求曲线的轨迹方程
解析几何求轨迹方程的常用方法
解析几何求轨迹方程的常用方法求轨迹方程的一般方法:1. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线〔如圆、椭圆、双曲线、抛物线〕的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。
2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标〔x ,y 〕表示该等量关系式,即可得到轨迹方程。
3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f 〔t 〕, y =g 〔t 〕,进而通过消参化为轨迹的普通方程F 〔x ,y 〕=0。
4. 代入法〔相关点法〕:如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,〔该点坐标满足某已知曲线方程〕,则可以设出P 〔x ,y 〕,用〔x ,y 〕表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。
5:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点〔含参数〕的坐标,再消去参数求得所求的轨迹方程〔假设能直接消去两方程的参数,也可直接消去参数得到轨迹方程〕,该法经常与参数法并用。
一:用定义法求轨迹方程例1:已知ABC ∆的顶点A ,B 的坐标分别为〔-4,0〕,〔4,0〕,C 为动点,且满足,sin 45sin sin C A B =+求点C 的轨迹。
例2: 已知ABC ∆中,A ∠、B ∠、C ∠的对边分别为a 、b 、c ,假设b c a ,,依次构成等差数列,且b c a >>,2=AB ,求顶点C 的轨迹方程.【变式】:已知圆的圆心为M 1,圆的圆心为M 2,一动圆与这两个圆外切,求动圆圆心P 的轨迹方程。
求曲线方程的几种常用方法
求曲线方程的几种常用方法求曲线的方程,是学习解析几何的基础,求曲线的方程常用的方法主要有:1.直接法:就是课本中主要介绍的方法。
若命题中所求曲线上的动点与已知条件能直接发生关系,这时,设曲线上动点坐标为(,x y )后,就可根据命题中的已知条件,研究动点形成的几何特征,在此基础上运用几何或代数的基本公式、定理等列出含有,x y 的关系式。
从而得到轨迹方程,这种求轨迹方程的方法称作直接法。
例1:在直角△ABC 中,斜边是定长2a (0)a >,求直角顶点C 的轨迹方程。
解法一:由于未给定坐标系,为此,首先建立直角坐标系,取AB 所在的直线为x 轴,AB 的有中点O 为坐标原点,过O 与AB 垂直的直线为y 轴(如图).则A (,0)a -,B (,0)a 。
设动点C 为(,)x y ,∵222||||||AC BC AB +=,∴2224a +=,即222x y a +=.由于C 点到达A 、B 位置时直角三角形ABC 不存在,轨迹中应除去A 、B 两点, 故所求方程为222x y a +=(x a ≠±)。
解法二:如解法一建立直角坐标系,设A (,0)a -,B (,0)a ,C (,)x y∵1AC BC k k =-, (1) ∴1y y x a x a =-+- , (2)化简得:222x y a += , (3)由于在x a ≠±时方程(2)与(3)不等价,故所求轨迹方程为222x y a +=(x a ≠±)。
解法三:如解法一建立直角坐标系,设A (,0)a -,B (,0)a ,且设动点C (,)x y 。
∵1||||2COAB =, a =,即222x y a +=。
轨迹中应除去A 、B 两点(理由同解法一),故所求轨迹方程为222x y a +=(x a ≠±)。
说明:利用这种方法求曲线方程的一般方法步骤:(1)建立适当的直角坐标系,用(,)x y 表示曲线上任意点M 的坐标;(2)写出适合条件p 的点M 的集合{|()}p M p m =;(3)用坐标表示()p m ,列出方程(,)0f x y =;(4)化简方程(,)0f x y =为最简形式;(5)证明以化简后的方程的解为坐标的点都是曲线上的点(此步骤经常省略,但一定要注意所求的方程中所表示的点是否都表示曲线上的点,要注意那些特殊的点。
求曲线的轨迹方程的方法
成都市新都香城中学数学组
李发林
2014年2月25日星期二
几种常见求轨迹方程的方法
1.直接法
由题设所给(或通过分析图形的几何性 质而得出)的动点所满足的几何条件列 出等式,再用坐标代替这等式,化简 得曲线的方程,这种方法叫直接法.
例1:已知一曲线是与两个定 点O(0,0)、A(3,0)距离的比为 1/2 的点的轨迹,求此曲线 的方程。教材P.86例5
3、过点P(2,4)作两条互 相垂直的直线l1,l2, l1交x轴 于A点,l2交y轴于点B,求 线段AB的中点M的轨迹方 程。
4、已知方程
x y 2(m 3) x 2(1 4m ) y 16m 9 0
2 2 2 4
表示一个圆。求圆心的轨迹方程。
结论:到两个定点A、B的距离之比等于常 数的点的轨迹:当=1时,轨迹是线段AB的 垂直平分线;当 1时,轨迹是圆。
练习:设两点A、B的距离 为8,求到A、B两点距离 的平方和是50的动点的轨 迹方程。
2.相关点法
若动点P(x,y)随已知曲线上的点 Q(x0,y0)的变动而变动,且x0、y0可 用x、y表示,则将Q点坐标表达式代 入已知曲线方程,即得点P的轨迹方 程.这种方法称为相关点法(或代换 法).
Y
p
o
A
X
变式2:如图,已知点P是圆x2+ y2=16上的一个动点,点A是x轴上的 定点,坐标为(12,0).若D点是AOP 的平分线与PA的交点,当点P在圆上 运动时,求点D的轨迹方程。Y Nhomakorabeap
o
A
X
练习:三角形ABC的两个顶点A, B的坐标分别是A(0,0),B (6,0)顶点C在曲线y=x2+3上 运动,求三角形ABC的重心G的 轨迹方程。
轨迹方程的求法
轨迹方程求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法、交轨法,待定系数法。
求轨迹方程,一定要注意轨迹的纯粹性和完备性.要注意区别“轨迹”与“轨迹方程”是两个不同的概念.1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这种方法称之为直接法;例1、已知直角坐标系中,点Q (2,0),圆C 的方程为221x y +=,动点M 到圆C 的切线长与MQ 的比等于常数()0λλ>,求动点M 的轨迹。
◎◎如图,圆1O 与圆2O 的半径都是1,124O O =. 过动点P 分别作圆2O 、圆2O 的切线PM PN ,(M N ,分别为切点),使得PM . 试建立适当的坐标系,并求动点P 的轨迹方程.2.定义法:运用解析几何中一些常用定义(例如圆锥曲线的定义),可从曲线定义出发直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程。
例2、动圆过定点,02p ⎛⎫ ⎪⎝⎭,且与直线2p x =-相切,其中0p >.求动圆圆心C 的轨迹的方程.◎◎ 已知圆C 的方程为 (x-2)2+y 2=100,点A 的坐标为(-2,0),M 为圆C 上任一点,AM 的垂直平分线交CM 于点P ,求点P 的方程。
◎◎已知A 、B 、C 是直线l 上的三点,且|AB|=|BC|=6,⊙O ′切直线l 于点A ,又过B 、C 作⊙O ′异于l 的两切线,设这两切线交于点P ,求点P 的轨迹方程.三、代入法:动点所满足的条件不易表述或求出,但形成轨迹的动点P(x,y)却随另一动点Q(x ’,y ’)的运动而有规律的运动,且动点Q 的轨迹为给定或容易求得,则可先将x ’,y ’表示为x,y 的式子,再代入Q 的轨迹方程,然而整理得P 的轨迹方程,代入法也称相关点法。
例3、P 是椭圆191622=+y x 上的动点, 作PD ⊥y 轴, D 为垂足, 求PD 中点的轨迹方程.◎◎已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别是F 1(-c ,0)、F 2(c ,0),Q 是椭圆外的动点,满足.2||1a F =点P 是线段F 1Q 与该椭圆的交点,点T 在线段F 2Q 上,并且满足.0||,022≠=⋅TF TF PT 求点T 的轨迹C 的方程.练习:1、方程y=122+--x x 表示的曲线是: ( )A 、双曲线B 、半圆C 、两条射线D 、抛物线2. 抛物线的准线l 的方程是y =1, 且抛物线恒过点P (1,-1), 则抛物线焦点弦的另一个端点Q 的轨迹方程是( ).A. (x -1)2=-8(y -1)B. (x -1)2=-8(y -1) (x ≠1)C. (y -1)2=8(x -1)D. (y -1)2=8(x -1) (x ≠1)3、动点p 与定点A(-1,0), B(1,0)的连线的斜率之积为-1,则p 点的轨迹方程是: ( )A 、x 2+y 2=1B 、x 2+y 2=1(x ≠±1)C 、x 2+y 2=1(x ≠1)D 、y=21x -4、一动点到两坐标轴的距离之和的2倍,等于该点到原点距离的平方,则动点的轨迹方程是: ( )A 、x 2+y 2=2(x+y)B 、x 2+y 2=2|x+y|C 、x 2+y 2=2(|x|+|y|)D 、x 2+y 2=2(x -y)5、动点P 到直线x=1的距离与它到点A (4,0)的距离之比为2,则P 点的轨迹是:( )A 、中心在原点的椭圆B 、中心在(5,0)的椭圆C 、中点在原点的双曲线D 、中心在(5,0)的双曲线6、已知圆x 2+y 2=4,过A (4,0)作圆的割线ABC ,则弦BC 中点的轨迹方程是 ( )A 、(x -2)2+y 2=4B 、(x -2)2+y 2=4(0≤x <1)C 、(x -1)2+y 2=4D 、(x -1)2+y 2=4(0≤x <1)7 . P 是椭圆191622=+y x 上的动点, 作PD ⊥y 轴, D 为垂足, 则PD 中点的轨迹方程为( ). A. 116922=+y x B. 196422=+y x C. 14922=+y x D. 19422=+y x 8、若一动圆与两圆x 2+y 2=1, x 2+y 2-8x+12=0都外切,则动圆圆心的轨迹为: ( )A 、抛物线B 、圆C 、双曲线的一支D 、椭圆9、点M 到F (3,0)的距离比它到直线x+4=0 的距离小1,则点M 的轨迹方程是:( )A 、y 2=12xB 、y 2=12x(x>0)C 、y 2=6xD 、y 2=6x(x>0)10、已知圆x 2+y 2=1,点A (1,0),△ABC 内接于圆,且∠BAC=60°,当B 、C 在圆上运动时,BC 中点的轨迹方程是 ( )A 、x 2+y 2=21B 、x 2+y 2=41C 、x 2+y 2=21(x<21)D 、x 2+y 2=41(x<41) 11、抛物线过点M (2,-4),且以x 轴为准线,此抛物线顶点的轨迹方程是 ( )A 、(x -2)2+(y+4)2=16 (0)y ¹B 、(x -2)2+4(y+2)2=16 (0)y ¹C 、(x -2)2-(y+4)2=16D 、(x -2)2+4(y+4)2=1612、中心在原点,焦点在坐标为(0,±52)的椭圆被直线3x -y -2=0截得的弦的中点的横坐标为21,则椭圆方程为 ( ) 222222222222A. 1 B. 1 C. 1 D.12575752525757525x y x y x y x y +=+=+=+= 13、已知⊙O :x 2+y 2=a 2, A(-a, 0), B(a, 0), P 1, P 2为⊙O 上关于x 轴对称的两点,则直线AP 1与直线BP 2的交点P 的轨迹方程为 ( )A 、x 2+y 2=2a 2B 、x 2+y 2=4a 2C 、x 2-y 2=4a 2D 、x 2-y 2=a 214、动圆与x 轴相切,且被直线y=x 所截得的弦长为2,则动圆圆心的轨迹方程为 。
求轨迹方程的常用方法
精选课件
5
方法技能形成与突破
考点1 利用直接法求轨迹方程 例1:如图 12-4-1 所示,过点 P(2,4)作互相垂直的直线 l1, l2.若 l1 交 x 轴于 A,l2 交 y 轴于 B,求线段 AB 中点 M 的轨迹方程.
