推向两个极端来分析:当F较小(趋近于0)时,由于μ<tanθ,因此物块将沿斜面加速下滑;若F较大(足够大)时,物块将相对斜面向上滑,因此F不能太小,也不能太大,根据牛顿第二定律,运用整体隔离法求出F的取值范围.【详解】(1)由受力分析得:物块受重力,斜面对物块的支持力,合外力水平向左.根据牛顿第二定律得:mgtanθ=ma得a=gtanθ=10×tan37°=7.5m/s2m受到支持力20N=25N cos cos37NmgFθ==︒(2)设物块处于相对斜面向下滑动的临界状态时的推力为F1,此时物块的受力如下图所示:对物块分析,在水平方向有Nsinθ﹣μNcosθ=ma1竖直方向有Ncosθ+μNsinθ﹣mg=0对整体有 F1=(M+m)a1代入数值得a1=4.8m/s2 ,F1=28.8N设物块处于相对斜面向上滑动的临界状态时的推力为F2,对物块分析,在水平方向有N′sinθ﹣μN′cosθ=ma2竖直方向有N′cosθ﹣μN′sinθ﹣mg=0对整体有F2=(M+m)a2代入数值得a2=11.2m/s2,F2=67.2N综上所述可以知道推力F的取值范围为:28.8N≤F≤67.2N.【点睛】解决本题的关键能够正确地受力分析,抓住临界状态,运用牛顿第二定律进行求解,注意整体法和隔离法的运用.3.如图所示,一速度v=4m/s顺时针匀速转动的水平传送带与倾角θ=37°的粗糙足长斜面平滑连接,一质量m=2Kg的可视为质点的物块,与斜面间的动摩擦因数为μ1=0.5,与传送带间的动摩擦因数为µ2=0.4,小物块以初速度v0=10m/s从斜面底端上滑求:(g=10m/s2)(1)小物块以初速度v 0沿斜面上滑的最大距离?(2)要使物块由斜面下滑到传送带上时不会从左端滑下,传送带至少多长?(3)若物块不从传送带左端滑下,物块从离传送带右侧最远点到再次上滑到斜面最高点所需时间?【答案】(1) x 1=5m (2) L =2.5m (3)t =1.525s【解析】(1)小物块以初速度v 0沿斜面上滑时,以小物块为研究对象,由牛顿第二定律得: 1sin cos mg mg ma θμθ+=,解得2110/a m s =设小物块沿沿斜面上滑距离为x 1,则211020a x v -=-,解得15x m =(2)物块沿斜面下滑时以小物块为研究对象,由牛顿第二定律得:2sin cos mg mg ma θμθ-=,解得: 222/a m s =设小物块下滑至斜面底端时的速度为v 1,则21212v a x =解得: 125/v m s =设小物块在传送带上滑动时的加速度为a 3, 由牛顿第二定律得: 23µmg ma =,解得: 234/a m s =设物块在传送带向左滑动的最大距离为L ,则23120a L v -=-,解得: 2.5L m = 传送带至少2.5m 物块不会由传送带左端滑下(3)设物块从传送带左端向右加速运动到和传送带共速运动的距离为x 2,则222ax v =,解得: 22 2.5x m m =<,故小物体先加速再随传送带做匀速运动。

高中物理高考物理牛顿运动定律常见题型及答题技巧及练习题(含答案)

高中物理高考物理牛顿运动定律常见题型及答题技巧及练习题(含答案)

高中物理高考物理牛顿运动定律常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试牛顿运动定律1.利用弹簧弹射和传送带可以将工件运送至高处。

如图所示,传送带与水平方向成37度角,顺时针匀速运动的速度v =4m/s 。

B 、C 分别是传送带与两轮的切点,相距L =6.4m 。

倾角也是37︒的斜面固定于地面且与传送带上的B 点良好对接。

一原长小于斜面长的轻弹簧平行斜面放置,下端固定在斜面底端,上端放一质量m =1kg 的工件(可视为质点)。

用力将弹簧压缩至A 点后由静止释放,工件离开斜面顶端滑到B 点时速度v 0=8m/s ,A 、B 间的距离x =1m ,工件与斜面、传送带问的动摩擦因数相同,均为μ=0.5,工件到达C 点即为运送过程结束。

g 取10m/s 2,sin37°=0.6,cos37°=0.8,求:(1)弹簧压缩至A 点时的弹性势能;(2)工件沿传送带由B 点上滑到C 点所用的时间;(3)工件沿传送带由B 点上滑到C 点的过程中,工件和传送带间由于摩擦而产生的热量。

【答案】(1)42J,(2)2.4s,(3)19.2J【解析】【详解】(1)由能量守恒定律得,弹簧的最大弹性势能为:2P 01sin 37cos372E mgx mgx mv μ︒︒=++ 解得:E p =42J(2)工件在减速到与传送带速度相等的过程中,加速度为a 1,由牛顿第二定律得: 1sin 37cos37mg mg ma μ︒︒+=解得:a 1=10m/s 2 工件与传送带共速需要时间为:011v v t a -=解得:t 1=0.4s 工件滑行位移大小为:220112v v x a -= 解得:1 2.4x m L =<因为tan 37μ︒<,所以工件将沿传送带继续减速上滑,在继续上滑过程中加速度为a 2,则有:2sin 37cos37mg mg ma μ︒︒-=解得:a 2=2m/s 2假设工件速度减为0时,工件未从传送带上滑落,则运动时间为:22v ta = 解得:t 2=2s工件滑行位移大小为:2 3? 1n n n n n 解得:x 2=4m工件运动到C 点时速度恰好为零,故假设成立。

(物理)物理牛顿运动定律的应用练习题及答案及解析

(物理)物理牛顿运动定律的应用练习题及答案及解析

(物理)物理牛顿运动定律的应用练习题及答案及解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图,有一质量为M=2kg的平板车静止在光滑的水平地面上,现有质量均为m=1kg的小物块A和B(均可视为质点),由车上P处开始,A以初速度=2m/s向左运动,同时B 以=4m/s向右运动,最终A、B两物块恰好停在小车两端没有脱离小车,两物块与小车间的动摩擦因数都为μ=0.1,取,求:(1)开始时B离小车右端的距离;(2)从A、B开始运动计时,经t=6s小车离原位置的距离。

【答案】(1)B离右端距离(2)小车在6s内向右走的总距离:【解析】(1)设最后达到共同速度v,整个系统动量守恒,能量守恒解得:,A离左端距离,运动到左端历时,在A运动至左端前,木板静止,,解得B离右端距离(2)从开始到达共速历时,,,解得小车在前静止,在至之间以a向右加速:小车向右走位移接下来三个物体组成的系统以v共同匀速运动了小车在6s内向右走的总距离:【点睛】本题主要考查了运动学基本公式、动量守恒定律、牛顿第二定律、功能关系的直接应用,关键是正确分析物体的受力情况,从而判断物体的运动情况,过程较为复杂.2.如图所示,长木板质量M=3 kg,放置于光滑的水平面上,其左端有一大小可忽略,质量为m=1 kg的物块A,右端放着一个质量也为m=1 kg的物块B,两物块与木板间的动摩擦因数均为μ=0.4,AB之间的距离L=6 m,开始时物块与木板都处于静止状态,现对物块A施加方向水平向右的恒定推力F 作用,取g=10 m/s 2.(1).为使物块A 与木板发生相对滑动,F 至少为多少?(2).若F=8 N ,求物块A 经过多长时间与B 相撞,假如碰撞过程时间极短且没有机械能损失,则碰后瞬间A 、B 的速度分别是多少? 【答案】(1)5 N (2)v A’=2m/s v B’=8m/s 【解析】 【分析】 【详解】(1)据分析物块A 与木板恰好发生相对滑动时物块B 和木板之间的摩擦力没有达到最大静摩擦力.设物块A 与木板恰好发生相对滑动时,拉力为F 0,整体的加速度大小为a ,则: 对整体: F 0=(2m +M )a 对木板和B :μmg =(m +M )a 解之得: F 0=5N即为使物块与木板发生相对滑动,恒定拉力至少为5 N ; (2)物块的加速度大小为:24A F mga m s mμ-==∕ 木板和B 的加速度大小为:B mga M m=+μ=1m/s 2设物块滑到木板右端所需时间为t ,则:x A -x B =L即221122A B a t a t L -= 解之得:t =2 s v A =a A t=8m/s v B =a B t=2m/sAB 发生弹性碰撞则动量守恒:mv a +mv B =mv a '+mv B '机械能守恒:12mv a 2+12mv B 2=12mv a '2+12mv B '2 解得:v A '=2m/s v B '=8m/s3.如图所示,有1、2、3三个质量均为m =1kg 的物体,物体2与物体3通过不可伸长轻绳连接,跨过光滑的定滑轮,设长板2到定滑轮足够远,物体3离地面高H =5.75m , 物体1与长板2之间的动摩擦因数μ=O .2.长板2在光滑的桌面上从静止开始释放,同时物体1(视为质点)在长板2的左端以v =4m/s 的初速度开始运动,运动过程中恰好没有从长板2的右端掉下.(取g =10m/s²)求: (1)长板2开始运动时的加速度大小;(2)长板2的长度0L ;(3)当物体3落地时,物体1在长板2的位置.【答案】(1)26m /s (2)1m (3)1m 【解析】 【分析】 【详解】 设向右为正方向(1)物体1: -μmg = ma 1 a 1=–μg = -2m/s 2 物体2:T +μmg = ma 2 物体3:mg –T = ma 3 且a 2= a 3由以上两式可得:22g ga μ+==6m/s 2 (2)设经过时间t 1二者速度相等v 1=v +a 1t=a 2t 代入数据解t 1=0.5s v 1=3m/s112v v x t +==1.75m 122v tx ==0.75m 所以木板2的长度L 0=x 1-x 2=1m(3)此后,假设物体123相对静止一起加速 T =2m a mg —T =ma 即mg =3m a 得3g a =对1分析:f 静=ma =3.3N >F f =μmg =2N ,故假设不成立,物体1和物体2相对滑动 物体1: a 3=μg =2m/s 2 物体2:T —μmg = ma 4 物体3:mg –T = ma 5 且a 4= a 5 得:42g ga μ-==4m/s 2 整体下落高度h =H —x 2=5m 根据2124212h v t a t =+解得t 2=1s物体1的位移23123212x v t a t =+=4m h -x 3=1m 物体1在长木板2的最左端 【点睛】本题是牛顿第二定律和运动学公式结合,解题时要边计算边分析物理过程,抓住临界状态:速度相等是一个关键点.4.如图所示,从A 点以v 0=4m/s 的水平速度抛出一质量m =1kg 的小物块(可视为质点),当物块运动至B 点时,恰好沿切线方向进入固定在地面上的光滑圆弧轨道BC ,其中轨道C 端切线水平。

2025高考物理 牛顿运动定律的综合应用

2025高考物理   牛顿运动定律的综合应用

2025高考物理 牛顿运动定律的综合应用一、多选题1.用水平拉力使质量分别为m 甲、m 乙的甲、乙两物体在水平桌面上由静止开始沿直线运动,两物体与桌面间的动摩擦因数分别为μ甲和μ乙。

甲、乙两物体运动后,所受拉力F 与其加速度a 的关系图线如图所示。

由图可知( )A .甲乙<m mB .m m >甲乙C .μμ<甲乙D .μμ>甲乙 2.用一水平力F 拉静止在水平面上的物体,在外力F 从零开始逐渐增大的过程中,物体的加速度a 随外力F 变化的关系如图所示,2=10m /s g 。

则下列说法正确的是( )A .物体与水平面间的最大静摩擦力为14NB .物体做变加速运动,F 为14N 时,物体的加速度大小为27m /sC .物体与水平面间的动摩擦因数为0.3D .物体的质量为2kg3.如图所示,一物块以初速度0v 沿粗糙斜面上滑,取沿斜面向上为正向。

