(完整版)中考常考的旋转、折叠、翻转等几种经典类型

合集下载

中考经典几何题讲义系列:旋转、翻折问题

中考经典几何题讲义系列:旋转、翻折问题
450
∴AE=EF,∠EAF=∠EFA= =22.5°。∴∠FAB=67.5°。
2
设 AB=x,则 AE=EF= 2 x,
∴an67.5°=tan∠FAB=t FB 2x+x 2 1。故选 B。 AB x
4. (广东河 源 3 分)如图,在折纸活动中,小明制作了一张△ABC 纸片,点 D、E 分别在边 AB、 AC 上,将△ABC 沿着 DE 折叠压平,A 与 A′重合.若∠A=75º,则∠1+∠2=【 】
∴BC=CM。
设 CF=x,D′F=DF=y, 则 BC=CM=CD=CF+DF=x+y。∴FM=CM+CF=2x+y,
在 Rt△D′FM 中,tan∠M=tan30°= DF y 3 ,∴ x 3-1 y 。
FM 2x y 3
2
∴ CF x 3-1 。故选 A。 FD y 2
3. (江苏连云港 3 分)小明在学习“锐角三角函数”中发现,将如图所示的矩形纸片 ABCD 沿过点 B 的直线折叠, 使点 A 落在 BC 上的点 E 处,还原后,再沿过点 E 的直线折叠,使点 A 落在 BC 上的点 F 处,这样就可以求出 67.5° 角的正切值是【 】
A.150º
B.210º
C.105º
D.75º
【答案】A。
【考点】折叠的性质,平角的定义,多边形内角和定理。
【分析】根据折叠对称的性质,∠A′=∠A=75º。
根据平角的定义和多边形内角和定理,得
∠1+∠2=1800-∠ADA′+1800-∠AEA′=3600-(∠ADA′+∠AEA′)=∠A′+∠A=1500。
(1)如图 1,当点 D 与点 C 位于直线 AB 的两侧时,a=b=3,且∠ACB=60°,则 CD=