圆、双曲线、抛物线、圆等),可用定义直接探求.
精选课件
2
(4)相关点法:动点 P(x,y)依赖于另一动点 Q(x0,y0)的变化而 变化,并且 Q(x0,y0)又在某已知曲线上,则可先用 x,y 的代数式 表示 x0,y0,再将 x0,y0 代入已知曲线得要求的轨迹方程.
(5)参数法:当动点 P(x,y)坐标之间的关系不易直接找到,也 没有相关动点可用时,可考虑将 x,y 均用一中间变量(参数)表示, 得参数方程,再消去参数得普通方程.
C.双曲线 D.抛物线
精选课件
7
考点2 利用定义法求轨迹方程
例 2:(2011 年广东)设圆 C 与两圆(x+ 5)2+y2=4,(x- 5)2 +y2=4 中的一个内切,另一个外切.
(1)求 C 的圆心轨迹 L 的方程;
(2)已知点
M3
5
5,4
5
5,F(
5,0),且 P 为 L 上动点,求
||MP|-|FP||的最大值及此时点 P 的坐标.
图 D21
精选课件
12
因为|MA|=|MB|, 所以|MC2|-|MC1|=|BC2|-|AC1|=3-1=2. 这表明动点 M 到两定点 C2,C1 的距离之差是常数 2. 根据双曲线的定义,动点 M 的轨迹为双曲线的左支(点 M 到 C2 的距离大,到 C1 的距离小). 这里 a=1,c=3,则 b2=8. 设点 M 的坐标为(x,y),其轨迹方程为 x2-y82=1(x≤-1).
圆锥曲线中轨迹方程问题的求法
第3讲 圆锥曲线中轨迹方程问题的求法一、考情分析 求曲线的轨迹方程是解析几何的两个基本问题之一。
求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系 这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点 。
二、经验分享求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法(1)直接法 直接法是将圆锥曲线中动点满足的几何关系或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程,当所求动点的要满足的条件简单明确时,直接按“建系设点、列出条件、代入坐标、整理化简、限制说明”五个基本步骤求轨迹方程, 称之直接法.(2)定义法 若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求;(3)相关点法 根据相关点所满足的方程,通过转换而求动点的轨迹方程;(4)参数法 若动点的坐标(x ,y )中的x ,y 分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程;求轨迹方程,一定要注意轨迹的纯粹性和完备性 要注意区别“轨迹”与“轨迹方程”是两个不同的概念三、题型分析(一) 直接法 直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程 当所求动点的要满足的条件简单明确时,直接按“建系设点、列出条件、代入坐标、整理化简、限制说明”五个基本步骤求轨迹方程, 称之直接法.例1 已知直角坐标平面上点Q (2,0)和圆C :122=+y x ,动点M 到圆C 的切线长与MQ 的比等于常 数()0>λλ(如图),求动点M 的轨迹方程,说明它表示什么曲线. 【变式训练】设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =。
求轨迹方程的常用方法(经典)
求轨迹方程的常用方法(一)求轨迹方程的一般方法:1. 待定系数法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。
2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。
3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ),y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。
4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。
5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。
6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。
(二)求轨迹方程的注意事项:1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P 的运动规律,即P 点满足的等量关系,因此要学会动中求静,变中求不变。
)()()(0)(.2为参数又可用参数方程表示程轨迹方程既可用普通方t t g y t f x ,y x ,F ⎩⎨⎧=== 来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。
曲线的轨迹方程的求法
曲线的轨迹方程的求法求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法(1)直接法 直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程(2)定义法 若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求(3)相关点法 根据相关点所满足的方程,通过转换而求动点的轨迹方程(4)参数法 若动点的坐标(x ,y )中的x ,y 分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程求轨迹方程,一定要注意轨迹的纯粹性和完备性 要注意区别“轨迹”与“轨迹方程”是两个不同的概念例1如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程命题意图 知识依托 利用平面几何的基本知识和两点间的距离公式建立线段AB 中点的轨迹方程错解分析 欲求Q 的轨迹方程,应先求R 的轨迹方程,不深刻,发现不了问题的实质,很难解决此题技巧与方法 的点的轨迹方程,再以此点作为主动点,所求的轨迹上的点为相关点,求得轨迹方程解 设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR | 又因为R 是弦AB 的中点,依垂径定理 在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2)又|AR |=|PR |=22)4(y x +-所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1=20,241+=+y y x , 代入方程x 2+y 2-4x -10=0,得244)2()24(22+⋅-++x y x -10=0 整理得 x 2+y 2=56,这就是所求的轨迹方程例2设点A 和B 为抛物线 y 2=4px (p >0)上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线命题意图 本题主要考查“参数法”求曲线的轨迹方程 知识依托 直线与抛物线的位置关系错解分析 当设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2)时,注意对“x 1=x 2”的讨论技巧与方法 将动点的坐标x 、y 用其他相关的量表示出来,然后再消掉这些量,从而就建立了关于x 、y 的关系解法一 设A (x 1,y 1),B (x 2,y 2),M (x ,y ) (x ≠0) 直线AB 的方程为x =my +a 由OM ⊥AB ,得m =-yx由y 2=4px 及x =my +a ,消去x ,得y 2-4p my -4pa =0所以y 1y 2=-4pa , x 1x 2=22122()(4)y y a p =所以,由OA ⊥OB ,得x 1x 2 =-y 1y 2 所以244a pa a p =⇒=故x =my +4p ,用m =-yx代入,得x 2+y 2-4px =0(x ≠0) 故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点解法二 设OA 的方程为y kx =,代入y 2=4px 得222(,)p p A k k则OB 的方程为1y x k =-,代入y 2=4px 得2(2,2)B pk pk - ∴AB 的方程为2(2)1ky x p k =--,过定点(2,0)N p ,由OM ⊥AB ,得M 在以ON 为直径的圆上(O 点除外) 故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点解法三 设M (x ,y ) (x ≠0),OA 的方程为y kx =,代入y 2=4px 得222(,)p p A k k则OB 的方程为1y x k=-,代入y 2=4px 得2(2,2)B pk pk -由OM ⊥AB ,得 M 既在以OA 为直径的圆 222220p p x y x y k k+--=……①上,又在以OB 为直径的圆 222220x y pk x pky +-+=……②上(O 点除外), ①2k ⨯+②得 x 2+y 2-4px =0(x ≠0)故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点例3某检验员通常用一个直径为2 cm 和一个直径为1 cm 的标准圆柱,检测一个直径为3 cm 的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱的直径为多少?