专题测试-27尺规作图(基础)(教师版)
新人教版尺规作图归纳 练习及答案
人教版常规作图归纳练习及答案一、尺规基本作图1、作一条线段等于已知线段;2、作一个角等于已知角;3、作角的平分线;4、作线段的中垂线;5、已知三边,两边和其夹角或两角和其夹边作三角形;6、已知底边和底边上的高作等腰三角形;7、过直线上一点作直线的垂线;8、过直线外一点作直线的垂线. 例题:1、如图,有一破残的轮片,现要制作一个与原轮片同样大小的圆形零件,请你根据所学的有关知识,设计一种方案,确定这个圆形零件的半径.2、 如图:107国道OA 和320国道OB 在某市相交于点O,在∠AOB 的内部有工厂C 和D,现要修建一个货站P,使P 到OA 、OB 的距离相等且PC=PD,用尺规作出货站P 的位置(不写作法,保留作图痕迹,写出结论)3、 三条公路两两相交,交点分别为A ,B ,C ,现计划建一个加油站,要求到三条公路的距离相等,问满足要求的加油站地址有几种情况?CBACBACBAA4、过点C 作一条线平行于AB ;5、过不在同一直线上的三点A 、B 、C 作圆O ;6、过直线外一点A 作圆O 的切线。
二、几何画图:1、只利用一把有刻度的直尺,用度量的方法,按下列要求画图: 1)画等腰三角形ABC 的对称轴: 2)画∠AOB 的对称轴2、有一个未知圆心的圆形工件.现只允许用一块三角板(注:不允许用三角板上的刻度)画出该工件表面上的一条直径并定出圆心.要求在图上保留画图痕迹,写出画法.3、某校有一个正方形的花坛,现要将它分成形状和面积都相同的四块种上不同颜色的花卉,请你帮助设计至少三种不同的方案,分别画在下面正方形图形上(用尺规作图或画图均可,但要尽可能准确些、美观些).4、某村一块若干亩土地的图形是ΔABC ,现决定把这块土地平均分给四位“花农”种植,请你帮他们分一分,提供至少两种分法。
要求:画出图形,并简要说明分法。
5、如图所示,在正方形网格上有一个三角形ABC. ①作△ABC 关于直线MN 的对称图形(不写作法); ②若网格上的最小正方形的边长为1.求△ABC 的面积.DCBA6题7题6、如图,方格纸中每个小方格都是边长为1的正方形,我们把以格点连线为边的多边形称为“格点多边形”.如图(一)中四边形ABCD 就是一个“格点四边形”. ①求图中四边形ABCD 的面积;②在图中方格纸上画一个格点△EFG ,使△EFG 的面积等于四边形ABCD 的面积且为轴对称图形.7、如图,若A 、B 、C 、P 、Q 、甲、乙、丙、丁都是方格纸中的格点,为使△ABC ∽△PQR ,则点R 应是甲、乙、丙、丁四点中的( ) A. 甲 B. 乙 C. 丙 D. 丁8、某新建小区要在一块等边三角形的公共区域内修建一个圆形花坛。
中考专题复习《尺规作图》巩固练习(真题)含答案
中考专题复习《尺规作图》巩固练习(真题)含答案一、单选题1、下列属于尺规作图的是()A、用刻度尺和圆规作△ABCB、用量角器画一个300的角C、用圆规画半径2cm的圆D、作一条线段等于已知线段2、下列画图语句中,正确的是()A、画射线OP=3cmB、连接A , B两点C、画出A , B两点的中点D、画出A , B两点的距离3、下列属于尺规作图的是()A、用刻度尺和圆规作△ABCB、用量角器画一个30°的角C、用圆规画半径2cm的圆D、作一条线段等于已知线段4、下列关于几何画图的语句正确的是()A、延长射线AB到点C ,使BC=2ABB、点P在线段AB上,点Q在直线AB的反向延长线上C、将射线OA绕点O旋转180°,终边OB与始边OA的夹角为一个平角D、已知线段a , b满足2a>b>0,在同一直线上作线段AB=2a , BC=b ,那么线段AC=2a-b5、尺规作图是指()A、用量角器和刻度尺作图B、用圆规和有刻度的直尺作图C、用圆规和无刻度的直尺作图D、用量角器和无刻度的直尺作图6、下列有关作图的叙述中,正确的是()A、延长直线ABB、延长射线OMC、延长线段AB到C ,使BC=ABD、画直线AB=3cm7、按下列条件画三角形,能唯一确定三角形形状和大小的是()A、三角形的一个内角为60°,一条边长为3cmB、三角形的两个内角为30°和70°C、三角形的两条边长分别为3cm和5cmD、三角形的三条边长分别为4cm、5cm和8cm8、下列属于尺规作图的是()A、用刻度尺和圆规作△ABCB、用量角器画一个300的角C、用圆规画半径2cm的圆D、作一条线段等于已知线段9、下列关于几何画图的语句正确的是()A、延长射线AB到点C ,使BC=2ABB、点P在线段AB上,点Q在直线AB的反向延长线上C、将射线OA绕点O旋转180°,终边OB与始边OA的夹角为一个平角D、已知线段a , b满足2a>b>0,在同一直线上作线段AB=2a , BC=b ,那么线段AC=2a-b10、尺规作图是指()A、用量角器和刻度尺作图B、用圆规和有刻度的直尺作图C、用圆规和无刻度的直尺作图D、用量角器和无刻度的直尺作图11、下列有关作图的叙述中,正确的是()A、延长直线ABB、延长射线OMC、延长线段AB到C ,使BC=ABD、画直线AB=3cm12、下列作图语句中,不准确的是()A、过点A、B作直线ABB、以O为圆心作弧C、在射线AM上截取AB=aD、延长线段AB到D ,使DB=AB二、填空题13、所谓尺规作图中的尺规是指:________.14、尺规作图“作一个角等于已知角“的依据是三角形全等的判定方法________15、用直尺和圆规作一个角等于已知角的示意图如图所示,则说明△DOC≌△D'O'C'的依据是________.16、如图,在△ABC中,∠C=90°,∠B=20°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N ,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于P ,连接AP并延长交BC于点D ,则∠ADB=________°.17、如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N ,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P ,连结AP并延长交BC于点D ,则下列说法①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;正确的个数是________个三、作图题18、已知:如图△ABC .求作:①AC边上的高BD;②△ABC的角平分线CE .19、如图所示,已知△ABC:①过A画出中线AD;②画出角平分线CE;③作AC边上的高BF20、(2016•兰州)如图,已知⊙O,用尺规作⊙O的内接正四边形ABCD.(写出结论,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)四、解答题21、已知直线l和l上一点P ,用尺规作l的垂线,使它经过点P .你能明白小明的作法吗?你是怎样作的?22、如图,已知△ABC和直线m ,画出与△ABC关于直线m对称的图形(不要求写出画法,但应保留作图痕迹)答案解析部分一、单选题1、【答案】D【考点】作图—尺规作图的定义【解析】【解答】A.用刻度尺和圆规作△ABC ,而尺规作图中的直尺是没有长度的,错误;B.量角器不在尺规作图的工具里,错误;C.画半径2cm的圆,需要知道长度,而尺规作图中的直尺是没有长度的,错误;D.正确.选D.【分析】根据尺规作图的定义分别分析2、【答案】B【考点】作图—尺规作图的定义【解析】【解答】A.射线没有长度,错误;B.连接A , B两点是作出线段AB ,正确;C.画出A , B两点的线段,量出中点,错误;D.量出A , B两点的距离,错误选B.【分析】根据基本作图的方法,逐项分析,从而得出正确的结论3、【答案】D【考点】作图—尺规作图的定义【解析】【解答】A.用刻度尺和圆规作△ABC ,而尺规作图中的直尺是没有长度的,错误;B.量角器不在尺规作图的工具里,错误;C.画半径2cm的圆,需要知道长度,而尺规作图中的直尺是没有长度的,错误;D.正确选:D.【分析】根据尺规作图的定义分别分析4、【答案】C【考点】作图—尺规作图的定义【解析】【解答】A.延长射线AB到点C ,使BC=2AB ,说法错误,不能延长射线;B.点P在线段AB 上,点Q在直线AB的反向延长线上,说法错误,直线本身是向两方无限延长的,不能说延长直线;C.将射线OA绕点O旋转180°,终边OB与始边OA的夹角为一个平角,说法正确;D.已知线段a , b满足2a>b>0,在同一直线上作线段AB=2a , BC=b ,那么线段AC=2a-b ,说法错误,AC也可能为2a+b选:C.【分析】根据射线、直线、以及角的定义可判断出正确答案5、【答案】C【考点】作图—尺规作图的定义【解析】【解答】尺规作图所用的作图工具是指不带刻度的直尺和圆规选:C .【解析】【解答】A.直线本身是向两方无限延伸的,故不能延长直线AB ,故此选项错误;B.射线本身是向一方无限延伸的,不能延长射线OM ,可以反向延长,故此选项错误;C.延长线段AB到C ,使BC=AB ,说法正确,故此选项正确;D.直线本身是向两方无限延伸的,故此选项错误;选:C【分析】根据直线、射线和线段的特点分别进行分析7、【答案】D【考点】作图—尺规作图的定义【解析】【解答】A.三角形的一个内角为60°,一条边长为3cm ,既不能唯一确定三角形形状和也不能唯一确定大小,不符合题意;B.三角形的两个内角为30°和70°,能唯一确定三角形形状和但不能唯一确定大小,不符合题意;C.三角形的两条边长分别为3cm和5cm ,既不能唯一确定三角形形状和也不能唯一确定大小,不符合题意;D.三角形的三条边长分别为4cm、5cm和8cm ,能唯一确定三角形形状和大小,符合题意选:D.【分析】根据基本作图的方法,及唯一确定三角形形状和大小的条件可知8、【答案】D【考点】作图—尺规作图的定义【解析】【解答】A.用刻度尺和圆规作△ABC ,而尺规作图中的直尺是没有长度的,错误;B.量角器不在尺规作图的工具里,错误;C.画半径2cm的圆,需要知道长度,而尺规作图中的直尺是没有长度的,错误;D.正确选:D.【分析】根据尺规作图的定义分别分析9、【答案】C【考点】作图—尺规作图的定义【解析】【解答】A.延长射线AB到点C ,使BC=2AB ,说法错误,不能延长射线;B.点P在线段AB 上,点Q在直线AB的反向延长线上,说法错误,直线本身是向两方无限延长的,不能说延长直线;C.将射线OA绕点O旋转180°,终边OB与始边OA的夹角为一个平角,说法正确;D.已知线段a , b满足2a>b>0,在同一直线上作线段AB=2a , BC=b ,那么线段AC=2a-b ,说法错误,AC也可能为2a+b选:C.【分析】根据射线、直线、以及角的定义可判断出正确答案10、【答案】C【考点】作图—尺规作图的定义【解析】【解答】尺规作图所用的作图工具是指不带刻度的直尺和圆规选:C .【解析】【解答】A.直线本身是向两方无限延伸的,故不能延长直线AB ,故此选项错误;B.射线本身是向一方无限延伸的,不能延长射线OM ,可以反向延长,故此选项错误;C.延长线段AB到C ,使BC=AB ,说法正确,故此选项正确;D.直线本身是向两方无限延伸的,故此选项错误;选:C【分析】根据直线、射线和线段的特点分别进行分析12、【答案】B【考点】作图—尺规作图的定义【解析】【解答】A.根据直线的性质公理:两点确定一条直线,可知该选项正确;B.画弧既需要圆心,还需要半径,缺少半径长,故该选项错误;C.射线有一个端点,可以其端点截取任意线段,故选项正确;D.线段有具体的长度,可延长,正确选:B.【分析】根据基本作图的方法,逐项分析,从而得出正确的结论二、填空题13、【答案】没有刻度的直尺和圆规【考点】作图—尺规作图的定义【解析】【解答】由尺规作图的概念可知:尺规作图中的尺规指的是没有刻度的直尺和圆规【分析】本题考的是尺规作图的基本概念14、【答案】SSS【考点】作图—尺规作图的定义【解析】【解答】在尺规作图中,作一个角等于已知角是通过构建三边对应相等的全等三角形来证,因此由作法知其判定依据是SSS ,即边边边公理【分析】通过对尺规作图过程的探究,找出三条对应相等的线段,判断三角形全等.因此判定三角形全等的依据是边边边公理15、【答案】SSS【考点】作图—尺规作图的定义【解析】【解答】OC=O′C′,OD=O′D′,CD=C′D′,从而可以利用SSS判定其全等【分析】①以O为圆心,任意长为半径用圆规画弧,分别交OA、OB于点C、D;②任意画一点O′,画射线O'A',以O'为圆心,OC长为半径画弧C'E ,交O'A'于点C';③以C'为圆心,CD长为半径画弧,交弧C'E于点D';④过点D'画射线O'B',∠A'O'B'就是与∠AOB相等的角.则通过作图我们可以得到OC=O′C′,OD=O′D′,CD=C′D′,从而可以利用SSS判定其全等16、【答案】125【考点】作图—基本作图【解析】【解答】由题意可得:AD平分∠CAB ,∵∠C=90°,∠B=20°,∴∠CAB=70°,∴∠CAD=∠BAD=35°,∴∠ADB=180°-20°-35°=125°【分析】根据角平分线的作法可得AD平分∠CAB ,再根据三角形内角和定理可得∠ADB的度数17、【答案】3【考点】作图—基本作图【解析】【解答】①AD是∠BAC的平分线,说法正确;②∵∠C=90°,∠B=30°,∴∠CAB=60°,∵AD平分∠CAB ,∴∠DAB=30°,∴∠ADC=30°+30°=60°,因此∠ADC=60°正确;③∵∠DAB=30°,∠B=30°,∴AD=BD【分析】根据角平分线的作法可得①正确,再根据三角形内角和定理和外角与内角的关系可得∠ADC=60°,再根据线段垂直平分线的性质逆定理可得③正确三、作图题18、【答案】解: 如图所示:【考点】作图—基本作图【解析】【分析】①以点B为圆心,较大的长为半径画弧,交直线AC于两点,分别以这两点为圆心,大于这两点的距离的一半为半径画弧,两弧相交于一点,过点B和这点作射线,交直线AC于点D , BD就是所求的AC边上的高;②以点C为圆心,任意长为半径画弧,交CA , CB于两点,分别以这两点为圆心,以大于这两点的距离的一半为半径画弧,两弧相交于一点,做过点C和这点的射线交AB于点E , CE即为所求的角平分线19、【答案】解答:如图所示:【考点】作图—复杂作图【解析】【分析】(1)首先找出BC的中点,然后画线段AD即可;(2)利用量角器量出∠BCA的度数,再除以2,算出度数,然后画出线段CE即可;(3)利用直角三角板,一个直角边与AC重合,令一条直角边过点B ,画线段BF即可20、【答案】解:如图所示,四边形ABCD即为所求:【考点】正多边形和圆,作图—复杂作图【解析】【分析】画圆的一条直径AC,作这条直径的中垂线交⊙O于点BD,连结ABCD就是圆内接正四边形ABCD.本题考查的是复杂作图和正多边形和圆的知识,掌握中心角相等且都相等90°的四边形是正四边形以及线段垂直平分线的作法是解题的关键.四、解答题21、【答案】解:明白.作法:①以点P为圆心,以任意长为半径画圆,与直线l相交于点A , B;②分别以AB为圆心,以任意长为半径画圆,两圆相交于点MN ,连接MN即可得出直线l的垂线【考点】作图—复杂作图【解析】【分析】根据线段垂直平分线的作法即可得出结论.22、【答案】【解答】如图所示,△A′B′C′即为△ABC关于直线m对称的图形.【考点】作图—尺规作图的定义,作图—基本作图,作图—复杂作图,轴对称图形【解析】【分析】找出点A、B、C关于直线m的对称点的位置,然后顺次连接即可.。
第05讲 尺规作图(1个知识点+7大题型+18道强化训练)(教师版) 24-25学年八年级数学上册
第05讲 尺规作图(1个知识点+7大题型+18道强化训练)课程标准学习目标①掌握尺规作图的方法;②学会用尺规作图画角、画边;①掌握尺规作图的方法;②学会用尺规作图画角、画边;知识点01:尺规作图尺规作图:在几何作图中,我们把用没有刻度的直尺和圆规作图,简称尺规作图。
1.基本作图 作等量线段、作等量角、作线段的和差倍、作角的和差倍、2.作线段的中垂线、作角的平分线、中垂线角平分线在一起作、3.作三角形 知三边、知两边夹角、知两角夹边、知一边及该边上的高作法:有规定名称时需格外注意字母的标注注意务必考虑三角形的各要素(类比于三角形全等的判定条件)。