中考数学专题复习翻转折叠问题

中考数学专题复习翻转折叠问题

翻转折叠问题【专题点拨】图形折叠是中考中常考题型,这种题型主要考察学生对图形的认知,特别是考察轴对称的性质、全等三角形、勾股定理、相似三角形等知识综合运用。

【解题策略】有关图形折叠的相关计算,首先要熟知折叠是一种轴对称变换,即位于折痕两侧的图形关于折痕成轴对称;然后根据图形折叠的性质,即折叠前、后图形的对应边和对应角相等,对应点的连线被折痕垂直平分并结合勾股定理或相似三角形的性质进行相关计算.【典例解析】类型一:三角形折叠问题例题1:(2016·浙江省湖州市·3分)如图1,在等腰三角形ABC中,AB=AC=4,BC=7.如图2,在底边BC上取一点D,连结AD,使得∠DAC=∠ACD.如图3,将△ACD沿着AD所在直线折叠,使得点C落在点E处,连结BE,得到四边形ABED.则BE的长是()A.4 B. C.3D.2【考点】翻折变换(折叠问题);四点共圆;等腰三角形的性质;相似三角形的判定与性质.【分析】只要证明△ABD∽△MBE,得=,只要求出BM、BD即可解决问题.【解答】解:∵AB=AC,∴∠ABC=∠C,∵∠DAC=∠ACD,∴∠DAC=∠ABC,∵∠C=∠C,∴△CAD∽△CBA,∴=,∴=,∴CD=,BD=BC﹣CD=,∵∠DAM=∠DAC=∠DBA,∠ADM=∠ADB,∴△ADM∽△BDA,∴=,即=,∴DM=,MB=BD﹣DM=,∵∠ABM=∠C=∠MED,∴A、B、E、D四点共圆,∴∠ADB=∠BEM,∠EBM=∠EAD=∠ABD,∴△ABD∽△MBE,∴=,∴BE===.故选B.变式训练1:(2016·吉林·3分)在三角形纸片ABC中,∠C=90°,∠B=30°,点D(不与B,C重合)是BC上任意一点,将此三角形纸片按下列方式折叠,若EF的长度为a,则△DEF的周长为(用含a的式子表示).类型二:平行四边形折叠问题例题2:(2016·湖北武汉·3分)如图,在□ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为_______.【考点】平行四边形的性质【解析】∵四边形ABCD为平行四边形,∴∠D=∠B=52°,由折叠的性质得:∠EAD,=∠DAE=20°,∠AED,=∠AED=180°-∠DAE-∠D=180°-20°-52°=108°,∴∠AEF=∠D+∠DAE=52°+20°=72°,∴∠FED′=108°-72°=36°.变式训练2:(2016河北3分)如图,将ABCD沿对角线AC折叠,使点B落在点B’处.若∠1=∠2=44°,则∠B为()第13题图A.66°B.104°C.114°D.124°类型三:矩形折叠问题例题3:(2016贵州毕节3分)如图,正方形ABCD的边长为9,将正方形折叠,使顶点D 落在BC边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是()A.3 B.4 C.5 D.6【解析】正方形的性质;翻折变换(折叠问题).根据折叠的性质可得DH=EH,在直角△CEH中,若设CH=x,则DH=EH=9﹣x,CE=3cm,可以根据勾股定理列出方程,从而解出CH的长.【解答】解:由题意设CH=xcm,则DH=EH=(9﹣x)cm,∵BE:EC=2:1,∴CE=BC=3cm∴在Rt△ECH中,EH2=EC2+CH2,即(9﹣x)2=32+x2,解得:x=4,即CH=4cm.故选(B)变式训练3:(2016·四川南充)如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平;再一次折叠,使点D落到EF上点G处,并使折痕经过点A,展平纸片后∠DAG的大小为()A.30°B.45°C.60°D.75°类型四:菱形折叠问题例题4:(2016·四川攀枝花)如图,正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB、AC于点E、G,连结GF,给出下列结论:①∠ADG=22.5°;②tan∠AED=2;③S△AGD=S△;④四边形AEFG是菱形;⑤BE=2OG;⑥若S△OGF=1,则正方形ABCD的面积是6+4,其中OGD正确的结论个数为()A.2 B.3 C.4 D.5【考点】四边形综合题.【分析】①由四边形ABCD是正方形,可得∠GAD=∠ADO=45°,又由折叠的性质,可求得∠ADG的度数;②由AE=EF<BE,可得AD>2AE;③由AG=GF>OG,可得△AGD的面积>△OGD的面积;④由折叠的性质与平行线的性质,易得△EFG是等腰三角形,即可证得AE=GF;⑤易证得四边形AEFG是菱形,由等腰直角三角形的性质,即可得BE=2OG;⑥根据四边形AEFG是菱形可知AB∥GF,AB=GF,再由∠BAO=45°,∠GOF=90°可得出△OGF时等腰直角三角形,由S△OGF=1求出GF的长,进而可得出BE及AE的长,利用正方形的面积公式可得出结论.【解答】解:∵四边形ABCD是正方形,∴∠GAD=∠ADO=45°,由折叠的性质可得:∠ADG=∠ADO=22.5°,故①正确.∵由折叠的性质可得:AE=EF,∠EFD=∠EAD=90°,∴AE=EF<BE,∴AE<AB,∴>2,故②错误.∵∠AOB=90°,∴AG=FG>OG,△AGD与△OGD同高,∴S△AGD>S△OGD,故③错误.∵∠EFD=∠AOF=90°,∴EF∥AC,∴∠FEG=∠AGE,∵∠AGE=∠FGE,∴∠FEG=∠FGE,∴EF=GF,∵AE=EF,∴AE=GF,故④正确.∵AE=EF=GF,AG=GF,∴AE=EF=GF=AG,∴四边形AEFG是菱形,∴∠OGF=∠OAB=45°,∴EF=GF=OG,∴BE=EF=×OG=2OG.故⑤正确.∵四边形AEFG是菱形,∴AB∥GF,AB=GF.∵∠BAO=45°,∠GOF=90°,∴△OGF时等腰直角三角形.∵S△OGF=1,∴OG2=1,解得OG=,∴BE=2OG=2,GF===2,∴AE=GF=2,∴AB=BE+AE=2+2,∴S正方形ABCD=AB2=(2+2)2=12+8,故⑥错误.∴其中正确结论的序号是:①④⑤.故选B.【点评】此题考查的是四边形综合题,涉及到正方形的性质、折叠的性质、等腰直角三角形的性质以及菱形的判定与性质等知识.此题综合性较强,难度较大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.变式训练4:(2016·黑龙江齐齐哈尔·3分)如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD边的中点,连接MC,将菱形ABCD翻折,使点A落在线段CM上的点E处,折痕交AB于点N,则线段EC的长为﹣1 .类型五:圆的折叠问题例题5:(2015•聊城)如图,点O是圆形纸片的圆心,将这个圆形纸片按下列顺序折叠,使和都经过圆心O,则阴影部分的面积是⊙O面积的()A. 12B.13C.23D.352. 解:作OD⊥AB于点D,连接AO,BO,CO,∵OD=AO,∴∠OAD=30°,∴∠AOB=2∠AOD=120°,同理∠BOC=120°,∴∠AOC=120°,∴阴影部分的面积=S扇形AOC=×⊙O面积.故选:B.变式训练5:(2016·山东省德州市·4分)如图,半径为1的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M与圆心O重合,则图中阴影部分的面积是.【能力检测】1.(2016·黑龙江龙东·3分)如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次変换,如果这样连续经过2016次变换后,等边△ABC的顶点C的坐标为.2.(2015•湘潭)如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.3.(2016·浙江省绍兴市·5分)如图,矩形ABCD中,AB=4,BC=2,E是AB的中点,直线l平行于直线EC,且直线l与直线EC之间的距离为2,点F在矩形ABCD边上,将矩形ABCD沿直线EF折叠,使点A恰好落在直线l上,则DF的长为.4.(2016·重庆市A卷·4分)正方形ABCD中,对角线AC,BD相交于点O,DE平分∠ADO交AC于点E,把△ADE沿AD翻折,得到△ADE′,点F是DE的中点,连接AF,BF,E′F.若AE=.则四边形ABFE′的面积是多少?5.(2015•咸宁)如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,将直线在x轴下方的部分沿x轴翻折,得到一个新函数的图象(图中的“V形折线”).(1)类比研究函数图象的方法,请列举新函数的两条性质,并求新函数的解析式;(2)如图2,双曲线y=与新函数的图象交于点C(1,a),点D是线段AC上一动点(不包括端点),过点D作x轴的平行线,与新函数图象交于另一点E,与双曲线交于点P.①试求△PAD的面积的最大值;②探索:在点D运动的过程中,四边形PAEC能否为平行四边形?若能,求出此时点D 的坐标;若不能,请说明理由.【参考答案】变式训练1:(2016·吉林·3分)在三角形纸片ABC中,∠C=90°,∠B=30°,点D(不与B,C重合)是BC上任意一点,将此三角形纸片按下列方式折叠,若EF的长度为a,则△DEF的周长为3a (用含a的式子表示).【解析】翻折变换(折叠问题).由折叠的性质得出BE=EF=a,DE=BE,则BF=2a,由含30°角的直角三角形的性质得出DF=BF=a,即可得出△DEF的周长.【解答】解:由折叠的性质得:B点和D点是对称关系,DE=BE,则BE=EF=a,∴BF=2a,∵∠B=30°,∴DF=BF=a,∴△DEF的周长=DE+EF+DF=BF+DF=2a+a=3a;故答案为:3a.变式训练2:(2016河北3分)如图,将ABCD沿对角线AC折叠,使点B落在点B’处.若∠1=∠2=44°,则∠B为()第13题图A.66°B.104°C.114°D.124°【解析】平行线的性质,折叠关系。