命题意图 本题考查“定义法”求曲线的轨迹方程,及将实际问题转化为数学问题的能力 知识依托 圆锥曲线的定义,求两曲线的交点错解分析 正确理解题意及正确地将此实际问题转化为数学问题是顺利解答此题的关键 技巧与方法 研究所给圆柱的截面,建立恰当的坐标系,找到动圆圆心的轨迹方程解 设直径为3,2,1的三圆圆心分别为O 、A 、B ,问题转化为求两等圆P 、Q ,使它们与⊙O 相内切,与⊙A 、⊙B 相外切建立如图所示的坐标系,并设⊙P 的半径为r ,则 |PA |+|PO |=(1+r)+(1 5-r)=2 5∴点P 在以A 、O 为焦点,长轴长2 5的椭圆上,其方程为3225)41(1622y x ++=1 ① 同理P 也在以O 、B 为焦点,长轴长为2的椭圆上,其方程为 (x -21)2+34y 2=1 ②由①、②可解得)1412,149(),1412,149(-Q P ,∴r =73)1412()149(2322=+-故所求圆柱的直径为76cm 例4已知A 、B 为两定点,动点M 到A 与到B 的距离比为常数λ,求点M 的轨迹方程,并注明轨迹是什么曲线 解 建立坐标系如图所示, 设|AB |=2a ,则A (-a ,0),B (a ,0) 设M (x ,y )是轨迹上任意一点则由题设,得||||MB MA =λ,坐标代入,得2222)()(ya x y a x +-++=λ,化简得(1-λ2)x 2+(1-λ2)y 2+2a (1+λ2)x +(1-λ2)a 2=0(1)当λ=1时,即|M A|=|M B|时,点M 的轨迹方程是x =0,点M 的轨迹是直线(y 轴)(2)当λ≠1时,点M 的轨迹方程是x 2+y 2+221)1(2λ-λ+a x +a 2=0 点M 的轨迹是以(-221)1(λ-λ+a ,0)为圆心,|1|22λ-λa 为半径的圆曲线轨迹方程1 已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A 圆B 椭圆C 双曲线的一支D 抛物线2 设A 1、A 2是椭圆4922y x +=1的长轴两个端点,P 1、P 2是垂直于A 1A 2的弦的端点,则直线A 1P 1与A 2P 2交点的轨迹方程为( )A 14922=+y xB 14922=+x yC 14922=-y xD 14922=-x y3 △ABC 中,A 为动点,B 、C 为定点,B (-2a ,0),C (2a ,0),且满足条件sin C -sin B =21sin A ,则动点A 的轨迹方程为_________4 高为5 m 和3 m 的两根旗杆竖在水平地面上,且相距10 m ,如果把两旗杆底部的坐标分别确定为A (-5,0)、B (5,0),则地面观测两旗杆顶端仰角相等的点的轨迹方程是_________5 已知A 、B 、C 是直线l 上的三点,且|AB |=|BC |=6,⊙O ′切直线l 于点A ,又过B 、C 作⊙O ′异于l 的两切线,设这两切线交于点P ,求点P 的轨迹方程6 双曲线2222by a x -=1的实轴为A 1A 2,点P 是双曲线上的一个动点,引A 1Q ⊥A 1P ,A 2Q⊥A 2P ,A 1Q 与A 2Q 的交点为Q ,求Q 点的轨迹方程7 已知双曲线2222ny m x -=1(m >0,n >0)的顶点为A 1、A 2,与y 轴平行的直线l 交双曲线于点P 、Q(1)求直线A 1P 与A 2Q 交点M 的轨迹方程;(2)当m ≠n 时,求所得圆锥曲线的焦点坐标、准线方程和离心率8 已知椭圆2222by a x +=1(a >b >0),点P 为其上一点,F 1、F 2为椭圆的焦点,∠F 1PF 2的外角平分线为l ,点F 2关于l 的对称点为Q ,F 2Q 交l 于点R(1)当P 点在椭圆上运动时,求R 形成的轨迹方程;(2)设点R 形成的曲线为C ,直线l y =k (x +2a )与曲线C 相交于A 、B 两点,当△AOB 的面积取得最大值时,求k 的值曲线轨迹方程参考答案1 解析 ∵|PF 1|+|PF 2|=2a ,|PQ |=|PF 2|,∴|PF 1|+|PF 2|=|PF 1|+|PQ |=2a ,即|F 1Q |=2a ,∴动点Q 到定点F 1的距离等于定长2a ,故动点Q 的轨迹是圆 答案 A 2 解析 设交点P (x ,y ),A 1(-3,0),A 2(3,0),P 1(x 0,y 0),P 2(x 0,-y 0) ∵A 1、P 1、P 共线,∴300+=--x y x x y y ∵A 2、P 2、P 共线,∴300-=-+x yx x y y 解得x 0=149,149,3,92220200=-=-=y x y x x y y x 即代入得答案 C3 解析 由sin C -sin B =21sin A ,得c -b =21a ,∴应为双曲线一支,且实轴长为2a,故方程为)4(1316162222a x a y a x >=- 答案 )4(1316162222a x ay a x >=- 4 解析 设P (x ,y ),依题意有2222)5(3)5(5yx yx +-=++,化简得P 点轨迹方程为4x 2+4y 2-85x +100=0 答案 4x 2+4y 2-85x +100=05 解 设过B 、C 异于l 的两切线分别切⊙O ′于D 、E 两点,两切线交于点P 由切线的性质知 |BA |=|BD |,|PD |=|PE |,|CA |=|CE |,故|PB |+|PC |=|BD |+|PD |+|PC |=|BA |+|PE |+|PC |=|BA |+|CE |=|AB |+|CA |=6+12=18>6=|BC |,故由椭圆定义知,点P 的轨迹是以B 、C 为两焦点的椭圆,以l 所在的直线为x 轴,以BC 的中点为原点,建立坐标系,可求得动点P 的轨迹方程为728122y x +=1(y ≠0) 6 解 设P (x 0,y 0)(x ≠±a ),Q (x ,y ) ∵A 1(-a ,0),A 2(a ,0)由条件⎪⎩⎪⎨⎧-=±≠-=⎪⎪⎩⎪⎪⎨⎧-=-⋅--=+⋅+y a x y a x x x a x y a x y a x y a x y 220000000)( 11得而点P (x 0,y 0)在双曲线上, ∴b 2x 02-a2y 02=a 2b 2 即b 2(-x 2)-a 2(ya x 22-)2=a 2b 2化简a 2x 2-b 2y 2=a 4(x ≠±a )7 解 (1)设P 点的坐标为(x 1,y 1),则Q 点坐标为(x 1,-y 1),又有A 1(-m ,0),A 2(m ,0),则A 1P 的方程为 y =)(11m x m x y ++ ①A 2Q 的方程为 y =-)(11m x mx y -- ②①³②得 y 2=-)(2222121m x mx y -- ③又因点P 在双曲线上,故).(,12212221221221m x mn y n y m x -==-即代入③并整理得2222ny m x +=1 此即为M 的轨迹方程(2)当m ≠n 时,M 的轨迹方程是椭圆 (ⅰ)当m >n 时,焦点坐标为(±22n m -,0),准线方程为x =±222n m m -,离心率e =m n m 22-;(ⅱ)当m <n 时,焦点坐标为(0,±22n m -),准线方程为y =±222mn n -,离心率e =n m n 22-8 解 (1)∵点F 2关于l 的对称点为Q ,连接PQ ,∴∠F 2PR =∠QPR ,|F 2R |=|QR |,|PQ |=|PF 2|又因为l 为∠F 1PF 2外角的平分线,故点F 1、P 、Q 在同一直线上,设存在R (x 0,y 0),Q (x 1,y 1),F 1(-c ,0),F 2(c ,0) |F 1Q |=|F 2P |+|PQ |=|F 1P |+|PF 2|=2a ,则(x 1+c )2+y 12=(2a )2又⎪⎪⎩⎪⎪⎨⎧=+=221010y y c x x 得x 1=2x 0-c ,y 1=2y 0 ∴(2x 0)2+(2y 0)2=(2a )2,∴x 02+y 02=a 2 故R 的轨迹方程为 x 2+y 2=a 2(y ≠0)(2)如右图,∵S △AOB =21|OA |²|OB |²sin AOB =22a sin AOB当∠AOB =90°时,S △AOB 最大值为21a 2此时弦心距|OC |=21|2|kak +在Rt △AOC 中,∠AOC =45°,.33,2245cos 1|2|||||2±=∴=︒=+=∴k k a ak OA OC。
求轨迹方程
求轨迹方程编稿;周尚达审稿:张扬责编:严春梅目标认知学习目标:1.了解什么叫轨迹,并能根据所给的条件,选择恰当的直角坐标系求出曲线的轨迹方程。
2.在形成概念的过程中,培养分析、抽象和概括等思维能力,掌握形数结合、函数与方程、化归与转化等数学思想。
重点:掌握直接法、定义法(待定系数法)、相关点法、参数法等几种求曲线轨迹方程的常用方法。
难点:用相关点法、参数法求曲线轨迹方程。
学习策略:求轨迹方程是解析几何的基本内容,注意理解直接法、定义法(待定系数法)、相关点法、参数法等几种求曲线轨迹方程的常用方法通常各在什么情况下使用。
求出的轨迹方程,应注意避免增根或者丢根。
知识要点梳理求轨迹方程的主要方法(1)直接法:直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程。
(2)待定系数法:若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用待定系数法(定义法)直接探求。
(3)相关点法:根据相关点所满足的方程,通过转换而求动点的轨迹方程。
适合情况:一动点在基础曲线上运动,依某种条件带动另一动点的运动,我们要求另一动点的轨迹方程。
基本步骤:①建立两动点之间的关系,通常用所求动点的坐标表示已知动点的坐标;②将基础曲线上运动的点的坐标代入基础曲线的方程,整理后,即得所求曲线的方程。
☆(4)参数法:若动点的坐标中的分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程,再通过消去参数t得到x与y的关系式,这就是参数法。
规律方法指导1.求轨迹方程的一般思路:①若曲线的类型已确定,一般用待定系数法;②若曲线的类型未确定,但曲线上动点的运动在题目中有明确的表述,一般采用直接法;③若动点的变化依赖于另一相关点的变化,一般采用相关点法(代入转移法);④若动点坐标之间的关系不易找出,一般可采用参数法。
但应注意所列方程个数比参数个数要多一个,才可以消去参数。
2.求轨迹方程应注意的问题:①求轨迹方程后一定要注意轨迹的纯粹性和完备性;以保证方程的解与曲线上的点具有一一对应的关系, 尤其是题中涉及三角形、斜率、参数方程中参数的限制, 往往使方程产生增根。
求曲线轨迹方程的方法
四、参数法求曲线方程
若过点 P(1,1)且互相垂直的两条直线 l1,l2 分别与 x 轴,y 轴交于 A,B 两点,则 AB 中点 M 的轨迹方程为________.
四、参数法求曲线方程
【审题】 斜率存在时,点斜式设l1的方程→得l2的方程→ 联立方程→求交点坐标→消去参数→得结果→斜率不存在时将
三、相关点法求曲线轨迹方程
基本思路:
①设点:设被动点的坐标 M (x, y),主动点的坐标 P(x0, y0;) ②求关系式:用被动点的坐标M (x, y) 表示主动点的坐标 P(x0, y0 ),即
得关系式
xy00
g(x, h(x,
y) y)
③代换:将上述关系式带入主动点满足的方程,化简整理可得所求动 点的轨迹方程。
三、相关点法求曲线轨迹方程
x 例 在圆 x2 y2 4上任取一点P,过点P作 轴的垂线段PD,
D为垂足。当点P在圆上运动时,线段PD的中点M的轨迹方程。
解析:设M (x, y), P(x0 , y0 ),则x
x0 , y
y0 2
.
因为点P在圆上,所以x02 y02 4 。
把 x0 x, y0 2x带入上式得:x2 4 y2 4.