【即学即练1】1.(23-24七年级下·四川成都·期末)如图,已知AOB Ð,以点O 为圆心,任意长度为半径画弧,分别交OA 、OB 于点E 、F ,再以点E 为圆心,EF 的长为半径画弧,交前弧于点D ,画射线OD .若27AOB Ð=°,则AOD Ð的度数为( )A .27°B .54°C .63°D .36°【答案】A 【分析】本题考查了全等三角形的判定与性质,基本作图知识,解题的关键是熟练掌握基本知识.根据作图过程可得OD OE OF ==,EF DE =,利用SSS 证明ODE OFE ≌V V ,即可得出结果.【详解】解∶由作图过程可得OD OE OF ==,EF DE =,∴()SSS ODE OFE ≌V V ,∴27EOD EOF Ð=Ð=°,故选∶A .【即学即练2】2.(24-25七年级上·山东·随堂练习)如图,点C 在AOB Ð的边OB 上,用尺规作出了NCE AOD Ð=Ð,作图痕迹中,弧FG 是( )A .以点C 为圆心,OD 为半径的弧B .以点C 为圆心,DM 为半径的弧C .以点E 为圆心,OD 为半径的弧D .以点E 为圆心,DM 为半径的弧【答案】D 【分析】本题主要考查尺规作角等于已知角,掌握其作法是解题的关键,弧FG 是以点E 为圆心,以DM 为半径作的弧,运用作一个角等于已知角可得答案.【详解】解:根据作一个角等于已知角可得弧FG 是以点E 为圆心,DM 为半径的弧.故选:D .【即学即练3】3.(23-24七年级下·全国·假期作业)下列作图属于尺规作图的是( )A .用量角器画出AOB Ð的平分线OCB .已知a Ð,作AOB Ð,使2AOB a Ð=Ð.C .用刻度尺画线段3cmAB =D .用三角板过点P 作AB 的垂线【答案】B【分析】本题考查了尺规作图的定义,掌握尺规作图的定义是解题的关键.根据尺规作图的定义,逐项分析即可,尺规作图是指仅用没有刻度的直尺和圆规作图【详解】解:A .用量角器画出AOB Ð的平分线OC 借助了量角器,不符合题意B.借助直尺和圆规作AOB Ð,使2AOB a Ð=Ð,符合题意;C.画线段3cm AB =,借助了带刻度的直尺或三角板,不符合题意;D .用三角尺过点P 作AB 的垂线,借助了三角尺的直角,不符合题意;故选:B .【即学即练4】4.(23-24七年级下·辽宁锦州·期末)如图,已知ABC V ,按如下步骤作图:①分别以点A 和B 为圆心,以大于12AB 的长为半径作弧,两弧相交于点E 和F ;②作直线EF ,分别交AB BC ,于点M ,N ;③连接AN ,若2,AM ACN =V 的周长为12,则ABC V 的周长为( )A .16B .15C .14D .13【答案】A 【分析】本题考查了基本作图—垂直平分线作图,垂直平分线的性质,解题的关键是熟练掌握垂直平分线的性质;根据作图可知MN 为AB 的垂直平分线,进而可得224AB AM BM AN BN ====,,即可求解【详解】解:根据作图可知:MN 为AB 的垂直平分线,224AB AM BM AN BN\====,12ACN C AN CN AC =++=V Q 12BN CN AC \++=41216ABC C AB BN CN AC V \=+++=+=故选:A题型01 尺规作一个角等于已知角1.(23-24八年级上·山东菏泽·期中)尺规作图:已知线段a 和a Ð.作一个ABC V ,使AB a =,AC 2a =,BAC a Ð=Ð.(要求:不写作法,保留作图痕迹)【答案】图见解析【分析】本题考查基本尺规作图,根据尺规作一个角等于已知角和尺规作线段的步骤画图即可.【详解】解:如图,ABC V 即为所求作:2.(23-24八年级上·陕西延安·期中)在ABC V 中,点D 是AB 上一点,请用尺规作图法,在BC 边上找一点E ,使得∥D E A C .(保留作图痕迹,不写作法)【答案】见解析【分析】题考查基本尺规作图—作一个角等于已知角,平行线的判定,解题的关键是作CAD BDE Ð=Ð,由同位角相等两直线平行即可得到DE AC P .【详解】如图,点E 即为所作.3.(21-22八年级上·陕西铜川·期末)如图,点B 是射线AC 上一点,请用尺规作图法,求出线段BE ,使得BE AD ∥.(不写作法,保留作图痕迹)【答案】见解析【分析】以点A 为圆心,任意长为半径作弧,交AD 、AC 于F 、G ,以点B 为圆心,AF 为半径作弧,交AC于点H ,以点H 为圆心,FG 为半径作弧,交前弧于点P ,连接BP ,如图1,延长BP 到点E ,可得DAB EBC Ð=Ð,则BE AD ∥;如图2,反向延长BP 到点E ,可得DAB ABE Ð=Ð,则BE AD ∥.【详解】解:如图1,线段BE 为所作.如图2,线段BE 为所作.【点睛】此题考查了尺规作图,作角等于已知角,平行线的判定定理,同位角相等两直线平行,内错角相等两直线平行,熟记平行线的判定定理是解题的关键.4.(22-23七年级下·陕西汉中·期中)如图,已知AOB Ð,利用尺规作NMC Ð,使2NMC AOB Ð=Ð.(保留作图痕迹,不写作法)【答案】见解析【分析】根据尺规作图,即倍角作图,即可作图.【详解】解:如图,NMC Ð即为所作,【点睛】本题考查了尺规作图知识,解题关键是理解2NMC AOB Ð=Ð.5.(22-23七年级下·广东佛山·阶段练习)如图,已知锐角a Ð和平角AOB Ð,在AOB Ð内部求作AOC Ð,使AOC Ð与a Ð互补.(不要求尺规作图)【答案】见解析【分析】以O 为顶点,OB 为一边,作BOC a Ð=,即可得出AOC Ð.【详解】解:如图所示,AOC Ð即为所求..【点睛】本题主要考查作一个角等于已知角及互为补角的两个角的性质,熟练掌握作一个角等于已知角是解题关键.题型02 尺规作角的和、差6.(21-22七年级下·甘肃白银·期中)作图题.已知,,a b ÐÐ,且a Ð大于Ðb ,求作AOB a b Ð=Ð-Ð(不写作法,保留作图痕迹,不在原图上作图)【答案】图见解析【分析】本题考查尺规作图—作一个角等于已知两角的差,根据尺规作角的方法,进行作图即可.【详解】解:如图,AOB Ð即为所求.7.(23-24七年级下·山东青岛·单元测试)已知:AOB Ð,求作:COD Ð,使2COD AOB Ð=Ð.【答案】见解析【分析】此题主要考查了作一个角等于已知角的基本作图, 关键是熟练掌握基本作图的方法.先利用尺规作一个等于已知角的方法作出MOC AOB Ð=Ð,然后作出MOD AOB Ð=Ð即可.【详解】如图所示,COD Ð即为所求.8.(23-24七年级上·江苏南京·期末)如图为一副三角尺,其中60,45a b °°Ð=Ð=,作120,15ABC DEF °°Ð=Ð=.(要求:尺规作图,保留作图痕迹,不写作法)【答案】图见解析【分析】本题考查尺规作角,根据尺规作角的方法,作图即可.掌握尺规作角的方法,是解题的关键.【详解】解:如图,,ABC DEF ÐÐ即为所求;9.(23-24七年级上·江苏南京·阶段练习)如图,已知a b ÐÐ、,利用直尺和圆规画AOB Ð,使AOB Ð的大小为a b Ð+Ð.(不写作法,保留作图痕迹.)【答案】见解析【分析】本题主要考查了尺规作图——作一个角等于已知角.先作AOC a Ð=Ð,再作BOC b Ð=Ð,即可求解.【详解】解:如图,AOB Ð即为所求.10.(23-24七年级上·江苏南京·阶段练习)如图,已知ABC V 的三边长分别为a b c B C Ða Ðb ==,,,,,利用直尺和圆规完成下列作图(不写作法,保留作图痕迹).(1)作线段EF a c =-;(2)作POQ a b Ð=+.【答案】(1)见详解(2)见详解【分析】本题考查了作一个与已知角相等的角以及线段:(1)先画出一条射线,以端点O 为圆心,分别以AB BC ,为半径画弧,与射线的交点分别为E 点和F 点,即可作答.(2)先画出一条射线,以端点O 为圆心,取MC 的长度为半径,画弧,交点为M ¢,再以点M ¢为圆心,MN 的长度为半径,画弧,交点为N ¢,此时N OM b ¢¢Ð=;以端点O 为圆心,取BP ¢¢的长度为半径,画弧,交点为P ¢,再以点P ¢为圆心,Q P ¢¢¢¢的长度为半径,画弧,交点为Q ¢,此时P OQ a ¢¢Ð=;故POQ a bÐ=+【详解】(1)解:如图:(2)解:如图所示:题型03 过直线外一点作这条直线的平行11.(23-24七年级下·福建福州·期末)如图,已知MON Ð,A 、B 分别是射线OM ON ,上的点.(1)尺规作图;在MON Ð的内部确定一点C ,使得BC OA ∥且BC OA =(保留作图痕迹,不写作法);(2)在(1)中,连接OC ,仅用无刻度直尺在线段OC 上确定一点D ,使得OD CD =,并证明.【答案】(1)见解析(2)见解析【分析】本题考查了全等三角形的判定及性质、尺规作图;熟练掌握尺规作图的作法及全等三角形的判定及性质是解题的关键.(1)根据尺规作图作角及线段的作法即可求解;(2)利用AAS 证得AOD BCD V V ≌,进而可求证结论;【详解】(1)解:如图所示,线段BC即为所求.(2)证明:连接AB ,与AC 交点即为D 点,∵BC OA ∥,∴AOD BCD Ð=Ð,又ADO BDC Ð=Ð,由(1)得BC OA =,∴在AOD △与BCD △中,AOD BCD ADO BDC BC OA Ð=ÐìïÐ=Ðíï=î,∴()AAS AOD BCD V V ≌,∴OD CD =.12.(23-24七年级下·辽宁辽阳·期中)已知:如图,在ABC V 中,D 为AB 的中点,E 是BC 上一点,DEB ACB Ð=Ð.(1)过点D 作DF BC ∥交AC 于点F (尺规作图,不写作法,保留作图痕迹);(2)求证:AF DE =.【答案】(1)见解析(2)见解析【分析】本题主要考查了平行线的尺规作图,平行线的性质与判定,全等三角形的性质与判定:(1)根据平行线的尺规作图方法作图即可;(2)先证明AC DE ∥,得到A BDE Ð=Ð,再由平行线的性质得到ADF B Ð=Ð,由线段中点的定义得到AD DB =,则可证明()ASA ADF DBE V V ≌,即可证明AF DE =.【详解】(1)解:如图所示,即为所求;(2)证明:∵DEB ACB Ð=Ð,∴AC DE ∥,∴A BDE Ð=Ð,∵DF BC ∥,∴ADF B Ð=Ð,∵点D 为AB 的中点,∴AD DB =,∴()ASA ADF DBE V V ≌,∴AF DE =.13.(23-24七年级下·辽宁丹东·期中)如图,已知Rt ABC △,90B Ð=°用尺规过点A 作直线MN ,使得MN BC ∥.(保留作图痕迹,不写作法)【答案】见解析【分析】本题主要考查了平行线的尺规作图,根据平行线的尺规作图方法作图即可.【详解】解:如图所示,直线MN即为所求.14.(2024·陕西西安·模拟预测)如图,在四边形ABCD中,点P为边AD上一点,请用尺规作图法,在边BC 上求作一点Q,使得P、Q到AB的距离相等.【答案】见解析∥交BC于Q,则点Q即为所【分析】本题主要考查了平行线的性质和平行线的尺规作图,过点P作PQ AB求.∥交BC于Q,则点Q即为所求.【详解】解:如图所示,过点P作PQ AB由平行线间间距相等可得P、Q到AB的距离相等.15.(23-24七年级下·福建宁德·期中)如图,已知三角形ABC,点E是AB上一点.(1)尺规作图:在BC 上找到一点F ,使得BFE C Ð=Ð;(不写作法,保留作图痕迹)(2)在(1)的条件下,连接CE ,若110EFC Ð=°,且CE 平分ACB Ð,求FEC Ð的度数.(2)解:∵EF BC ∥,∴FEC ACE ACF =∠∠,∠∵CE 平分ACB Ð,∴1352ACE ACF ==∠∠题型04 尺规作图——作三角形16.(23-24七年级下·辽宁本溪·期末)尺规作图:如图,线段BC 和一副三角尺,其中60,45a b °°Ð=Ð=.求作:以线段BC 为一条边作ABC V ,使得60,75ABC BAC ÐÐ=°=°.(要求:保留作图痕迹,不写作法)【答案】见解析【分析】本题考查尺规作三角形,根据尺规作角的方法作出60ABC Ð=°,45ACB Ð=°即可.掌握尺规作角的方法,是解题的关键.【详解】因为6075ABC BAC Ð=°Ð=°,所以45ACB Ð=°如图所示,ABC V 即为所求.17.(24-25八年级上·全国·假期作业)已知:如图,线段a 、b 、c .求作:ABC V ,使得BC a =,AC b =,AB c =.(保留作图痕迹,不写作法)【答案】见解析【分析】本题考查了作图-作三角形,首先画AB c =,再以B 为圆心,a 为半径画弧,以A 为圆心,b 为半径画弧,两弧交于一点C ,连接BC ,AC ,即可得到ABC V .【详解】解:如图所示,ABC V 就是所求的三角形.18.(23-24七年级下·河北保定·阶段练习)如图,已知Ðb 和线段a ,求作ABC V ,使得A b Ð=Ð,2B b Ð=Ð,边AB a =.(用圆规、直尺作图,不写作法,但要保留作图痕迹)【答案】见解析【分析】本题考查作图-复杂作图,解题的关键是熟练掌握五种基本作图,属于中考常考题型.作射线AM ,在射线AN 上截取AB a =,在AB 的上方分别作EAB b Ð=,2FBA b Ð=,AE 交BF 于点C ,ABC V 即为所求.【详解】解:如图,ABC V 即为所求.19.(23-24七年级下·辽宁沈阳·期中)尺规作图:(不写作法,保留作图痕迹)已知:已知线段a ,b 和aÐ求作:ABC V 使BC a =,AC b =,BAC aÐ=Ð【答案】见解析【分析】本题考查作三角形,解题的关键是熟练掌握五种基本作图.作MAN a Ð=,在射线AN 上截取线段AC ,使得AC b =,以B 为圆心,a 为半径作弧,交AM 于点B ,B ¢,连接BC ,B C ¢,ABC V 或AB C ¢V 即为所求.【详解】解:如图,ABC V 或AB C ¢V 即为所求.20.(23-24九年级下·湖南长沙·期中)人教版初中数学教科书八年级上册第37—38页告诉我们作一个三角形与已知三角形全等的方法:已知:ABC V .求作:A B C ¢¢¢V ,使得A B C ABC ¢¢¢V V ≌.作法:如图.(1)画DA E A ¢Ð=Ð;(2)在射线A D ¢上截取A B AB ¢¢=,在射线A E ¢上截取A C AC ¢=;(3)连接线段B C ¢¢,则A B C ¢¢¢V 即为所求作的三角形.请你根据以上材料完成下列问题:(1)完成下面证明过程(将正确答案填在相应的空上):证明:由作图可知,在A B C ¢¢¢V 和ABC V 中,()()A B AB DA E A C ì=ïÐ=¢¢¢¢=¢Ðíïî∴A B C ¢¢¢≌______.△(2)这种作一个三角形与已知三角形全等的方法的依据是______(填序号)①AAS ②ASA ③SAS ④SSS【答案】(1)A ;AC ;ABCV (2)③【分析】本题考查了作图-复杂作图,全等三角形的判定等知识:(1)根据作图信息,利用“SAS ”证明三角形全等即可;(2)利用(1)中证明可得结论.【详解】(1)解:由作图可知,在A B C ¢¢¢V 和ABC V 中,A B AB DA E A A C AC =ìïÐ=Т¢¢¢¢íï=î,∴()SAS A B C ABC ¢¢¢V V ≌,故答案为:A ;AC ;ABCV (2)解:这种作一个三角形与已知三角形全等的方法的依据是SAS ,故答案为:③.题型05 结合尺规作图的全等问题21.(22-23七年级下·辽宁沈阳·期末)如图,在所给正方形网格图中完成下列各题:(1)画出所有与格点ABC V (顶点均在格点上)全等的格点三角形,使它与ABC V 有且只有一条公共边,你画出了______ 个符合要求的格点三角形,分别记作______ ;(2)在DE 上画出点P ,使得PAC △的周长最小;(3)若网格上的最小正方形的边长为1,直接写出ABC V 的面积为______ .(3)ABC V 的面积133132=´-´´故答案为:72.22.(20-21七年级下·广东佛山·期中)作一个角等于已知角的方法:已知:AOBÐ求作:A O B ¢¢¢Ð,使A O B AOB ¢¢¢Ð=Ð,作法:(1)如图,以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C 、D ;(2)画一条射线O A ¢¢,以点O ¢为圆心,OC 长为半径画弧,交O A ¢¢于点C ¢;(3)以点C ¢为圆心,CD 长为半径画弧,与第2步中所画的弧相交于点D ¢;(4)过点D ¢画射线O B ¢¢,则A O B AOB ¢¢¢Ð=Ð.请你根据提供的材料完成下列问题.(1)请你证明A O B AOB ¢¢¢Ð=Ð.(2)这种作一个角等于已知角的方法的依据是________________________.【答案】(1)见解析(2)SSS【分析】(1)由作图过程得到相应条件,再根据SSS 证明即可;(2)根据作图过程可得这种作一个角等于已知角的方法的依据是SSS .【详解】(1)解:证明:在C O D ¢¢¢△和COD △中,O C OC O D OD C D CD=ìï=íï=¢¢¢¢¢î¢,\(SSS)C O D COD ¢¢¢△≌△,A OB AOB ¢¢¢\Ð=Ð.(2)这种作一个角等于已知角的方法的依据是SSS .故答案为:SSS【点睛】本题考查了作图-应用与设计作图,全等三角形的判定,解决本题的关键是掌握作一个角等于已知角的方法.23.(22-23八年级上·吉林长春·期末)图①、图②均为44´的正方形网格,每个小正方形的顶点称为格点,边长均为1.在图①、图②中按下列要求各画一个三角形.要求:(1)三角形的三个顶点都在格点上.(2)与ABC V 全等,且位置不同.【答案】(1)见解析(2)见解析【分析】(1)利用全等三角形的判定方法,画出图形即可;(2)利用全等三角形的判定方法,画出图形即可.【详解】(1)如图,ECB V 即为所求(2)如图,DEF V 即为所求【点睛】本题考查作图,全等三角形的判定的知识,解题的关键是理解题意,灵活运用所学知识解决问题.24.(22-23八年级上·江苏连云港·期中)如图,在58´的正方形网格中,每个小正方形的边长均为1,ABC V 的三个顶点都在小正方形的顶点上.(1)在图1中画ABD △(点D 在小正方形的顶点上),使得ABD △与ABC V 全等,且点D 在直线AB 的下方(点D 与点C 不重合);(2)在图2中画ABE V (点E 在小正方形的顶点上),使得ABE V 与ABC V 全等,且AC BE P ;【答案】(1)见解析(2)见解析【分析】(1)根据轴对称图形的性质找出点C 的对应点D ,连接AD ,BD 即可;(2)根据中心对称图形的性质找出点C 的对应点E ,连接AE ,BE 即可.【详解】(1)解:利用轴对称图形的性质找出点C 的对应点D ,连接AD ,BD ,则ABD △即为所求作的三角形,如图所示:(2)解:利用中心对称图形的性质找出点C 的对应点E ,连接AE ,BE ,则ABE V 即为所求作的三角形,如图所示:【点睛】本题主要考查了网格作图,解决问题的关键是熟练掌握运用轴对称性质中心对称性质确定对应点,解题的关键是确定点D 和点E 的位置.25.(22-23八年级上·湖北荆门·期中)如图,ABC V 的顶点A 、B 、C 都在小正方形的顶点上,试在方格纸上按下列要求画格点三角形(三角形的顶点在格点上),只需画出一个即可:V全等的三角形,且有条公共边:(1)在图(1)中画出与ABCV全等的三角形,且有一个公共顶点:(2)在图(2)中画出与ABCV全等的三角形,且有一个公共角.(3)在图(3)中画出与ABC【答案】(1)见解析(2)见解析(3)见解析【分析】(1)可根据全等三角形判定中的边边边(SSS)为依据作图;(2 )(3)可根据全等三角形的判定中的边角边(SAS)为依据作图.V即为所求(答案不唯一),【详解】(1)解:如图1,AB C¢;(2)解:如图2,BEF△即为所求,;(3)解:如图3,CDE V 即为所求,.【点睛】本题考查的是作图-复杂作图,熟知全等三角形的作法是解答此题的关键.题型06 作角平分线26.(23-24七年级下·陕西榆林·期末)如图,在ABC V 中,请用尺规作图法作出BAC Ð的平分线.(保留作图痕迹,不写作法)【答案】见解析【分析】本题主要考查了尺规作一个角的平分线,根据尺规作一个角的平分线的方法,进行作图即可.