则物块速度随时间变化的图像可能正确的是( )A.B.C.D.4.如图(a),物块和木板叠放在实验台上,物块用一不可伸长的细绳与固定在实验台上的力传感器相连,细绳水平.t=0时,木板开始受到水平外力F的作用,在t=4s时撤去外力.细绳对物块的拉力f随时间t变化的关系如图(b)所示,木板的速度v与时间t的关系如图(c)所示.木板与实验台之间的摩擦可以忽略.重力加速度取g=10m/s2.由题给数据可以得出A.木板的质量为1kgB.2s~4s内,力F的大小为0.4NC.0~2s内,力F的大小保持不变D.物块与木板之间的动摩擦因数为0.2二、单选题5.某运送物资的班列由40节质量相等的车厢组成,在车头牵引下,列车沿平直轨道匀加速行驶时,第2节对第3节车厢的牵引力为F。

若每节车厢所受摩擦力、空气阻力均相等,则倒数第3节对倒数第2节车厢的牵引力为()A.F B.1920FC.19FD.20F6.如图,两物块P、Q用跨过光滑轻质定滑轮的轻绳相连,开始时P静止在水平桌面上。

高中物理牛顿运动定律解题技巧(超强)及练习题(含答案)及解析

高中物理牛顿运动定律解题技巧(超强)及练习题(含答案)及解析

高中物理牛顿运动定律解题技巧(超强)及练习题(含答案)及解析一、高中物理精讲专题测试牛顿运动定律1. 在机场可以看到用于传送行李的传送带,行李随传送带一起前进运动。

如图所示,水平传送带匀速运行速度为v=2m/s,传送带两端AB间距离为S o=lOm,传送带与行李箱间的动摩擦因数卩=0.2当质量为m=5kg的行李箱无初速度地放上传送带A端后,传送到B端,重力加速度g取10m/2;求:(1) 行李箱开始运动时的加速度大小a;(2) 行李箱从A端传送到B端所用时间t;(3) 整个过程行李对传送带的摩擦力做功W。

【答案】⑴,(2)薜耳⑶="-纠【解析】【分析】行李在传送带上先做匀加速直线运动,当速度达到传送带的速度,和传送带一起做匀速直线运动,根据牛顿第二定律及运动学基本公式即可解题行李箱开始运动时的加速度大小和行李箱从A端传送到B 端所用时间;根据做功公式求解整个过程行李对传送带的摩擦力做功;【详解】解:(1)行李在传送带上加速,设加速度大小为aI__7(2)行李在传送带上做匀加速直线运动,加速的时间为t1V 2灯== Is1所以匀加速运动的位移为:s\=尹甘=lrnSo-Si 10-1行李随传送带匀速前进的时间:(2 = ---------- = —-一=4.5$v 2行李箱从A传送到B所需时间::3 --气出⑶t1传送带的的位移为:怜一叽“ -根据牛顿第三定律可得传送带受到行李摩擦力为:『◎『整个过程行李对传送带的摩擦力做功:w =7比=-吓阿=-20/2. 如图甲所示,质量为m的A放在足够高的平台上,平台表面光滑•质量也为m的物块B放在水平地面上,物块B与劲度系数为k的轻质弹簧相连,弹簧与物块A用绕过定滑轮的轻绳相连,轻绳刚好绷紧•现给物块A施加水平向右的拉力F (未知),使物块A做初速度为零的匀加速直线运动,加速度为a,重力加速度为g,A、B均可视为质点.根据v 2 2ax 解得:v . 2ax 对物体A:F T ma ; 对物体B:T=mg , 解得 F=ma+mg ; (2)设某时刻弹簧的伸长量为x .对物体C ,水平方向:F cosT | m C a ,其中T | kx mg ;竖直方向:F sin m C g ;联立解得m e3mg4g 3a3.如图所示,水平面上AB 间有一长度x=4m 的凹槽,长度为L=2m 、质量M=1kg 的木板静止 于凹槽右侧,木板厚度与凹槽深度相同,水平面左侧有一半径R=0.4m 的竖直半圆轨道,右侧有一个足够长的圆弧轨道,A 点右侧静止一质量 m1=0.98kg 的小木块.射钉枪以速度v °=ioom/s 射出一颗质量m0=0.02kg 的铁钉,铁钉嵌在木块中并滑上木板,木板与木块间动摩擦因数 卩=0.05其它摩擦不计.若木板每次与 A 、B 相碰后速度立即减为 0,且与A 、B 不粘连,重力加 速度 g=10m/s 2.求:(1) 当物块B 刚好要离开地面时,拉力 F 的大小及物块 A 的速度大小分别为多少;(2)若将物块 A 换成物块C ,拉力F 的方向与水平方向成 37°角,如图乙所示,开始时轻绳也刚好要绷紧,要使物块B 离开地面前,物块C 一直以大小为a 的加速度做匀加速度运动,则物块 C 的质量应满足什么条件? ( sin37°0.6,cos37° 0.8)【答案】(1) F ma mg;v 【解析】 【分析】 【详解】(1)当物块B 刚好要离开地面时, B 受力分析有mg kx ,得:x2嘗(2) m C设弹簧的伸长量为mg k3mg 4g 3ax ,物块A 的速度大小为v ,对物块2amg k(3)木块最终停止时离 A 点的距离s.【答案】(1) v 2m/s (2) F N 12.5N (3) L 1.25m 【解析】(1) 设铁钉与木块的共同速度为 v ,取向左为正方向,根据动量守恒定律得:m °V 0 (m ° mjv解得:v 2叹;⑵木块滑上薄板后,木块的加速度 印 g 0.5,且方向向右设经过时间t ,木块与木板共同速度 v 运动 则:va 2t此时木块与木板一起运动的距离等于木板的长度.1 .2 1 2x vt a 1ta 2t L2 2故共速时,恰好在最左侧 B 点,此时木块的速度 v v a 1t 1^S 木块过C 点时对其产生的支持力与重力的合力提供向心力,则:'2vF N mg m R代入相关数据解得:F N =12.5N. 由牛顿第三定律知,木块过圆弧C 点时对C 点压力为12.5N ;1 2⑶木块还能上升的高度为 h ,由机械能守恒有:(m ° mjv (m 0 m^gh2h 0.05m 0.4m木块不脱离圆弧轨道,返回时以 1m/s 的速度再由B 处滑上木板,设经过 t 1共速,此时木 板的加速度方向向右,大小仍为a 2,木块的加速度仍为 a 1,板产生的加速度a 2 mg M, 且方向向左则:v2 a1t1 a2t1,解得:t1 1s1 2 1 2此时x v t1a-i t-i a2t| 0.5m2 2v3v2 at10.5叹碰撞后,v薄板=0,木块以速度V3=0.5m/s的速度向右做减速运动v3设经过t2时间速度为0,则t2a;1s| 2x v3t2a2t2 0.25m2故△L=b △x' - x=1.25m即木块停止运动时离A点1.25m远.4. 如图,光滑固定斜面上有一楔形物体A。

历年高考物理力学牛顿运动定律题型总结及解题方法

历年高考物理力学牛顿运动定律题型总结及解题方法

历年高考物理力学牛顿运动定律题型总结及解题方法单选题1、现在城市的滑板运动非常流行,在水平地面上一名滑板运动员双脚站在滑板上以一定速度向前滑行,在横杆前起跳并越过杆,从而使人与滑板分别从杆的上方、下方通过,如图所示,假设人和滑板运动过程中受到的各种阻力忽略不计,若运动员顺利地完成了该动作,最终仍落在滑板原来的位置上,则下列说法错误的是()A.运动员起跳时,双脚对滑板作用力的合力竖直向下B.起跳时双脚对滑板作用力的合力向下偏后C.运动员在空中最高点时处于失重状态D.运动员在空中运动时,单位时间内速度的变化相同答案:B解析:AB.运动员竖直起跳,由于本身就有水平初速度,所以运动员既参与了水平方向上的匀速直线运动,又参与了竖直上抛运动。

各分运动具有等时性,水平方向的分运动与滑板的运动情况一样,运动员最终落在滑板的原位置。

所以水平方向受力为零,则起跳时,滑板对运动员的作用力竖直向上,运动员对滑板的作用力应该是竖直向下,故A正确,不符合题意;B错误,符合题意;C.运动员在空中最高点时具有向下的加速度g,处于失重状态,故C正确,不符合题意;D.运动员在空中运动时,加速度恒定,所以单位时间内速度的变化量相等,故D正确,不符合题意。

故选B。

2、如图所示,物体静止于水平面上的O点,这时弹簧恰为原长l0,物体的质量为m,与水平面间的动摩擦因数为μ,现将物体向右拉一段距离后自由释放,使之沿水平面振动,下列结论正确的是()A.物体通过O点时所受的合外力为零B.物体将做阻尼振动C.物体最终只能停止在O点D.物体停止运动后所受的摩擦力为μmg答案:B解析:A.物体通过O点时弹簧的弹力为零,但摩擦力不为零,A错误;B.物体振动时要克服摩擦力做功,机械能减少,振幅减小,做阻尼振动,B正确;CD.物体最终停止的位置可能在O点也可能不在O点。

若停在O点摩擦力为零,若不在O点,摩擦力和弹簧的弹力平衡,停止运动时物体所受的摩擦力不一定为μmg,CD错误。

高考物理牛顿运动定律的应用常见题型及答题技巧及练习题(含答案)含解析

高考物理牛顿运动定律的应用常见题型及答题技巧及练习题(含答案)含解析

高考物理牛顿运动定律的应用常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,质量为2kg 的物体在与水平方向成37°角的斜向上的拉力F 作用下由静止开始运动.已知力F 的大小为5N ,物体与地面之间的动摩擦因数μ为0.2,(sin37°=0.6,cos37°=0.8)求:(1)物体由静止开始运动后的加速度大小;(2)8s 末物体的瞬时速度大小和8s 时间内物体通过的位移大小; (3)若8s 末撤掉拉力F ,则物体还能前进多远? 【答案】(1)a =0.3m/s 2 (2)x =9.6m (3)x ′=1.44m 【解析】(1)物体的受力情况如图所示:根据牛顿第二定律,得: F cos37°-f =ma F sin37°+F N =mg 又f =μF N联立得:a =cos37(sin 37)F mg F mμ--o o代入解得a =0.3m/s 2(2)8s 末物体的瞬时速度大小v =at =0.3×8m/s=2.4m/s 8s 时间内物体通过的位移大小219.6m 2x at == (3)8s 末撤去力F 后,物体做匀减速运动, 根据牛顿第二定律得,物体加速度大小22.0m/s f mg a g m mμμ===='' 由v 2=2a ′x ′得:21.44m 2v x a =''=【点睛】本题关键是多次根据牛顿第二定律列式求解加速度,然后根据运动学公式列式求解运动学参量.2.如图,质量M=4kg 的长木板静止处于粗糙水平地面上,长木板与地面的动摩擦因数μ1=0.1,现有一质量m=3kg 的小木块以v 0=14m/s 的速度从一端滑上木板,恰好未从木板上滑下,滑块与长木板的动摩擦因数μ2=0.5,g 取10m/s 2,求:(1)木块刚滑上木板时,木块和木板的加速度大小; (2)木板长度;(3)木板在地面上运动的最大位移。

高考物理牛顿运动定律的应用答题技巧及练习题(含答案)

高考物理牛顿运动定律的应用答题技巧及练习题(含答案)