二:定义法求轨迹方程
思路:如果动点的轨迹满足某种已知曲线定义,则可由曲 线的定义直接写出方程,利用定义法求轨迹方程要善于抓 住曲线定义的特征。 要点:四种曲线定义及成立条件
方法:建系设点 定型(思考几何关系,进而寻求数量关系) 定方程 定范围
二:定义法求轨迹方程
圆的定义: |PC|=r (r>0) 椭圆的定义:
一:直接法(直译法)求轨迹方程
例 已知一条直线 l 和它上方的一个点F,点F到l 的距离是2.一条曲线 也 l 在的上方,它上面的每一点到F的距离减去到 l 的距离的差都是2,
求轨迹方程的常用方法及例题
求解轨迹方程的常用方法主要有以下几种:
参数方程法:通过引入参数,将轨迹上的点的坐标表示为参数的函数形式,然后通过给定参数的取值范围,确定轨迹上的点的位置关系。
隐式方程法:将轨迹方程中的自变量与因变量通过一个方程联系起来,形成一个隐式方程,然后通过对方程进行求解和化简,得到轨迹的几何性质。
极坐标方程法:对于某些曲线,使用极坐标系可以更方便地描述其轨迹。
通过将轨迹上的点的极坐标表示,可以得到轨迹的极坐标方程。
下面是一个例题:
例题:求解椭圆的轨迹方程。
解答:椭圆是一个平面上的闭合曲线,其定义特点是到两个焦点的距离之和恒定。
我们可以使用参数方程法来求解椭圆的轨迹方程。
假设椭圆的焦点为F1和F2,长轴长度为2a,短轴长度为2b。
取参数θ,定义点P在椭圆上的坐标为(x, y)。
那么根据椭圆的定义,可以得到以下参数方程:
x = a * cos(θ) y = b * sin(θ)
其中,θ的取值范围为0到2π。
通过给定θ的取值范围,我们可以得到椭圆上的点的坐标关系。
进一步化简参数方程,可以得到椭圆的隐式方程:
(x^2 / a^2) + (y^2 / b^2) = 1
这就是椭圆的轨迹方程,其中a和b分别为椭圆的长轴和短轴长度。
以上是求解轨迹方程的常用方法和一个椭圆轨迹方程的例题。
根据具体的问题和曲线类型,选择合适的方法进行求解和推导。
轨迹方程的五种求法
轨迹方程的五种求法一、直接法:直接根据等量关系式建立方程.例1:已知点(20)(30)A B -,,,,动点()P x y ,满足2PAPB x =u u u r u u u r·,则点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线 D .抛物线解析:由题知(2)PA x y =---u u u r ,,(3)PB x y =--u u u r ,,由2PA PB x =u u u r u u u r·,得22(2)(3)x x y x ---+=,即26y x =+,P ∴点轨迹为抛物线.故选D .二、定义法:运用有关曲线的定义求轨迹方程.例2:在ABC △中,24BC AC AB =,,上的两条中线长度之和为39,求ABC △的重心的轨迹方程. 解:以线段BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立直角坐标系,如图1,M 为重心,则有239263BM CM +=⨯=.M ∴点的轨迹是以B C ,为焦点的椭圆,其中1213c a ==,.225b a c =-=∴.∴所求ABC △的重心的轨迹方程为221(0)16925x y y +=≠. 三、转代法:此方法适用于动点随已知曲线上点的变化而变化的轨迹问题.例3:已知△ABC 的顶点(30)(10)B C -,,,,顶点A 在抛物线2y x =上运动,求ABC △的重心G 的轨迹方程. 解:设()G x y ,,00()A x y ,,由重心公式,得003133x x y y -++⎧=⎪⎪⎨⎪=⎪⎩,,00323x x y y =+⎧⎨=⎩, ①∴. ②又00()A x y ,∵在抛物线2y x =上,200y x =∴. ③将①,②代入③,得23(32)(0)y x y =+≠,即所求曲线方程是2434(0)3y x x y =++≠.四、参数法:如果不易直接找出动点坐标之间的关系,可考虑借助中间变量(参数),把x ,y 联系起来 例4:已知线段2AA a '=,直线l 垂直平分AA '于O ,在l 上取两点P P ',,使其满足4OP OP '=u u u r u u u u r·,求直线AP与A P ''的交点M 的轨迹方程.解:如图2,以线段AA '所在直线为x 轴,以线段AA '的中垂线为y 轴建立直角坐标系.设点(0)(0)P t t ≠,, 则由题意,得40P t ⎛⎫' ⎪⎝⎭,.由点斜式得直线AP A P '',的方程分别为4()()t y x a y x a a ta =+=--,.两式相乘,消去t ,得222244(0)x a y a y +=≠.这就是所求点M 的轨迹方程.评析:参数法求轨迹方程,关键有两点:一是选参,容易表示出动点;二是消参,消参的途径灵活多变. 五、待定系数法:当曲线的形状已知时,一般可用待定系数法解决.例5:已知A ,B ,D 三点不在一条直线上,且(20)A -,,(20)B ,,2AD =u u u r ,1()2AE AB AD =+u u u r u u u r u u u r.(1)求E 点轨迹方程;(2)过A 作直线交以A B ,为焦点的椭圆于M N ,两点,线段MN 的中点到y 轴的距离为45,且直线MN 与E 点的轨迹相切,求椭圆方程.解:(1)设()E x y ,,由1()2AE AB AD =+u u u r u u u r u u u r知E 为BD 中点,易知(222)D x y -,.又2AD =u u u r,则22(222)(2)4x y -++=. 即E 点轨迹方程为221(0)x y y +=≠; (2)设1122()()M x y N x y ,,,,中点00()x y ,.由题意设椭圆方程为222214x y a a +=-,直线MN 方程为(2)y k x =+.∵直线MN 与E 点的轨迹相切,1=,解得k =.将y =(2)x +代入椭圆方程并整理,得222244(3)41630a x a x a a -++-=,2120222(3)x x a x a +==--∴, 又由题意知045x =-,即2242(3)5a a =-,解得28a =.故所求的椭圆方程为22184x y +=.配套训练一、选择题1. 已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A.圆B.椭圆C.双曲线的一支D.抛物线2. 设A 1、A 2是椭圆4922y x +=1的长轴两个端点,P 1、P 2是垂直于A 1A 2的弦的端点,则直线A 1P 1与A 2P 2交点的轨迹方程为( )A.14922=+y xB.14922=+x yC.14922=-y x D.14922=-x y二、填空题3. △ABC 中,A 为动点,B 、C 为定点,B (-2a ,0),C (2a ,0),且满足条件sin C -sin B =21sin A ,则动点A 的轨迹方程为_________.4. 高为5 m 和3 m 的两根旗杆竖在水平地面上,且相距10 m ,如果把两旗杆底部的坐标分别确定为A (-5,0)、B (5,0),则地面观测两旗杆顶端仰角相等的点的轨迹方程是_________. 三、解答题5. 已知A 、B 、C 是直线l 上的三点,且|AB |=|BC |=6,⊙O ′切直线l 于点A ,又过B 、C 作⊙O ′异于l 的两切线,设这两切线交于点P ,求点P 的轨迹方程.6. 双曲线2222by a x -=1的实轴为A 1A 2,点P 是双曲线上的一个动点,引A 1Q ⊥A 1P ,A 2Q ⊥A 2P ,A 1Q 与A 2Q 的交点为Q ,求Q 点的轨迹方程.7. 已知双曲线2222ny m x -=1(m >0,n >0)的顶点为A 1、A 2,与y 轴平行的直线l 交双曲线于点P 、Q .(1)求直线A 1P 与A 2Q 交点M 的轨迹方程;(2)当m ≠n 时,求所得圆锥曲线的焦点坐标、准线方程和离心率.8.已知椭圆2222by a x +=1(a >b >0),点P 为其上一点,F 1、F 2为椭圆的焦点,∠F 1PF 2的外角平分线为l ,点F 2关于l 的对称点为Q ,F 2Q 交l 于点R .(1)当P 点在椭圆上运动时,求R 形成的轨迹方程;(2)设点R 形成的曲线为C ,直线l :y =k (x +2a )与曲线C 相交于A 、B 两点,当△AOB 的面积取得最大值时,求k 的值.参考答案配套训练一、1.解析:∵|PF 1|+|PF 2|=2a ,|PQ |=|PF 2|,∴|PF 1|+|PF 2|=|PF 1|+|PQ |=2a ,即|F 1Q |=2a ,∴动点Q 到定点F 1的距离等于定长2a ,故动点Q 的轨迹是圆.答案:A2.解析:设交点P (x ,y ),A 1(-3,0),A 2(3,0),P 1(x 0,y 0),P 2(x 0,-y 0)∵A 1、P 1、P 共线,∴300+=--x y x x y y ∵A 2、P 2、P 共线,∴300-=-+x yx x y y解得x 0=149,149,3,92220200=-=-=y x y x x y y x 即代入得答案:C二、3.解析:由sin C -sin B =21sin A ,得c -b =21a , ∴应为双曲线一支,且实轴长为2a,故方程为)4(1316162222a x a y a x >=-.答案:)4(1316162222ax a y a x >=-4.解析:设P (x ,y ),依题意有2222)5(3)5(5yx yx +-=++,化简得P 点轨迹方程为4x 2+4y 2-85x +100=0.答案:4x 2+4y 2-85x +100=0三、5.解:设过B 、C 异于l 的两切线分别切⊙O ′于D 、E 两点,两切线交于点P .由切线的性质知:|BA |=|BD |,|PD |=|PE |,|CA |=|CE |,故|PB |+|PC |=|BD |+|PD |+|PC |=|BA |+|PE |+|PC |=|BA |+|CE |=|AB |+|CA |=6+12=18>6=|BC |,故由椭圆定义知,点P 的轨迹是以B 、C 为两焦点的椭圆,以l 所在的直线为x 轴,以BC 的中点为原点,建立坐标系,可求得动点P 的轨迹方程为728122y x +=1(y ≠0)6.解:设P (x 0,y 0)(x ≠±a ),Q (x ,y ).∵A 1(-a ,0),A 2(a ,0).