初中数学专题:几何图形的变换经典题型(平移、旋转、翻折)初中数学几何图形题型

初中数学专题:几何图形的变换经典题型(平移、旋转、翻折)初中数学几何图形题型

初中数学专题:几何图形的变换经典题型(平移、旋转、翻折)初中数学几何图形题型解题思路:几何图形问题的解决,主要借助于基本图形的性质(定义、定理等)和图形之间的关系(平行、全等、相似等).基本图形的许多性质都源于这个图形本身的“变换特征”,最为重要和最为常用的图形关系“全等三角形”极多的情况也同样具有“变换”形式的联系.本来两个三角形全等是指它们的形状和大小都一样,和相互间的位置没有直接关系,但是,在同一个问题中涉及到的两个全等三角形,大多数都有一定的位置关系(或成轴对称关系,或成平移的关系,或成旋转的关系(包括中心对称).这样,在解决具体的几何图形问题时,如果我们有意识地从图形的性质或关系中所显示或暗示的“变换特征”出发,来识别、构造基本图形或图形关系。

经典题型:一、平移经典问题如图,抛物线C1:Y=X的平方减4X,将抛物线C1向上平移5个单位长度得到抛物线C2,则抛物线C2的顶点坐标为;图中的两条抛物线、直线X=A(A二、折叠经典问题矩形纸片ABCD的边长AB=4,AD=2.将矩形纸片沿EF折叠,使点A与点C重合,折叠后在其一面着色(如图),则着色部分的面积是多少?三、平移旋转经典问题二次函数Y=二分之一乘以X的平方减2X减2,二分的图象在坐标平面内绕顶点旋转180°,再向左平移3个单位,向上平移5个单位后图象对应的二次函数解析式是多少?四、压轴题在如图的方格纸中有一个Rt△ABC(A、B、C三点均为格点),∠C=90°.现将Rt△ABC绕点B顺时针旋转90°后所得到的Rt△A'BC'.(1)画出Rt△A'BC',其中A、C的对应点分别是A'、C'(2)试求出线段AC所经过区域的面积S.指导机构:家家乐教育立家学校2018小学奥数专题六:经济问题的经典题型以及解题方法2017-2018上学期六年级小升初数学出错率最高的47题2018小学奥数专题五:循环小数的经典题型以及解题方法2018初中数学专题:特殊图形中的动点问题归纳及解题方法特别声明:以上文章内容仅代表作者本人观点,不代表新浪看点观点或立场。

中考几何综合变换旋转翻折对称

中考几何综合变换旋转翻折对称

中考几何综合变换一.折叠类问题折叠问题的思考方式:折叠问题会出现在特殊三角形,平行四边形,矩形以及正方形中,一般在矩形和正方形中出现较多。

1.当折叠图形有直角时,一定并且可以构造出一线三等角模型,通过相似和全等来寻找线段之间的关系从而求解。

2.折叠问题一定会伴随着勾股定理出现,如果求线段长,可以设线段为x,通过折叠前后图形全等,在一个rt△中利用勾股定理建立方程思想,从而求解。

如果复杂,需要用到上面说的一线三等角来转化线段,进而利用勾股定理。

3.利用对称的性质:对应点连线所形成的线段一定被折痕垂直平分,可以通过此性质,延伸出多种做题方式(1)利用垂直,以及正方形,矩形中的垂直,构造双垂直模型,即射影定理,母子相似(2)利用中点,可以构造中位线,用中位线定理(3)利用中垂线的性质:中垂线上一点到线段两端点距离相等。