高考物理牛顿运动定律的应用答题技巧及练习题(含答案)一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,质量为m=2kg的物块放在倾角为θ=37°的斜面体上,斜面质量为M=4kg,地面光滑,现对斜面体施一水平推力F,要使物块m相对斜面静止,求:(取sin37°=0.6,cos37°=0.8,g=10m/s2)(1)若斜面与物块间无摩擦力,求m加速度的大小及m受到支持力的大小;(2)若斜面与物块间的动摩擦因数为μ=0.2,已知物体所受滑动摩擦力与最大静摩擦力相等,求推力F的取值.(此问结果小数点后保留一位)【答案】(1)7.5m/s2;25N (2)28.8N≤F≤67.2N【解析】【分析】(1)斜面M、物块m在水平推力作用下一起向左匀加速运动,物块m的加速度水平向左,合力水平向左,分析物块m的受力情况,由牛顿第二定律可求出加速度a和支持力.(2)用极限法把F推向两个极端来分析:当F较小(趋近于0)时,由于μ<tanθ,因此物块将沿斜面加速下滑;若F较大(足够大)时,物块将相对斜面向上滑,因此F不能太小,也不能太大,根据牛顿第二定律,运用整体隔离法求出F的取值范围.【详解】(1)由受力分析得:物块受重力,斜面对物块的支持力,合外力水平向左.根据牛顿第二定律得:mgtanθ=ma得a=gtanθ=10×tan37°=7.5m/s2m受到支持力20N=25N cos cos37NmgFθ==︒(2)设物块处于相对斜面向下滑动的临界状态时的推力为F1,此时物块的受力如下图所示:对物块分析,在水平方向有Nsinθ﹣μNcosθ=ma1竖直方向有Ncosθ+μNsinθ﹣mg=0对整体有 F1=(M+m)a1代入数值得a1=4.8m/s2 ,F1=28.8N设物块处于相对斜面向上滑动的临界状态时的推力为F2,对物块分析,在水平方向有N′sinθ﹣μN′cosθ=ma2竖直方向有N′cosθ﹣μN′sinθ﹣mg=0对整体有F2=(M+m)a2代入数值得a2=11.2m/s2,F2=67.2N综上所述可以知道推力F的取值范围为:28.8N≤F≤67.2N.【点睛】解决本题的关键能够正确地受力分析,抓住临界状态,运用牛顿第二定律进行求解,注意整体法和隔离法的运用.2.如图甲所示,m1 =5 kg的滑块自光滑圆弧形槽的顶端A点无初速度地滑下,槽的底端与水平传送带相切于左端导轮顶端的B点,传送带沿顺时针方向匀速运转.m1下滑前将m2 = 3 kg的滑块停放在槽的底端.m1下滑后与m2发生碰撞,碰撞时间极短,碰后两滑块均向右运动,传感器分别描绘出了两滑块碰后在传送带上从B点运动到C点的v-t图象,如图乙、丙所示.两滑块均视为质点,重力加速度g = 10 m/s2.(1)求A、B的高度差h;(2)求滑块m1与传送带间的动摩擦因数μ和传送带的长度L BC;(3)滑块m2到达C点时速度恰好减到3 m/s,求滑块m2的传送时间;(4)求系统因摩擦产生的热量.【答案】(1)0.8m(2)26m(3)6.5s(4)16J【解析】(1)由图乙可知,碰撞后瞬间,m1的速度v1=1 m/s,m2的速度v2 =5 m/s,设碰撞前瞬间m1的速度为v0,取向右的方向为正方向,根据动量守恒:m1v0= m1v1+ m2v2解得:v 0 = 4 m/sm 1下滑的过程机械能守恒:211012m gh m v = 解得:h =0.8 m(2)由图乙可知,滑块m 1在传送带上加速运动时的加速度大小0.5va t∆==∆m/s 2 滑块的加速度就是由滑动摩擦力提供,故μ1m 1g = m 1a 可求出滑块m 1与传送带间的动摩擦因数μ1 = 0.05由图乙可知,滑块m 1在传送带上先加速4 s ,后匀速运动6 s 到达C 点 图线与坐标轴围成的图形的面积在数值上等于传送带的长度L BC ,即L BC = 26 m (3)滑块m 2一直做匀减速直线运动,达C 点时速度恰好减到3 m/s ,全程的平均速度为24/2v vv m s +== 设滑块m 2的传送时间为t ,则有 6.5BCL t s v== (4)由图乙可知,滑块m 1在传送带上加速阶段的位移21011182x v t at m =+= 滑块m 1在传送带上加速阶段产生的热量Q 1=μ1m 1g (vt 1-x 1)=10 J 滑块m 2在传送带上减速的加速大小413v a t '∆'=='∆m/s 2 滑块m 2受到的滑动摩擦力大小f = m 2a ′滑块m 2在传送带上减速阶段产生的热量Q 2 = f (L BC -vt ) = 6 J 系统因摩擦产生的热量Q = Q 1 + Q 2 =16 J .3.如图,光滑绝缘水平面上静置两个质量均为m 、相距为x 0的小球A 和B ,A 球所带电荷量为+q ,B 球不带电。

高考物理高考物理牛顿运动定律的应用解题技巧和训练方法及练习题(含答案)

高考物理高考物理牛顿运动定律的应用解题技巧和训练方法及练习题(含答案)

高考物理高考物理牛顿运动定律的应用解题技巧和训练方法及练习题(含答案)一、高中物理精讲专题测试牛顿运动定律的应用1.传送带与平板紧靠在一起,且上表面在同一水平面内,两者长度分别为L 1=2.5 m 、L 2=2 m .传送带始终保持以速度v 匀速运动.现将一滑块(可视为质点)轻放到传送带的左端,然后平稳地滑上平板.已知:滑块与传送带间的动摩擦因数μ=0.5,滑块与平板、平板与支持面的动摩擦因数分别为μ1=0.3、μ2=0.1,滑块、平板的质量均为m =2 kg ,g 取10 m/s 2.求:(1)若滑块恰好不从平板上掉下,求滑块刚滑上平板时的速度大小; (2)若v =6 m/s ,求滑块离开平板时的速度大小. 【答案】(1)4/m s (2)3.5/m s 【解析】 【详解】(1)滑块在平板上做匀减速运动,加速度大小:a 1=1mgmμ=3 m/s 2由于μ1mg>2μ2mg故平板做匀加速运动,加速度大小:a 2=122mg mgmμμ-⨯=1 m/s 2设滑块滑至平板右端用时为t ,共同速度为v′,平板位移为x ,对滑块: v′=v -a 1t(1分)L 2+x =vt -12a 1t 2 对平板:v′=a 2tx =12a 2t 2 联立以上各式代入数据解得:t =1 s ,v =4 m/s. (2)滑块在传送带上的加速度:a 3=mgmμ=5 m/s 2若滑块在传送带上一直加速,则获得的速度为: v 1112a L 5 m/s<6 m/s 即滑块滑上平板的速度为5 m/s设滑块在平板上运动的时间为t′,离开平板时的速度为v″,平板位移为x′ 则v″=v 1-a 1t′ L 2+x′=v 1t′-12a 1t′2 x′=12a 2t′2联立以上各式代入数据解得:t′1=12s ,t′2=2 s(t′2>t ,不合题意,舍去) 将t′=12s 代入v″=v -a 1t′得:v″=3.5 m/s.2.皮带传输装置示意图的一部分如下图所示,传送带与水平地面的夹角37θ=︒,A 、B 两端相距12m,质量为M=1kg 的物体以0v =14.0m/s 的速度沿AB 方向从A 端滑上传送带,物体与传送带间的动摩擦因数为0.5,传送带顺时针运转动的速度v =4.0m/s(g 取210/m s ),试求:(1)物体从A 点到达B 点所需的时间;(2)若物体能在传送带上留下痕迹,物体从A 点到达B 点的过程中在传送带上留下的划痕长度.【答案】(1)2s (2)5m 【解析】 【分析】(1)开始时物体的初速度大于传送带的速度,根据受力及牛顿第二定律求出物体的加速度,当物体与传送带共速时,求解时间和物体以及传送带的位移;物体与传送带共速后,物体向上做减速运动,根据牛顿第二定律求解加速度,几何运动公式求解到达B 点的时间以及传送带的位移;(2)开始时物体相对传送带上滑,后来物体相对传送带下滑,结合位移关系求解划痕长度. 【详解】(1)物体刚滑上传送带时因速度v 0=14.0m/s 大于传送带的速度v=4m/s ,则物体相对斜面向上运动,物体的加速度沿斜面向下,根据牛顿第二定律有:Mgsin θ+μMgcos θ=Ma 1 解得:a 1=gsin θ+μgcos θ=10m/s 2 当物体与传送带共速时:v 0-at 1=v 解得t 1=1s此过程中物体的位移01192v vx t m +== 传送带的位移:214x vt m ==当物体与传送带共速后,由于μ=0.5<tan370=0.75,则物体向上做减速运动,加速度为:Mgsin θ-μMgcos θ=Ma 2 解得a 2=2m/s 2物体向上减速运动s 1=L-x 1=3m 根据位移公式:s 1=vt 2-12a 2t 22解得:t 2=1 s (t 2=3 s 舍去)则物体从A 点到达B 点所需的时间:t=t 1+t 2=2s (2)物体减速上滑时,传送带的位移:224s vt m == 则物体相对传送带向下的位移211s s s m ∆=-=因物体加速上滑时相对传送带向上的位移为:125x x x m ∆=-= 则物体从A 点到达B 点的过程中在传送带上留下的划痕长度为5m . 【点睛】此题是牛顿第二定律在传送带问题中的应用问题;关键是分析物体的受力情况,根据牛顿第二定律求解加速度,根据运动公式求解时间和位移等;其中的关键点是共速后物体如何运动.3.如图所示,倾角为30°的光滑斜面的下端有一水平传送带,传送带正以6m/s 的速度运动,运动方向如图所示.一个质量为2kg 的物体(物体可以视为质点),从h=3.2m 高处由静止沿斜面下滑,物体经过A 点时,不管是从斜面到传送带还是从传送带到斜面,都不计其动能损失.物体与传送带间的动摩擦因数为0.5,重力加速度g=10m/s 2,求:(1)物体第一次到达A 点时速度为多大?(2)要使物体不从传送带上滑落,传送带AB 间的距离至少多大? (3)物体随传送带向右运动,最后沿斜面上滑的最大高度为多少? 【答案】(1)8m/s (2)6.4m (3)1.8m 【解析】 【分析】(1)本题中物体由光滑斜面下滑的过程,只有重力做功,根据机械能守恒求解物体到斜面末端的速度大小;(2)当物体滑到传送带最左端速度为零时,AB 间的距离L 最小,根据动能定理列式求解;(3)物体在到达A 点前速度与传送带相等,最后以6m/s 的速度冲上斜面时沿斜面上滑达到的高度最大,根据动能定理求解即可. 【详解】(1)物体由光滑斜面下滑的过程中,只有重力做功,机械能守恒,则得:212mgh mv = 解得:2210 3.28m/s v gh =⨯⨯=(2)当物体滑动到传送带最左端速度为零时,AB 间的距离L 最小,由动能能力得:2102mgL mv μ-=-解得:228m 6.4m 220.510v L g μ===⨯⨯ (3)因为滑上传送带的速度是8m/s 大于传送带的速度6m/s ,物体在到达A 点前速度与传送带相等,最后以6m/s v =带的速度冲上斜面,根据动能定理得:2102mgh mv '-=-带得:226m 1.8m 2210v h g '===⨯带【点睛】该题要认真分析物体的受力情况和运动情况,选择恰当的过程,运用机械能守恒和动能定理解题.4.如图所示为货场使用的传送带的模型,传送带倾斜放置,与水平面夹角为37θ=︒,传送带AB 足够长,传送带以大小为2m/s υ=的恒定速率顺时针转动。