由条件⎪⎩⎪⎨⎧-=±≠-=⎪⎪⎩⎪⎪⎨⎧-=-⋅--=+⋅+y a x y a x x x a x y a x y a x y a x y 220000000)( 11得 而点P (x 0,y 0)在双曲线上,∴b 2x 02-a 2y 02=a 2b 2,即b 2(-x 2)-a 2(ya x 22-)2=a 2b 2化简得Q 点的轨迹方程为:a 2x 2-b 2y 2=a 4(x ≠±a ).7.解:(1)设P 点的坐标为(x 1,y 1),则Q 点坐标为(x 1,-y 1),又有A 1(-m ,0),A 2(m ,0),则A 1P 的方程为:y =)(11m x mx y ++ ①A 2Q 的方程为:y =-)(11m x mx y -- ②①×②得:y 2=-)(2222121m x mx y --③又因点P 在双曲线上,故).(,12212221221221m x m n y n y m x -==-即代入③并整理得2222ny m x +=1.此即为M 的轨迹方程.(2)当m ≠n 时,M 的轨迹方程是椭圆.(ⅰ)当m >n 时,焦点坐标为(±22n m -,0),准线方程为x =±222nm m -,离心率e =m n m 22-;(ⅱ)当m <n 时,焦点坐标为(0,±22n m -),准线方程为y =±222mn n -,离心率e =n m n 22-.8.解:(1)∵点F 2关于l 的对称点为Q ,连接PQ ,∴∠F 2PR =∠QPR ,|F 2R |=|QR |,|PQ |=|PF 2|又因为l 为∠F 1PF 2外角的平分线,故点F 1、P 、Q 在同一直线上,设存在R (x 0,y 0),Q (x 1,y 1),F 1(-c ,0),F 2(c ,0).|F 1Q |=|F 2P |+|PQ |=|F 1P |+|PF 2|=2a ,则(x 1+c )2+y 12=(2a )2.又⎪⎪⎩⎪⎪⎨⎧=+=221010y y c x x 得x 1=2x 0-c ,y 1=2y 0.∴(2x 0)2+(2y 0)2=(2a )2,∴x 02+y 02=a 2. 故R 的轨迹方程为:x 2+y 2=a 2(y ≠0)(2)如右图,∵S △AOB =21|OA |·|OB |·sin AOB =22a sin AOB当∠AOB =90°时,S △AOB 最大值为21a 2.此时弦心距|OC |=21|2|kak +.在Rt △AOC 中,∠AOC =45°,.33,2245cos 1|2|||||2±=∴=︒=+=∴k k a ak OA OC。
高三数学轨迹方程50题及答案
求轨迹方程求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法、交轨法,待定系数法。
(1)直接法直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程.(2)定义法若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求.(3)相关点法 根据相关点所满足的方程,通过转换而求动点的轨迹方程. (4)参数法若动点的坐标(x ,y )中的x ,y 分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程.(5)交轨法 若动点是受某一参量影响的两动曲线的交点,我们可以以消去这个参量得到动点轨迹方程. (6)待定系数法求轨迹方程,一定要注意轨迹的纯粹性和完备性.要注意区别“轨迹”与“轨迹方程”是两个不同的概念.一、选择题:1、方程y=122+--x x 表示的曲线是: ( ) A 、双曲线 B 、半圆 C 、两条射线 D 、抛物线2、方程[(x -1)2+(y+2)2](x 2-y 2)=0表示的图形是: ( ) A 、两条相交直线 B 、两条直线与点(1,-2) C 、两条平行线 D 、四条直线3、动点p 与定点A(-1,0), B(1,0)的连线的斜率之积为-1,则p 点的轨迹方程是: ( )A 、x 2+y 2=1B 、x 2+y 2=1(x ≠±1)C 、x 2+y 2=1(x ≠1)D 、y=21x -4、一动点到两坐标轴的距离之和的2倍,等于该点到原点距离的平方,则动点的轨迹方程是: ( )A 、x 2+y 2=2(x+y)B 、x 2+y 2=2|x+y|C 、x 2+y 2=2(|x|+|y|)D 、x 2+y 2=2(x -y) 5、动点P 到直线x=1的距离与它到点A (4,0)的距离之比为2,则P 点的轨迹是:( )A 、中心在原点的椭圆 B 、中心在(5,0)的椭圆C 、中点在原点的双曲线D 、中心在(5,0)的双曲线6、已知圆x 2+y 2=4,过A (4,0)作圆的割线ABC ,则弦BC 中点的轨迹方程是 ( ) A 、(x -2)2+y 2=4 B 、(x -2)2+y 2=4(0≤x <1) C 、(x -1)2+y 2=4 D 、(x -1)2+y 2=4(0≤x <1)7、已知M (-2,0),N (2,0),|PM|-|PN|=4,则动点P 的轨迹是: ( ) A 、双曲线 B 、双曲线左支 C 、一条射线 D 、双曲线右支8、若一动圆与两圆x 2+y 2=1, x 2+y 2-8x+12=0都外切,则动圆圆心的轨迹为: ( ) A 、抛物线 B 、圆 C 、双曲线的一支 D 、椭圆9、点M 到F (3,0)的距离比它到直线x+4=0 的距离小1,则点M 的轨迹方程是:( ) A 、y 2=12x B 、y 2=12x(x>0) C 、y 2=6x D 、y 2=6x(x>0) 10、已知圆x 2+y 2=1,点A (1,0),△ABC 内接于圆,且∠BAC=60°,当B 、C 在圆上运动时,BC 中点的轨迹方程是 ( ) A 、x 2+y 2=21 B 、x 2+y 2=41 C 、x 2+y 2=21(x<21) D 、x 2+y 2=41(x<41) 11、抛物线过点M (2,-4),且以x 轴为准线,此抛物线顶点的轨迹方程是 ( )A 、(x -2)2+(y+4)2=16 (0)y ¹B 、(x -2)2+4(y+2)2=16 (0)y ¹C 、(x -2)2-(y+4)2=16D 、(x -2)2+4(y+4)2=1612、椭圆C 与椭圆14)2(9)3(22=-+-y x 关于直线x+y=0对称,椭圆C 的方程是( ) A 、22(2)(3)149x y +++= B 、22(2)(3)194x y --+= C 、22(2)(3)194x y +++= D 、22(2)(3)149x y --+= 13、设A 1、A 2是椭圆4922y x +=1的长轴两个端点,P 1、P 2是垂直于A 1A 2的弦的端点,则直线A 1P 1与A 2P 2交点的轨迹方程为 ( )A.14922=+y xB.14922=+x y222214、中心在原点,焦点在坐标为(0,±52)的椭圆被直线3x -y -2=0截得的弦的中点的横坐标为21,则椭圆方程为 ( ) 12575 D. 17525C.1252752 B. 1752252A.22222222=+=+=+=+y x y x y x y x15、已知⊙O :x 2+y 2=a 2, A(-a, 0), B(a, 0), P 1, P 2为⊙O 上关于x 轴对称的两点,则直线AP 1与直线BP 2的交点P 的轨迹方程为 ( ) A 、x 2+y 2=2a 2 B 、x 2+y 2=4a 2 C 、x 2-y 2=4a 2 D 、x 2-y 2=a 2 二、填空题:16、动圆与x 轴相切,且被直线y=x 所截得的弦长为2,则动圆圆心的轨迹方程为 。
常见轨迹方程的求法
动点轨迹方程的常见求法一、待定系数法;它常常适用于动点轨迹的曲线类型已知或利用已知条件可直接推断出其轨迹的曲线方程。
其解题步骤为:先设出对应类型的轨迹方程;再求出所设方程中的待定系数。
例1、已知椭圆中心在原点,焦点在坐标轴上,焦距为213,另一双曲线和椭圆有公共焦点,且椭圆的半长轴比双曲线的半实轴大4,椭圆的离心率和双曲线的离心率之比为3 / 7。
求椭圆和双曲线的方程。
解:如果双曲线和椭圆的焦点在x 轴上,即椭圆的长轴、双曲线的实轴在x 轴上,那么可设椭圆方程为22a x +22by = 1,双曲线的方程为22mx -22n y = 1。
Θ2c = 213 , ∴c = 13 .Θa – m = 4 , m c : n c = 73 , ∴a = 7 , m = 3 . Θ b 2 = a 2-c 2 = 36 , n 2 = c 2- m 2 =4 .∴椭圆方程为492x +362y = 1,双曲线的方程为92x -42y = 1 ; 如果双曲线和椭圆的焦点在y 轴上,同理可得:∴椭圆方程为492y +362x = 1,双曲线的方程为92y -42x = 1 。
二、直译解析法;该方法的主要思路就是将题目中的几何条件直接翻译为代数条件。
它主要通过建系、设点、列式、化简、讨论等步骤得到所求的曲线轨迹方程。
例2、已知两定点A 、B ,AB = 3,求使∠PBA = 2∠PAB 成立的动点P 的轨迹方程。
解: 以点A 为坐标原点,射线AB 为x 轴的正半轴,建立直角坐标系如右图: 则B 点坐标为(3, 0),设P 点坐标为(x, y),∠PAB = α , 则∠PBA =2αΘ3-x y = K PB = tg(π-2α) = - tg2α =αα212tg tg -- = 2)(1)(2xy x y -- = 222y x xy -- ∴y = 0 (0<x<3) 或31-x = 222y x x --, 即y = 0 (0<x<3) 或(x -1)2-32y = 1 (x ≥2)。
圆锥曲线轨迹方程的求法
圆锥曲线轨迹方程的求法一直以来,圆锥曲线这部分内容都是高考必考内容,作为解析几何中一个重要的部分,在历次考试中也是让相当一部分考生感到棘手。
现在,我就圆锥曲线的轨迹方程的问题作一个归纳总结。
在一般情况下,我们对于求圆锥曲线的轨迹方程采用的方法有:直接法,定义法,相关点法,参数法。
下面就以上几种方法作一下介绍。
一、 用直接法求轨迹方程 利用动点运动的条件作出等量关系,表示成x,y 的等式。
例:已知点A(-2,0),B(3,0).动点P(x,y)满足 PA · PB =x 2,则点P 的轨迹是( ).A 、圆B 、椭圆C 、双曲线D 、抛物线二、 用定义法求轨迹方程根据圆锥曲线的基本定义解题。