【详解】解:AD 即为所求作的BAC Ð的平分线.27.(23-24六年级下·上海宝山·期末)如图,已知点A 、O 、B 在一条直线上,2AOC COD Ð=Ð.(1)利用直尺和圆规作BOD Ð的平分线OE ;(2)如果77COE Ð=o ,求COD Ð的大小.(2)解:∵2AOC COD Ð=Ð,∴设COD x Ð=,则2AOC x Ð=,∴180180BOD AOC COD Ð=°-Ð-Ð=∵射线OE 是BOD Ð的平分线,D 到点B 和点C 的距离相等,且到边AC ,BC 的距离也相等.【答案】见解析【分析】本题考查了尺规作图,线段垂直平分线的性质,角平分线的性质,熟练掌握以上知识点是解题的关键.根据线段垂直平分线的作法作出BC 的垂直平分线,再根据角平分线的作法作ACB Ð的角平分线,两线的交点即为所求.【详解】作线段BC 的垂直平分线MN ,作CT 平分ACB Ð,MN 交CT 于点D ,如图所示,D 点即为所求,29.(2024·陕西西安·一模)已知ABC V ,请在AB 边上确定一点P ,使得点P 到AC BC 、的距离相等.(尺规作图,不写做法,保留作图痕迹)【答案】见解析【分析】题目主要考查角平分线的作法及性质,根据题意点P 到AC BC 、的距离相等得出作角平分线,然后作图即可,熟练掌握作图方法是解题关键.【详解】解:如图所示:点P 即为所求.30.(23-24八年级下·江西吉安·期末)如图,在ABC V 中,902ACB BC AC Ð=°=,,将ABC V 向右平移一定距离后,得到DEF V ,且E 为BC 的中点,请你用无刻度的直尺按下列要求作图.(1)在图1中,作出ACB Ð的平分线CP ;(2)在图2中,作一个以C 为顶点的直角(已知直角除外)【答案】(1)见解析(2)见解析【分析】本题考查了尺规作图——作角平分线及作垂线,(1)尺规作出ACB Ð的平分线CP 即可;(2)尺规过点C 作BC 垂线即可;【详解】(1)解:ACB Ð的平分线CP 即为所求;(2)BCH Ð即为所求作直角.题型07 作垂线31.(23-24七年级下·山东枣庄·期末)如图,在ABC V 中,10cm AB =,6cm AC =.(1)利用尺规作BC 边的垂直平分线,交AB 于点D ,交BC 于点E ;(保留作图痕迹,不写作法)(2)在(1)的条件下,连接CD ,求ACD V 的周长.【答案】(1)见解析(2)16cm【分析】本题主要考查了尺规作图,线段垂直平分线的性质:(1)根据作已知线段的垂直平分线的作法画出图形,即可;(2)根据线段垂直平分线的性质可得CD BD =,从而得到ACD V 的周长为:AC AD CD AC AD BD AC AB ++=++=+,即可求解.【详解】(1)解:如图所示,直线DE 即为所求;(2)解:因为DE 是BC 的垂直平分线.所以CD BD =.所以ACD V 的周长为:AC AD CD AC AD BD AC AB ++=++=+,因为10cm AB =,6cm AC =.所以ACD V 的周长为:()61016cm AC AB +=+=.32.(24-25八年级上·全国·假期作业)如图,已知点A 、点B 以及直线l .(1)用尺规作图的方法在直线l 上求作一点P ,使PA PB =.(保留作图痕迹,不要求写出作法);(2)在(1)中所作的图中,若AM PN =,BN PM =,求证:MAP NPB Ð=Ð.【答案】(1)见解析(2)见解析【分析】(1)利用线段垂直平分线的尺规作图法,作出AB 的垂直平分线得出即可;(2)利用全等三角形的判定方法以及利用其性质得出即可.此题主要考查了基本作图以及全等三角形的判定与性质,熟练应用线段垂直平分线的性质是解题关键.【详解】(1)解:如图所示:(2)解:在V AMP 和BNP △中Q AM PN PM BN AP BP =ìï=íï=î,(SSS)AMP PNB \V V ≌MAP NPB \Ð=Ð.33.(23-24七年级下·陕西榆林·期末)如图,在Rt ABC △中,请用尺规作图法作AB 边上的高CD 交AB 于点D .(不写作法,保留作图痕迹)【答案】见解析【分析】本题考查作垂线,过点C 作CD AB ^于点D ,则CD 为所求.【详解】解:如图,线段CD 为所求.34.(23-24七年级下·北京怀柔·期末)如图,点O 在直线l 外,点A 在直线l 上,连接OA .选择适当的工具作图.(1)在直线l 上作点B ,使得OB l ^于点B ;(2)连接OB ;(3)在直线l 上取一点C (不与A ,B 重合),连接OC ;(4)在OA ,OB ,OC 中,线段 最短,依据是 .【答案】(1)见解析(2)见解析(3)见解析(4)OB ;垂线段最短【分析】本题考查作图-基本作图,垂线段最短等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.(1)作OB ^直线l 即可;(2)连接OB 即可;(3)在直线l 上取一点C (不与A ,B 重合),连接OC 即可;(4)根据垂线段最短即可.【详解】(1)解:如图,点B 即为所求;(2)解:如图,连接OB 即可;(3)解:如图,点C 即为所求;(4)解:根据垂线段最短可知,线段OB 最短,故答案为:OB ,垂线段最短.35.(23-24七年级下·辽宁沈阳·阶段练习)如图,ABC V 中,AB AC =.(1)尺规作图(保留作图痕迹,不写作法):①作A Ð的角平分线,交BC 于点H ;②作AB 边的垂直平分线,垂足为点D ,交AH 于点O ;(2)连接BO ,OC ,求证:OA OC =.【答案】(1)见解析(2)见解析【分析】本题考查了尺规作图,全等三角形的判定和性质,线段垂直平分线的性质.(1)利用尺规作图作出角平分线,线段垂直平分线即可;(2)证明()SAS BAO CAO V V ≌,得到OB OC =,再根据线段垂直平分线的性质得到OB OA =,即可证明OA OC =.【详解】(1)解:所作图形如图所示:;(2)证明:由作图知BAH CAH Ð=Ð,又AB AC =,AO AO =,∴()SAS BAO CAO V V ≌,∴OB OC =,∵OD 是AB 边的垂直平分线,∴OB OA =,∴OA OC =.A 夯实基础1.(2024·河北·中考真题)观察图中尺规作图的痕迹,可得线段BD 一定是ABC V 的( )A.角平分线B.高线C.中位线D.中线【答案】B^,从而可得答案.【分析】本题考查的是三角形的高的定义,作线段的垂线,根据作图痕迹可得BD AC^,【详解】解:由作图可得:BD ACV的高线;∴线段BD一定是ABC故选B2.(23-24七年级下·广东佛山·期末)如图,作一个角等于已知角(尺规作图)的正确顺序是()A.①⑤②④③B.①②④⑤③C.①④③⑤②D.②①③④⑤【答案】A【分析】此题主要考查了基本作图,熟练掌握尺规作一个角等于已知角的作法是解题的关键.【详解】解:根据用尺规作一个角等于已知角的作图步骤可知正确的是:①⑤②④③.故选:A.3.(22-23八年级上·湖北武汉·期中)已知村政府现要在如图所示区域内,修建到AB,CD,EF三条公路距离相等的加油站P,则加油站的选址共有种选择.【答案】4【分析】本题考查了角平分线的性质的灵活应用,注意:三角形的外角平分线的交点不要漏掉,思考问题要全面.加V的内角角平分线的交点处或外角的角平分线的交点油站到三条公路的距离相等,那么加油站应该建在ABC处,故满足要求的加油站位置共有4个,作出其中一个即可.【详解】解:满足要求的加油站位置共有4个,如图所示,点1P 即为所求.(答案不唯一,画出2P ,3P ,4P 也可以)故答案为:4.4.(23-24八年级上·江苏常州·阶段练习)如图,已知AOB Ð,以点O 为圆心,任意长度为半径画弧①,分别交OA ,OB 于点E ,F ,再以点E 为圆心,EF 的长为半径画弧,交弧①于点D ,画射线OD .若26AOB Ð=°,则AOD Ð的度数为 .【答案】26°/26度【分析】本题考查了全等三角形的判定与性质,基本作图知识,解题的关键是熟练掌握基本知识.根据作图过程可得OD OE OF ==,EF DE =,利用SSS 证明ODE OFE △≌△,即可得出结果.【详解】解:根据作图过程可知:OD OE OF ==,EF DE =,∴()SSS ODE OFE V V ≌,∴26AOD AOB Ð=Ð=°.故答案为:26°.5.(23-24七年级下·陕西榆林·期末)如图,已知四边形ABCD ,利用尺规作图法作ABC Ð的平分线交CD 于点E .(不写作法,保留作图痕迹)【答案】见解析【分析】本题考查尺规作图-作角的平分线,熟悉作图步骤是解答的关键.根据作角平分线的方法步骤作图即可.【详解】解:如图,射线BE 即为所求作:6.(23-24八年级下·甘肃兰州·期中)如图,作出ABC V 的BC 边上的高.(用尺规完成作图,只保留作图痕迹,不要求写出作法)【答案】作图见详解【分析】本题考查了作图−基本作图:熟练掌握5种基本作图是解决问题的关键.利用基本作图,过A 点作BC 的垂线即可.【详解】解:如图,线段AD 即为所求,B 能力提升1.(23-24七年级下·辽宁锦州·期末)如图,已知ABC V ,按如下步骤作图:①分别以点A 和B 为圆心,以大于12AB 的长为半径作弧,两弧相交于点E 和F ;②作直线EF ,分别交AB BC ,于点M ,N ;③连接AN ,若2,AM ACN =V 的周长为12,则ABC V 的周长为( )A .16B .15C .14D .13【答案】A 【分析】本题考查了基本作图—垂直平分线作图,垂直平分线的性质,解题的关键是熟练掌握垂直平分线的性质;根据作图可知MN 为AB 的垂直平分线,进而可得224AB AM BM AN BN ====,,即可求解【详解】解:根据作图可知:MN 为AB 的垂直平分线,224AB AM BM AN BN\====,12ACN C AN CN AC =++=V Q 12BN CN AC \++=41216ABC C AB BN CN AC V \=+++=+=故选:A2.(2024·湖北黄石·三模)如图所示,在ABC V 中,90C Ð=°,以顶点A 为圆心,取适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若3CD =,则点D 到AB 的距离是( )A .1B .2C .3D .4【答案】C 【分析】本题考查了作图-基本作图:角平分线的作法;由作法得AP 是BAC Ð的角平分线,,然后根据角平分线的性质求解.【详解】解:由题可知,AP 是BAC Ð的角平分线,\点P 到AB 和AC 的距离相等,90C Ð=°Q ,3CD =,DC AC \^,\点D 到AC 的距离为CD 的长,即点D 到AC 的距离为3,∴点D 到AB 的距离为3.。
【备考 志鸿优化设计】中考数学总复习 基础讲练 第27讲 尺规作图(含答案点拨)人教版 新人教版
第27讲 尺规作图简单应用问题.知识梳理 一、尺规作图 1.定义只用没有刻度的__________和__________作图叫做尺规作图. 2.步骤①根据给出的条件和求作的图形,写出已知和求作部分;②分析作图的方法和过程;③用直尺和圆规进行作图;④写出作法步骤,即作法.二、五种基本作图1.作一条线段等于已知线段;2.作一个角等于已知角;3.作已知角的平分线;4.过一点作已知直线的垂线;5.作已知线段的垂直平分线.三、基本作图的应用1.利用基本作图作三角形(1)已知三边作三角形;(2)已知两边及其夹角作三角形;(3)已知两角及其夹边作三角形;(4)已知底边及底边上的高作等腰三角形;(5)已知一直角边和斜边作直角三角形.2.与圆有关的尺规作图(1)过不在同一直线上的三点作圆(即三角形的外接圆). (2)作三角形的内切圆.自主测试1.如图,小聪在作线段AB 的垂直平分线时,他是这样操作的:分别以A 和B 为圆心,大于12AB 的长为半径画弧,两弧相交于C ,D 两点,则直线CD 即为所求.根据他的作图方法可知四边形ADBC 一定是( )A .矩形B .菱形C .正方形D .等腰梯形2.用直尺和圆规作一个菱形,如图,能得到四边形ABCD 是菱形的依据是( )A .一组邻边相等的四边形是菱形B .四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形3.如图,△ABC是直角三角形,∠ACB=90°.(1)实验与操作利用尺规按下列要求作图,并在图中标明相应的字母(保留作图痕迹,不写作法).①作△ABC的外接圆,圆心为O;②以线段AC为一边,在AC的右侧作等边△ACD;③连接BD,交⊙O于点E,连接AE.(2)综合运用在你所作的图中,若AB=4,BC=2,则①AD与⊙O的位置关系是__________.②线段AE的长为__________.4.A,B两所学校在一条东西走向公路的同旁,以公路所在直线为x轴建立如图所示的平面直角坐标系,且点A的坐标是(2,2),点B的坐标是(7,3).(1)一辆汽车由西向东行驶,在行驶过程中是否存在一点C,使C点到A,B两校的距离相等?如果有,请用尺规作图找出该点,保留作图痕迹,不求该点坐标.(2)若在公路边建一游乐场P,使游乐场到两校距离之和最小,通过作图在图中找出建游乐场P的位置,并求出它的坐标.考点一、基本作图【例1】按要求用尺规作图(只保留作图痕迹,不必写出作法).(1)在图(1)中作出∠ABC的平分线;(2)在图(2)中作出△DEF的外接圆O.解:如图.方法总结依据基本作图的方法步骤,规范作图,注意一定保留好作图痕迹.触类旁通1 画△ABC,使其两边为已知线段a,b,夹角为β.(要求:用尺规作图,写出已知、求作;保留作图痕迹;不在已知的线、角上作图;不写作法)已知:求作:考点二、基本作图的实际应用【例2】如图,要在一块形状为直角三角形(∠C为直角)的铁皮上裁出一个半圆形的铁皮,需先在这块铁皮上画出一个半圆,使它的圆心在线段AC上,且与AB,BC都相切.请你用直尺和圆规画出来(要求用尺规作图,保留作图痕迹,不要求写作法).分析:∵圆与AB,BC都相切,∴圆心到AB,BC的距离相等.∴圆心应是∠ABC的角平分线与AC的交点.解:下图即为所求图形.方法总结要作一个圆与角的两边都相切,根据角平分线的性质,角平分线上的点到角两边的距离相等,即可解决问题.触类旁通2 为了推进农村新型合作医疗制度改革,准备在某镇新建一个医疗点P,使P 到该镇所属A村、B村、C村的村委会所在地的距离都相等(A,B,C不在同一直线上,地理位置如下图),请你用尺规作图的方法确定点P的位置.要求:写出已知、求作;不写作法,保留作图痕迹.1.(2012浙江绍兴)如图,AD为⊙O的直径,作⊙O的内切正三角形ABC,甲、乙两人的作法分别如下:A.甲、乙均正确 B.甲、乙均错误C.甲正确,乙错误 D.甲错误,乙正确2.(2012山东济宁)用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC =∠BOC的依据是( )A.SSS B.ASAC.AAS D.角平分线上的点到角两边距离相等3.(2012贵州铜仁)某市计划在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M到广场的两个入口A,B的距离相等,且到广场管理处C的距离等于A和B之间距离的一半,A,B,C的位置如图所示,请在原图上利用尺规作图作出音乐喷泉M的位置.(要求:不写已知、求作、作法和结论,保留作图痕迹,必须用铅笔作图)4.(2012山东德州)有公路l1同侧、l2异侧的两个城镇A,B,如下图.电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,发射塔C应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C的位置.(保留作图痕迹,不要求写出画法)5.(2012广东)在△ABC中,AB=AC,∠ABC=72°,(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.1.如图,锐角△ABC中,BC>AB>AC,小靖依下列方法作图:(1)作∠A的角平分线交BC于D点.(2)作AD的中垂线交AC于E点.(3)连接DE.根据他画的图形,判断下列关系何者正确?( )A.DE⊥AC B.DE∥ABC.CD=DE D.CD=BD2.如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO 长为半径画弧,两弧交于点B,画射线OB,则cos∠AOB的值等于__________.3.数学活动课上,老师在黑板上画直线平行于射线AN(如图),让同学们在直线l和射线AN上各找一点B和C,使得以A,B,C为顶点的三角形是等腰直角三角形.这样的三角形最多能画__________个.4.如图,已知∠AOB,点M,N,求作点P,使点P在∠AOB的角平分线上,且PM=PN.(保留作图痕迹,不写作法)5.某汽车探险队要从A 城穿越沙漠去B 城,途中需要到河流l 边为汽车加水,汽车在河边哪一点加水,才能使行驶的总路程最短?请你在图上画出这一点.6.如图,在△ABC 中,∠A =90°.(1)用尺规作图的方法,作出△ABC 绕点A 逆时针旋转45°后的图形△AB 1C 1(保留作图痕迹);(2)若AB =3,BC =5,求tan ∠AB 1C 1.参考答案导学必备知识 自主测试1.B ∵分别以A 和B 为圆心,大于12AB 的长为半径画弧,两弧相交于C ,D ,∴AC =AD =BD =BC ,∴四边形ADBC 一定是菱形.故选B.2.B 由图形作法可知,AD =AB =DC =BC , ∴四边形ABCD 是菱形,故选B. 3.解:(1)如图,(2)①相切 ②47214.解:(1)存在满足条件的点C . 作出图形,如图所示.(2)作点A 关于x 轴对称的点A ′(2,-2),连接A ′B ,与x 轴的交点即为所求的点P .设A ′B 所在直线的解析式为y =kx +b ,把(2,-2)和(7,3)代入得⎩⎪⎨⎪⎧7k +b =3,2k +b =-2,解得⎩⎪⎨⎪⎧k =1,b =-4.∴y =x -4,当y =0时,x =4,∴交点P 为(4,0). 探究考点方法触类旁通1.解:已知:线段a ,b ,角β. 求作:△ABC ,使边BC =a ,AC =b ,∠C =β. 