高考物理牛顿运动定律的应用解题技巧和训练方法及练习题(含答案)及解析

高考物理牛顿运动定律的应用解题技巧和训练方法及练习题(含答案)及解析

高考物理牛顿运动定律的应用解题技巧和训练方法及练习题(含答案)及解析一、高中物理精讲专题测试牛顿运动定律的应用1.一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m ,如图(a )所示.0t =时刻开始,小物块与木板一起以共同速度向右运动,直至1t s =时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1s 时间内小物块的v t -图线如图(b )所示.木板的质量是小物块质量的15倍,重力加速度大小g 取10m/s 2.求(1)木板与地面间的动摩擦因数1μ及小物块与木板间的动摩擦因数2μ; (2)木板的最小长度;(3)木板右端离墙壁的最终距离.【答案】(1)10.1μ=20.4μ=(2)6m (3)6.5m 【解析】(1)根据图像可以判定碰撞前木块与木板共同速度为v 4m/s = 碰撞后木板速度水平向左,大小也是v 4m/s =木块受到滑动摩擦力而向右做匀减速,根据牛顿第二定律有24/0/1m s m sg sμ-=解得20.4μ=木板与墙壁碰撞前,匀减速运动时间1t s =,位移 4.5x m =,末速度v 4m/s = 其逆运动则为匀加速直线运动可得212x vt at =+ 带入可得21/a m s =木块和木板整体受力分析,滑动摩擦力提供合外力,即1g a μ= 可得10.1μ=(2)碰撞后,木板向左匀减速,依据牛顿第二定律有121()M m g mg Ma μμ++= 可得214/3a m s =对滑块,则有加速度224/a m s =滑块速度先减小到0,此时碰后时间为11t s = 此时,木板向左的位移为2111111023x vt a t m =-=末速度18/3v m s =滑块向右位移214/022m s x t m +== 此后,木块开始向左加速,加速度仍为224/a m s =木块继续减速,加速度仍为214/3a m s =假设又经历2t 二者速度相等,则有22112a t v a t =- 解得20.5t s =此过程,木板位移2312121726x v t a t m =-=末速度31122/v v a t m s =-= 滑块位移24221122x a t m == 此后木块和木板一起匀减速.二者的相对位移最大为13246x x x x x m ∆=++-= 滑块始终没有离开木板,所以木板最小的长度为6m(3)最后阶段滑块和木板一起匀减速直到停止,整体加速度211/a g m s μ==位移23522v x m a==所以木板右端离墙壁最远的距离为135 6.5x x x m ++= 【考点定位】牛顿运动定律【名师点睛】分阶段分析,环环相扣,前一阶段的末状态即后一阶段的初始状态,认真沉着,不急不躁2.如图所示,有1、2、3三个质量均为m =1kg 的物体,物体2与物体3通过不可伸长轻绳连接,跨过光滑的定滑轮,设长板2到定滑轮足够远,物体3离地面高H =5.75m , 物体1与长板2之间的动摩擦因数μ=O .2.长板2在光滑的桌面上从静止开始释放,同时物体1(视为质点)在长板2的左端以v =4m/s 的初速度开始运动,运动过程中恰好没有从长板2的右端掉下.(取g =10m/s²)求: (1)长板2开始运动时的加速度大小; (2)长板2的长度0L ;(3)当物体3落地时,物体1在长板2的位置.【答案】(1)26m /s (2)1m (3)1m 【解析】 【分析】 【详解】 设向右为正方向(1)物体1: -μmg = ma 1 a 1=–μg = -2m/s 2 物体2:T +μmg = ma 2 物体3:mg –T = ma 3 且a 2= a 3由以上两式可得:22g ga μ+==6m/s 2 (2)设经过时间t 1二者速度相等v 1=v +a 1t=a 2t 代入数据解t 1=0.5s v 1=3m/s112v v x t +==1.75m 122v tx ==0.75m 所以木板2的长度L 0=x 1-x 2=1m(3)此后,假设物体123相对静止一起加速 T =2m a mg —T =ma 即mg =3m a 得3g a =对1分析:f 静=ma =3.3N >F f =μmg =2N ,故假设不成立,物体1和物体2相对滑动 物体1: a 3=μg =2m/s 2 物体2:T —μmg = ma 4 物体3:mg –T = ma 5 且a 4= a 5 得:42g ga μ-==4m/s 2 整体下落高度h =H —x 2=5m 根据2124212h v t a t =+ 解得t 2=1s物体1的位移23123212x v t a t =+=4m h -x 3=1m 物体1在长木板2的最左端 【点睛】本题是牛顿第二定律和运动学公式结合,解题时要边计算边分析物理过程,抓住临界状态:速度相等是一个关键点.3.如图所示,从A 点以v 0=4m/s 的水平速度抛出一质量m =1kg 的小物块(可视为质点),当物块运动至B 点时,恰好沿切线方向进入固定在地面上的光滑圆弧轨道BC ,其中轨道C 端切线水平。

高中物理必修一 第4章第4节 牛顿运动定律的应用练习)解析版)

高中物理必修一 第4章第4节 牛顿运动定律的应用练习)解析版)

第四章运动和力的关系4. 5 牛顿运动定律的应用一、单选题1、航母“辽宁舰”甲板长300m,起飞跑道长100m,目前顺利完成了舰载机“歼-15”起降飞行训练。

“歼-15”降落时着舰速度大小约为70m/s,飞机尾钩钩上阻拦索后,在甲板上滑行50m左右停下,(航母静止不动)假设阻拦索给飞机的阻力恒定,则飞行员所承受的水平加速度与重力加速度的比值约为( )A.2B.5C.10D.50【答案】B【解析】根据速度和位移关系可知:v2−v02=2ax,解得:a=0−7022×50=−49m/s2,故ag=499.8=5,故B正确,A、C、D错误;故选B。

2、交通事故的分析中,刹车线的长度是很重要的依据,刹车线是汽车刹车后,停止转动的轮胎在地面上发生滑动时留下的滑动痕迹.在某次交通事故中,汽车的刹车线长度是15m,假设汽车轮胎与地面间的动摩擦因数恒为0.75,该路段限速60km/h,取g=10m/s2,则汽车刹车前的速度以及是否超速的情况是( )A.速度为7.5m/s,超速B.速度为15m/s,不超速C.速度为15m/s,超速D.速度为7.5m/s,不超速【答案】B【解析】设汽车刹车后滑动时的加速度大小为a,由牛顿第二定律得:μmg=ma解得:a=μg=7.5m/s2由匀变速直线运动的速度位移关系式有:v02=2ax可得汽车刹车前的速度为:v0==15m/s=54km/h<60km/h所以不超速.A.速度为7.5m/s,超速,与结论不相符,选项A错误;B.速度为15m/s,不超速,与结论相符,选项B正确;C.速度为15m/s,超速,与结论不相符,选项C错误;D.速度为7.5m/s,不超速,与结论不相符,选项D错误;3、一物体放在光滑水平面上,初速为零,先对物体施加一向东的恒力F,历时1s,随即把此力改为向西,大小不变,历时1s;,接着又把此力改为向东,大小不变,历时1s;如此反复,只改变力的方向,共历时1min,之后撤去该力。

高中物理牛顿运动定律常见题型及答题技巧及练习题(含答案)

高中物理牛顿运动定律常见题型及答题技巧及练习题(含答案)

高中物理牛顿运动定律常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试牛顿运动定律1.如图所示,在光滑的水平面上有一足够长的质量M=4kg 的长木板,在长木板右端有一质量m=1kg 的小物块,长木板与小物块间的动擦因数μ=0.2,开始时长木板与小物块均静止.现用F=14N 的水平恒力向石拉长木板,经时间t=1s 撤去水平恒力F ,g=10m/s 2.求(1)小物块在长木板上发生相对滑幼时,小物块加速度a 的大小; (2)刚撤去F 时,小物块离长木板右端的距离s ; (3)撒去F 后,系统能损失的最大机械能△E . 【答案】(1)2m/s 2(2)0.5m (3)0.4J 【解析】 【分析】(1)对木块受力分析,根据牛顿第二定律求出木块的加速度;(2)先根据牛顿第二定律求出木板的加速度,然后根据匀变速直线运动位移时间公式求出长木板和小物块的位移,二者位移之差即为小物块离长木板右端的距离;(3)撤去F 后,先求解小物块和木板的速度,然后根据动量守恒和能量关系求解系统能损失的最大机械能△E . 【详解】(1)小物块在长木板上发生相对滑动时,小物块受到向右的滑动摩擦力,则:µmg=ma 1, 解得a 1=µg=2m/s 2(2)对木板,受拉力和摩擦力作用, 由牛顿第二定律得,F-µmg=Ma 2, 解得:a 2= 3m/s 2. 小物块运动的位移:x 1=12a 1t 2=12×2×12m=1m , 长木板运动的位移:x 2=12a 2t 2=12×3×12m=1.5m , 则小物块相对于长木板的位移:△x=x 2-x 1=1.5m-1m=0.5m .(3)撤去F 后,小物块和木板的速度分别为:v m =a 1t=2m/s v=a 2t=3m/s 小物块和木板系统所受的合外力为0,动量守恒:()m mv Mv M m v +=+' 解得 2.8/v m s ='从撤去F 到物体与木块保持相对静止,由能量守恒定律:222111()222m mv Mv E M m v +=∆'++ 解得∆E=0.4J 【点睛】该题考查牛顿第二定律的应用、动量守恒定律和能量关系;涉及到相对运动的过程,要认真分析物体的受力情况和运动情况,并能熟练地运用匀变速直线运动的公式.2.如图所示,质量2kg M =的木板静止在光滑水平地面上,一质量1kg m =的滑块(可视为质点)以03m/s v =的初速度从左侧滑上木板水平地面右侧距离足够远处有一小型固定挡板,木板与挡板碰后速度立即减为零并与挡板粘连,最终滑块恰好未从木板表面滑落.已知滑块与木板之间动摩擦因数为0.2μ=,重力加速度210m/s g =,求:(1)木板与挡板碰撞前瞬间的速度v ? (2)木板与挡板碰撞后滑块的位移s ? (3)木板的长度L ?【答案】(1)1m/s (2)0.25m (3)1.75m 【解析】 【详解】(1)滑块与小车动量守恒0()mv m M v =+可得1m/s v =(2)木板静止后,滑块匀减速运动,根据动能定理有:2102mgs mv μ-=- 解得0.25m s =(3)从滑块滑上木板到共速时,由能量守恒得:220111()22mv m M v mgs μ=++ 故木板的长度1 1.75m L s s =+=3.如图甲所示,一长木板静止在水平地面上,在0t =时刻,一小物块以一定速度从左端滑上长木板,以后长木板运动v t -图象如图所示.已知小物块与长木板的质量均为1m kg =,小物块与长木板间及长木板与地面间均有摩擦,经1s 后小物块与长木板相对静止()210/g m s=,求:()1小物块与长木板间动摩擦因数的值;()2在整个运动过程中,系统所产生的热量.【答案】(1)0.7(2)40.5J 【解析】【分析】()1小物块滑上长木板后,由乙图知,长木板先做匀加速直线运动,后做匀减速直线运动,根据牛顿第二定律求出长木板加速运动过程的加速度,木板与物块相对静止时后木板与物块一起匀减速运动,由牛顿第二定律和速度公式求物块与长木板间动摩擦因数的值.()2对于小物块减速运动的过程,由牛顿第二定律和速度公式求得物块的初速度,再由能量守恒求热量. 【详解】()1长木板加速过程中,由牛顿第二定律,得1212mg mg ma μμ-=; 11m v a t =;木板和物块相对静止,共同减速过程中,由牛顿第二定律得 2222mg ma μ⋅=; 220m v a t =-;由图象可知,2/m v m s =,11t s =,20.8t s = 联立解得10.7μ=()2小物块减速过程中,有:13mg ma μ=; 031m v v a t =-;在整个过程中,由系统的能量守恒得2012Q mv = 联立解得40.5Q J =【点睛】本题考查了两体多过程问题,分析清楚物体的运动过程是正确解题的关键,也是本题的易错点,分析清楚运动过程后,应用加速度公式、牛顿第二定律、运动学公式即可正确解题.4.如图所示,质量M=0.5kg 的长木板A 静止在粗糙的水平地面上,质量m=0.3kg 物块B(可视为质点)以大小v 0=6m/s 的速度从木板A 的左端水平向右滑动,若木板A 与地面间的动摩擦因数μ2=0.3,物块B 恰好能滑到木板A 的右端.已知物块B 与木板A 上表面间的动摩擦因数μ1=0.6.认为各接触面间的最大静摩擦力与滑动摩擦力大小相等,取g=10m/s 2.求:(1)木板A 的长度L ;(2)若把A 按放在光滑水平地面上,需要给B 一个多大的初速度,B 才能恰好滑到A 板的右端;(3)在(2)的过程中系统损失的总能量.【答案】(1) 3m (2) /s (3) 5.4J 【解析】 【详解】(1)A 、B 之间的滑动摩擦力大小为:11= 1.8f mg N μ= A 板与地面间的最大静摩擦力为:()22= 2.4f M m g N μ+= 由于12f f <,故A 静止不动B 向右做匀减速直线运动.到达A 的右端时速度为零,有:202v aL =11mg ma μ=解得木板A 的长度 3L m =(2)A 、B 系统水平方向动量守恒,取B v 为正方向,有 ()B mv m M v =+物块B 向右做匀减速直线运动22112B v v a s -=A 板匀加速直线运动 12mg Ma μ=2222v a s =位移关系12s s L -=联立解得/B v s = (3)系统损失的能量都转化为热能1Q mgL μ=解得 5.4Q J =5.近年来,随着AI 的迅猛发展,自动分拣装置在快递业也得到广泛的普及.如图为某自动分拣传送装置的简化示意图,水平传送带右端与水平面相切,以v 0=2m/s 的恒定速率顺时针运行,传送带的长度为L =7.6m.机械手将质量为1kg 的包裹A 轻放在传送带的左端,经过4s 包裹A 离开传送带,与意外落在传送带右端质量为3kg 的包裹B 发生正碰,碰后包裹B 在水平面上滑行0.32m 后静止在分拣通道口,随即被机械手分拣.已知包裹A 、B 与水平面间的动摩擦因数均为0.1,取g =10m/s 2.求:(1)包裹A 与传送带间的动摩擦因数; (2)两包裹碰撞过程中损失的机械能; (3)包裹A 是否会到达分拣通道口.【答案】(1)μ1=0.5(2)△E =0.96J (3)包裹A 不会到达分拣通道口 【解析】 【详解】(1)假设包裹A 经过t 1时间速度达到v 0,由运动学知识有01012v t v t t L +-=() 包裹A 在传送带上加速度的大小为a 1,v 0=a 1t 1包裹A 的质量为m A ,与传输带间的动摩檫因数为μ1,由牛顿运动定律有:μ1m A g =m A a 1 解得:μ1=0.5(2)包裹A 离开传送带时速度为v 0,设第一次碰后包裹A 与包裹B 速度分别为v A 和v B , 由动量守恒定律有:m A v 0=m A v A +m B v B包裹B 在水平面上滑行过程,由动能定理有:-μ2m B gx =0-12m B v B 2 解得v A =-0.4m/s ,负号表示方向向左,大小为0.4m/s 两包裹碰撞时损失的机械能:△E =12m A v 02 -12m A v A 2-12m B v B 2 解得:△E =0.96J(3)第一次碰后包裹A 返回传送带,在传送带作用下向左运动x A 后速度减为零, 由动能定理可知-μ1m A gx A =0-12m A v A 2 解得x A =0.016m<L ,包裹A 在传送带上会再次向右运动. 设包裹A 再次离开传送带的速度为v A ′μ1m A gx A =12m A v A ′2 解得:v A ′ =0.4m/s设包裹A 再次离开传送带后在水平面上滑行的距离为x A-μ2m A gx A ′=0-12m A v A 2 解得 x A ′=0.08m x A ′=<0.32m包裹A 静止时与分拣通道口的距离为0.24m ,不会到达分拣通道口.6.如图,竖直墙面粗糙,其上有质量分别为m A =1 kg 、m B =0.5 kg 的两个小滑块A 和B ,A 在B 的正上方,A 、B 相距h =2. 25 m ,A 始终受一大小F 1=l0 N 、方向垂直于墙面的水平力作用,B 始终受一方向竖直向上的恒力F 2作用.同时由静止释放A 和B ,经时间t =0.5 s ,A 、B 恰相遇.已知A 、B 与墙面间的动摩擦因数均为μ=0.2,重力加速度大小g =10 m/s 2.求:(1)滑块A 的加速度大小a A ; (2)相遇前瞬间,恒力F 2的功率P .【答案】(1)2A 8m/s a =;(2)50W P =【解析】 【详解】(1)A 、B 受力如图所示:A 、B 分别向下、向上做匀加速直线运动,对A : 水平方向:N 1F F = 竖直方向:A A A m g f m a -= 且:N f F μ=联立以上各式并代入数据解得:2A 8m/s a =(2)对A 由位移公式得:212A A x a t =对B 由位移公式得:212B B x a t =由位移关系得:B A x h x =- 由速度公式得B 的速度:B B v a t = 对B 由牛顿第二定律得:2B B B F m g m a -= 恒力F 2的功率:2B P F v = 联立解得:P =50W7.如图所示,水平面上AB 间有一长度x=4m 的凹槽,长度为L=2m 、质量M=1kg 的木板静止于凹槽右侧,木板厚度与凹槽深度相同,水平面左侧有一半径R=0.4m 的竖直半圆轨道,右侧有一个足够长的圆弧轨道,A 点右侧静止一质量m1=0.98kg 的小木块.射钉枪以速度v 0=100m/s 射出一颗质量m0=0.02kg 的铁钉,铁钉嵌在木块中并滑上木板,木板与木块间动摩擦因数μ=0.05,其它摩擦不计.若木板每次与A 、B 相碰后速度立即减为0,且与A 、B 不粘连,重力加速度g=10m/s 2.求:(1)铁钉射入木块后共同的速度v ;(2)木块经过竖直圆轨道最低点C 时,对轨道的压力大小F N; (3)木块最终停止时离A 点的距离s.【答案】(1)2/v m s = (2)12.5N F N = (3) 1.25L m ∆= 【解析】(1) 设铁钉与木块的共同速度为v ,取向左为正方向,根据动量守恒定律得:0001()m v m m v =+解得:2m v s =;(2) 木块滑上薄板后,木块的加速度210.5m a g s μ==,且方向向右板产生的加速度220.5mgma s Mμ==,且方向向左设经过时间t ,木块与木板共同速度v 运动则:12v a t a t -=此时木块与木板一起运动的距离等于木板的长度22121122x vt a t a t L ∆=--=故共速时,恰好在最左侧B 点,此时木块的速度11m v v a t s '=-= 木块过C 点时对其产生的支持力与重力的合力提供向心力,则:'2N v F mg m R-=代入相关数据解得:F N =12.5N.由牛顿第三定律知,木块过圆弧C 点时对C 点压力为12.5N ; (3) 木块还能上升的高度为h ,由机械能守恒有:201011()()2m m v m m gh +=+ 0.050.4h m m =<木块不脱离圆弧轨道,返回时以1m/s 的速度再由B 处滑上木板,设经过t 1共速,此时木板的加速度方向向右,大小仍为a 2,木块的加速度仍为a 1, 则:21121v a t a t -=,解得:11t s = 此时2211121110.522x v t a t a t m ∆=--='' 3210.5m v v at s=-=碰撞后,v 薄板=0,木块以速度v 3=0.5m/s 的速度向右做减速运动 设经过t 2时间速度为0,则3211v t s a == 2322210.252x v t a t m =-=故ΔL=L ﹣△x'﹣x=1.25m即木块停止运动时离A 点1.25m 远.8.某研究性学习小组利用图a 所示的实验装置探究物块在恒力F 作用下加速度与斜面倾角的关系。