4.注:如果题目中出现对称的字眼,其本质也是折叠。

1.如图,矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.2.如图,在正方形ABCD中,E是DC边上一点,(与D、C不重合),连接AE,将△ADE沿AE所在的直线折叠得到△AFE,延长EF交BC于G,连接AG,作GH⊥AG,与AE 的延长线交于点H,连接CH.显然AE是∠DAF的平分线,EA是∠DEF的平分线.仔细观察,请逐一找出图中其他的角平分线(仅限于小于180°的角平分线),并说明理由.二.旋转类旋转类题目一般伴随着手拉手模型和半角模型,在我之前的资料中有半角模型的收录。

1.其第一问通常是证明三角形全等,给出特殊条件,如旋转角为30 60 902.其第二问一般是将特殊条件取消,证明三角形相似,证明过程和1一样,都是手拉手sas3.其第三问往往是最难得题型,可以问当。

中考数学折叠,旋转问题专题含答案

中考数学折叠,旋转问题专题含答案

【经典例题1】如图,CD是⊙O的直径,AB是⊙O的弦,AB⊥CD,垂足为G,OG:OC=3:5,AB=8.(1)求⊙O的半径;(2)点E为圆上一点,∠ECD=15°,将沿弦CE翻折,交CD于点F,求图中阴影部分的面积.【解析】(1)连接AO,如右图1所示,∵CD为⊙O的直径,AB⊥CD,AB=8,∴AG==4,∵OG:OC=3:5,AB⊥CD,垂足为G,∴设⊙O的半径为5k,则OG=3k,∴(3k)2+42=(5k)2,解得,k=1或k=﹣1(舍去),∴5k=5,即⊙O的半径是5;(2)如图2所示,将阴影部分沿CE翻折,点F的对应点为M,∵∠ECD=15°,由对称性可知,∠DCM=30°,S阴影=S弓形CBM,连接OM,则∠MOD=60°,∴∠MOC=120°,过点M作MN⊥CD于点N,∴MN=MO•sin60°=5×,∴S阴影=S扇形OMC﹣S△OMC==,即图中阴影部分的面积是:.练习1-1如图,在⊙O中,点C在优弧上,将弧沿BC折叠后刚好经过AB 的中点D,连接AC,CD.则下列结论中错误的是()A.AC=CD B.+=C.OD⊥AB D.CD平分∠ACB 【解析】A、过D作DD'⊥BC,交⊙O于D',连接CD'、BD',由折叠得:CD=CD',∠ABC=∠CBD',∴AC=CD'=CD,故①正确;B、∵AC=CD',∴,由折叠得:,∴=,故②正确;C、∵D为AB的中点,∴OD⊥AB,故③正确;D、延长OD交⊙O于E,连接CE,∵OD⊥AB,∴∠ACE=∠BCE,∴CD不平分∠ACB,故④错误;故选:D.练习1-2如图,AB是⊙O的弦,点C在上,点D是AB的中点.将在沿AC 折叠后恰好经过点D,若⊙O的半径为2,AB=8.则AC的长是()A.6B.C.2D.4【解析】如图,延长BO交⊙O于E,连接AE,OA,OD,OC,BC,作CH⊥AB 于H.∵AD=DB,∴OD⊥AB,∴∠ADO=90°,∵OA=2,AD=DB=4,∴OD==2,∵BE是直径,∴∠BAE=90°,∵AD=DB,EO=OB,∴OD∥AE,AE=2OD=4,∴AE=AD,∴=,∴=,∴∠CAE=∠CAH=45°,∴∠BOC=2∠CAB=90°,∴BC=OC=2,∵CH⊥AB,∴∠CAH=∠ACH=45°,∴AH=CH,设AH=CH=x,则BH=8﹣x,在Rt△BCH中,∵CH2+BH2=BC2,∴x2+(8﹣x)2=(2)2,∴x=6或2(舍弃),在Rt△ACH中,∵AC=,∴AC=6.故选:A.练习1-3在扇形AOB中,∠AOB=75°,半径OA=12,点P为AO上任一点(不与A、O重合).(1)如图1,Q是OB上一点,若OP=OQ,求证:BP=AQ.(2)如图2,将扇形沿BP折叠,得到O的对称点O'.①若点O'落在上,求的长.②当BO'与扇形AOB所在的圆相切时,求折痕的长.(注:本题结果不取近似值)【解析】(1)证明:∵BO=AO,∠O=∠O,OP=OQ,∴△BOP≌△AOQ(SAS).∴BP=AQ.(2)解:①如图1,点O'落在上,连接OO',∵将扇形沿BP折叠,得到O的对称点O',∴OB=O'B,∵OB=OO',∴△BOO'是等边三角形,∴∠O'OB=60°.∵∠AOB=75°,∴∠AOO'=15°.∴的长为.②BO'与扇形AOB所在的圆相切时,如图2所示,∴∠OBO'=90°.∴∠OBP=45°.过点O作OC⊥BP于点C,∵OA=OB=12,∠COB=∠OBP=45°,∴.又∵∠AOB=75°,∠COB=45°,∴∠POC=30°,∴.∴.∴折痕的长为.旋转类【经典例题2】如图1,在锐角△ABC中,AB=5,AC=42,∠ACB=45∘. 计算:求BC的长;操作:将图1中的△ABC绕点B按逆时针方向旋转,得到△A1BC1.如图2,当点C1在线段CA的延长线上时。