画图(保留作图痕迹)触类旁通2.解:已知A 村、B 村、C 村,求作新建一个医疗点P ,使P 到该镇所属A 村、B 村、C 村的村委会所在地的距离都相等.品鉴经典考题1.A 根据甲的思路,作出图形如下:连接OB .∵BC 垂直平分OD , ∴E 为OD 的中点,且OD ⊥BC ,∴OE =DE =12OD .在Rt △OBE 中,∵OB =OD ,∴OE =12OB ,∴∠OBE =30°.又∠OEB =90°,∴∠BOE =60°. ∵OA =OB ,∴∠OAB =∠OBA . 又∠BOE 为△AOB 的外角, ∴∠OAB =∠OBA =30°,∴∠ABC =∠ABO +∠OBE =60°. 同理∠C =60°,∴∠BAC =60°, ∴∠ABC =∠BAC =∠C ,∴△ABC 为等边三角形,故甲的作法正确. 根据乙的思路,作图如下:连接OB ,BD .∵OD =BD ,OD =OB ,∴OD =BD =OB ,∴△BOD 为等边三角形, ∴∠OBD =∠BOD =60°.同理可知△COD 也为等边三角形,∠OCD =∠COD =60°, ∴∠BOC +∠OCD =∠BOD +∠COD +∠OCD =180°, ∴BO ∥CD .又∵△BOD 和△COD 是等边三角形, ∴四边形BDCO 是菱形, ∴∠OBM =∠DBM =30°.又OA =OB ,且∠BOD 为△AOB 的外角, ∴∠BAO =∠ABO =30°,∴∠ABC =∠ABO +∠OBM =60°, 同理∠ACB =60°,∴∠BAC =60°, ∴∠ABC =∠ACB =∠BAC ,∴△ABC 为等边三角形,故乙的作法正确.故选A. 2.A 连接NC ,MC .在△ONC 和△OMC 中,⎩⎪⎨⎪⎧ON =OM ,NC =MC ,OC =OC ,∴△ONC ≌△OMC (SSS),∴∠AOC =∠BOC .故选A.3.解:作图如图所示.4.解:作图如图所示:5.解:(1)作图如下:(2)∵AB =AC ,∴∠ACB =∠ABC =72°,∴∠BAC =36°. 又∵BD 平分∠ABC ,∴∠ABD =12∠ABC =12×72°=36°,∴∠BDC =∠ABD +∠BAC =36°+36°=72°. 研习预测试题1.B 依据题意画出图形.可得知∠1=∠2,AE =DE ,∴∠2=∠3, ∴∠1=∠3,即DE ∥AB .故选B. 2.12 3.34.解:如图,连接MN ,作线段MN 的垂直平分线EF ,∠AOB 的角平分线OC ,EF 与OC 相交于点P .则点P 即为所求.5.解:如图所示,点C 即为所求.6.解:(1)作∠CAB 的平分线,在平分线上截取AB 1=AB , 作C 1A ⊥AB 1,在AC 1上截取AC 1=AC , 如图所示即是所求.(2)∵AB =3,BC =5,∴AC =4, ∴AB 1=3,AC 1=4,tan ∠AB 1C 1=AC 1AB 1=43.。
中考数学【基础训练①】26尺规作图
专题练习尺规作图一、选择题1.如图,在△ABC中,按以下步骤作图:①分别以A、B为圆心,大于AB的长为半径画弧,两弧相交于点M、N;②作直线MN交AC于点D,连接BD.若CD=CB,∠A=35°,则∠C等于()A. 40°B. 50°C. 60°D. 70°2.如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠B=25°,则∠ACB的度数为()A. 90°B. 95°C. 100°D. 105°3.按下列条件画三角形,能唯一确定三角形形状和大小的是()A. 三角形的一个内角为60°,一条边长为3cmB. 三角形的两个内角为30°和70°C. 三角形的两条边长分别为3cm和5cmD. 三角形的三条边长分别为4cm、5cm和8cm4.下列画图语句中正确的是()A. 画射线OP=5cmB. 画射线OA的反向延长线C. 画出A、B两点的中点D. 画出A、B两点的距离5.图中的尺规作图是作()A. 线段的垂直平分线B. 一条线段等于已知线段C. 一个角等于已知角D. 角的平分线6.已知线段a,b和m,求作△ABC,使BC=a,AC=b,BC边上的中线AD=m,作法合理的顺序依次为()①延长CD到B,使BD=CD;②连接AB;③作△ADC,使DC=a,AC=b,AD=m.A. ③①②B. ①②③C. ②③①D. ③②①7.在一次数学活动课上小芳,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=8,AB=30,请你帮助她算一下△ABD的面积是()A. 150B. 130C. 240D. 1208.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,要说明∠D′O′C′=∠DOC,需要证明△D′O′C′≌△DOC,则这两个三角形全等的依据是()A. 边边边B. 边角边C. 角边角D. 角角边9.下列作图语句正确的是()A. 作线段AB,使α=ABB. 延长线段AB到C,使AC=BCC. 作∠AOB,使∠AOB=∠αD. 以O为圆心作弧10.下列画图语句中,正确的是()A. 画射线OP=3cmB. 连接A,B两点C. 画出A,B两点的中点D. 画出A,B两点的距离二、填空题11.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出 ________个.12.如图,在平行四边形ABCD中,连接AC,按一下步骤作图,分别以点A,点C为圆心,以大于AC的长为半径画弧,两弧分别相交于点M、N,作直线MN交CD于点E,交AB于点F,若AB=5,BC=3,则△ADE的周长为________.13.如图,AB∥CD,以点B为圆心,小于DB长为半径作圆弧,分别交BA、BD于点E、F,再分别以点E、F,为圆心,大于长为半径作圆弧,两弧交于点G,作射线BG交CD于点H。
初中数学专题尺规作图(含答案)
- 1 -第28课时 尺规作图◆考点聚焦1.掌握基本作图,尺规作图的要求与步骤..掌握基本作图,尺规作图的要求与步骤.2.利用基本作图工具画三角形、四边形、圆以及简单几何体的三视图,.利用基本作图工具画三角形、四边形、圆以及简单几何体的三视图,••对简单的作图能叙述作法.图能叙述作法.3.运用基本作图、结合相关的数学知识(平移、旋转、对称、.运用基本作图、结合相关的数学知识(平移、旋转、对称、••位似)等进行简单的图案设计.图案设计.4.运用基本作图解决实际问题..运用基本作图解决实际问题. ◆备考兵法1.熟练掌握基本作图..熟练掌握基本作图.2.在画几何体的三视图时,要注意其要求,.在画几何体的三视图时,要注意其要求,••即“长对正”“高平齐”“宽相等”. 3.认真分析题意,善于把实际问题转化为基本作图..认真分析题意,善于把实际问题转化为基本作图. ◆识记巩固1.尺规作图的定义:.尺规作图的定义:_______________________________________..2.基本作图包括:.基本作图包括:_____________________,,______________,,________________,,________________,,______________..3.三角形三边的垂直平分线的交点叫三角形的外心,.三角形三边的垂直平分线的交点叫三角形的外心,••三角形三内角平分线的交点叫三角形的内心,外心到三角形的三角形的内心,外心到三角形的_____________________的距离相等,内心到三角形的距离相等,内心到三角形的距离相等,内心到三角形_____________________的距离相等.的距离相等.的距离相等. 识记巩固参考答案:1.限定只能使用圆规和没有刻度的直尺作图.限定只能使用圆规和没有刻度的直尺作图2.作线段.作线段 作角作角作角 作线段的垂直平分线作线段的垂直平分线作线段的垂直平分线 过一点作已知直线的垂线过一点作已知直线的垂线过一点作已知直线的垂线 作角平分线作角平分线作角平分线 3.顶点.顶点 三边三边三边 ◆典例解析例1 (20082008,新疆建设兵团),新疆建设兵团),新疆建设兵团)(1)请用两种不同的方法,用尺规在所给的两个矩形中各作一个不为正方形的菱形,且菱形的四个顶点都在矩形的边上.(保留作图痕迹)(保留作图痕迹)(2)写出你的作法.)写出你的作法.解析解析 (1)所作菱形如图①,②所示.)所作菱形如图①,②所示.说明:作法相同的图形视为同一种,例如类似图③,说明:作法相同的图形视为同一种,例如类似图③,••图④的图形视图与图②是同一种.种.① ②③ ④ (2)图①的作法:作矩形A 1B 1C 1D 1四条边的中点E 1,F 1,G 1,H 1,连结H 1E 1,E 1F 1,G 1F 1,G 1H 1.四边形E 1F 1G 1H 1即为菱形.即为菱形.图②的作法:在B 2C 2上取一点E 2,使E 2C 2>A 2E 2且E 2不与B 2重合,连结A 2E 2. 以A 2为圆心,A 2E 2为半径画弧,交A 2D 2于H 2; 以E 2为圆心,A 2E 2为半径画弧,交B 2C 2于F 2; 连结H 2F 2,则四边形A 2E 2F 2H 2为菱形.为菱形.例2 如图,已知∠如图,已知∠AOB AOB AOB,,OA=OB OA=OB,点,点E 在OB 边上,四边形AEBF 是矩形.请你只用无刻度的直尺在图中画∠刻度的直尺在图中画∠AOB AOB 的平分线(请保留画图痕迹).解析解析 连结连结AB AB.因为.因为OA=OB OA=OB,因此△,因此△,因此△ABO ABO 为等腰三角形.要作出∠为等腰三角形.要作出∠AOB AOB 的平分线,的平分线,••只要确定出AB 的中点即可.因AEBF 为矩形,为矩形,因此连结因此连结AB AB,,EF EF,,相交于M .根据矩形的性质,M 即为AB 的中点.连结OM OM,射线,射线OM 即为所求的角平分线.即为所求的角平分线.例3 台球是一项高雅的体育运动,其中包含了许多物理学,几何学知识.如图是一台球是一项高雅的体育运动,其中包含了许多物理学,几何学知识.如图是一个台球桌,目标球F 与本球E 之间有一个G 球阻挡,现在击球者想通过击打E 球先撞击球台的AB 边,经过一次反弹后再撞击F 球,他应将E 球打到AB 边上的哪一点?边上的哪一点?••请在图中用尺规作图这一点H ,并作出E 球的运行路线(不写画法,保留作图痕迹).解析解析 作点作点E 关于直线AB 的对称点E 1,连结E 1F ,E 1F 与AB 相交于点H ,球E•E•的运动的运动路线是EH EH→→HF HF..点评点评 本例是把实际问题通过抽象,把求本例是把实际问题通过抽象,把求H 点的问题先转化为作E•E•点关于直线点关于直线AB 的对称点问题加以解决.数学课程标准对尺规作图提出了明确要求,是中考的重要内容之一,在复习时要掌握基本作图,要善于把具体问题的作图转化为基本作图.在复习时要掌握基本作图,要善于把具体问题的作图转化为基本作图.••学会对作图问题进行分析,归纳,掌握画法.进行分析,归纳,掌握画法. ◆中考热身1.(20082008,江苏镇江)如图,在△,江苏镇江)如图,在△,江苏镇江)如图,在△ABC ABC 中,作∠中,作∠ABC ABC 的平分线BD BD,交,交AC 于D ,作线段BD 的垂直平分线EF EF,分别交,分别交AB 于E ,BC 于F ,垂足为O ,连结DF DF,在所作图中,寻找一,在所作图中,寻找一对全等三角形,并加以证明.(不定作法,保留作图痕迹)(不定作法,保留作图痕迹)2.(20082008,山西太原)如图,在△,山西太原)如图,在△,山西太原)如图,在△ABC ABC 中,∠中,∠BAC=2BAC=2BAC=2∠∠C .(1)在图中作出△在图中作出△ABC ABC 的内角平分线AD AD;;(要求:(要求:尺规作图,尺规作图,尺规作图,保留作图痕迹,保留作图痕迹,保留作图痕迹,••不写证明) (2)在已作出的图形中,写出一对相似三角形,并说明理由.)在已作出的图形中,写出一对相似三角形,并说明理由.3.(20082008,四川成都)如图,已知点,四川成都)如图,已知点A 是锐角∠是锐角∠MON MON 内的一点,试分别在OM OM,,ON 上确定点B ,点C ,使ABC•ABC•的周长最小,的周长最小,写出你作图的主要步骤并标明你所确定的点写出你作图的主要步骤并标明你所确定的点___________________________..(要求画出草图,保留作图痕迹)求画出草图,保留作图痕迹)◆迎考精练 一、基础过关训练1.在Rt Rt△△ABC 中,已知∠中,已知∠C=90C=90C=90°,°,°,AD AD 是∠是∠BAC BAC 的平分线.以AB 上一点O 为圆心,为圆心,AD•AD•AD•为为弦作⊙弦作⊙O O (不写作法,保留作图痕迹).2.请你画出一个以BC 为底边的等腰△为底边的等腰△ABC ABC ABC,使底边上的高,使底边上的高AD=BC AD=BC.. (1)求tanB 和sinB 的值.的值.(2)在你所画的等腰△)在你所画的等腰△ABC ABC 中,假设底边BC=5米,求腰上的高BE BE..3.作一条直线,平分如图所示图形的面积:.作一条直线,平分如图所示图形的面积:4.现有m ,n 两堵墙,两个同学分别站在A 处和B 处,请问小明在哪个区域内活动才不会被任何一个同学发现?(画图,用阴影表示)被任何一个同学发现?(画图,用阴影表示)5.按下列要求作图,不写画法,要保留作图痕迹..按下列要求作图,不写画法,要保留作图痕迹.(1)在图1中,作出AB 的中点M ,作出∠,作出∠BCD BCD 的平分线CN CN,延长,延长CD 到点P ,使DP=2CD DP=2CD;; (2)如图2是一个破损的机器部件,它的残留边缘是圆弧,请作图找出圆弧所在的圆心.图1 图26.如图,.如图,Rt Rt Rt△△ABC 的斜边AB=5AB=5,,cosA=35. (1)用尺规作图作线段AC 的垂直平分线(保留作图痕迹,不要求写作法,证明); (2)若直线L 与AB AB,,AC 分别相交于D ,E 两点,求DE 的长.的长.7.成绵高速公路OA 和绵广高速公路OB 在绵阳市相交于点O ,在∠在∠AOB•AOB•AOB•内部有两个城镇内部有两个城镇C ,D ,若要修一个大型农贸市场P ,使P 到OA 与OB 的距离相等,且PC=PD PC=PD,用尺规作出,用尺规作出市场P 的位置.(不写作法,保留作图痕迹)(不写作法,保留作图痕迹)二、能力提升训练8.已知正方形ABCD 的面积为S .(1)求作:四边形A 1B 1C 1D 1,使得点A 1和点A 关于点B 对称,点B 1和点B 关于点C 对称,点C 1和点C 关于点D 对称,点D 1和点D 关于点A 对称;(只要求画出图形,不要求写作法)求写作法)(2)用S 1表示(1)中所作出的四边形A 1B 1C 1D 1的面积;的面积; (3)若将已知条件中的正方形改为任意四边形,面积仍为S ,并按(1)•的要求作出一个新的四边形,面积为S 2,则S 1与S 2是否相等?为什么?是否相等?为什么?参考答案: 中考热身中考热身1.解:(1)画角平分线,线段的垂直平分线.)画角平分线,线段的垂直平分线. (2)△)△BOE BOE BOE≌△≌△≌△BOF BOF BOF≌△≌△≌△DOF DOF DOF.. 证明(略)证明(略)证明(略) 2.解:(1)如图,)如图,AD AD 即为所求即为所求(2)△)△ABD ABD ABD∽△∽△∽△CBA CBA CBA,理由如下:,理由如下:,理由如下: ∵AD 平分∠平分∠BAC BAC BAC,∠,∠,∠BAC=2BAC=2BAC=2∠∠C , ∴∠∴∠BAD=BAD=BAD=∠∠BCA BCA..又∵∠又∵∠B=B=B=∠∠B ,∴△,∴△ABD ABD ABD∽△∽△∽△CBA CBA CBA..3.分别作点A 关于OM OM,,ON 的对称点A ′,′,A A ″;连结A ′A ″,分别交OM OM,,ON 于点B ,点C ,则点B ,点C 即为所求即为所求 作图略作图略作图略 迎考精练迎考精练 基础过关训练基础过关训练1.点拨:作AD 的垂直平分线与AB 的交点即为圆心,的交点即为圆心,OA OA 为半径.(作图略)(作图略) 2.解:①画线段BC BC::②作BC 的垂直平分线MN 与BC 相交于D ; ③在DM 上截取DA=BC DA=BC;;④连结AB AB,,AC AC,△,△,△ABC ABC 即为所求.即为所求.(1)tanB=2tanB=2,,sinB=255,(2)BE=25米.米.3.点拨:过几何体中心的任一条直线均可将该图形分成面积相等的两部分.(•如图)4.解:小明在图中的阴影部分区域就不会被两个同学发现..解:小明在图中的阴影部分区域就不会被两个同学发现.5.(1)作图略.(2)点拨:在残片的圆弧上任选两条弦,分别作它们的中垂线,其交点即为圆心.交点即为圆心.6.点拨:(1)①分别以A ,C 为圆心,以大于12AC 为半径画弧,两弧相交于M ,N ;•②连结MN MN,过,过MN 的直线即为所求的直线L . (2)DE=2DE=2.. 7.点拨:(1)作∠)作∠AOB AOB 的角平分线OE OE;; (2)作DC 的垂直平分线MN MN;;(3)MN 交OE 于P 点,点,P P 即为所求.即为所求. 能力提升训练能力提升训练8.解:(1)如图1.图1 图2 (2)设正方形ABCD 的边长为a ,∴S=a 22. 依题意A 1D 1=A 1B 1=B 1C 1=C 1D 1=5a . 易证A 1B 1C 1D 1是正方形,是正方形,∴S 1111A B C D =5a 2,∴S 1=5S . (3)S 1=S 2.证明如下:.证明如下:如图2,连结BD 1,BD .在△BDD 1中,AB 是中线,是中线, ∴S △ABD =S △ABD1.在△AA 1D 1中,BD 1是中线,是中线, ∴S △ABD1=S △A1BD1,S △AA1D1=2S △ABD1, 同理S △OC1B1=2S △CBD , ∴S △AA1D1+S △OC1B1=2S . 同理S △DD1C1+S △BA1B1=2S , ∴S 四边形1111A B C D =5S=S 2, ∴S 1=S 2.。
2020年中考数学第一轮复习专题 第27课 尺规作图(含答案)
第27课尺规作图本节内容考纲要求考查五个基本作图和能转化为基本作图的简单尺规作图。