高中物理牛顿运动定律的应用试题类型及其解题技巧含解析

高中物理牛顿运动定律的应用试题类型及其解题技巧含解析
联立方程①-⑥代入数据解得: t t2 t3 1 2 s 2.4s
【点睛】 本题主要考查了牛顿第二定律及运动学基本公式的直接应用,注意第二问求的是在斜面上 的总时间,不是上滑时间.
2.如图甲所示,一倾角为 37°的传送带以恒定速度运行.现将一质量 m=1 kg 的小物体抛 上传送带,物体相对地面的速度随时间变化的关系如图乙所示,取沿传送带向上为正方 向,g=10 m/s2,sin 37°=0.6,cos 37°=0.8:求:
22mgt2 1mgt2 mv mvB ,
可得 t2 0.2s ,v=2.4m/s
在撤掉
F
之前,二者的相对位移
x1
vB 2
t1
vA 2
t1
撤去
F
之后,二者的相对位移
x2
vB 2
v
t2
vA 2
v
t2
木板长度 L x1 x2 1.2m
(3)获得共同速度后,对木块,有
2mgxA
01 2mv2 Nhomakorabea解得:F0= 3 mg 2
(2)设经拉力 F 的最短时间为 t1,再经时间 t2 物块与木板达到共速,再经时间 t3 木板下 端到达 B 点,速度恰好减为零.
对木板,有:F−mgsinθ−μmgcosθ=ma1 mgsinθ+μmgcosθ=ma3 对物块,有:μmgcosθ−mgsinθ=ma2
对木板与物块整体,有 2mgsinθ=2ma4
根据牛顿第二定律得:
mgtanθ=ma 得 a=gtanθ=10×tan37°=7.5m/s2
m 受到支持力 FN
mg cos
20 N=25N cos 37
(2)设物块处于相对斜面向下滑动的临界状态时的推力为 F1,此时物块的受力如下图所示:

高考物理牛顿运动定律的应用题20套(带答案)及解析

高考物理牛顿运动定律的应用题20套(带答案)及解析

高考物理牛顿运动定律的应用题20套(带答案)及解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,倾角α=30°的足够长传送带上有一长L=1.0m ,质量M=0.5kg 的薄木板,木板的最右端叠放质量为m=0.3kg 的小木块.对木板施加一沿传送带向上的恒力F ,同时让传送带逆时针转动,运行速度v=1.0m/s 。

已知木板与物块间动摩擦因数μ1=3,木板与传送带间的动摩擦因数μ2=34,取g=10m/s 2,最大静摩擦力等于滑动摩擦力。

(1)若在恒力F 作用下,薄木板保持静止不动,通过计算判定小木块所处的状态; (2)若小木块和薄木板相对静止,一起沿传送带向上滑动,求所施恒力的最大值F m ; (3)若F=10N ,木板与物块经过多长时间分离?分离前的这段时间内,木板、木块、传送带组成系统产生的热量Q 。

【答案】(1)木块处于静止状态;(2)9.0N (3)1s 12J 【解析】 【详解】(1)对小木块受力分析如图甲:木块重力沿斜面的分力:1sin 2mg mg α=斜面对木块的最大静摩擦力:13cos 4m f mg mg μα== 由于:sin m f mg α> 所以,小木块处于静止状态;(2)设小木块恰好不相对木板滑动的加速度为a ,小木块受力如图乙所示,则1cos sin mg mg ma μαα-=木板受力如图丙所示,则:()21sin cos cos m F Mg M m g mg Ma αμαμα--+-= 解得:()99.0N 8m F M m g =+=(3)因为F=10N>9N ,所以两者发生相对滑动对小木块有:21cos sin 2.5m/s a g g μαα=-=对长木棒受力如图丙所示()21sin cos cos F Mg M m g mg Ma αμαμα--+-'=解得24.5m/s a =' 由几何关系有:221122L a t at =-' 解得1t s =全过程中产生的热量有两处,则()2121231cos cos 2Q Q Q mgL M m g vt a t μαμα⎛⎫=+=+++ ⎪⎝⎭解得:12J Q =。

高考物理牛顿运动定律解题技巧及经典题型及练习题(含答案)及解析(1)

高考物理牛顿运动定律解题技巧及经典题型及练习题(含答案)及解析(1)

高考物理牛顿运动定律解题技巧及经典题型及练习题(含答案)及解析(1)一、高中物理精讲专题测试牛顿运动定律1.如图所示,在倾角为θ = 37°的足够长斜面上放置一质量M = 2kg 、长度L = 1.5m 的极薄平板 AB ,在薄平板的上端A 处放一质量m =1kg 的小滑块(视为质点),将小滑块和薄平板同时无初速释放。

已知小滑块与薄平板之间的动摩擦因数为μ1=0.25、薄平板与斜面之间的动摩擦因数为μ2=0.5,sin37°=0.6,cos37°=0.8,取g=10m/s 2。

求:(1)释放后,小滑块的加速度a l 和薄平板的加速度a 2; (2)从释放到小滑块滑离薄平板经历的时间t 。

【答案】(1)24m/s ,21m/s ;(2)1s t = 【解析】 【详解】(1)设释放后,滑块会相对于平板向下滑动,对滑块m :由牛顿第二定律有:011sin 37mg f ma -=其中01cos37N F mg =,111N f F μ= 解得:00211sin 37cos374/a g g m s μ=-=对薄平板M ,由牛顿第二定律有:0122sin 37Mg f f Ma +-= 其中002cos37cos37N F mg Mg =+,222N f F μ=解得:221m/s a =12a a >,假设成立,即滑块会相对于平板向下滑动。

设滑块滑离时间为t ,由运动学公式,有:21112x a t =,22212x a t =,12x x L -= 解得:1s t =2.质量为2kg 的物体在水平推力F 的作用下沿水平面做直线运动,一段时间后撤去F ,其运动的图象如图所示取m/s 2,求:(1)物体与水平面间的动摩擦因数; (2)水平推力F 的大小;(3)s内物体运动位移的大小.【答案】(1)0.2;(2)5.6N;(3)56m。