中考数学中的旋转翻折类问题专项训练经典汇编(共30题)

中考数学中的旋转翻折类问题专项训练经典汇编(共30题)

中考数学中的旋转翻折类问题专项训练经典汇编(共30题)1.阅读下面材料.小炎遇到这个一个问题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF =45°,连接EF,则EF=BE+DF,试说明理由.小炎是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段相对集中,她先尝试了翻折、旋转、平移的方法,最后发现线段AB、AD是共点并且相等的,于是找到解决问题的方法.她的方法是将△ABE绕着点A逆时针旋转90°得到△ADG,再利用全等的知识解决这个问题(如图2).参考小炎同学思考问题的方法,解决下列问题:(1)写出小炎的推理过程;(2)如图3,四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在边BC、CD 上,∠EAF=45°,若∠B、∠D都不是直角,则当∠B与∠D满足于关系时,仍有EF=BE+DF;(3)如图4,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE =45°,若BD=1,EC=2,求DE的长.2.如图1,把△ABC沿直线BC平移线段BC的长度,得到△ECD;如图2,以BC为轴,把△ABC沿BC翻折180°,可以得到△DBC;如图3,以点A为中心,把△ABC旋转180°,可以得到△AED.像这样,其中一个三角形是由另一个三角形按平移、翻折、旋转等方法得到的,这种只改变位置,不改变形状、大小的图形变换,叫做三角形的全等变换.回答下列问题:(1)在图4中,可以使△ABE通过平移、翻折、旋转中的哪一种方法得到△ADF?(2)图中线段BE与DF相等吗?为什么?3.阅读材料并解答问题:探究:小明遇到这样一个问题:如图1,在正方形ABCD,点E、F分别为BC、CD边上的点,且∠EAF=45°,求证:BE+DF=EF.小明是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段集中到同一条线段上.他先后尝试了平移、翻折、旋转的方法,发现通过旋转可以解决此问题.他的方法是将△ADF绕点A顺时针旋转90°得到△ABG(如图1),此时GE即是BE+DF.请回答:在图1中,∠GAF的度数是.理解:如图2,已知Rt△ABC中,∠ACB=90°,AC=BC,点D、E在斜边AB上,且∠DCE=45°,请写出AD、DE、BE三条线段之间的数量关系,并证明.应用:如图3,正方形ABCD中,△AMN的顶点M、N分别在BC、CD边上,AH⊥MN,且AH=AB,连接BD分别交AM、AN于点E,若MH=2,NH=3,DF=2,求AH、EF的长.4.阅读下面材料:小炎遇到这样一个问题:如图1,点E、F分别在正方形ABCD的边BC,CD上,∠EAF =45°,连接EF,则EF=BE+DF,试说明理由.小炎是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段相对集中.她先后尝试了翻折、旋转、平移的方法,最后发现线段AB,AD是共点并且相等的,于是找到解决问题的方法.她的方法是将△ABE绕着点A逆时针旋转90°得到△ADG,再利用全等的知识解决了这个问题(如图2).参考小炎同学思考问题的方法,解决下列问题:(1)如图3,四边形ABCD中,AB=AD,∠BAD=90°点E,F分别在边BC,CD上,∠EAF=45°.若∠B,∠D都不是直角,则当∠B与∠D满足关系时,仍有EF=BE+DF;(2)如图4,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE =45°,若BD=1,EC=2,求DE的长.5.如图,在正方形ABCD中,E为AD的中点,F是BA延长线上一点,AF=AB.(1)图中的全等三角形是哪一对?(2)在图中,可以通过平移、翻折、旋转中哪一种方法,使△ABE变换到△ADF的位置?(3)图中线段BE与DF之间有怎样的关系?为什么?6.已知点E是△ABC内部一点.将△ABE沿BE翻折,点A落在BC上的点F′处.(1)如图1,若∠BAC﹣80°,∠C﹣40°,EF∥AC.求∠BEF的度数;(2)如图2,若∠C=2∠BAE,请说明.(3)如图3.连接AF,若AE⊥BC,∠ABC﹣70°,∠C=40°,将△BEF绕点B顺时针方向旋转一个角度α(0<α<180°)得到ΔBE1F1,则在这个旋转过程中,当E1F1与△AFC的某一边垂直时,直接写出旋转角α的度数.7.如图1,在Rt△ABC中,∠A=90°,AB=21,AC=28,点D为BC边上一点,过点作DE⊥AB于点E,作DF⊥AC于点F,且DE=DF.(1)求证:四边形AEDF为正方形;(2)如图2,将△CDF沿DF翻折,得△GDF,DG交AB于点H,求证:DH=DB;(3)将(2)中的△BDH绕点D逆时针旋转α(0°<α<180°)得△B′DH′(点B的对应点为B′,点H的对应点为H′,连接GH′,CB′,点M为线段GH′的中点,连接DM.当△B′DC为直角三角形时,直接写出线段DM的长.8.如图,在等边△ABC中,AD⊥BC于点D,E为线段AD上一动点(不与A,D重合),连接BE,CE,将CE绕点C顺时针旋转60°得到线段CF,连接AF.(1)如图1,求证:∠CBE=∠CAF;(2)如图2,连接BF交AC于点G,连接DG,EF,EF与DG所在直线交于点H,求证:EH=FH;(3)如图3,连接BF交AC于点G,连接DG,EG,将△AEG沿AG所在直线翻折至△ABC所在平面内,得到△APG,将△DEG沿DG所在直线翻折至△ABC所在平面内,得到△DQG,连接PQ,QF.