广东省近5年试题规律:以解答题出现,一般考查作角平分线,线段的垂直平分线和过一点直线的垂线,多与三角形、四边形问题结合一起,难度不大,但学生欠缺动手操作,是常见丢分题。
知识清单知识点一尺规作图定义只用圆规和尺子来完成的图画,称为尺规作图.基本步骤(1)已知:写出已知的线段和角,画出图形;(2)求作:求作什么图形,使它符合什么条件;(3)作法:运用五种基本作图,保留作图痕迹;(4)证明:验证所作图形的正确性;(5)结论:对所作的图形下结论.五种基本作图(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作一个角的平分线;(4)经过一已知点作直线的垂线;(5)作已知线段的垂直平分线.课前小测1.(尺规作图的定义)尺规作图是指()A.用直尺规范作图B.用刻度尺和圆规作图C.用没有刻度的直尺和圆规作图D.直尺和圆规是作图工具2.(作角平分线)如图,用尺规作已知角平分线,其根据是构造两个三角形全等,它所用到的判别方法是()A.SAS B.ASA C.AAS D.SSS3.(作一个角等于已知角)小明回顾用尺规作一个角等于已知角的作图过程(如图所示),连接CD、C′D′得出了△OCD≌△O′C′D′,从而得到∠O=∠O′,其中小明作出△OCD≌△O′C′D′判定的依据是()A.SSS B.SAS C.ASA D.AAS 4.(作垂直平分线)如图所示,已知线段AB=6,现按照以下步骤作图:①分别以点A,B为圆心,以大于12AB的长为半径画弧,两弧相交于点C和点D;②连结CD交AB于点P.则线段PB的长为.5.(作垂线)尺规作图:经过已知直线外一点作这条直线的垂线,下列作图中正确的是()A.B.C.D.经典回顾考点一作线段垂直平分线【例1】(2018•广东)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.【点拨】作线段的垂直平分线要点:①以线段两端点为圆心作弧,两弧交于两点;②再过两点作垂线.考点二作角平分线【例2】(2018•赤峰)如图,D是△ABC中BC边上一点,∠C=∠DAC.(1)尺规作图:作∠ADB的平分线,交AB于点E(保留作图痕迹,不写作法);(2)在(1)的条件下,求证:DE∥AC.【点拔】作角的平分线要点:①以顶点为圆心画弧交角的两边于两点;②再以这两点为圆心作弧,两弧交于一点;③最后过顶点与交点作射线.考点三作垂线【例3】(2015•广东)如图,已知锐角△AB C.(1)过点A作BC边的垂线MN,交BC于点D(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,若BC=5,AD=4,tan∠BAD=34,求DC的长.【点拨】过一点作垂线或作高线要点:①以这点为圆心,在直线上截取一条线段;②再作线段的垂直平分.考点四作一个角等于已知角【例4】(2019•广东)如图,在△ABC中,点D是AB边上的一点.(1)请用尺规作图法,在△ABC内,求作∠ADE,使∠ADE=∠B,DE交AC 于E;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若ADDB=2,求AEEC的值.【点拔】过一点作一个角等于已知角要点:①以角的顶点为圆心画弧交两边于两点,以这一点为圆心,相同半径作弧,交于一点;②再以两点间距离为半径,作弧,两弧交于一点;③最后过这一点于交点作射线.对应训练1.(2019•泰州)如图,△ABC中,∠C=90°,AC=4,BC=8.(1)用直尺和圆规作AB的垂直平分线;(保留作图痕迹,不要求写作法)(2)若(1)中所作的垂直平分线交BC于点D,求BD的长.2.(2019•中山一模)如图,已知平行四边形ABCD,(1)作∠B的平分线交AD于E点.(用尺规作图法,保留作图痕迹,不要求写作法)(2)若平行四边形ABCD的周长为10,CD=2,求DE的长.3.(2019•江门期末)画图题:如图,已知三角形ABC,AB=5.(1)过点C作CD⊥AB,点D为垂足:(2)在(1)的条件下,若DB=2,求点A到CD的距离.4.(2019•顺德期末)如图,Rt△ABC中,∠A=90°.(1)用尺规作图法作∠ABD=∠C,与边AC交于点D(保留作图痕迹,不用写作法);(2)在(1)的条件下,当∠C=30°时,求∠BDC的度数.中考冲刺夯实基础1.(2019•赤峰)已知:AC是□ABCD的对角线.(1)用直尺和圆规作出线段AC的垂直平分线,与AD相交于点E,连接CE.(保留作图痕迹,不写作法);(2)在(1)的条件下,若AB=3,BC=5,求△DCE的周长.2.(2019•惠阳二模)如图,已知:AB∥CD.(1)在图中,用尺规作∠ACD的平分线交AB于E点;(不要求写作法,保留作图痕迹)(2)判断△ACE的形状,并证明.3.(2019•玉林)如图,已知等腰△ABC顶角∠A=36°.(1)在AC上作一点D,使AD=BD(要求:尺规作图,保留作图痕迹,不必写作法和证明,最后用黑色墨水笔加墨);(2)求证:△BCD是等腰三角形.4.(2019•越秀一模)如图,在矩形ABCD中,AD=AE(1)尺规作图:作DF⊥AE于点F;(保留作图痕迹,不写作法)(2)求证:AB=DF.能力提升5.(2019•白银)已知:在△ABC中,AB=AC.(1)求作:△ABC的外接圆.(要求:尺规作图,保留作图痕迹,不写作法)(2)若△ABC的外接圆的圆心O到BC边的距离为4,BC=6,则S⊙O=.6.(2019•三明模拟)如图,在△ABC中,AB=AC.(1)尺规作图:作∠CBD=∠A,D点在AC边上(要求:不写作法,保留作图痕迹)(2)若∠A=40°,求∠ABD的度数.7.(2019•达州)如图,在Rt△ABC中,∠ACB=90°,AC=2,BC=3.(1)尺规作图:不写作法,保留作图痕迹.①作∠ACB的平分线,交斜边AB于点D;②过点D作BC的垂线,垂足为点E.(2)在(1)作出的图形中,求DE的长.第27课尺规作图课前小测1.C.2.D.3.A.4.3.5.B.经典回顾考点一作线段垂直平分线【例1】解:(1)如图,直线EF即为所求;(2)∵四边形ABCD是菱形,∠ABC=75°,DC∥AB,∠A=∠C.∴∠ABD=∠DBC=12∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°,∵EF垂直平分线线段AB,∴AF=FB,∴∠A=∠FBA=30°,∴∠DBF=∠ABD﹣∠FBE=45°.考点二作角平分线【例2】(1)解:如图,DE为所求;(2)证明:∵DE平分∠ADB,∴∠ADE=∠BDE,∵∠ADB=∠C+∠DAC,而∠C=∠DAC,∴2∠BDE=2∠C,即∠BDE=∠C,∴DE∥AC.考点三作垂线【例3】解:(1)如图,MN为所求;(2)∵AD⊥BC,∴∠ADB=∠ADC=90°,∵tan∠BAD=BDAD =34,∴BD=3,∴CD=BC﹣BD=5﹣3=2.考点四作一个角等于已知角【例4】解:(1)如图,∠ADE为所作;(2)∵∠ADE=∠B∴DE∥BC,∴AEEC =ADDB=2.对应训练1.解:(1)如图直线MN即为所求.(2)∵MN垂直平分线段AB,∴DA=DB,设DA=DB=x,在Rt△ACD中,∵AD2=AC2+CD2,∴x2=42+(8﹣x)2,解得x=5,∴BD=5.2.解:(1)如图,BE为所作;(2)∵四边形ABCD为平行四边形,∴AD∥BC,AB=CD=2,AD=BC,∵平行四边形ABCD的周长为10∴AB+AD=5,∴AD=3,∵BE平分∠ABC,∴∠ABE=∠CBE,∵AD∥BC,∴∠ABE=∠AEB,∴AE=AB=2,∴DE=AD﹣AE=3﹣2=1.3.解:(1)如图,CD为所作.(2)∵AB=5,BD=2,∴AD=3,∴点A到CD的距离为3.4.解:(1)如图,∠ABD为所作;(2)∵∠ABC+∠C+∠A=90°,∴∠ABC=180°﹣90°﹣30°=60°,∵∠ABD=∠C=30°,∴∠BDC=∠ABC﹣∠ABD=60°﹣30°=30°,∴∠BDC=180°﹣30°﹣30°=120°.中考冲刺夯实基础1.解:(1)如图,CE为所作;(2)∵四边形ABCD为平行四边形,∴AD=BC=5,CD=AB=3,∵点E在线段AC的垂直平分线上,∴EA=EC,∴△DCE的周长=CE+DE+CD=EA+DE+CD=AD+CD=5+3=8.2.解:(1)如图即为所求:(2)△ACE是等腰三角形.证明:∵CE平分∠ACD,∴∠ACE=∠ECD,∵AB∥CD,∴∠AEC =∠ECD ,∴∠ACE =∠AEC ,∴△ACE 是等腰三角形.3.(1)解:如图,点D 为所作;(2)证明:∵AB =AC ,∴∠ABC =∠C =(180°﹣36°)=72°, ∵DA =DB ,∴∠ABD =∠A =36°,∴∠BDC =∠A +∠ABD =36°+36°=72°, ∴∠BDC =∠C ,∴△BCD 是等腰三角形.4.(1)解:如图,F 点为所作;(2)证明:∵四边形ABCD 为矩形, ∴AD ∥BC ,∠B =90°,∴∠DAE =∠AEB ,∵DF ⊥AE ,∴∠AFD =90°,在△ABE 和△DFA 中B DFAAEB DAF AE AD=⎧⎪=⎨⎪=⎩∠∠∠∠,∴△ABE≌△DFA(AAS),∴AB=DF.能力提升5.解:(1)如图⊙O即为所求.(2)25π.6.解:(1)如图,∠CBD为所作;(2)∵AB=AC,∴∠ABC=∠C=1(180°﹣∠A)=70°,2∵∠CBD=∠A=40°,∴∠ABD=70°﹣40°=30°.7.解:(1)如图,DE为所作;(2)∵CD平分∠ACB,∴∠BCD=12∠ACB=45°,∵DE⊥BC,∴△CDE为等腰直角三角形,∴DE=CE,∵DE∥AC,∴△BDE∽△BAC,∴DEAC =BEBC,即2DE=33DE,∴DE=65.。
2020年中考数学一轮复习基础考点及题型专题27 尺规作图与命题的证明(解析版)
专题27 尺规作图与命题的证明考点总结【思维导图】【知识要点】知识点一尺规作图尺规作图的概念:用无刻度直尺和圆规作图,叫做尺规作图。
基本作图方法:1、作一条线段等于已知线段2、作一个角等于已知角3、作已知角的角平分线4、过一点作已知线段的垂线5、作已知线段的垂直平分线【考查题型汇总】考查题型一运用基本作图确定几何图形特殊位置1.(2019·江苏中考模拟)按要求作图,并保图作图痕迹.如图,已知线段a、b、c,用圆规和直尺作线段AD,使AD=a+2b﹣c.【答案】见解析.【详解】解:如图所示:AE即为所求.2.(2019·山东中考模拟)如图,已知点C是∠AOB的边OB上的一点,求作⊙P,使它经过O、C两点,且圆心在∠AOB的平分线上.【答案】见试题解析【解析】如图所示:.3.(2019·广东中考模拟)如图,在锐角△ABC 中,AB =2cm ,AC =3cm .(1)尺规作图:作BC 边的垂直平分线分别交AC ,BC 于点D 、E (保留作图痕迹,不要求写作法); (2)在(1)的条件下,连结BD ,求△ABD 的周长.【答案】(1)作图见解析;(2)ABD 的周长为5cm. 【解析】(1)如图,DE 为所作;(2)∵DE 垂直平分BC , ∴DB=DC ,∴△ABD 的周长=AB+BD+AD=AB+CD+AD=AB+AC=2+3=5(cm ).4.(2018·山东中考模拟)如图:求作一点P ,使PM PN =,并且使点P 到AOB ∠的两边的距离相等.【答案】见解析【详解】如图所示:P点即为所求.5.(2019·江苏中考模拟)如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹)(1)作△ABC的外接圆圆心O;(2)设D是AB边上一点,在图中作出一个等边△DFH,使点F,点H分别在边BC和AC上;(3)在(2)的基础上作出一个正六边形DEFGHI.【答案】(1)见解析(2)见解析(3)见解析【详解】(1)如图所示:点O即为所求.(2)如图所示,等边△DFH即为所求;(3)如图所示:六边形DEFGHI即为所求正六边形.6.(2019·吉林东北师大附中中考模拟)图①、图②均是8×8的正方形网格,每个小正方形的顶点称为格点,点A、B、M、N均落在格点上,在图①、图②给定的网格中按要求作图.(1)在图①中的格线MN上确定一点P,使PA与PB的长度之和最小(2)在图②中的格线MN上确定一点Q,使∠AQM=∠BQM.要求:只用无刻度的直尺,保留作图痕迹,不要求写出作法.【答案】(1)见解析;(2)见解析.【详解】解:(1)如图①,作A关于MN的对称点A′,连接BA′,交MN于P,此时PA+PB=PA′+PB=BA′,根据两点之间线段最短,此时PA+PB最小;(2)如图②,作B关于MN的对称点B′,连接AB′并延长交MN于Q,此时∠AQM=∠BQM.考查题型二运用基本作图确定实际问题特殊位置1.(2019·甘肃中考模拟)同学们,数学来源于生活又服务于生活,利用数学中的知识可以帮助我们解决许多实际问题.如王明想建一个超市,经调查发现他家附近有两个大的居民区A,B,同时又有相交的两条公路CD,EF,为方便进货和居民生活,王明想把超市建在到两居民区的距离相等,同时到两公路距离也相等的位置上,绘制了如下的居民区和公路的位置图.聪明的你一定能用所学的数学知识帮助王明在图上确定超市的位置!请用尺规作图....确定超市点P的位置.(作图不写作法,但要求保留作图痕迹)分析:先将实际问题转化为数学问题,把超市看作一个点.点P到A,B两点的距离相等,根据性质:__________________,需用尺规作出_____________;又点P到两相交直线CD,EF的距离相等,根据性质:_________________,需用尺规作出_______________;而点P同时满足上述两个条件,因此应该是它们的交点.请同学们先完成分析过程(即填空) ,再作图;【答案】如图所示见解析. 线段垂直平分线上的点到线段两个端点的距离相等,线段AB的垂直平分线,角的角平分线.平分线上的点到角两边的距离相等,COF【详解】如图所示,线段垂直平分线上的点到线段两个端点的距离相等线段AB的垂直平分线角平分线上的点到角两边的距离相等的角平分线COF2.(2019·福建省永春第二中学初一期末)如图,在同一平面内有四个点A、B、C、D,请按要求完成下列问题.(注:此题作图不需要写画法和结论)(1)作射线AC;(2)作直线BD与射线AC相交于点O;(3)分别连接AB、AD;(4)我们容易判断出线段AB、AD、BD的数量关系式AB+AD>BD,理由是______.【答案】(1)见解析;(2)见解析;(3)见解析;(4)两点之间,线段最短.【详解】解:(1)(2)(3)如图所示;(4)AB+AD>BD理由是:两点之间,线段最短.故答案为:两点之间,线段最短.知识点二命题、定理与证明命题的概念:像这样判断一件事情的语句,叫做命题。
尺规作图---重点难点考点真题(word+答案)
专题尺规作图问题专题知识回顾1.尺规作图的定义:只用不带刻度的直尺和圆规通过有限次操作,完成画图的一种作图方法.尺规作图可以要求写作图步骤,也可以要求不一定要写作图步骤,但必须保留作图痕迹。
2.尺规作图的五种基本情况:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作已知线段的垂直平分线;(4)作已知角的角平分线;(5)过一点作已知直线的垂线。
3.对尺规作图题解法:写出已知,求作,作法(不要求写出证明过程)并能给出合情推理。
4.中考要求:(1)能完成以下基本作图:作一条线段等于已知线段,作一个角等于已知角,作角的平分线,作线段的垂直平分线.(2)能利用基本作图作三角形:已知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边及底边上的高作等腰三角形.(3)能过一点、两点和不在同一直线上的三点作圆.(4)了解尺规作图的步骤,对于尺规作图题,会写已知、求作和作法(不要求证明).专题典型题考法及解析【例题1】(2019•湖南长沙)如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD的度数是()A.20°B.30°C.45°D.60°【例题2】(2019山东枣庄)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.【例题3】(2019年贵州安顺模拟题)用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.(SAS)B.(SSS)C.(ASA)D.(AAS)【例题4】(2019•山东青岛)请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:∠α,直线l及l上两点A,B.求作:Rt△ABC,使点C在直线l的上方,且∠ABC=90°,∠BAC=∠α.一一、选择题1.(2019•广西北部湾)如图,在△ABC中,AC=BC, ∠A=400,观察图中尺规作图的痕迹,可知∠BCG的度数为()A.400B.450 C.500D.6002.(2019·贵州贵阳)如图,在△ABC中,AB=AC,以点C为圆心,CB长为半径画弧,交AB于点B和点D,再分别以点B,D为圆心,大于BD长为半径画弧,两弧相交于点M,作射线CM交AB于点E.若AE=2,BE=1,则EC的长度是()A.2B.3C.D.3.(2019•河北省)根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A.B.C.D.4.(2019•山东潍坊)如图,已知∠AO B.按照以下步骤作图:①以点O为圆心,以适当的长为半径作弧,分别交∠AOB的两边于C,D两点,连接C D.②分别以点C,D为圆心,以大于线段OC的长为半径作弧,两弧在∠AOB内交于点E,连接CE,DE.③连接OE交CD于点M.下列结论中错误的是()专题典型训练题A.∠CEO=∠DEO B.CM=MDC.∠OCD=∠ECD D.S四边形OCED=CD•OE 5.(2019•湖北宜昌)通过如下尺规作图,能确定点D是BC边中点的是( )A.B.C.D.6.(经典题)作一条线段等于已知线段。
2023年中考数学---《尺规作图》知识总结与专项练习题(含答案解析)精选全文完整版