【解析】【分析】【详解】(1)由题意可知,由v-t图像可知,物体在4~6s内加速度:物体在4~6s内受力如图所示根据牛顿第二定律有:联立解得:μ=0.2(2)由v-t图像可知:物体在0~4s内加速度:又由题意可知:物体在0~4s内受力如图所示根据牛顿第二定律有:代入数据得:F=5.6N(3)物体在0~14s内的位移大小在数值上为图像和时间轴包围的面积,则有:【点睛】在一个题目之中,可能某个过程是根据受力情况求运动情况,另一个过程是根据运动情况分析受力情况;或者同一个过程运动情况和受力情况同时分析,因此在解题过程中要灵活处理.在这类问题时,加速度是联系运动和力的纽带、桥梁.3.固定光滑细杆与地面成一定倾角,在杆上套有一个光滑小环,小环在沿杆方向的推力F 作用下向上运动,推力F与小环速度v随时间变化规律如图所示,取重力加速度g=10m/s2.求:(1)小环的质量m ; (2)细杆与地面间的倾角a . 【答案】(1)m =1kg ,(2)a =30°. 【解析】 【详解】由图得:0-2s 内环的加速度a=vt=0.5m/s 2 前2s ,环受到重力、支持力和拉力,根据牛顿第二定律,有:1sin F mg ma α-= 2s 后物体做匀速运动,根据共点力平衡条件,有:2sin F mg α= 由图读出F 1=5.5N ,F 2=5N联立两式,代入数据可解得:m =1kg ,sinα=0.5,即α=30°4.如图甲所示,一长木板静止在水平地面上,在0t =时刻,一小物块以一定速度从左端滑上长木板,以后长木板运动v t -图象如图所示.已知小物块与长木板的质量均为1m kg =,小物块与长木板间及长木板与地面间均有摩擦,经1s 后小物块与长木板相对静止()210/g m s=,求:()1小物块与长木板间动摩擦因数的值; ()2在整个运动过程中,系统所产生的热量.【答案】(1)0.7(2)40.5J 【解析】 【分析】()1小物块滑上长木板后,由乙图知,长木板先做匀加速直线运动,后做匀减速直线运动,根据牛顿第二定律求出长木板加速运动过程的加速度,木板与物块相对静止时后木板与物块一起匀减速运动,由牛顿第二定律和速度公式求物块与长木板间动摩擦因数的值.()2对于小物块减速运动的过程,由牛顿第二定律和速度公式求得物块的初速度,再由能量守恒求热量. 【详解】()1长木板加速过程中,由牛顿第二定律,得1212mg mg ma μμ-=; 11m v a t =;木板和物块相对静止,共同减速过程中,由牛顿第二定律得 2222mg ma μ⋅=; 220m v a t =-;由图象可知,2/m v m s =,11t s =,20.8t s = 联立解得10.7μ=()2小物块减速过程中,有:13mg ma μ=; 031m v v a t =-;在整个过程中,由系统的能量守恒得2012Q mv = 联立解得40.5Q J =【点睛】本题考查了两体多过程问题,分析清楚物体的运动过程是正确解题的关键,也是本题的易错点,分析清楚运动过程后,应用加速度公式、牛顿第二定律、运动学公式即可正确解题.5.如图所示.在距水平地面高h =0.80m 的水平桌面一端的边缘放置一个质量m =0.80kg 的木块B ,桌面的另一端有一块质量M =1.0kg 的木块A 以初速度v 0=4.0m/s 开始向着木块B 滑动,经过时间t =0.80s 与B 发生碰撞,碰后两木块都落到地面上,木块B 离开桌面后落到地面上的D 点.设两木块均可以看作质点,它们的碰撞时间极短,且已知D 点距桌面边缘的水平距离s =0.60m ,木块A 与桌面间的动摩擦因数μ=0.25,重力加速度取g =10m/s 2.求:(1)木块B 离开桌面时的速度大小; (2)两木块碰撞前瞬间,木块A 的速度大小; (3)两木块碰撞后瞬间,木块A 的速度大小. 【答案】(1) 1.5m/s (2) 2.0m/s (3) 0.80m/s 【解析】 【详解】(1)木块离开桌面后均做平抛运动,设木块B 离开桌面时的速度大小为2v ,在空中飞行的时间为t ′.根据平抛运动规律有:212h gt =,2s v t '= 解得:2 1.5m/s 2gv sh== (2)木块A 在桌面上受到滑动摩擦力作用做匀减速运动,根据牛顿第二定律,木块A 的加速度:22.5m/s Mga Mμ==设两木块碰撞前A 的速度大小为v ,根据运动学公式,得0 2.0m/s v v at =-=(3)设两木块碰撞后木块A 的速度大小为1v ,根据动量守恒定律有:2Mv Mv mv =+1解得:210.80m/s Mv mv v M-==.6.如图所示,水平面上AB 间有一长度x=4m 的凹槽,长度为L=2m 、质量M=1kg 的木板静止于凹槽右侧,木板厚度与凹槽深度相同,水平面左侧有一半径R=0.4m 的竖直半圆轨道,右侧有一个足够长的圆弧轨道,A 点右侧静止一质量m1=0.98kg 的小木块.射钉枪以速度v 0=100m/s 射出一颗质量m0=0.02kg 的铁钉,铁钉嵌在木块中并滑上木板,木板与木块间动摩擦因数μ=0.05,其它摩擦不计.若木板每次与A 、B 相碰后速度立即减为0,且与A 、B 不粘连,重力加速度g=10m/s 2.求:(1)铁钉射入木块后共同的速度v ;(2)木块经过竖直圆轨道最低点C 时,对轨道的压力大小F N; (3)木块最终停止时离A 点的距离s.【答案】(1)2/v m s = (2)12.5N F N = (3) 1.25L m ∆= 【解析】(1) 设铁钉与木块的共同速度为v ,取向左为正方向,根据动量守恒定律得:0001()m v m m v =+解得:2m v s =;(2) 木块滑上薄板后,木块的加速度210.5ma g s μ==,且方向向右板产生的加速度220.5mgma s Mμ==,且方向向左设经过时间t ,木块与木板共同速度v 运动则:12v a t a t -=此时木块与木板一起运动的距离等于木板的长度22121122x vt a t a t L ∆=--=故共速时,恰好在最左侧B 点,此时木块的速度11m v v a t s'=-=木块过C 点时对其产生的支持力与重力的合力提供向心力,则:'2N v F mg m R-=代入相关数据解得:F N =12.5N.由牛顿第三定律知,木块过圆弧C 点时对C 点压力为12.5N ; (3) 木块还能上升的高度为h ,由机械能守恒有:201011()()2m m v m m gh +=+ 0.050.4h m m =<木块不脱离圆弧轨道,返回时以1m/s 的速度再由B 处滑上木板,设经过t 1共速,此时木板的加速度方向向右,大小仍为a 2,木块的加速度仍为a 1, 则:21121v a t a t -=,解得:11t s = 此时2211121110.522x v t a t a t m ∆=--='' 3210.5m v v at s=-=碰撞后,v 薄板=0,木块以速度v 3=0.5m/s 的速度向右做减速运动 设经过t 2时间速度为0,则3211v t s a == 2322210.252x v t a t m =-=故ΔL=L ﹣△x'﹣x=1.25m即木块停止运动时离A 点1.25m 远.7.如图所示,在风洞实验室里,粗糙细杆与竖直光滑圆轨AB 相切于A 点,B 为圆弧轨道的最高点,圆弧轨道半径R =1m ,细杆与水平面之间的夹角θ=37°.一个m =2kg 的小球穿在细杆上,小球与细杆间动摩擦因数μ=0.3.小球从静止开始沿杆向上运动,2s 后小球刚好到达A 点,此后沿圆弧轨道运动,全过程风对小球的作用力方向水平向右,大小恒定为40N .已知g =10m/s 2,sin37°=0.6,cos37°=0.8.求:(1)小球在A 点时的速度大小;(2)小球运动到B 点时对轨道作用力的大小及方向. 【答案】(1)8m/s (2)12N 【解析】 【详解】(1)对细杆上运动时的小球受力分析,据牛顿第二定律可得:cos sin (sin cos )F mg F mg ma θθμθθ--+=代入数据得:24m/s a =小球在A 点时的速度8m/s A v at ==(2)小球沿竖直圆轨道从A 到B 的过程,应用动能定理得:2211sin37(1cos37)22B A FR mgR mv mv -︒-+︒=- 解得:2m/s B v =小球在B 点时,对小球受力分析,设轨道对球的力竖直向上,由牛顿第二定律知:2N Bv mg F m R-=解得:F N =12N ,轨道对球的力竖直向上由牛顿第三定律得:小球在最高点B 对轨道的作用力大小为12N ,方向竖直向下.8.水平面上固定着倾角θ=37°的斜面,将质量m=lkg 的物块A 从斜面上无初速度释放,其加速度a=3m/s 2。

高考物理牛顿运动定律的应用解题技巧(超强)及练习题(含答案)及解析

高考物理牛顿运动定律的应用解题技巧(超强)及练习题(含答案)及解析

高考物理牛顿运动定律的应用解题技巧(超强)及练习题(含答案)及解析一、高中物理精讲专题测试牛顿运动定律的应用1.质量为m =0.5 kg 、长L =1 m 的平板车B 静止在光滑水平面上,某时刻质量M =l kg 的物体A (视为质点)以v 0=4 m/s 向右的初速度滑上平板车B 的上表面,在A 滑上B 的同时,给B 施加一个水平向右的拉力.已知A 与B 之间的动摩擦因数μ=0.2,重力加速度g 取10 m/s 2.试求:(1)如果要使A 不至于从B 上滑落,拉力F 大小应满足的条件; (2)若F =5 N ,物体A 在平板车上运动时相对平板车滑行的最大距离. 【答案】(1)1N 3N F ≤≤ (2)0.5m x ∆= 【解析】 【分析】物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度,结合牛顿第二定律和运动学公式求出拉力的最小值.另一种临界情况是A 、B 速度相同后,一起做匀加速直线运动,根据牛顿第二定律求出拉力的最大值,从而得出拉力F 的大小范围. 【详解】(1)物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度v 1,则:222011-22A Bv v v L a a =+ 又: 011-=A Bv v v a a 解得:a B =6m/s 2再代入F +μMg =ma B 得:F =1N若F <1N ,则A 滑到B 的右端时,速度仍大于B 的速度,于是将从B 上滑落,所以F 必须大于等于1N当F 较大时,在A 到达B 的右端之前,就与B 具有相同的速度,之后,A 必须相对B 静止,才不会从B 的左端滑落,则由牛顿第二定律得: 对整体:F =(m +M )a 对物体A :μMg =Ma 解得:F =3N若F 大于3N ,A 就会相对B 向左滑下 综上所述,力F 应满足的条件是1N≤F ≤3N(2)物体A 滑上平板车B 以后,做匀减速运动,由牛顿第二定律得:μMg =Ma A 解得:a A =μg =2m/s 2平板车B 做匀加速直线运动,由牛顿第二定律得:F +μMg =ma B 解得:a B =14m/s 2两者速度相同时物体相对小车滑行最远,有:v0-a A t=a B t 解得:t=0.25sA滑行距离 x A=v0t-12a A t2=1516mB滑行距离:x B=12a B t2=716m最大距离:Δx=x A-x B=0.5m【点睛】解决本题的关键理清物块在小车上的运动情况,抓住临界状态,结合牛顿第二定律和运动学公式进行求解.2.如图,有一质量为M=2kg的平板车静止在光滑的水平地面上,现有质量均为m=1kg的小物块A和B(均可视为质点),由车上P处开始,A以初速度=2m/s向左运动,同时B 以=4m/s向右运动,最终A、B两物块恰好停在小车两端没有脱离小车,两物块与小车间的动摩擦因数都为μ=0.1,取,求:(1)开始时B离小车右端的距离;(2)从A、B开始运动计时,经t=6s小车离原位置的距离。