若AB=4,直接写出PQ+QF的最小值.9.在Rt△ABC中,∠ABC=90°,过B点作BE⊥AC于点E,点D为线段AC的中点,连接BD.(1)如图1,AB=2,AC=6,求ED的长度;(2)如图2,将线段DB绕着点D逆时针旋转45°得到线段DG,此时DG⊥AC,连接BG,点F为BG的中点,连接EF,求证:BC=2EF;(3)如图3,∠ACB=30°,AB=3,点P是线段BD上一点,连接AP,将△APB沿AP 翻折到同一平面内得到△APB',连接CB′,将线段绕点CB′顺时针旋转60°得线段CQ,连接BQ,当BQ最小时,直接写出△BCQ的面积.10.如图,CD为△ABC的中线,以CD为直角边在其右侧作直角△CDE,CD⊥DE,BC与DE交于点F,∠E=30°.(1)如图1,若CF=EF=5,求CD的长;(2)如图2,若将BC绕点C逆时针旋转120°得CG,连接AG、AE,探究AG、AE的数量关系,并说明理由;(3)如图3,若∠ACB=90°,AC=2,.直线CE上有一点M,连接MF,将△CFM沿着MF翻折至△ABC所在的平面内得到△NFM.取NF的中点P,连接AP,当AP最小时,请直接写出△APB的面积.11.已知△ABC为等边三角形,D是边AB上一点,连接CD,点E为CD上一点,连接BE.(1)如图1,延长BE交AC于点F,若∠ABF=15°,.求AF的长;(2)如图2,将△BEC绕点C顺时针旋转60°到△AGC,延长BC至点H,使得CH=BD,连接AH交CG于点N,猜想线段CE,GN,DE之间存在的数量关系,并证明你的猜想;(3)如图3,AB=8,点H是BC上一点,且BD=2CH,连接DH,点K是AC上一点,CK=AD,连接DK,BK,将△BKD沿BK翻折到△BKQ,连接CQ,当△ADK的周长最小时,直接写出△CKQ的面积.12.在边长为8的等边三角形ABC中,D为BC的中点,E,F分别为AC、AD上任意一点,连接EF,将线段EF绕点E顺时针旋转60°得到线段EG,连接FG交AC于点N,连接AG.(1)如图1,点E与点C重合,且GF的延长线过点B,证明:四边形AFEG是菱形;(2)如图2,EF的延长线交AB于点M,当AM+MF=AE时,求∠EAG的度数;(3)如图3,E为AC的中点,连接BE,H为直线BC上一动点,连接EH,将△BEH 沿EH翻折至△ABC所在平面内,得到△B′EH,连接B′G,直接写出线段B′G长度的最小值.13.在△ABC中,∠ACB=90°,AC=BC,D是AC边上一动点,连接BD.(1)如图1,在平面内将线段DC绕点C顺时针旋转90°得到线段CK,点F为BC边上一点,连接AF交BD于M,连接AK.若∠CAF=2∠DBA,AF=8,AK=10,求CF的长;(2)如图2,在平面内将线段DB绕点B顺时针旋转一定角度得到线段BE,连接AE交BC于G,连接DE,若∠CDE=∠DBA,猜想线段AD,CG的数量关系,并证明你的猜想;(3)在(2)的条件下,将△CDB沿BD直线BD翻折至△ABC所在平面内得到△BDC1,连接AC1,若AC=2+,在点D运动过程中,当线段AC1取得最小值时,请直接写出△ABE与四边形BCDC1重叠部分的面积.14.在△ABC中,∠BAC=90°,AB=AC,点D为BC边上一动点,连接AD,将AD绕着D点逆时针方向旋转90°得到DE,连接AE.(1)如图1,AH⊥BC,点D恰好为CH中点,AE与BC交于点G,若AB=4,求AE 的长度;(2)如图2,DE与AB交于点F,连接BE,在BA延长线上有一点P,∠PCA=∠EAB,求证:AB=AP+BD;(3)如图3,DE与AB交于点F,且AB平分∠EAD,点M为线段AF上一点,点N为线段AD上一点,连接DM,MN,点K为DM延长线上一点,将△BDK沿直线BK翻折至△BDK所在平面内得到△BQK,连接DQ,在M,N运动过程中,当DM+MN取得最小值,且∠DKQ=45°时,请直接写出的值.15.在平面直角坐标系中,已知点A(4,0),点B(0,3).点P从点A出发,以每秒1个单位的速度向右平移,点Q从点B出发,以每秒2个单位的速度向右平移,又P、Q 两点同时出发.(1)连接AQ,当△ABQ是直角三角形时,则点Q的坐标为;(2)当P、Q运动到某个位置时,如果沿着直线AQ翻折,点P恰好落在线段AB上,求这时∠AQP的度数;(3)若将AP绕点A逆时针旋转,使得P落在线段BQ上,记作P',且AP'∥PQ,求此时直线PQ的解析式.16.(1)特殊发现如图1,正方形BEFG与正方形ABCD的顶点B重合,BE、BG分别在BC、BA边上,连接DF,则有:①=;②直线DF与直线AG所夹的锐角等于度;(2)理解运用将图1中的正方形BEFG绕点B逆时针旋转,连接DF、AG.①如图2,(1)中的结论是否仍然成立?请说明理由;②如图3,若D、F、G三点在同一直线上,且过AB边的中点O,BE=4,直接写出AB的长;(3)拓展延伸如图3,点P是正方形ABCD的AB边上一动点(不与A、B重合),连接PC,沿PC将△PBC翻折到△PEC位置,连接DE并延长,与CP的延长线交于点F,连接AF,若P A =3PB,则的值是否是定值?请说明理由.17.已知:如图①,在矩形ABCD中,AB=8,AD=6,连接AC,将△ABC沿AC翻折,使B点落在E点处,连接EC、AE,AE交DC于F点.(1)求DF的长.(2)若将△CEF沿着射线CA方向平移,设平移的距离为m(平移距离指点C沿CA方向所经过的线段长度).当点F平移到线段AD上时,如图②,求出相应的m的值.(3)如图③,将△CEF绕点C逆时针旋转一个角a(0°<a<∠ECB),记旋转中的△CEF为△CE'F',过E'作E'G⊥AD于G点,在旋转过程中,当△DCE'为等腰三角形时,求出线段E'G的长度.18.已知矩形ABCD中,AB=2,BC=m,点E是边BC上一点,BE=1,连接AE.(1)沿AE翻折△ABE使点B落在点F处.