例:如图,已知圆O 的方程为x 2+y 2=100,点A 的坐标为(-6,0),M 为圆O 上的任意一点,AM 的垂直平分线交OM 于点P ,则点P 的轨迹方程( )A.x 225 +y 216 =1B. x 225 -y 216 =1C.(x+3)225 + y 216 =1D. (x+3)225 - y 216 =1三、 用相关点法求轨迹方程当动点M 随着已知方程的曲线上另一动点C (x 0,y 0)运动时,找出点M 与点C 之间的坐标关系式,用(x,y )表示(x 0,y 0)再将x 0,y 0代入已知曲线方程,即可得到点M 的轨迹方程。
例:如图所示从双曲线x 2-y 2=1上一点Q 引直线x+y=2的垂线,垂足为N ,求线段QN 的中点P 的轨迹方程.四、 用参数法求轨迹方程选取适当的参数,分别用参数表示动点坐标得到动点轨迹的普通方程.例:(04.成都)过抛物线y 2=2px(p>0)的顶点O 作两条互相垂直的弦OA,OB,再以OA,OB 为邻边作矩形AOBM,如图,求点M 的轨迹方程.注:在利用参数法求解时,要选择合理的参数,同时要注意参数的取值范围.除上述四种常用求曲线轨迹方程方法外,我们还介绍两种重要的求解方法.一.几何法1.几何法求解.(利用平面几何或解析几何中的图形性质)例:已知圆的方程为x 2+y 2=4,若抛物线过点A(-1,0),B(1,0)且以圆的切线为准线,则抛物线的焦点轨迹方程是( ). A.x 24 -y 23 =1(x ≠0) B .x 24 +y 23 =1(x ≠0) C. x 24 -y 23=1(y ≠0) D .x 24 +y 23=1(y ≠0)二.交轨法2.用交轨法来求轨迹方程.(一般用于两动曲线交点的轨迹方程,其过程是选出一个适当的参数,求出两动曲线的方程或动点坐标适合的含参数的等式,再消去参数,即得所求动点轨迹的方程)例:如图所示,垂直于x 轴的直线交直线交双曲线x 2a 2 -y 2b2 =1 于MN 两点,A 1,A 2为双曲线的顶点,求直线A 1M 与A 2N 的交点P 的轨迹方程,并指出轨迹形状.。
圆锥曲线中求轨迹方程的五种策略
圆锥曲线中求轨迹方程的五种策略
圆锥曲线是一种由球体部分曲面形成的曲线,在三维空间和立体几何中经常使用,它的外表形状完全以圆锥形或椎体形式呈现,具有很高的应用价值。
求轨迹方程是圆锥曲线中常见的问题,解决这个问题需要大家去深入研究并提出合理的策略。
首先,求轡迹方程的最简单方法是利用圆锥曲线的完整公式,即V=((x-
a)^2+(y-b)^2)/R^2=z,在该公式中,x和y分别是x和y的坐标,a和b是圆锥的圆心坐标,R是圆锥曲线的半径,z是圆锥轨道的高度。
通过这个公式,我们就可
以求出圆锥曲线的的轨迹方程。
其次,在求轨迹方程时,还可以采用图解法来进行求解。
首先,确定圆锥曲线
的参数,然后绘制出圆锥曲线的图形,最后在图形中找到轨迹直线,计算这条轨迹直线和圆锥曲线之间的关系,就可以确定出轨迹方程。
第三,利用牛顿迭代法来求解轨迹方程。
这一方法运用牛顿迭代算法,以求出
满足条件的圆锥曲线轨迹方程。
该策略涉及变成原理、微积分和数学递归的知识,因此比较复杂。
第四,对于相对简单的圆锥曲线,可以从无数平面线段进行拼接,求出轨迹方程。
拼接的原则是:点的坐标吸引轨迹直线,这样就得到了轨迹方程,因此也是一种有效的策略。
最后,如果圆锥曲线轨迹不是相对简单,可以利用圆锥参数方程,在xz平面
和yz平面做投影,对投影后的坐标进行直线拼接,得到轨迹方程。
总之,求解圆锥曲线的轨迹方程有五种常见的策略,分别是完全公式法、图解法、牛顿迭代法、无数平面线段拼接法以及圆锥参数方程法,这些策略各有特色,其中一些需要一定数学基础,一些则可以简单高效求解,大家可以根据实际情况来选择合适的方法。
求轨迹方程的几种常用方法
求轨迹方程的几种常用方法求轨迹的方程,是学习解析几何的基础,求轨迹的方程常用的方法主要有:1.直接法:若命题中所求曲线上的动点与已知条件能直接发生关系,这时,设曲线上动点坐标为(,x y )后,就可根据命题中的已知条件,研究动点形成的几何特征,在此基础上运用几何或代数的基本公式、定理等列出含有,x y 的关系式。
从而得到轨迹方程,这种求轨迹方程的方法称作直接法。
例1:在直角△ABC 中,斜边是定长2a (0)a >,求直角顶点C 的轨迹方程。
解:由于未给定坐标系,为此,首先建立直角坐标系,取AB 所在的直线为x 轴,AB 的中点O 为坐标原点,过O 与AB 垂直的直线为y 轴(如图).则有A (,0)a -,B (,0)a 。
设动点C 为(,)x y ,∵222||||||AC BC AB +=,∴2224a +=,即222x y a +=.由于C 点到达A 、B 位置时直角三角形ABC 不存在,轨迹中应除去A 、B 两点,故所求方程为222x y a +=(x a ≠±)。
2.代入法(或利用相关点法):即利用动点是定曲线上的动点,另一动点依赖于它,那么可寻求它们坐标之间的关系,然后代入定曲线的方程进行求解,就得到原动点的轨迹。
例2:已知一条长为6的线段两端点A 、B 分别在x 、y 轴上滑动,点M 在线段AB 上,且:1:2AM MB =,求动点M 的轨迹方程。
解:设A (,0)a ,B (0,)b ,M (,)x y ,一方面,∵||6AB =,∴2236a b +=, ①另一方面,M 分AB 的比为12,∴1022133122130121312a x a a xb y b y b ⎧+⨯⎪==⎪⎪+⎧=⎪⎪⇒⎨⎨⎪⎪=+⎩⎪==⎪+⎪⎩ ② ②代入①得:223()(3)362x y +=,即221164x y +=。
评注:本例中,由于M 点的坐标随着A 、B 的变化而变化,因而动点M 的坐标(,)x y 可以用A 、B 点的坐标来表示,而点M 又满足已知条件,从而得到M 的轨迹方程。
高考数学难点:轨迹方程的求法
高考数学难点:轨迹方程的求法求曲线的轨迹方程是解析几何的两个基本问题之一.求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系.这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点.●难点磁场(★★★★)已知A 、B 为两定点,动点M 到A 与到B 的距离比为常数λ,求点M 的轨迹方程,并注明轨迹是什么曲线.●案例探究[例1]如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程.命题意图:本题主要考查利用“相关点代入法”求曲线的轨迹方程,属★★★★★级题目.知识依托:利用平面几何的基本知识和两点间的距离公式建立线段AB 中点的轨迹方程.错解分析:欲求Q 的轨迹方程,应先求R 的轨迹方程,若学生思考不深刻,发现不了问题的实质,很难解决此题.技巧与方法:对某些较复杂的探求轨迹方程的问题,可先确定一个较易于求得的点的轨迹方程,再以此点作为主动点,所求的轨迹上的点为相关点,求得轨迹方程.解:设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR |. 又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2)又|AR |=|PR |=22)4(y x +-所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动. 设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1=2,241+=+y y x , 代入方程x 2+y 2-4x -10=0,得244)2()24(22+⋅-++x y x -10=0 整理得:x 2+y 2=56,这就是所求的轨迹方程.[例2]设点A 和B 为抛物线 y 2=4px (p >0)上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线.(2000年北京、安徽春招)命题意图:本题主要考查“参数法”求曲线的轨迹方程,属★★★★★级题目. 知识依托:直线与抛物线的位置关系.错解分析:当设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2)时,注意对“x 1=x 2”的讨论.技巧与方法:将动点的坐标x 、y 用其他相关的量表示出来,然后再消掉这些量,从而就建立了关于x 、y 的关系.解法一:设A (x 1,y 1),B (x 2,y 2),M (x ,y )依题意,有⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧--=---=--⋅-=⋅==112121212122112221211144x x y y x x y y x x y y x y x y x y px y px y ①-②得(y 1-y 2)(y 1+y 2)=4p (x 1-x 2) 若x 1≠x 2,则有2121214y y px x y y +=-- ⑥①×②,得y 12·y 22=16p 2x 1x 2③代入上式有y 1y 2=-16p 2 ⑦ ⑥代入④,得yxy y p -=+214⑧⑥代入⑤,得pyx y y x x y y y y p442111121--=--=+ 所以211214)(44y px y y p y y p --=+ 即4px -y 12=y (y 1+y 2)-y 12-y 1y 2⑦、⑧代入上式,得x 2+y 2-4px =0(x ≠0)当x 1=x 2时,AB ⊥x 轴,易得M (4p ,0)仍满足方程.故点M 的轨迹方程为x 2+y 2-4px =0(x ≠0)它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点.解法二:设M (x ,y ),直线AB 的方程为y =kx +b由OM ⊥AB ,得k =-yx由y 2=4px 及y =kx +b ,消去y ,得k 2x 2+(2kb -4p )x +b 2=0所以x 1x 2=22kb ,消x ,得ky 2-4py +4pb =0① ② ③ ④ ⑤所以y 1y 2=kpb4,由OA ⊥OB ,得y 1y 2=-x 1x 2 所以k pk4=-22kb ,b =-4kp故y =kx +b =k (x -4p ),用k =-yx代入,得x 2+y 2-4px =0(x ≠0) 故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点.[例3]某检验员通常用一个直径为2 cm 和一个直径为1 cm 的标准圆柱,检测一个直径为3 cm 的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱的直径为多少?