2023年中考数学---《尺规作图》知识总结与专项练习题(含答案解析)知识总结1.尺规作图是指用没有刻度的直尺和圆规作图.只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.2.基本要求它使用的直尺和圆规带有想像性质,跟现实中的并非完全相同.①直尺必须没有刻度,无限长,且只能使用直尺的固定一侧.只可以用它来将两个点连在一起,不可以在上画刻度.②圆规可以开至无限宽,但上面亦不能有刻度.它只可以拉开成你之前构造过的长度3.基本作图有:(1)作一条线段等于已知线段.(2)作一个角等于已知角.(3)作已知线段的垂直平分线.具体步骤:①以线段两个端点为圆心,大于线段长度的一半为半径画圆弧,两圆弧在线段的两侧别分交于M、N。
如图①②连接MN,过MN的直线即为线段的垂直平分线。
如图②(4)作已知角的角平分线.具体步骤:①以角的顶点O为圆心,一定长度为半径画圆弧,圆弧与角的两边分别交于两点M、N。
如图①。
②分别以点M与点N为圆心,大于MN长度的一半为半径画圆弧,两圆弧交于点P。
如图②。
③连接OP,OP即为角的平分线。
(5)过一点作已知直线的垂线.4.复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作。
5.设计作图:应用与设计作图主要把简单作图放入实际问题中.首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图。
专项练习题1.尺规作图(保留作图痕迹,不要求写出作法):如图,已知线段m,n.求作△ABC,使∠A=90°,AB=m,BC=n.【分析】先在直线l上取点A,过A点作AD⊥l,再在直线l上截取AB=m,然后以B点为圆心,n为半径画弧交AD于C,则△ABC满足条件.【解答】解:如图,△ABC为所作.2.如图,在△ABC中,AB=AC,BD是△ABC的角平分线.(1)作∠ACB的角平分线,交AB于点E(尺规作图,不写作法,保留作图痕迹);(2)求证:AD=AE.【分析】(1)按照角平分线的作图步骤作图即可.(2)证明△ACE≌△ABD,即可得出AD=AE.【解答】(1)解:如图所示.(2)证明:∵AB=AC,∴∠ABC=∠ACB,∵BD是∠ABC的角平分线,CE是∠ABC的角平分线,∴∠ABD=∠ACE,∵AB=AC,∠A=∠A,∴△ACE≌△ABD(ASA),∴AD=AE.3.如图,已知线段AC和线段a.(1)用直尺和圆规按下列要求作图.(请保留作图痕迹,并标明相应的字母,不写作法)①作线段AC的垂直平分线l,交线段AC于点O;②以线段AC为对角线,作矩形ABCD,使得AB=a,并且点B在线段AC的上方.(2)当AC=4,a=2时,求(1)中所作矩形ABCD的面积.【分析】(1)①按照线段垂直平分线的作图步骤作图即可.②以点O为圆心,OA的长为半径画弧,再以点A为圆心,线段a的长为半径画弧,两弧在线段AC上方交于点B,同理,以点O为圆心,OC的长为半径画弧,再以点C为圆心,线段a的长为半径画弧,两弧在线段AC下方交于点D,连接AD,CD,AB,BC,即可得矩形ABCD.(2)利用勾股定理求出BC,再利用矩形的面积公式求解即可.【解答】解:(1)①如图,直线l即为所求.②如图,矩形ABCD即为所求.(2)∵四边形ABCD为矩形,∴∠ABC=90°,∵a=2,∴AB=CD=2,∴BC=AD===,∴矩形ABCD的面积为AB•BC=2×=.4.如图,四边形ABCD中,AB∥DC,AB=BC,AD⊥DC于点D.(1)用尺规作∠ABC的角平分线,交CD于点E;(不写作法,保留作图痕迹)(2)连接AE.求证:四边形ABCE是菱形.【分析】(1)根据角平分线的作图步骤作图即可.(2)由角平分线的定义和平行四边形的判定定理,可得四边形ABCE为平行四边形,再结合AB=BC,可证得四边形ABCE为菱形.【解答】(1)解:如图所示.(2)证明:∵BE是∠ABC的角平分线,∴∠ABE=∠CBE,∵AB∥CD,∴∠ABE=∠BEC,∴∠CBE=∠BEC,∴BC=EC,∵AB=BC,∴AB=EC,∴四边形ABCE为平行四边形,∵AB=BC,∴四边形ABCE为菱形.5.如图,在4×4的方格纸中,点A,B在格点上.请按要求画出格点线段(线段的端点在格点上),并写出结论.(1)在图1中画一条线段垂直AB.(2)在图2中画一条线段平分AB.【分析】(1)利用数形结合的思想作出图形即可;(2)利用矩形的对角线互相平分解决问题即可.【解答】解:(1)如图1中,线段EF即为所求(答案不唯一);(2)如图2中,线段EF即为所求(答案不唯一).6.“水城河畔,樱花绽放,凉都宫中,书画成风”的风景,引来市民和游客争相“打卡”留念.已知水城河与南环路之间的某路段平行宽度为200米,为避免交通拥堵,请在水城河与南环路之间设计一条停车带,使得每个停车位到水城河与到凉都宫点F的距离相等.(1)利用尺规作出凉都宫到水城河的距离(保留作图痕迹,不写作法);(2)在图中格点处标出三个符合条件的停车位P1,P2,P3;(3)建立平面直角坐标系,设M(0,2),N(2,0),停车位P(x,y),请写出y与x之间的关系式,在图中画出停车带,并判断点P(4,﹣4)是否在停车带上.【分析】(1)利用过直线外一点作垂线的方法作图即可;(2)根据停车位到水城河与到凉都宫点F的距离相等,可得点P1,P2,P3;(3)根据停车位P(x,y)到点F(0,﹣1)和直线y=1的距离相等,得1﹣y=,从而解决问题.【解答】解:(1)如图,线段F A的长即为所求;(2)如图,点P1,P2,P3即为所求;(3)∵停车位P(x,y)到点F(0,﹣1)和直线y=1的距离相等,∴1﹣y=,化简得y=﹣,当x=4时,y=﹣4,∴点P(4,﹣4)在停车带上.7.图①、图②、图③均是5×5的正方形网格,每个小正方形的边长均为1,其顶点称为格点,△ABC的顶点均在格点上.只用无刻度的直尺,在给定的网格中,按下列要求作图,保留作图痕迹.(1)网格中△ABC的形状是;(2)在图①中确定一点D,连结DB、DC,使△DBC与△ABC全等;(3)在图②中△ABC的边BC上确定一点E,连结AE,使△ABE∽△CBA;(4)在图③中△ABC的边AB上确定一点P,在边BC上确定一点Q,连结PQ,使△PBQ∽△ABC,且相似比为1:2.【分析】(1)利用勾股定理的逆定理证明即可;(2)根据全等三角形的判定,作出图形即可;(3)根据相似三角形的判定作出图形即可;(4)作出AB,BC的中点P,Q即可.【解答】解:(1)∵AC==,AB==2,BC=5,∴AC2+AB2=BC2,∴∠BAC=90°,∴△ABC是直角三角形;故答案为:直角三角形;(2)如图①中,点D,点D′,点D″即为所求;(3)如图②中,点E即为所求;(4)如图③,点P,点Q即为所求.8.如图,⊙O是△ABC的外接圆,∠ABC=45°.(1)请用尺规作出⊙O的切线AD(保留作图痕迹,不写作法);(2)在(1)的条件下,若AB与切线AD所夹的锐角为75°,⊙O的半径为2,求BC的长.【分析】(1)过点A作AD⊥AO即可;(2)连接OB,OC.证明∠ACB=75°,利用三角形内角和定理求出∠CAB,推出∠BOC=120°,求出CH可得结论.【解答】解:(1)如图,切线AD 即为所求;(2)过点O 作OH ⊥BC 于H ,连接OB ,OC .∵AD 是切线,∴OA ⊥AD ,∴∠OAD =90°,∵∠DAB =75°,∴∠OAB =15°,∵OA =OB ,∴∠OAB =∠OBA =15°,∴∠BOA =150°,∴∠BCA =∠AOB =75°,∵∠ABC =45°,∴∠BAC =180°﹣45°﹣75°=60°,∴∠BOC =2∠BAC =120°,∵OB =OC =2,∴∠BCO =∠CBO =30°,∵OH ⊥BC ,∴CH =BH =OC •cos30°=,∴BC =2. 9.如图,在△ABC 中,AD 是△ABC 的角平分线,分别以点A ,D 为圆心,大于21AD 的长为半径作弧,两弧交于点M ,N ,作直线MN ,分别交AB ,AD ,AC 于点E ,O ,F ,连接DE ,DF .(1)由作图可知,直线MN 是线段AD 的 .(2)求证:四边形AEDF是菱形.【分析】(1)根据作法得到MN是线段AD的垂直平分线;(2)根据垂直平分线的性质则AF=DF,AE=DE,进而得出DF∥AB,同理DE∥AF,于是可判断四边形AEDF是平行四边形,加上F A=FD,则可判断四边形AEDF为菱形.【解答】(1)解:根据作法可知:MN是线段AD的垂直平分线;故答案为:垂直平分线;(2)证明:∵MN是AD的垂直平分线,∴AF=DF,AE=DE,∴∠F AD=∠FDA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠FDA=∠BAD,∴DF∥AB,同理DE∥AF,∴四边形AEDF是平行四边形,∵F A=FD,∴四边形AEDF为菱形.10.如图,已知Rt△ABC中,∠ACB=90°,AB=8,BC=5.(1)作BC的垂直平分线,分别交AB、BC于点D、H;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接CD,求△BCD的周长.【分析】(1)利用基本作图,作BC的垂直平分线即可;(2)根据线段垂直平分线的性质得到DC=DB,则利用等角的余角相等得到∠A=∠DCA,则DC=DA,然后利用等线段代换得到△BCD的周长=AB+BC.【解答】解:(1)如图,DH为所作;(2)∵DH垂直平分BC,∴DC=DB,∴∠B=∠DCB,∵∠B+∠A=90°,∠DCB+∠DCA=90°,∴∠A=∠DCA,∴DC=DA,∴△BCD的周长=DC+DB+BC=DA+DB+BC=AB+BC=8+5=13.11.已知:△ABC.(1)尺规作图:用直尺和圆规作出△ABC内切圆的圆心O.(只保留作图痕迹,不写作法和证明)(2)如果△ABC的周长为14cm,内切圆的半径为1.3cm,求△ABC的面积.【分析】(1)作∠ABC,∠ACB的角平分线交于点O,点O即为所求;(2)△ABC的面积=(a+b+c)•r计算即可.【解答】解:(1)如图,点O即为所求;(2)由题意,△ABC的面积=×14×1.3=9.1(cm2).12.已知四边形ABCD为矩形,点E是边AD的中点,请仅用无刻度的直尺完成下列作图,不写作法,保留作图痕迹.(1)在图1中作出矩形ABCD的对称轴m,使m∥AB;(2)在图2中作出矩形ABCD的对称轴n,使n∥AD.【分析】(1)如图1中,连接AC,BD交于点O,作直线OE即可;(2)如图2中,同法作出点O,连接BE交AC于点T,连接DT,延长TD交AB于点R,作直线OR即可.【解答】解:(1)如图1中,直线m即为所求;(2)如图2中,直线n即为所求;13.如图,在10×10的正方形网格中,小正方形的顶点称为格点,顶点均在格点上的图形称为格点图形,图中△ABC为格点三角形.请按要求作图,不需证明.(1)在图1中,作出与△ABC全等的所有格点三角形,要求所作格点三角形与△ABC有一条公共边,且不与△ABC重叠;(2)在图2中,作出以BC为对角线的所有格点菱形.【分析】(1)根据全等三角形的判定画出图形即可;(2)根据菱形的定义画出图形即可.【解答】解:(1)如图1中,△ABD1,△ABD2,△ACD3,△ACD4,△CBD5即为所求;(2)如图2中,菱形ABDC,菱形BECF即为所求.14.【问题提出】如何用圆规和无刻度的直尺作一条直线或圆弧平分已知扇形的面积?【初步尝试】如图1,已知扇形OAB,请你用圆规和无刻度的直尺过圆心O作一条直线,使扇形的面积被这条直线平分;【问题联想】如图2,已知线段MN,请你用圆规和无刻度的直尺作一个以MN为斜边的等腰直角三角形MNP;【问题再解】如图3,已知扇形OAB,请你用圆规和无刻度的直尺作一条以点O为圆心的圆弧,使扇形的面积被这条圆弧平分.(友情提醒:以上作图均不写作法,但需保留作图痕迹)【分析】【初步尝试】如图1,作∠AOB的角平分线OP即可;【问题联想】如图2,作线段MN的垂直平分线RT,垂足为R,在射线RT上截取RP=RM,连接MP,NP,三角形MNP即为所求;【问题再解】方法一:构造等腰直角三角形OBE,作BC⊥OE,以O为圆心,OC为半径画弧交OB于点D,交OA于点F,弧DF即为所求.方法二:作OB的中垂线交OB于点C,然后以C为圆心,CB长为半径画弧交OB中垂线于点D,再以O为圆心,OD长为半径画弧分别交OA、OB于点E、F.则弧EF即为所求.【解答】解:【初步尝试】如图1,直线OP即为所求;【问题联想】如图2,三角形MNP即为所求;【问题再解】如图3中,即为所求.15.如图,在6×6的方格纸中,点A,B,C均在格点上,试按要求画出相应格点图形.(1)如图1,作一条线段,使它是AB向右平移一格后的图形;(2)如图2,作一个轴对称图形,使AB和AC是它的两条边;(3)如图3,作一个与△ABC相似的三角形,相似比不等于1.【分析】(1)把点B、A向右作平移1个单位得到CD;(2)作A点关于BC的对称点D即可;(3)延长CB到D使CD=2CB,延长CA到E点使CE=2CA,则△EDC满足条件.【解答】解:(1)如图1,CD为所作;(2)如图2,(3)如图3,△EDC为所作.。
尺规作图(作图原理)(人教版)(含答案).docx
学生做题前请先回答以下问题问题1:尺规作图是指用没有刻度的直尺和圆规作图,其中"尺〃指 __________________ ,作用是作线;“规〃指____ ,作用是________ 和______ .问题2:《尺规作图》一讲,我们讲了三种基本作图:①_____________________________ :②_____________________________ :③_____________________________ •问题3:尺规作图的题目,在书写作法时要注意:①_______________ :② _______________ .尺规作图(作图原理)(人教版)一、单选题(共9道,每道11分)1.尺规作图是指()A•用直尺规范作图B.用刻度尺和圆规作图C.用没有刻度的直尺和圆规作图D.用量角器和无刻度的直尺作图答案:C解题思路:尺规作图是指只用没有刻度的直尺和圆规作图.““尺"指没有刻度的直尺,““规"指圆规. 故选C.试题难度:三颗星知识点:尺规作图的定义2.下列作图语句中,不准确的是()A.过点A, B作直线ABB.以0为圆心作弧C.在射线AM ±截取AB=aD.延长线段AB到D,使DB=AB答案:B 解题思路:尺规作图是指只用没有刻度的直尺和圆规作图,几何作图重在操作的准确性和几何用语的规范性. 需注意两点:①由于是没有刻度的直尺,所以只可以用它来将两个点连在一起,不可以在上面画刻度;②用圆规作弧的时候必须点明圆心和半径.B选项只有圆心,无法作图.故选B.试题难度:三颗星知识点:几何语言的规范使用3.如图,点C在ZAOB的0B边上,用尺规作出了CN〃OA,作图痕迹中,弧EF是(A.以点C为圆心,0D长为半径所作的弧B.以点C为圆心,DM长为半径所作的弧C.以点E为圆心, 0D长为半径所作的弧D.以点E为圆心, DM长为半径所作的弧答案:A解题思路:作一个角等于已知角时,应该以c为圆心,OD长为半径作弧・故选A.试题难度:三颗星知识点:尺规作图4.如图所示,过点P作直线a的平行线b的作法的依据是()A.两直线平行,同位角相等B.同位角相等,两直线平行C.两直线平行,内错角相等D.内错角相等,两直线平行答案:D解题思路:如图所示,根据图中直线G方被。
尺规作图-历届中考真题汇总专题(含解析答案)(原卷版)
备战2015中考系列:数学2年中考1年模拟第四篇图形的性质专题25 尺规作图☞解读考点知识点名师点晴尺规作图尺规作图概念了解什么是尺规作图五种基本作图1.画一条线段等于已知线段会用尺规作图法完成五种基本作图,了解五种基本作图的理由,会使用精练、准确的作图语言叙述画图过程.2.画一个角等于已知角3.画线段的垂直平分线4.过已知点画已知直线的垂线5.画角平分线会利用基本作图画较简单的图形.1.画三角形会利用基本作图画三角形较简单的图形.2.画圆会利用基本作图画圆.☞2年中考[2014年题组]1. (2014·安顺)用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是( )A.SAS B.SSS C.ASA D.AAS2.(2014涉县一模)如图,AD为⊙O的直径,作⊙O的内接正三角形ABC,甲、乙两人的作法分别如下:甲:①作OD的垂直平分线,交⊙O于B,C两点.②连接AB,AC.△ABC即为所求作的三角形.乙:①以D为圆心,OD的长为半径作圆弧,交⊙O于B,C两点.②连接AB,BC,CA.△ABC即为所求作的三角形.对于甲、乙两人的作法,可判断( )A.甲、乙均正确 B.甲、乙均错误C.甲正确,乙错误 D.甲错误,乙正确3.(2014·玉林)如图,BC与CD重合,∠ABC=∠CDE=90°,△ABC≌△CDE,并且△CDE可由△ABC逆时针旋转而得到.请你利用尺规作出旋转中心O(保留作图痕迹,不写作法,注意最后用墨水笔加黑),并直接写出旋转角度是.4. (2014•河南)如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于12BC的长为半径作弧,两弧相交于M,N两点;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为5. (2014•梅州)如图,在Rt△ABC中,∠B=90°,分别以A、C为圆心,大于12AC长为半径画弧,两弧相交于点M、N,连结MN,与AC、BC分别交于点D、E,连结AE,则:(1)∠ADE= ;(2)AE EC;(填“=”“>”或“<”)(3)当AB=3,AC=5时,△ABE的周长=[2013年题组]1. (2013年江苏南通3分)如图,用尺规作出∠OBF=∠AOB,所画痕迹MN是【】A.以点B为圆心,OD为半径的弧B.以点C为圆心,DC为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DC为半径的弧2. (2013年山西省8分)如图,在△ABC中,AB=AC,D是BA延长线上的一点,点E是AC的中点。
尺规作图基础检测(人教版)(含答案)