①连接CF,若CF∥AE,求m的值;②连接DF,若≤DF≤,求m的取值范围.(2)△ABE绕点A顺时针旋转得△AB1E1,点E1落在边AD上时旋转停止.若点B1落在矩形对角线AC上,且点B1到AD的距离小于时,求m的取值范围.19.如图,四边形OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x 轴的正半轴上,点C在y轴的正半轴上,点B的坐标为(10,8),在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处.(1)求CE和OD的长;(2)求DE所在直线的解析式;(3)若直线y=kx+b与直线DE的比例系数相等,当它与矩形OABC有公共点时,请直接写出b的取值范围.20.如图1,将△ABC纸片沿中位线EH折叠,使点A对称点D落在BC边上,再将纸片分别沿等腰△BED和等腰△DHC的底边上的高线EF,HG折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼合成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.(1)将▱ABCD纸片按图2的方式折叠成一个叠合矩形AEFG,则操作形成的折痕分别是线段、,S矩形AEFG:S▱ABCD=;(2)▱ABCD纸片还可以按图3的方式折叠成一个叠合矩形EFGH,若EF=9,EH=12,求AD的长;(3)如图4,四边形ABCD纸片满足AD∥BC,AD<BC,AB⊥BC,AB=12,CD=13,小明把该纸片折叠,得到叠合正方形,请你帮助画出叠合正方形的示意图,并直接写出AD、BC的长.(写出一种即可)21.如图1,在平面直角坐标系xOy中,直线y=﹣x+8分别交x轴、y轴于A、B两点,已知点C(3,0),点D是线段AB上的一个动点.(1)判断△ABO的形状;(2)OD+CD的最小值为;(3)如图2,点P为y轴正半轴上一点,连接BC、PC,若∠BCP与△ABC中的一个角相等,求点P的坐标;(4)如图3,将△ACD沿CD翻折,点A恰好落在y轴上的点A′处,求此时点D的坐标.22.在等腰△ABC中,AB=BC,高AD,BE所在的直线相交于点F,将△ACD沿直线AD 翻折,点C的对称点C′落在直线BC上,连接FC′.(1)如图1,当∠ABC=45°时,①求证:BF=AC;②求∠FC′D的度数.(2)当∠ABC=135°时,补全图2,并求证:C′F∥AB.23.如图1,在平面直角坐标系中,点A坐标为(6,3),过点A作AB⊥x轴,交x轴于点B,点P是x轴上一动点,将△ABP沿直线AP翻折,使得点B落在点B'处,点E是翻折后AB'延长后与y轴的交点.(1)若点E的坐标为(0,3),则点P坐标为;(2)如图2,若点E的坐标为(0,),直线AE与x轴交于点F.①求点F的坐标;②求直线AP的函数关系式.24.如图,在矩形ABCD中,E是BC边上的一个动点,沿着AE翻折△ABE,使点B落在点F处,AB=2,BC=AB.(1)当点E运动到点C时,求CF的长;(2)当FC∥AE时,试判断E是否为BC的中点?并说明理由;(3)当点F在矩形ABCD内部,且DF=CD时,求BE的长.25.如图,在平面直角坐标系中,四边形OABC的边OC在x轴上,OA在y轴上,O为坐标原点,AB∥OC,线段OA,AB的长分别是方程x2﹣9x+20=0的两个根(OA<AB),延长CB交y轴于点H,=.(1)求点B,C的坐标;(2)P为OA上一点,Q为OC上一点,OQ=5,将△POQ翻折,使点O落在AB上的点O'处,双曲线y=的一分支过点O′,求k的值;(3)在(2)的条件下,M为坐标轴上一点,在平面内是否存在点N,使以O',Q,M,N为顶点四边形为矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.26.如图1,在正方形ABCD中,E为边BC上一点(不与点B、C重合),垂直于AE的一条直线MN分别交AB、AE、CD于点M、P、N.(1)求证AE=MN;(2)如图2,若垂足P恰好为AE的中点,连接BD,交MN于点Q,连接EQ,并延长交边AD于点F.求∠AEF的度数;(3)如图3,若该正方形ABCD边长为10,将正方形沿着直线MN翻折,使得BC的对应边B′C′恰好经过点A,过点A作AG⊥MN,垂足分别为G,若AG=6,请直接写出AC′的长.27.如图1,矩形的边OA在x轴上,边OC在y轴上,点B的坐标为(6,8).D是AB边上一点(不与点A、B重合),将△BCD沿直线CD翻折,使点B落在点E处.(1)求直线AC所表示的函数的表达式;(2)如图2,当点E恰好落在矩形的对角线AC上时,求点D的坐标;(3)如图3,当以O、E、C三点为顶点的三角形是等腰三角形时,求△OEA的面积.28.已知在平行四边形ABCD中,AB≠BC,将△ABC沿直线AC翻折,点B落在点E处,AD与CE相交于点O,连接DE.(1)如图1,求证:AC∥DE;(2)如图2,如果∠B=90°,AB=,BC=,求△OAC的面积;(3)如果∠B=30°,AB=2,当△AED是直角三角形时,求BC的长.29.如图,矩形ABCD中,已知AB=6.BC=8,点E是射线BC上的一个动点,连接AE 并延长,交射线DC于点F.将△ABE沿直线AE翻折,点B的对应点为点B'.(1)如图1,若点E为线段BC上一点,延长AB'交CD于点M,求证:AM=FM;(2)如图2,若点B'恰好落在对角线AC上,求的值;(3)若=,求∠DAB'的正弦值.30.如图1,四边形ABCD是矩形,点O位于对角线BD上,将△ADE,△CBF分别沿DE、BF翻折,点A,点C都恰好落在点O处.(1)求证:∠EDO=∠FBO;(2)求证:四边形DEBF是菱形:(3)如图2,若AD=2,点P是线段ED上的动点,求2AP+DP的最小值.。