命题意图:本题考查“定义法”求曲线的轨迹方程,及将实际问题转化为数学问题的能力,属★★★★★级题目.知识依托:圆锥曲线的定义,求两曲线的交点.错解分析:正确理解题意及正确地将此实际问题转化为数学问题是顺利解答此题的关键.技巧与方法:研究所给圆柱的截面,建立恰当的坐标系,找到动圆圆心的轨迹方程.解:设直径为3,2,1的三圆圆心分别为O 、A 、B ,问题转化为求两等圆P 、Q ,使它们与⊙O 相内切,与⊙A 、⊙B 相外切.建立如图所示的坐标系,并设⊙P 的半径为r ,则 |P A |+|PO |=1+r +1.5-r =2.5∴点P 在以A 、O 为焦点,长轴长2.5的椭圆上,其方程为3225)41(1622y x ++=1 ① 同理P 也在以O 、B 为焦点,长轴长为2的椭圆上,其方程为 (x -21)2+34y 2=1 ② 由①、②可解得)1412,149(),1412,149(-Q P ,∴r =73)1412()149(2322=+-故所求圆柱的直径为76cm. ●锦囊妙计求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法.(1)直接法 直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程.(2)定义法 若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求.(3)相关点法 根据相关点所满足的方程,通过转换而求动点的轨迹方程.(4)参数法 若动点的坐标(x ,y )中的x ,y 分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程.求轨迹方程,一定要注意轨迹的纯粹性和完备性.要注意区别“轨迹”与“轨迹方程”是两个不同的概念.●歼灭难点训练 一、选择题1.(★★★★)已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A.圆B.椭圆C.双曲线的一支D.抛物线2.(★★★★)设A 1、A 2是椭圆4922y x +=1的长轴两个端点,P 1、P 2是垂直于A 1A 2的弦的端点,则直线A 1P 1与A 2P 2交点的轨迹方程为( )A.14922=+y xB.14922=+x yC.14922=-y xD.14922=-x y二、填空题3.(★★★★)△ABC 中,A 为动点,B 、C 为定点,B (-2a ,0),C (2a,0),且满足条件sin C -sin B =21sin A ,则动点A 的轨迹方程为_________. 4.(★★★★)高为5 m 和3 m 的两根旗杆竖在水平地面上,且相距10 m ,如果把两旗杆底部的坐标分别确定为A (-5,0)、B (5,0),则地面观测两旗杆顶端仰角相等的点的轨迹方程是_________.三、解答题5.(★★★★)已知A 、B 、C 是直线l 上的三点,且|AB |=|BC |=6,⊙O ′切直线l 于点A ,又过B 、C 作⊙O ′异于l 的两切线,设这两切线交于点P ,求点P 的轨迹方程.6.(★★★★)双曲线2222by a x -=1的实轴为A 1A 2,点P 是双曲线上的一个动点,引A 1Q ⊥A 1P ,A 2Q ⊥A 2P ,A 1Q 与A 2Q 的交点为Q ,求Q 点的轨迹方程.7.(★★★★★)已知双曲线2222ny m x -=1(m >0,n >0)的顶点为A 1、A 2,与y 轴平行的直线l 交双曲线于点P 、Q .(1)求直线A 1P 与A 2Q 交点M 的轨迹方程;(2)当m ≠n 时,求所得圆锥曲线的焦点坐标、准线方程和离心率.8.(★★★★★)已知椭圆2222by a x +=1(a >b >0),点P 为其上一点,F 1、F 2为椭圆的焦点,∠F 1PF 2的外角平分线为l ,点F 2关于l 的对称点为Q ,F 2Q 交l 于点R .(1)当P 点在椭圆上运动时,求R 形成的轨迹方程;(2)设点R 形成的曲线为C ,直线l :y =k (x +2a )与曲线C 相交于A 、B 两点,当△AOB 的面积取得最大值时,求k 的值.参考答案难点磁场解:建立坐标系如图所示, 设|AB |=2a ,则A (-a ,0),B (a ,0). 设M (x ,y )是轨迹上任意一点.则由题设,得||||MB MA =λ,坐标代入,得2222)()(ya x y a x +-++=λ,化简得(1-λ2)x 2+(1-λ2)y 2+2a (1+λ2)x +(1-λ2)a 2=0(1)当λ=1时,即|M A|=|M B|时,点M 的轨迹方程是x =0,点M 的轨迹是直线(y 轴).(2)当λ≠1时,点M 的轨迹方程是x 2+y 2+221)1(2λ-λ+a x +a 2=0.点M 的轨迹是以 (-221)1(λ-λ+a ,0)为圆心,|1|22λ-λa 为半径的圆. 歼灭难点训练一、1.解析:∵|PF 1|+|PF 2|=2a ,|PQ |=|PF 2|, ∴|PF 1|+|PF 2|=|PF 1|+|PQ |=2a ,即|F 1Q |=2a ,∴动点Q 到定点F 1的距离等于定长2a ,故动点Q 的轨迹是圆. 答案:A2.解析:设交点P (x ,y ),A 1(-3,0),A 2(3,0),P 1(x 0,y 0),P 2(x 0,-y 0) ∵A 1、P 1、P 共线,∴300+=--x yx x y y ∵A 2、P 2、P 共线,∴300-=-+x yx x y y解得x 0=149,149,3,92220200=-=-=y x y x x y y x 即代入得答案:C二、3.解析:由sin C -sin B =21sin A ,得c -b =21a ,∴应为双曲线一支,且实轴长为2a,故方程为)4(1316162222a x a y a x >=-.答案:)4(1316162222ax a y a x >=-4.解析:设P (x ,y ),依题意有2222)5(3)5(5yx yx +-=++,化简得P 点轨迹方程为4x 2+4y 2-85x +100=0.答案:4x 2+4y 2-85x +100=0三、5.解:设过B 、C 异于l 的两切线分别切⊙O ′于D 、E 两点,两切线交于点P .由切线的性质知:|BA |=|BD |,|PD |=|PE |,|CA |=|CE |,故|PB |+|PC |=|BD |+|PD |+|PC |=|BA |+|PE |+|PC | =|BA |+|CE |=|AB |+|CA |=6+12=18>6=|BC |,故由椭圆定义知,点P 的轨迹是以B 、C 为两焦点的椭圆,以l 所在的直线为x 轴,以BC 的中点为原点,建立坐标系,可求得动点P 的轨迹方程为728122y x +=1(y ≠0) 6.解:设P (x 0,y 0)(x ≠±a ),Q (x ,y ). ∵A 1(-a ,0),A 2(a ,0).由条件⎪⎩⎪⎨⎧-=±≠-=⎪⎪⎩⎪⎪⎨⎧-=-⋅--=+⋅+y a x y a x x x a x y a x y a x y a x y 220000000)( 11得 而点P (x 0,y 0)在双曲线上,∴b 2x 02-a 2y 02=a 2b 2. 即b 2(-x 2)-a 2(ya x 22-)2=a 2b 2化简得Q 点的轨迹方程为:a 2x 2-b 2y 2=a 4(x ≠±a ).7.解:(1)设P 点的坐标为(x 1,y 1),则Q 点坐标为(x 1,-y 1),又有A 1(-m ,0),A 2(m ,0), 则A 1P 的方程为:y =)(11m x mx y ++ ①A 2Q 的方程为:y =-)(11m x mx y -- ②①×②得:y 2=-)(2222121m x mx y --③又因点P 在双曲线上,故).(,12212221221221m x m n y n y m x -==-即代入③并整理得2222ny m x +=1.此即为M 的轨迹方程.(2)当m ≠n 时,M 的轨迹方程是椭圆.(ⅰ)当m >n 时,焦点坐标为(±22n m -,0),准线方程为x =±222nm m -,离心率e =mn m 22-;(ⅱ)当m <n 时,焦点坐标为(0,±22n m -),准线方程为y =±222mn n -,离心率e =nm n 22-.8.解:(1)∵点F 2关于l 的对称点为Q ,连接PQ , ∴∠F 2PR =∠QPR ,|F 2R |=|QR |,|PQ |=|PF 2|又因为l 为∠F 1PF 2外角的平分线,故点F 1、P 、Q 在同一直线上,设存在R (x 0,y 0),Q (x 1,y 1),F 1(-c ,0),F 2(c ,0).|F 1Q |=|F 2P |+|PQ |=|F 1P |+|PF 2|=2a ,则(x 1+c )2+y 12=(2a )2.又⎪⎪⎩⎪⎪⎨⎧=+=221010y y c x x 得x 1=2x 0-c ,y 1=2y 0.∴(2x 0)2+(2y 0)2=(2a )2,∴x 02+y 02=a 2. 故R 的轨迹方程为:x 2+y 2=a 2(y ≠0)(2)如右图,∵S △AOB =21|OA |·|OB |·sin AOB =22a sin AOB当∠AOB =90°时,S △AOB 最大值为21a 2.此时弦心距|OC |=21|2|kak +.在Rt △AOC 中,∠AOC =45°,.33,2245cos 1|2|||||2±=∴=︒=+=∴k k a ak OA OC。
求曲线轨迹方程
=
=
此即点 M 的轨迹方程.
2
+
,
2
消去
-,
k,得 y2=p(x-2p),
2 2
,
2
,
对点训练3过圆O:x2+y2=4外一点A(4,0),作圆的割线,求割线被圆截得的弦
BC的中点M的轨迹方程.
解:设点M(x,y),B(x1,y1),C(x2,y2),直线AB的方程为y=k(x-4),
求轨迹方程的常用方法
代入法
参数法
交轨法
点差法
一、定义法
如果动点P的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、
抛物线)的定义,则可先设出轨迹方程,再根据已知条件,确定方程中的常数,
即可得到轨迹方程.
例1.已知△ABC的顶点A,B的坐标分别为(-4,0),(4,0),C为动点,且满足sin A
A.圆
B.椭圆
C.双曲线
D.抛物线
答案:D
解析:=(-2-x,-y),=(3-x,-y),∴ ·=(-2-x)(3-x)+y2=x2-x-6+y2.
由条件,x2-x-6+y2=x2,整理得y2=x+6,此即点P的轨迹方程,
∴点P的轨迹为抛物线,故选D.