【物理】物理牛顿运动定律的应用练习题20篇含解析

【物理】物理牛顿运动定律的应用练习题20篇含解析

(1)求经过多长时间煤块与小车保持相对静止 (2) 求 3s 内煤块前进的位移 (3)煤块最终在小车上留下的痕迹长度 【答案】(1) 2s (2) 8.4m (3) 2.8m 【解析】
【分析】
分别对滑块和平板车进行受力分析,根据牛顿第二定律求出各自加速度,物块在小车上停
止相对滑动时,速度相同,根据运动学基本公式即可以求出时间.通过运动学公式求出位
k(X x) mg ma Fmax Mg Ma
以上各式代如数据联立解得
Fmax 168N
该开始向上拉时有最小拉力则
Fmin kX (M m)g (M m)a
解得
Fmin 72N
考点:牛顿第二定律的应用 点评:难题.本题难点在于确定最大拉力和最小拉力的位置以及在最大拉力位置时如何列 出牛顿第二定律的方程,此时的弹簧的压缩量也是一个难点.
(1)分别求出滑块在平板车上滑行时,滑块与平板车的加速度大小;
(2)计算说明滑块能否从平板车的右端滑出.
【答案】(1)

(2)恰好不会从平板车的右端滑出.
【解析】
根据牛顿第二定律得
对滑块,有

解得
对平板车,有

解得

设经过 t 时间滑块从平板车上滑出 滑块的位移为:

平板车的位移为:

而且有 解得: 此时, 所以,滑块到达小车的右端时与小车速度相等,恰好不会从平板车的右端滑出.
移.
【详解】
(1)根据牛顿第二定律,刚开始运动时对小黑煤块有:
代入数据解得:a1=2m/s2 刚开始运动时对小车有:
FN ma1
FN-mg=0
F FN Ma2
解得:a2=0.6m/s2 经过时间 t,小黑煤块和车的速度相等,小黑煤块的速度为:

高中物理牛顿运动定律(一)解题方法和技巧及练习题及解析

高中物理牛顿运动定律(一)解题方法和技巧及练习题及解析

高中物理牛顿运动定律(一)解题方法和技巧及练习题及解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,在倾角为θ = 37°的足够长斜面上放置一质量M = 2kg 、长度L = 1.5m 的极薄平板 AB ,在薄平板的上端A 处放一质量m =1kg 的小滑块(视为质点),将小滑块和薄平板同时无初速释放。

已知小滑块与薄平板之间的动摩擦因数为μ1=0.25、薄平板与斜面之间的动摩擦因数为μ2=0.5,sin37°=0.6,cos37°=0.8,取g=10m/s 2。

求:(1)释放后,小滑块的加速度a l 和薄平板的加速度a 2;(2)从释放到小滑块滑离薄平板经历的时间t 。

【答案】(1)24m/s ,21m/s ;(2)1s t =【解析】【详解】(1)设释放后,滑块会相对于平板向下滑动,对滑块m :由牛顿第二定律有:011sin 37mg f ma -=其中01cos37N F mg =,111N f F μ=解得:00211sin 37cos374/a g g m s μ=-=对薄平板M ,由牛顿第二定律有:0122sin 37Mg f f Ma +-=其中002cos37cos37N F mg Mg =+,222N f F μ=解得:221m/s a =12a a >,假设成立,即滑块会相对于平板向下滑动。

设滑块滑离时间为t ,由运动学公式,有:21112x a t =,22212x a t =,12x x L -= 解得:1s t =2.如图所示,倾角θ的足够长的斜面上,放着两个相距L 0、质量均为m 的滑块A 和B ,滑块A 的下表面光滑,滑块B 与斜面间的动摩擦因数tan μθ=.由静止同时释放A 和B ,此后若A 、B 发生碰撞,碰撞时间极短且为弹性碰撞.已知重力加速度为g ,求:(1)A 与B 开始释放时,A 、B 的加速度A a 和B a ;(2)A 与B 第一次相碰后,B 的速率B v ;(3)从A 开始运动到两滑块第二次碰撞所经历的时间t .【答案】(1)sin A a g θ=;0B a =(202sin gL θ3)023sin L g θ【解析】【详解】解:(1)对B 分析:sin cos B mg mg ma θμθ-= 0B a =,B 仍处于静止状态对A 分析,底面光滑,则有:mg sin A ma θ=解得:sin A a g θ=(2) 与B 第一次碰撞前的速度,则有:202A A v a L = 解得:02sin A v gL θ=所用时间由:1v A at =,解得:012sin L g t θ=对AB ,由动量守恒定律得:1A B mv mv mv =+ 由机械能守恒得:2221111222A B mv mv mv =+ 解得:100,2sin B v v gL θ==(3)碰后,A 做初速度为0的匀加速运动,B 做速度为2v 的匀速直线运动,设再经时间2t 发生第二次碰撞,则有:2212A A x a t =22B x v t =第二次相碰:A B x x = 解得:0222sin L t g θ=从A 开始运动到两滑块第二次碰撞所经历的的时间:12t t t =+解得:023sin L t g θ=3.四旋翼无人机是一种能够垂直起降的小型遥控飞行器,目前正得到越来越广泛的应用.一架质量m =2 kg 的无人机,其动力系统所能提供的最大升力F =36N ,运动过程中所受空气阻力大小恒为f =4 N .(g 取10 m /s 2)(1)无人机在地面上从静止开始,以最大升力竖直向上起飞.求在t =5s 时离地面的高度h ; (2)当无人机悬停在距离地面高度H =100m 处,由于动力设备故障,无人机突然失去升力而坠落.求无人机坠落到地面时的速度v ;(3)接(2)问,无人机坠落过程中,在遥控设备的干预下,动力设备重新启动提供向上最大升力.为保证安全着地(到达地面时速度为零),求飞行器从开始下落到恢复升力的最长时间t 1.【答案】(1)75m (2)40m/s (3)55 s 【解析】【分析】【详解】(1)由牛顿第二定律 F ﹣mg ﹣f=ma代入数据解得a=6m/s 2上升高度代入数据解得 h=75m .(2)下落过程中 mg ﹣f=ma 1代入数据解得落地时速度 v 2=2a 1H ,代入数据解得 v=40m/s(3)恢复升力后向下减速运动过程 F ﹣mg+f=ma 2代入数据解得设恢复升力时的速度为v m ,则有由 v m =a 1t 1代入数据解得.4.如图1所示,在水平面上有一质量为m1=1kg的足够长的木板,其上叠放一质量为m2=2kg的木块,木块和木板之间的动摩擦因数μ1=0.3,木板与地面间的动摩擦因数μ2=0.1.假定木块和木板之间的最大静摩擦力和滑动摩擦力相等・现给木块施加随时间t增大的水平拉力F=3t(N),重力加速度大小g=10m/s2(1)求木块和木板保持相对静止的时间t1;(2)t=10s时,两物体的加速度各为多大;(3)在如图2画出木块的加速度随时间変化的图象(取水平拉カF的方向为正方向,只要求画图,不要求写出理由及演算过程)【答案】(1)木块和木板保持相对静止的时间是4s;(2)t=10s时,两物体的加速度各为3m/s2,12m/s2;(3)【解析】【详解】(1)当F<μ2(m1+m2)g=3N时,木块和木板都没有拉动,处于静止状态,当木块和木板一起运动时,对m1:f max﹣μ2(m1+m2)g=m1a max,f max=μ1m2g解得:a max=3m/s2对整体有:F max﹣μ2(m1+m2)g=(m1+m2)a max解得:F max=12N由F max=3t 得:t=4s(2)t=10s时,两物体已相对运动,则有:对m1:μ1m2g﹣μ2(m1+m2)g=m1a1解得:a1=3m/s2对m 2:F ﹣μ1m 2g =m 2a 2 F =3t =30N解得:a 2=12m/s 2(3)图象过(1、0),(4.3),(10、12)图象如图所示.5.我国的动车技术已达世界先进水平,“高铁出海”将在我国“一带一路”战略构想中占据重要一席.所谓的动车组,就是把带动力的动力车与非动力车按照预定的参数组合在一起.某中学兴趣小组在模拟实验中用4节小动车和4节小拖车组成动车组,总质量为m=2kg ,每节动车可以提供P 0=3W 的额定功率,开始时动车组先以恒定加速度21/a m s =启动做匀加速直线运动,达到额定功率后保持功率不变再做变加速直线运动,直至动车组达到最大速度v m =6m/s 并开始匀速行驶,行驶过程中所受阻力恒定,求:(1)动车组所受阻力大小和匀加速运动的时间;(2)动车组变加速运动过程中的时间为10s ,求变加速运动的位移.【答案】(1)2N 3s (2)46.5m【解析】(1)动车组先匀加速、再变加速、最后匀速;动车组匀速运动时,根据P=Fv 和平衡条件求解摩擦力,再利用P=Fv 求出动车组恰好达到额定功率的速度,即匀加速的末速度,再利用匀变速直线运动的规律即可求出求匀加速运动的时间;(2)对变加速过程运用动能定理,即可求出求变加速运动的位移.(1)设动车组在运动中所受阻力为f ,动车组的牵引力为F ,动车组以最大速度匀速运动时:F=动车组总功率:m P Fv =,因为有4节小动车,故04P P =联立解得:f=2N设动车组在匀加速阶段所提供的牵引力为Fʹ,匀加速运动的末速度为v '由牛顿第二定律有:F f ma '-=动车组总功率:P F v ='',运动学公式:1v at '=解得匀加速运动的时间:13t s =(2)设动车组变加速运动的位移为x ,根据动能定理:221122m Pt fx mv mv =-'-解得:x=46.5m6.如图所示,质量M=0.5kg 的长木板A 静止在粗糙的水平地面上,质量m=0.3kg 物块B(可视为质点)以大小v 0=6m/s 的速度从木板A 的左端水平向右滑动,若木板A 与地面间的动摩擦因数μ2=0.3,物块B 恰好能滑到木板A 的右端.已知物块B 与木板A 上表面间的动摩擦因数μ1=0.6.认为各接触面间的最大静摩擦力与滑动摩擦力大小相等,取g=10m/s 2.求:(1)木板A 的长度L ;(2)若把A 按放在光滑水平地面上,需要给B 一个多大的初速度,B 才能恰好滑到A 板的右端;(3)在(2)的过程中系统损失的总能量.【答案】(1) 3m (2) 2.410/m s (3) 5.4J【解析】【详解】(1)A 、B 之间的滑动摩擦力大小为:11= 1.8f mg N μ=A 板与地面间的最大静摩擦力为:()22= 2.4f M m g N μ+=由于12f f <,故A 静止不动B 向右做匀减速直线运动.到达A 的右端时速度为零,有:202v aL =11mg ma μ=解得木板A 的长度 3L m =(2)A 、B 系统水平方向动量守恒,取B v 为正方向,有()B mv m M v =+物块B 向右做匀减速直线运动22112B v v a s -=A 板匀加速直线运动 12mg Ma μ=2222v a s =位移关系12s s L -= 联立解得 2.410/B v m s =(3)系统损失的能量都转化为热能1Q mgL μ=解得 5.4Q J =7.如图为高山滑雪赛道,赛道分为斜面与水平面两部分,其中斜面部分倾角为37°,斜面与水平面间可视为光滑连接。

牛顿运动定律的基本应用(解析版)—2025年高考物理必刷专题训练(全国通用)

牛顿运动定律的基本应用(解析版)—2025年高考物理必刷专题训练(全国通用)

牛顿运动定律的基本应用【考点一 牛顿第二定律的瞬时性问题】1.两种模型物体的加速度与其所受合力具有因果关系,物体的加速度总是随其所受合力的变化而变化,具体可简化为以下两种模型:2.求解瞬时性问题的一般思路求解瞬时性问题时应注意的一点物体的加速度能够随其所受合力的突变而突变,但物体速度的变化需要一个过程的积累,不会发生突变。

【考点二 动力学的两类基本问题】动力学的两类基本问题的解题步骤解决动力学两类基本问题的关键(1)两个分析:物体的受力情况分析和运动过程分析。

(2)两个桥梁:加速度是联系物体运动和受力的桥梁;衔接点的速度是联系相邻两个过程的桥梁。

【考点三 动力学中的图像问题】1.常见的动力学图像v­t图像、a­t图像、F­t图像、F­a图像等。

2.图像问题的类型(1)已知物体受的力随时间变化的图像,分析物体的运动情况。

(2)已知物体的速度、加速度随时间变化的图像,分析物体的受力情况。

(3)由已知条件确定某物理量的变化图像。

3.解题策略(1)分清图像的类别:即分清横、纵坐标所代表的物理量,明确图像的物理意义。

(2)注意图像中的特殊点、斜率、面积所表示的物理意义:图线与横、纵坐标轴的交点,图线的转折点,两图线的交点,图线的斜率,图线与坐标轴或图线与图线所围面积等所表示的物理意义。