尺规作图基础检测(人教版)一、单选题(共10道,每道10分)1.下列作图语句中,不准确的是( )A.过点A,B作直线ABB.以O为圆心作弧C.在射线AM上截取AB=aD.延长线段AB到D,使DB=AB答案:B解题思路:试题难度:三颗星知识点:尺规作图——几何语言的规范使用2.下列关于几何作图的语句正确的是( )A.延长射线AB到点C,使BC=ABB.点P在线段AB上,点Q在直线AB的反向延长线上C.将射线OA绕点O旋转180°,终边OB与始边OA的夹角为一个平角D.已知线段a,b满足2a>b>0,在同一直线上作线段AB=2a,BC=b,那么线段AC=2a-b答案:C解题思路:试题难度:三颗星知识点:尺规作图——几何语言的规范使用3.如图,点C在∠AOB的OB边上,用尺规作出了CN∥OA,作图痕迹中,弧EF是( )A.以点C为圆心,OD长为半径所作的弧B.以点C为圆心,DM长为半径所作的弧C.以点E为圆心,OD长为半径所作的弧D.以点E为圆心,DM长为半径所作的弧答案:A解题思路:试题难度:三颗星知识点:尺规作图4.如图,已知∠AOB,用尺规作∠AOB的平分线OP,作图痕迹中,弧EF是( )A.以点C为圆心,长为半径所作的弧B.以点C为圆心,大于长为半径所作的弧C.以点D为圆心,长为半径所作的弧D.以点D为圆心,大于长为半径所作的弧答案:B解题思路:试题难度:三颗星知识点:尺规作图5.根据下列要求作图:①连接AB,AD;②延长BA;③在BA的延长线上截取AC,使得AC=a.其中符合要求的是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:尺规作图6.如图,已知线段a,h,作等腰△ABC,使AB=AC,且BC=a,BC边上的高AD=h.张红的作法是:(1)作线段BC=a;(2)作线段BC的垂直平分线MN,MN与BC相交于点D;(3)在直线MN上截取线段h;(4)连接AB,AC,△ABC为所求的等腰三角形.上述作法的四个步骤中,有错误的一步你认为是( )A.(1)B.(2)C.(3)D.(4)答案:C解题思路:试题难度:三颗星知识点:尺规作图7.图中的尺规作图是作( )A.角的平分线B.一条线段等于已知线段C.一个角等于已知角D.线段的垂直平分线答案:D解题思路:试题难度:三颗星知识点:尺规作图8.已知∠α和线段m,n,求作△ABC,使BC=m,AB=n,∠ABC=∠α.作法的合理顺序为( )①在射线BF上截取线段BC=m;②作∠DBF=∠α;③在射线BD上截取线段BA=n;④连接AC,△ABC就是所求作的三角形.A.②④①③B.③①②④C.③④②①D.②③①④答案:D解题思路:试题难度:三颗星知识点:尺规作图9.已知∠α,∠β,线段a,求作△ABC,使BC=a,∠B=∠α,∠C=∠β.作法的合理顺序为( )①以B为顶点,以BC为一边,作∠DBC=∠α;②作一条线段BC=a;③以C为顶点,以CB为一边,在BC的同一侧,作∠ECB=∠β,CE交BD于点A;④△ABC 即为所求.A.①③④②B.①②③④C.②①③④D.①③②④答案:C解题思路:试题难度:三颗星知识点:尺规作图10.已知线段a,b和m,求作△ABC,使BC=a,AC=b,BC边上的中线AD=m,下列作法正确的为( )①作△ADC,使,AC=b,AD=m,延长CD到B,使BD=CD,连接AB;②作BC=a,作BC的垂直平分线交BC于点D,以点D为圆心,m长为半径作弧,以点C为圆心,b长为半径作弧,与前弧交于点A,连接AB,AC;③作线段BC=a,AC=b,AD=m,使得点D落在BC中点处,连接AB.A.①②B.①③C.②③D.①②③答案:A解题思路:试题难度:三颗星知识点:尺规作图——作三角形。
中考数学总复习《尺规作图》专项测试卷带答案
中考数学总复习《尺规作图》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________A层·基础过关1.(2024·深圳中考)在如图的三个图形中,根据尺规作图的痕迹,能判断射线AD平分∠BAC的是( )A.①②B.①③C.②③D.只有①2.(2024·呼伦贝尔、兴安盟中考)如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,适当长为半径画弧分别交AB,AC于点M和点N,再分别以点M,N为圆心,大于1MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D.若△ACD的面2积为8,则△ABD的面积是( )A.8B.16C.12D.243.(2024·广西中考)如图,在△ABC中,∠A=45°,AC>BC.(1)尺规作图:作线段AB的垂直平分线l,分别交AB,AC于点D,E;(要求:保留作图痕迹,不写作法,标明字母)(2)在(1)所作的图中,连接BE,若AB=8,求BE的长.4.(2024·浙江中考)尺规作图问题:如图1,点E是▱ABCD边AD上一点(不包含A,D),连接CE.用尺规作AF∥CE,F是边BC上一点.小明:如图2以C为圆心,AE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小丽:以点A为圆心,CE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小明:小丽,你的作法有问题.小丽:哦…我明白了!(1)证明:AF∥CE;(2)指出小丽作法中存在的问题.B层·能力提升AC的5.(2024·济南莱芜区模拟)如图,在矩形ABCD中,分别以点A,C为圆心,大于12长为半径画弧,两弧相交于M,N两点;作直线MN,分别交AD,BC于点E,F,连接AF 和CE.已知DE=3,AB=4,则以下四个结论中正确的是( )AC·EF;②AE=5;①S四边形AFCE=12③∠F AC=∠ACF=30°;④EF=2√5.A.①②③B.①②④C.②③④D.①②6.(2024·武汉中考)如图是由小正方形组成的3×4网格,每个小正方形的顶点叫格点.△ABC三个顶点都是格点.仅用无刻度的直尺在给定网格中完成四个画图任务,每个任务的画线不得超过三条.(1)在图(1)中,画射线AD交BC于点D,使AD平分△ABC的面积;(2)在(1)的基础上,在射线AD上画点E,使∠ECB=∠ACB;(3)在图(2)中,先画点F,使点A绕点F顺时针旋转90°到点C,再画射线AF交BC 于点G;(4)在(3)的基础上,将线段AB绕点G旋转180°,画对应线段MN(点A与点M对应,点B与点N对应).7.(2024·绥化中考)已知:△ABC.(1)尺规作图:画出△ABC的重心G.(保留作图痕迹,不要求写作法和证明)(2)在(1)的条件下,连接AG,BG.已知△ABG的面积等于5 cm2,则△ABC的面积是_________cm2.C层·素养挑战8.(2024·淄博淄川区二模)如图,在四边形ABCD中,AB=AD,AB⊥AD,顶点(k>0,x>0)的图象经过C(4,n),D两A(0,2),B(1,0)分别在y轴、x轴上反比例函数y=kx点.(1)求反比例函数的解析式;(2)请用无刻度的直尺和圆规作出线段BC的垂直平分线;(要求:不写作法,保留作图痕迹)(3)线段BC与(2)中所作的垂直平分线分别与BC,AD交于点M,N两点.求点M的坐标.参考答案A层·基础过关1.(2024·深圳中考)在如图的三个图形中,根据尺规作图的痕迹,能判断射线AD平分∠BAC的是(B)A.①②B.①③C.②③D.只有①2.(2024·呼伦贝尔、兴安盟中考)如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,适当长为半径画弧分别交AB,AC于点M和点N,再分别以点M,N为圆心,大于1MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D.若△ACD的面2积为8,则△ABD的面积是(B)A.8B.16C.12D.243.(2024·广西中考)如图,在△ABC中,∠A=45°,AC>BC.(1)尺规作图:作线段AB的垂直平分线l,分别交AB,AC于点D,E;(要求:保留作图痕迹,不写作法,标明字母)【解析】(1)图形如图所示:(2)在(1)所作的图中,连接BE,若AB=8,求BE的长.【解析】(2)∵DE垂直平分线段AB,∴EB=EA∴∠EBA=∠A=45°,∴∠BEA=90°AB=4∵BD=DA,∴DE=DB=DA=12∴BE=√2BD=4√2.4.(2024·浙江中考)尺规作图问题:如图1,点E是▱ABCD边AD上一点(不包含A,D),连接CE.用尺规作AF∥CE,F是边BC上一点.小明:如图2以C为圆心,AE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小丽:以点A为圆心,CE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小明:小丽,你的作法有问题.小丽:哦…我明白了!(1)证明:AF∥CE;【解析】(1)根据小明的作法知,CF=AE∵四边形ABCD是平行四边形∴AD∥BC,又∵CF=AE∴四边形AFCE是平行四边形∴AF∥CE;(2)指出小丽作法中存在的问题.【解析】(2)以A为圆心,EC为半径画弧,交BC于点F,此时可能会有两个交点,只有其中之一符合题意.故小丽的作法有问题.B层·能力提升AC的5.(2024·济南莱芜区模拟)如图,在矩形ABCD中,分别以点A,C为圆心,大于12长为半径画弧,两弧相交于M,N两点;作直线MN,分别交AD,BC于点E,F,连接AF 和CE.已知DE=3,AB=4,则以下四个结论中正确的是(B)AC·EF;②AE=5;①S四边形AFCE=12③∠F AC=∠ACF=30°;④EF=2√5.A.①②③B.①②④C.②③④D.①②6.(2024·武汉中考)如图是由小正方形组成的3×4网格,每个小正方形的顶点叫格点.△ABC三个顶点都是格点.仅用无刻度的直尺在给定网格中完成四个画图任务,每个任务的画线不得超过三条.(1)在图(1)中,画射线AD交BC于点D,使AD平分△ABC的面积;(2)在(1)的基础上,在射线AD上画点E,使∠ECB=∠ACB;(3)在图(2)中,先画点F,使点A绕点F顺时针旋转90°到点C,再画射线AF交BC 于点G;(4)在(3)的基础上,将线段AB绕点G旋转180°,画对应线段MN(点A与点M对应,点B与点N对应).【解析】(1)如图(1)中,线段AD即为所求;(2)如图(1)中,点E即为所求;(3)如图(2)中,点C,射线AF,点G即为所求;(4)如图(2)中,线段MN即为所求.7.(2024·绥化中考)已知:△ABC.(1)尺规作图:画出△ABC的重心G.(保留作图痕迹,不要求写作法和证明)【解析】(1)分别作出AB边和BC边的垂直平分线,与AB和BC边分别交于点N 和点M连接AM和CN如图所示,点G即为所求作的点.(2)在(1)的条件下,连接AG,BG.已知△ABG的面积等于5 cm2,则△ABC的面积是_________cm2.答案:15【解析】(2)∵点G是△ABC的重心∴AG=2MG∵△ABG的面积等于5 cm2∴△BMG的面积等于2.5 cm2∴△ABM的面积等于7.5 cm2.又∵AM是△ABC的中线∴△ABC的面积等于15 cm2.C层·素养挑战8.(2024·淄博淄川区二模)如图,在四边形ABCD中,AB=AD,AB⊥AD,顶点A(0,2),B(1,0)分别在y轴、x轴上反比例函数y=k(k>0,x>0)的图象经过C(4,n),D两x点.(1)求反比例函数的解析式;【解析】(1)过点D作DT⊥OA于点T.∵A(0,2),B(1,0)∴OA=2,OB=1∵AB⊥AD,DT⊥OT∴∠DTA=∠DAB=∠AOB=90°∵∠DAT+∠OAB=90°,∠OAB+∠ABO=90°,∴∠DAT=∠ABO ∵AD=AB∴△DTA≌△AOB(AAS)∴AT=OB=1,DT=AO=2∴OT=OA+AT=3∴D(2,3)∵反比例函数y=kx (k>0,x>0)的图象经过D点,∴3=k2,∴k=6∴反比例函数解析式为y=6x;(2)请用无刻度的直尺和圆规作出线段BC的垂直平分线;(要求:不写作法,保留作图痕迹)【解析】(2)如图,直线MN即为所求;(3)线段BC与(2)中所作的垂直平分线分别与BC,AD交于点M,N两点.求点M的坐标.【解析】(3)∵C(4,n)在y=6x的图象上∴n=32∴C(4,32)∵BM=CM,B(1,0)∴M(4+12,32+02)即M(52,34).第11页共11页。
尺规作图(讲义及答案)
尺规作图(讲义)➢课前预习1.尺规作图是指用没有刻度的直尺和圆规作图,其中“尺”指没有刻度的直尺,作用是作线;“规”指_________,作用是_______和_______.2.读一读,背一背常见的几何语言,并在旁边画一画:①连接AB;②延长线段AB到点C,使BC=AB;③延长线段AB交线段CD的延长线于点E;④过点A作AB∥CD;⑤过点A作AB⊥CD于点E.➢知识点睛1.基本作图:①作一条线段等于已知线段;②作一个角等于已知角;③作已知角的角平分线.书写作法时注意:________________,________________.2.应用作图:①______________________,设计作图方案;②调用__________________完成图形.➢精讲精练1.作一条线段等于已知线段.已知:如图,线段a.求作:线段AB,使AB=a.作法:(1)作射线AP;(2)以_________为圆心,_______为半径作弧,交射线AP于点B.___________即为所求.2.已知线段a,b(a b),作一条线段,使它等于2a-b.ab3.作一个角等于已知角.已知:如图,∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.AB作法:(1)作射线O′A′;(2)以________为圆心,_______为半径作弧,交OA于点C ,交OB 于点D ;(3)以____为圆心,____为半径作弧,交O′A′于点C ′; (4)____________,__________作弧,交前弧于点D ′; (5)过点D ′作射线O′B′. ∠A′O′B′_____________.证明:如图,连接________,________.在___________和___________中,______________________________________________________⎧⎪⎨⎪⎩(已作)(已作)(已作) ∴____________________( ) ∴____________________4. 作一个已知角的倍角.5. 过直线外一点作已知直线的平行线.已知:如图,A 是直线MN 外一点. 求作:直线AB ,使AB ∥MN .NMA6.已知两边及夹角作三角形.已知:如图,线段m,n,∠α.求作:△ABC,使∠A=∠α,AB=m,AC=n.αn m7.作已知角的角平分线.已知:如图,∠AOB.求作:射线OP,使∠AOP=∠BOP(即OP平分∠AOB).AOB作法:(1)________________,__________________作弧,交OA于点M,交OB于点N;(2)分别以______,______为圆心,______________为半径作弧,两弧在________________交于点P;(3)_________________________.______________________________.8.作已知角的四等分线.已知:如图,∠AOB.求作:射线OP,OQ,OM,使∠AOP=∠POQ=∠QOM=∠MOB(即OP,OQ,OM四等分∠AOB).AOB9.为打造“宜居城市”,某市拟在新竣工的扇形广场的内部修建一个音乐喷泉,要求音乐喷泉M在广场的两个入口P,Q的连线上(P,Q的位置如图所示),且到广场两边AB,AC的距离相等.请在题目给的原图上利用尺规作图作出音乐喷泉M的位置(不写作法,保留作图痕迹).10.请画出草图,解决下列问题:(1)在△ABC中,点D是AC边的中点,连接BD,若AB=5,BC=3,则△ABD和△BCD的周长的差是____________.(2)在△ABC中,BD平分∠ABC交AC于点D,过D作DE∥BC交AB 于点E,则∠AED和∠EDB的数量关系是________________________.(3)已知:在△ABC中,BO平分∠ABC,CO平分∠ACB,BO与CO交于点O,过点O作DE∥BC交AB于D,交AC于E,则DE_____BD+CE(选填“>”、“<”或“=”).(4)已知:在△ABC中,CE平分∠ACB交AB于E,过点E作ED∥AC 交BC于D,过D作DF∥CE交AB于F,则∠EDF和∠BDF的数量关系是_____________________.(5)已知:在△ABC中,∠A=80°,AB=AC,BD平分 ABC交AC于点D,CE ⊥BD交BD延长线于点E,则∠ECD=_______.(6)若等腰三角形一腰的垂直平分线与另一腰所在的直线夹角为30°,则此等腰三角形的顶角为______________.【参考答案】➢ 课前预习 1. 圆规、度量、截取 2. 略 ➢ 知识点睛1. 点线取名称,作弧说心径2. ①画出草图②基本作图 ➢ 精讲精练 1. 点A a 长线段AB 图略2. 略3. (2)点O ;任意长;(3)点O′;OC 长;(4)以点C′为圆心;CD 长为半径; 即为所求. CD ;C′D′;OCD △;'''O C D △''''''OC O C OD O D CD C D =⎧⎪=⎨⎪=⎩'''SSS '''OCD O C D A O B AOB ≅∠=∠∴△△()∴ 4. 略 5. 略 6. 略7. (1)以点O 为圆心任意长为半径(2)点M点N大于12MN 长AOB ∠内部(3)作射线OP 射线OP 即为所求 8. 略 9. 略 10. (1)2(2)2AED EDB ∠=∠ (3)=(4)EDF BDF ∠=∠ (5)15°(6)60°或120°。
《尺规作图》基础练习有
初中精选试卷
尺规作图
一、判断题
1.尺规作图是指用刻度尺和圆规作图()
2.尺规中的尺是指没有刻度的直尺()
3.用直尺和三角板过直线外一点作已知直线的平行线是尺规作图()
4.最基本的尺规作图是作线段和角()
二、填空题
1.已知线段 AB ,求作:线段 A ′B′,使 A ′B′= AB.