)
对点训练 2 动点 P(x,y)到两定点 A(-3,0)和 B(3,0)的距离的比等于 2 即
解:由题意,设 A
2
4
, ,B
2
4
, ,所以
4
4
kOA= ,kOB= ,
由 OA 垂直 OB 得 kOAkOB=-1,得 yAyB=-16p2,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章
平面解析几何
解析:由题设知|x1|> 2,A1(- 2,0),A2( 2,0),则有 y1 直线 A1P 的方程为 y= (x+ 2),① x1+ 2 - y1 直线 A2Q 的方程为 y= (x- 2),② x1- 2 2 2 x=x1, x1=x, 联立①②,解得 所以 ③ 2 y 2 y 1 y= y1 = , x , x1
栏目 导引
第九章
平面解析几何
直接法求曲线方程的一般步骤 (1)建立合理的直角坐标系; (2)设出所求曲线上点的坐标,把几何条件或等量关系用坐标 表示为代数方程; (3)化简整理这个方程,检验并说明所求的方程就是曲线的方 程.
栏目 导引
第九章
平面解析几何
直接法求曲线方程时最关键的就是把几何条件或等量关系 “翻译”为代数方程,要注意“翻译”的等价性. [提醒] 对方程化简时, 只要前后方程解集相同, 证明一步可
栏目 导引
第九章
平面解析几何
栏目 导引
第九章
平面解析几何
利用相关点法(代入法)求轨迹方程 [典例引领] x2 y2 (2018· 杭州模拟)已知点 Q 在椭圆 C: + =1 上, 点 16 10 → 1 → → P 满足OQ= (OF1+OP)(其中 O 为坐标原点,F1 为椭圆 C 的 2 左焦点),则点 P 的轨迹为( A.圆 C.双曲线 ) B.抛物线 D.椭圆
栏目 导引
第九章
平面解析几何
直接法求轨迹方程(高频考点) 直接法求点的轨迹方程是求轨迹方程的一种重要方法, 也是高考考查的重要内容.主要命题角度有: (1)已知动点满足的关系式求轨迹方程(或判断轨迹); (2)无明确等量关系求轨迹方程.
栏目 导引
第九章
平面解析几何
[典例引领] 角度一 已知动点满足的关系式求轨迹方程(或判断轨迹)
栏目 导引
第九章
平面解析几何
解:设点 M 坐标为(x,y). 因为 M(x,y)为线段 AB 中点,所以点 A,B 的坐标分别为 A(2x,0),B(0,2y). 当 x≠1 时,因为 l1⊥l2,且 l1,l2 过点 P(2,4),所以 kPA· kPB 0-4 2y-4 =-1,即 · =-1(x≠1), 2x-2 0-2 化简得 x+2y-5=0(x≠1). 当 x=1 时,A,B 分别为(2,0),(0,4), 所以线段 AB 的中点为(1,2), 满足方程 x+2y-5=0(x≥0,y≥0). 综上得 M 的轨迹方程为 x+2y-5=0(x≥0,y≥0).
第九章
平面解析几何
栏目 导引
第九章
平面解析几何
第三小题第二解法
栏目 导引
第九章
平面解析几何
求轨迹方程的常用方法 (1)直接法:根据题目条件,直译为关于动点的几何关系,再 利用解析几何有关公式(两点距离公式、点到直线距离公式、 夹角公式等)进行整理、 化简, 即把这种关系“翻译”成含 x, y 的等式就得到曲线的轨迹方程. (2)定义法: 若动点轨迹满足已知曲线的定义, 可先设定方程, 再确定其中的基本量,求出动点的轨迹方程.
栏目 导引
(3)相关点法:有些问题中,其动点满足的条件不便用等式列 出, 但动点是随着另一动点(称之为相关点)而运动的, 如果相 关点所满足的条件是明显的,或是可分析的,这时我们可以 用动点坐标表示相关点坐标,根据相关点所满足的方程即可 求得动点的轨迹方程. (4)参数法、交轨法 易错防范 (1)轨迹与轨迹方程是两个不同的概念,前者指曲线的形状、 位置、大小等特征,后者指方程(包括范围). (2)求轨迹方程时易忽视轨迹上特殊点对轨迹的“完备性与纯 粹性”的影响.
栏目 导引
第九章
平面解析几何
定义法求轨迹方程 [典例引领] → 1→ 已知 A(-5,0),B(5,0),动点 P 满足|PB|, |PA|,8 2 成等差数列,则点 P 的轨迹方程为________.
栏目 导引
第九章
平面解析几何
【解析】
→ → 由已知得|PA|-|PB|=8,
所以点 P 的轨迹是以 A,B 为焦点的双曲线的右支, 且 a=4,b=3,c=5, x2 y2 所以点 P 的轨迹方程为 - =1(x≥4). 16 9 x2 y2 【答案】 - =1(x≥4) 16 9
第九章
平面解析几何
第9讲
曲线与方程
第九章
平面解析几何
1.曲线与方程 在平面直角坐标系中,如果某曲线 C(看作满足某种条件的点 的集合或轨迹 ) 上的点与一个二元方程的实数解建立了如下 的关系:
这个方程的解 ; (1)曲线上点的坐标都是______________ 曲线上 . (2)以这个方程的解为坐标的点都在________
栏目 导引
第九章
平面解析几何
定义法求轨迹方程 (1)在利用圆锥曲线的定义求轨迹方程时,若所求的轨迹符合 某种圆锥曲线的定义,则根据曲线的方程,写出所求的轨迹 方程; (2)利用定义法求轨迹方程时,还要看轨迹是否是完整的圆、 椭圆、双曲线、抛物线,如果不是完整的曲线,则应对其中 的变量 x 或 y 进行限制.
栏目 导引
第九章
平面解析几何
法二:设 AB 的中点为 D,由中点坐标公式得 D(1,0),由直 1 角三角形的性质知|CD|= |AB|=2.由圆的定义知,动点 C 的 2 轨迹是以 D(1,0)为圆心,2 为半径的圆(由于 A,B,C 三点 不共线,所以应除去与 x 轴的交点). 所以直角顶点 C 的轨迹方程为(x-1)2+y2=4(y≠0).
栏目 导引
第九章
平面解析几何
练习。(2018· 杭州七校模拟)已知动圆 C 过点 A(-2,0),且 与圆 M:(x-2)2+y2=64 相内切.求动圆 C 的圆心的轨迹方 程.
栏目 导引
第九章
平面解析几何
解:圆 M:(x-2)2+y2=64,圆心 M 的坐标为(2,0),半径 R=8.因为|AM|=4<R,所以点 A(-2,0)在圆 M 内.设动圆 C 的半径为 r, 依题意得 r=|CA|,且|CM|=R-r, 即|CM|+|CA|=8>|AM|. 所以圆心 C 的轨迹是中心在原点,焦点为 A,M,长轴长为 x2 y2 8 的椭圆,设其方程为 2+ 2=1(a>b>0),则 a=4,c=2.所以 a b b2=a2-c2=12. x2 y2 所以动圆 C 的圆心的轨迹方程为 + =1. 16 12
【答案】
D
栏目 导引
第九章
平面解析几何
栏目 导引
第九章
平面解析几何
练习一.(2017· 高考全国卷Ⅱ节选)设 O 为坐标原点,动点 M x2 2 在椭圆 C: +y =1 上,过 M 作 x 轴的垂线,垂足为 N,点 2 → → P 满足NP= 2NM.求点 P 的轨迹方程.
栏目 导引
第九章
平面解析几何
以省略,必要时可说明 x,y 的取值范围.
栏目 导引
第九章
平面解析几何
[通关练习] 1.已知|AB|=2,动点 P 满足|PA|=2|PB|,则动点 P 的轨迹 方程为________.
解析:如图所示,以 AB 的中点 O 为原 点,直线 AB 为 x 轴建立如图所示的平 面直角坐标系, 则 A(-1, 0), B(1, 0). 设 P(x,y),因为|PA|=2|PB|, 所以 (x+1)2+y2=2 (x-1)2+y2, 10 整理得 x +y - x+1=0, 3
2 2
栏目 导引
第九章
平面解析几何
52 2 16 即x-3 +y = . 9
所以动点 P
52 2 16 的轨迹方程为x-3 +y = . 9
52 2 16 答案:x-3 +y = 9
栏目 导引
第九章
平面解析几何
2.如图,过点 P(2,4)作两条互相垂直的直线 l1,l2,若 l1 交 x 轴非负半轴于 A 点,l2 交 y 轴非负半轴于 B 点,求线段 AB 的中点 M 的轨迹方程.
栏目 导引
第九章
平面解析几何
→ 1 → → 【解析】 因为点 P 满足OQ= (OF1+OP), 2 所以 Q 是线段 PF1 的中点.设 P(x1,y1), x2 y2 由于 F1 为椭圆 C: + =1 的左焦点, 16 10 x1- 6 y 1 则 F1(- 6,0),故 Q , , 2 2 x2 y2 由点 Q 在椭圆 C: + =1 上, 16 10 2 (x1- 6)2 y1 则点 P 的轨迹方程为 + =1, 64 40 故点 P 的轨迹为椭圆.
(2018· 河北衡水中学调研)已知直角三角形 ABC 的斜边 为 AB,且 A(-1,0),B(3,0).求直角顶点 C 的轨迹方程. 【解】 法一:设 C(x,y),因为 A,B,C 三点不共线,
所以 y≠0. y y 因为 AC⊥BC, 所以 kAC· kBC=-1, 又 kAC= , k = , x+1 BC x-3 y y 所以 · =-1,化简得 x2+y2-2x-3=0. x+ 1 x - 3 因此,直角顶点 C 的轨迹方程为 x2+y2-2x-3=0(y≠0).
参数法求轨迹方程
栏目 导引
第九章
平面解析几何
考点四.交轨法 已知直线L与抛物线y2=2px交于A,B 两点 OA ,且 OB (1)求AB中点的轨迹方程; (2)求证:AB经过一定点,并求出定点坐标; (3)作OM AB 交AB于点M,求点M的轨迹方程.
栏目 导引
第九章
平面解析几何
栏目 导引
栏目 导引
第九章
平面解析几何
x2 2 练习二.(2018· 中原名校联考)已知双曲线 -y =1 的左、右 2 顶点分别为 A1,A2,点 P(x1,y1),Q(x1,-y1)是双曲线上不 同于 A1、A2 的两个不同的动点,则直线 A1P 与 A2Q 交点的 轨迹方程为________.