(3)明确能从图像中获得的信息:把图像与具体的题意、情境结合起来,应用物理规律列出与图像对应的函数表达式,进而明确“图像与公式”“图像与过程”间的关系,以便对有关物理问题作出准确判断。

【考点四 超重和失重的理解】1.超重和失重的理解(1)不论超重、失重或完全失重,物体的重力都不变,只是“视重”改变。

(2)物体超重或失重多少由物体的质量m和竖直加速度a共同决定,其大小等于ma。

(3)在完全失重的状态下,一切由重力产生的物理现象都会完全消失。

(4)尽管物体的加速度不是竖直方向,但只要其加速度在竖直方向上有分量,物体就会处于超重或失重状态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理牛顿运动定律的应用解题技巧及练习题一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,倾角α=30°的足够长传送带上有一长L=1.0m ,质量M=0.5kg 的薄木板,木板的最右端叠放质量为m=0.3kg 的小木块.对木板施加一沿传送带向上的恒力F ,同时让传送带逆时针转动,运行速度v=1.0m/s 。

已知木板与物块间动摩擦因数μ1=3,木板与传送带间的动摩擦因数μ2=34,取g=10m/s 2,最大静摩擦力等于滑动摩擦力。

(1)若在恒力F 作用下,薄木板保持静止不动,通过计算判定小木块所处的状态; (2)若小木块和薄木板相对静止,一起沿传送带向上滑动,求所施恒力的最大值F m ; (3)若F=10N ,木板与物块经过多长时间分离?分离前的这段时间内,木板、木块、传送带组成系统产生的热量Q 。

【答案】(1)木块处于静止状态;(2)9.0N (3)1s 12J 【解析】 【详解】(1)对小木块受力分析如图甲:木块重力沿斜面的分力:1sin 2mg mg α=斜面对木块的最大静摩擦力:13cos 4m f mg mg μα== 由于:sin m f mg α> 所以,小木块处于静止状态;(2)设小木块恰好不相对木板滑动的加速度为a ,小木块受力如图乙所示,则1cos sin mg mg ma μαα-=木板受力如图丙所示,则:()21sin cos cos m F Mg M m g mg Ma αμαμα--+-= 解得:()99.0N 8m F M m g =+=(3)因为F=10N>9N ,所以两者发生相对滑动对小木块有:21cos sin 2.5m/s a g g μαα=-=对长木棒受力如图丙所示()21sin cos cos F Mg M m g mg Ma αμαμα--+-'=解得24.5m/s a =' 由几何关系有:221122L a t at =-' 解得1t s =全过程中产生的热量有两处,则()2121231cos cos 2Q Q Q mgL M m g vt a t μαμα⎛⎫=+=+++ ⎪⎝⎭解得:12J Q =。

2.如图所示,质量m 1=0.3 kg 的小车静止在光滑的水平面上,车长L =1.5 m ,现有质量m 2=0.2 kg 可视为质点的物块,以水平向右的速度v 0=2 m/s 从左端滑上小车,最后在车面上某处与小车保持相对静止.物块与车面间的动摩擦因数μ=0.5,取g =10 m/s 2,求:(1)物块与小车共同速度;(2)物块在车面上滑行的时间t ; (3)小车运动的位移x ;(4)要使物块不从小车右端滑出,物块滑上小车左端的速度v ′0不超过多少? 【答案】(1)0.8 m/s (2)0.24 s (3)0.096 m (4)5 m/s 【解析】 【详解】(1、2)根据牛顿第二定律得,物块的加速度大小为:a 2=μg =0.5×10m/s 2=5m/s 2, 小车的加速度大小为:222110.5210m/s m/s 0.33m ga m μ⨯=== 根据v =v 0-a 2t =a 1t得则速度相等需经历的时间为:0120.24v t s a a =+=; v =0.8m/s (3)小车运动的位移22111100.24m 0.096m 223x a t ==⨯⨯= (4)物块不从小车右端滑出的临界条件为物块滑到小车右端时恰好两者达到共同速度,设此速度为v ,由水平方向动量守恒得:m 2 v 0′=(m 1+m 2)v根据能量守恒得:μm 2gL =12m 2v 0′2−12(m 1+m 2)v 2 代入数据,联立解得v 0′=5m/s 。

3.质量M =0.6kg 的平板小车静止在光滑水面上,如图所示,当t =0时,两个质量都为m =0.2kg 的小物体A 和B ,分别从小车的左端和右端以水平速度1 5.0v =m/s 和2 2.0v =m/s 同时冲上小车,当它们相对于小车停止滑动时,恰好没有相碰。

已知A 、B 两物体与车面的动摩擦因数都是0.20,取g =10m/s 2,求:(1)A 、B 两物体在车上都停止滑动时车的速度; (2)车的长度是多少?(3)从A 、B 开始运动计时,经8s 小车离原位置的距离. 【答案】(1)0.6m/s (2)6.8m (3)3.84m 【解析】 【详解】解:(1)设物体A 、B 相对于车停止滑动时,车速为v ,根据动量守恒定律有:()()122m v v M m v -=+代入数据解得:v =0.6m/s ,方向向右.(2)设物体A 、B 在车上相对于车滑动的距离分别为L 1、L 2,车长为L ,由功能关系有:()()22212121112222mg L L mv mv M m v μ+=+-+ 又L ≥L 1+L 2代入数据解得L ≥6.8m ,即L 至少为6.8m(3)当B 向左减速到零时,A 向右减速,且两者加速度大小都为12a g μ==m/s 2 对小车受力分析可知,小车受到两个大小相等、方向相反的滑动摩擦力作用,故小车没有动则B 向左减速到零的时间为2111v t a ==s 此时A 的速度为1113A v v a t =-=m/s当B 减速到零时与小车相对静止,此时A 继续向右减速,则B 与小车向右加速,设经过t s 达到共同速度v对B 和小车,由牛顿第二定律有:()2mg m M a μ=+,解得:20.5a =m/s 2 则有:12A v v a t a t =-=,代入数据解得:t =1.2s 此时小车的速度为20.6v a t ==m/s ,位移为21210.362x a t ==m 当三个物体都达到共同速度后,一起向右做匀速直线运动,则剩下的时间发生的位移为()28 3.48x v t =-=m则小车在8s 内走过的总位移为12 3.84x x x =+=m4.皮带传输装置示意图的一部分如下图所示,传送带与水平地面的夹角37θ=︒,A 、B 两端相距12m,质量为M=1kg 的物体以0v =14.0m/s 的速度沿AB 方向从A 端滑上传送带,物体与传送带间的动摩擦因数为0.5,传送带顺时针运转动的速度v =4.0m/s(g 取210/m s ),试求:(1)物体从A 点到达B 点所需的时间;(2)若物体能在传送带上留下痕迹,物体从A 点到达B 点的过程中在传送带上留下的划痕长度.【答案】(1)2s (2)5m 【解析】 【分析】(1)开始时物体的初速度大于传送带的速度,根据受力及牛顿第二定律求出物体的加速度,当物体与传送带共速时,求解时间和物体以及传送带的位移;物体与传送带共速后,物体向上做减速运动,根据牛顿第二定律求解加速度,几何运动公式求解到达B 点的时间以及传送带的位移;(2)开始时物体相对传送带上滑,后来物体相对传送带下滑,结合位移关系求解划痕长度. 【详解】(1)物体刚滑上传送带时因速度v 0=14.0m/s 大于传送带的速度v=4m/s ,则物体相对斜面向上运动,物体的加速度沿斜面向下,根据牛顿第二定律有:Mgsin θ+μMgcos θ=Ma 1 解得:a 1=gsin θ+μgcos θ=10m/s 2 当物体与传送带共速时:v 0-at 1=v 解得t 1=1s此过程中物体的位移01192v vx t m +== 传送带的位移:214x vt m ==当物体与传送带共速后,由于μ=0.5<tan370=0.75,则物体向上做减速运动,加速度为:Mgsin θ-μMgcos θ=Ma 2 解得a 2=2m/s 2物体向上减速运动s 1=L-x 1=3m根据位移公式:s 1=vt 2-12a 2t 22 解得:t 2=1 s (t 2=3 s 舍去)则物体从A 点到达B 点所需的时间:t=t 1+t 2=2s (2)物体减速上滑时,传送带的位移:224s vt m == 则物体相对传送带向下的位移211s s s m ∆=-=因物体加速上滑时相对传送带向上的位移为:125x x x m ∆=-= 则物体从A 点到达B 点的过程中在传送带上留下的划痕长度为5m . 【点睛】此题是牛顿第二定律在传送带问题中的应用问题;关键是分析物体的受力情况,根据牛顿第二定律求解加速度,根据运动公式求解时间和位移等;其中的关键点是共速后物体如何运动.5.如图1所示, 质量为M 的长木板,静止放置在粗糙水平地面上,有一个质量为m 、可视为质点的物块,以某一水平初速度v 0从左端冲上木板。

从物块冲上木板到物块和木板达到共同速度的过程中,物块和木板的v -t 图象分别如图2中的折线acd 和bcd 所示,a 、b 、c 、d 的坐标为a (0,10)、b (0,0)、c (4,4)、d (12,0),根据v -t 图象,求: (1)物块相对长木板滑行的距离△s ; (2)物块质量m 与长木板质量M 之比。

【答案】(1)20m (2)3:2 【解析】 【详解】(1)由v-t 图象的物理意义可得,物块在木板上滑行的距离10444m 4m 20m 22s +⨯-⨯=V =(2)设物块与木板之间的动摩擦因数μ1,木板和地面之间的动摩擦因数为μ2;物块冲上木板做匀减速直线运动的加速度大小为a 1,木板做匀加速直线运动的加速度大小为a 2,达相同速度后一起匀减速直线运动的加速度大小为a ,根据牛顿第二定律 对物块:μ1mg =ma 1①对木板:μ1mg -μ2(m +M )g =Ma 2 ②对整体:μ2(m +M )g =(M +m )a ③由图象的斜率等于加速度可得,a 1=1.5m/s 2,a 2=1m/s 2,a =0.5m/s 2。

由以上各式解得32m M =6.如图所示,质量为m=1kg 的滑块,在水平力F 作用下静止在倾角为θ=30°的光滑斜面上,斜面的末端处与水平传送带相接(滑块经过此位置滑上皮带时无能量损失),传送带的运行速度为v 0=3m/s ,长为L=1.4m ,今将水平力撤去,当滑块滑到传送带右端C 时,恰好与传送带速度相同.滑块与传送带间的动摩擦因数μ=0.25,g=10m/s 2.求(1)水平作用力F 的大小; (2)滑块开始下滑的高度h ;(3)在第(2)问中若滑块滑上传送带时速度大于3m/s,求滑块在传送带上滑行的整个过程中产生的热量Q.【答案】(1)(2)0.1 m或0.8 m (3)0.5 J【解析】【分析】【详解】解:(1)滑块受到水平推力F、重力mg和支持力F N处于平衡,如图所示:水平推力①解得:②(2)设滑块从高为h处下滑,到达斜面底端速度为v下滑过程由机械能守恒有:,解得:③若滑块冲上传送带时的速度小于传送带速度,则滑块在带上由于受到向右的滑动摩擦力而做匀加速运动;根据动能定理有:④解得:⑤若滑块冲上传送带时的速度大于传送带的速度,则滑块由于受到向左的滑动摩擦力而做匀减速运动;根据动能定理有:⑥解得:⑦(3)设滑块在传送带上运动的时间为t,则t时间内传送带的位移:s=v0t由机械能守恒有:⑧⑨滑块相对传送带滑动的位移⑩相对滑动生成的热量⑪⑫7.如图所示,在竖直平面内有一倾角θ=37°的传送带BC.已知传送带沿顺时针方向运行的速度v=4 m/s,B、C两点的距离L=6 m。

相关文档
最新文档