作法: (1)作射线 A ′C′.
(2)以点 A ′为圆心,以____________交 A ′C′于点 B′,_________就是所作的线
段.
2.已知:∠ AOB .
求作:∠ A ′O′B′,使∠ A ′O′B′=∠ AOB .
作法: (1)作射线 O′A′
(2)以点 O 为圆心,以_________长为半径画弧交OA 于点 C,交 OB 于点 D.
(3)以点 O′为圆心,以 _________长为半径画弧,交O′A′于点 C′.
(4)以点 C′为圆心,以 _________长为半径画弧,交前方的弧于点D′.
(5)过点 D′作射线 O′B′,∠ A ′O′B′就是所求作的角.
参照答案
一、 1.× 2.√ 3.× 4.√
二、 1. AB 为半径画弧A′B′
2.随意长OC CD。
甘肃省数学尺柜作图专项练习(教师版含解析)
甘肃省尺规作图专项练习(教师版)一.备考指导:解决尺规作图的有关问题,需掌握以下几种基本尺规作图:二.专项练习1. (本小题满分8分)如图,△ABC中,∠C=90°,∠A=30°.(1)用直尺和圆规,作AB边上的垂直平分线DE,交AC于点D,交AB于点E;(保留作图痕迹,不写作法)(2)连接BD,求证:BD平分∠CBA.第21题图1.(1)【解题指导】解答本题的关键是对作线段垂直平分线的方法的熟练运用.具体步骤如下:①分别以点A、B为圆心,以大于12AB的长度为半径画弧;②过两弧的交点作直线,交AC于点D,AB于点E.解:解如图所示,直线DE就是所要作的AB边上的中垂线;(3分)(2)【思路分析】欲证BD平分∠CBA,即证∠CBD=∠ABD,又根据垂直平分线的性质得∠ABD=∠A,再根据已知条件便可得证.证明:如图所示,第1题解图∵由(1)知DE是边AB上的垂直平分线,∴AD=BD,(4分)∴∠ABD=∠A=30°,(5分)∵∠C=90°,∴∠CBA=60°,∴∠CBD=∠CBA-∠ABD=60°-30°=30°,(6分)∴∠CBD=∠ABD, (7分)即BD平分∠CBA.(8分)2. (本小题满分5分)如图,在△ABC中,先作∠BAC的角平分线AD交BC于点D;再以AC边上的一点O为圆心,过A,D两点作⊙O.(用尺规作图,不写作法,保留作图痕迹)第2题图2.【解题指导】解答本题的关键是作出∠BAC的角平分线确定出点D的位置,再确定出圆心O的位置,作出⊙O.具体步骤如下:①以A为圆心,以小于AC长为半径画弧,分别交AB、AC于点E、H;②分别以H、E 为圆心,以大于12HE 长为半径画弧,两弧交于点P ;③连接AP 交BC 于点D ,再连接AD;第22题解图④分别以点A 、点D 为圆心,以大于12AD 长为半径画弧,两弧交于点F 、G ;⑤连接FG 交AC 于点O ,以O 为圆心,OA 长为半径画圆.⊙O 即为所求.解:作出角平分线AD ;(2分) 作出⊙O.(4分) 如图所示:(5分)3. (6分)如图,已知在△ABC 中,∠A =90°.(1)请用圆规和直尺作出⊙P ,使圆心P 在AC 边上,且与AB ,BC 两边都相切(保留作图痕迹,不写作法和证明).(2)若∠B =60°,AB =3.求⊙P 的面积.第21题图3. (1)【解题指导】先作∠ABC 的角平分线,交AC 于点P ,再以点P 为圆心,AP 为半径作圆即可.第21题解图解:如解图所示,则⊙P 为所求作的圆.(3分)解法提示:以点B 为圆心,任意长为半径画弧,分别交∠ABC 的两边于点D 、E ,分别以点D 、E 为圆心,以大于12DE 为半径画弧,两弧交于点F ,连接BF 交AC 于点P ,以点P 为圆心,PA 为半径作圆,则⊙P 即是所求作的圆.(2)【解题指导】根据切线长定理得∠ABP =30°,在Rt △APB 中,AP =3,可求⊙P 的面积.解:∵∠B =60°,BP 平分∠ABC , ∴∠ABP =30°(4分)∵tan∠ABP=APAB,∴AP=3(5分)∴S⊙P=3π(6分)4. (本小题满分5分)如图,在图中求作⊙P,使⊙P满足以线段MN为弦且圆心P到∠AOB两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)第4题图4.【解题指导】点P到∠AOB两边的距离相等,则点P在∠AOB的角平分线上;MN 是⊙O的弦,则P在MN的垂直平分线上.因此分别作出∠AOB的角平分线和MN的垂直平分线,其交点即是点P,而⊙P的半径等于PM,即可作出要求的⊙P.解:如解图:第4题解图⊙P为所求作的圆.(5分)5. (本小题满分5分)如图,已知⊙O,用尺规作⊙O的内接正四边形ABCD.(写出结论,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑.)第5题图5. 解:过圆心O作直线交⊙O于B、D两点,作线段BD的垂直平分线,交⊙O于A、C两点,连接AD、DC、CB、AB,四边形ABCD即为所求的正四边形.如解图,四边形ABCD即为所作.第5题解图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题27 尺规作图及证明(专题测试-基础)一、作图题(共14题;共133分)1.如图,AD是△ABC的角平分线(1)作线段AD的垂直平分线EF,分别交AB、AC于点E、F;(用直尺和圆规作图,标明字母,保留作图痕迹,不写作法.)(2)连接DE、DF,四边形AEDF是________形.(直接写出答案)2.如图,中,,,.(1)用直尺和圆规作的垂直平分线;(保留作图痕迹,不要求写作法)(2)若(1)中所作的垂直平分线交于点,求的长.3.如图,已知等腰△ABC顶角∠A=36°.(1)在AC上作一点D,使AD=BD(要求:尺规作图,保留作图痕迹,不必写作法和证明,最后用黑色墨水笔加墨);(2)求证:△BCD是等腰三角形.4.如图,AB为⊙O的直径,点C在⊙O上.(1)尺规作图:作∠BAC的平分线,与⊙O交于点D;连接OD,交BC于点E(不写作法,只保留作图痕迹,且用黑色墨水笔将作图痕迹加黑);(2)探究OE与AC的位置及数量关系,并证明你的结论.5.在Rt△ABC中,∠C=90°,∠A=30°,D,E,F分别是AC,AB,BC的中点,连接ED,EF.(1)求证:四边形DEFC是矩形;(2)请用无刻度的直尺在图中作出∠ABC的平分线(保留作图痕迹,不写作法).6.如图,在中,,,,D、E分别是斜边AB、直角边BC上的点,把沿着直线DE折叠.(1)如图1,当折叠后点B和点A重合时,用直尺和圆规作出直线DE;不写作法和证明,保留作图痕迹(2)如图2,当折叠后点B落在AC边上点P处,且四边形PEBD是菱形时,求折痕DE的长.7.如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.8.如图,在△ABC中,∠ABC=90°.(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC与⊙O的位置关系,直接写出结果.9.如图,在中,.(1)作的平分线交边于点,再以点为圆心,的长为半径作;(要求:不写作法,保留作图痕迹)(2)判断(1)中与的位置关系,直接写出结果.10.如图,在中.①利用尺规作图,在BC边上求作一点P,使得点P到AB的距离的长等于PC的长;②利用尺规作图,作出(1)中的线段PD.要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑11.如图,在△ABC中(1)作图,作BC边的垂直平分线分别交于AC,BC于点D,E(用尺规作图法,保留作图痕迹,不要求写作法)(2)在(1)条件下,连接BD,若BD=9,BC=12,求∠C的余弦值.12.如图,点D在△ABC的AB边上,且∠ACD=∠A。
(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系,并说明理由。
13.在△ABC中,∠C=90°(1)尺规作图:作AB的垂直平分线,交BC于点D,交AB于点E;(不写作法图,保留作图痕迹)(2)若AC=2,∠B=15°,求BD的长.14.如图,在△ABC中,AB>AC,AD平分∠BAC(1)尺规作图:在AD上标出一点P,使得点P到点B和点C的距离相等(不写作法,但必须保留作图痕迹);(2)过点P作PE⊥AB于点E,PF⊥AC于点F,求证:BE=CF;(3)若AB=a,AC=b,则BE=________,AE=________.二、综合题(共3题;共30分)15.如图,是菱形的对角线,,(1)请用尺规作图法,作的垂直平分线,垂足为,交于;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接,求的度数.16.如图,在中,点是边上的一点.(1)请用尺规作图法,在内,求作,使,交于;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若,求的值.17.如图,在中,.(1)尺规作图:不写作法,保留作图痕迹.①作的平分线,交斜边AB于点D;②过点D作BC的垂线,垂足为点E.(2)在(1)作出的图形中,求DE的长.答案解析部分一、作图题1.【答案】(1)解:如图,直线EF即为所求作的垂直平分线(2)菱形【考点】线段垂直平分线的性质,菱形的判定与性质,作图—尺规作图的定义【解析】【解答】(2)∵EF为AD的垂直平分线,则EA=ED,∠EAD=∠FAD,FA=FD,又∵AD是∠BAC的平分线,得∠DAF=∠EAD,∴∠FAD=∠EDA,则AF∥ED,同理AE∥FD,∴四边形AEDF为平行四边形,又∵EF⊥AD,故四边形AEDF为菱形.【分析】先利用垂直平分线的性质定理,和角平分线推导两组对边分别平行,得四边形EDBF为平行四边形,由对角线互相垂直,进而推导四边形EDFA为菱形。
2.【答案】(1)解:如图直线即为所求.(2)解:∵垂直平分线段,∴,设,在中,∵,∴,解得,∴【考点】线段垂直平分线的性质,作图—基本作图【解析】【分析】(1)利用尺规作图作出AB的垂直平分线MN。
(2)利用线段垂直平分线上的点到线段两端点的距离相等,可证得DA=DB;设DA=DB=x,在Rt△ACD 中,利用勾股定理建立关于x的方程,解方程求出x的值,可得到BD的长。
3.【答案】(1)解:如图,点D为所作;(2)证明:∵AB=AC,∴∠ABC=∠C=(180°﹣36°)=72°,∵DA=DB,∴∠ABD=∠A=36°,∴∠BDC=∠A+∠ABD=36°+36°=72°,∴∠BDC=∠C,∴△BCD是等腰三角形.【考点】三角形的外角性质,等腰三角形的判定与性质,作图—基本作图【解析】【分析】(1)分别以点A,B为圆心,大于AB长度的一半为半径画弧,两弧分别在AB的两侧相交,过这两交点作直线,该直线交AC于点D,点D就是所求的点;(2)根据等边对等角及三角形的内角和得出∠ABC=∠C=72°,∠ABD=∠A=36°,根据三角形的外角定理由∠BDC=∠A+∠ABD得出∠BDC的度数,根据等量代换得出∠BDC=∠C,故△BCD是等腰三角形。
4.【答案】(1)解;如图所示;(2)解;OE∥AC,OE= AC.理由如下:∵AD平分∠BAC,∴∠BAD= ∠BAC,∵∠BAD= ∠BOD,∴∠BOD=∠BAC,∴OE∥AC,∵OA=OB,∴OE为△ABC的中位线,∴OE∥AC,OE= AC【考点】三角形中位线定理,作图—基本作图【解析】【分析】(1)以点A为圆心,任意长度为半径画弧,交∠CAB的两边各一点,再分别以这两点为圆心,大于这两点间距离的一半的长度为半径画弧,两弧在∠BAC内部相交于一点,过这一点及点A画线交圆于点D,AD就是∠BAC的平分线;(2)OE∥AC,OE= AC ,理由如下:根据角平分线的定义得出∠BAD= ∠BAC,根据同弧所对的圆心角等于圆周角的一半得出∠BAD= ∠BOD,故∠BOD=∠BAC,根据同位角相等,二直线平行得出OE∥AC,根据过一边中点且平行于另一边的直线一定平分第三边得出OE为△ABC的中位线,从而得出结论OE∥AC,OE= AC 。
5.【答案】(1)证明:∵点D,E,F分别是AC,,AB,BC的中点,∴DE、EF是△ABC的中位线∴DE∥CF,EF∥DC∴四边形DEFC是平行四边形∵∠C=90°∴四边形DEFC是矩形(2)解:如图所示【考点】三角形中位线定理,矩形的判定,作图—基本作图【解析】【分析】(1)利用三角形中位线的定义及定理,易证DE∥CF,EF∥DC,利用平行四边形的判定定理,可证得四边形DEFC是平行四边形,然后由∠C=90°,利用矩形的判定定理可证得结论。
(2)连接EC、DF交于一点,然后过这一点和B作射线,利用直角三角形斜边上的中线等于斜边的一半,可知BE=CE,再由∠A=30°,可得∠ABC=60°,易证△BCE是等边三角形,利用等边三角形三线合一的性质,因此过点B和矩形CFED对角线的交点作射线即可。
6.【答案】(1)解:依题可得:作直线AB的垂直平分线DE,如图1所示:(2)解:连结BP,∵四边形PEBD是菱形,∴PE=BE,PE∥BD,设CE=x,∵BC=4,则BE=PE=4-x,又∵PE∥AB,∴△PCE∽△ACB,∴,∵BC=4,AC=3,∴AB=5,即,∴x= ,即CE= ,∴BE=PE= ,在Rt△PCE中,∴PC= = ,在Rt△PCB中,∴PB= = ,又∵S菱形PEBD=BE·PC= ·PB·DE,∴,∴DE= .【考点】菱形的性质,作图—基本作图,相似三角形的判定与性质【解析】【分析】(1)根据题意作直线AB的垂直平分线DE,由垂直平分线的做法作图即可.(2)连结BP,设CE=x,根据菱形性质和相似三角形的判定可得△PCE∽△ACB,由相似三角形的性质得,代入数值可得CE= ;在Rt△PCE和Rt△PCB中,根据勾股定理得PC、PB长,由菱形的等面积即可得DE值.7.【答案】(1)解:如图所示,直线EF即为所求;(2)解:∵四边形ABCD是菱形,∴∠ABD=∠DBC= ∠ABC=75°,DC∥AB,∠A=∠C.∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°,∵EF垂直平分线线段AB,∴AF=FB,∴∠A=∠FBA=30°,∴∠DBF=∠ABD﹣∠FBE=45°【考点】线段垂直平分线的性质,菱形的性质,作图—复杂作图【解析】【分析】(1)分别以A,B两点为圆心,大于AB长度一半的长度为半径画弧,两弧在AB的两侧分别相交,过这两个交点作直线,交AB于点E,交AD于点F,,直线EF即为所求;(2)根据菱形的性质得出∠ABD=∠DBC= ∠ABC=75°,DC∥AB,∠A=∠C.故∠ABC=150°,∠ABC+∠C=180°,∠C=∠A=30°,根据垂直平分线的性质得出AF=FB,根据等边对等角及角的和差即可得出答案。
8.【答案】(1)解:如图所示:(2)解:相切;过O点作OD⊥AC于D点,∵CO平分∠ACB,∴OB=OD,即d=r,∴⊙O与直线AC相切【考点】直线与圆的位置关系,切线的判定与性质,作图—基本作图【解析】【分析】(1)利用基本作图中作角平分线的方法做出角平分线,再以点O为圆心,OB的长为半径作⊙O即可。