2023中考九年级数学分类讲解 第十三讲 图形的变换、立体图形的展开与折叠(含答案)(全国通用版)

2023中考九年级数学分类讲解 第十三讲  图形的变换、立体图形的展开与折叠(含答案)(全国通用版)

第十三讲图形的变换、立体图形的展开与折叠专项一轴对称与中心对称知识清单1.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形,那么就说这两个图形关于这条直线,这条直线叫做,折叠后重合的点是对应点,叫做对称点.2.轴对称图形:如果一个平面图形沿一条直线,直线两旁的部分能够互相,这个图形就叫做轴对称图形,这条直线就是它的.3.轴对称的性质:(1)关于某条直线对称的两个图形;(2)在轴对称图形或两个成轴对称的图形中,对应点所连的线段被对称轴,对应线段,对应角.4.中心对称:把一个图形绕着某一点旋转,如果它能够与另一个图形,那么就说这两个图形关于这个点对称或中心对称,这个点叫做.5.中心对称图形:把一个图形绕某一个点旋转,如果旋转后的图形能够与原来的图形,那么这个图形叫做中心对称图形,这个点就是它的.6.中心对称的性质:(1)成中心对称的两个图形;(2)成中心对称的两个图形,对应线段,对应角,对应点的连线都经过,且被对称中心.考点例析例1以下是我国部分博物馆的标志图案,其中既是轴对称图形又是中心对称图形的是()A B C D分析:根据轴对称图形及中心对称图形的定义逐项判断即可.例2如图1,在Rt△ABC中,∠A=30°,∠C=90°,AB=6,P是线段AC上一动点,点M在线段AB上.当AM=13AB时,PB+PM的最小值为()A.B.C.2D.3图1 图2分析:如图2,作点B关于AC的对称点B',连接B'M交AC于点P,此时PB+PM的值最小,为B'M 的长.在Rt△ABC中,由∠A=30°,AB=6,可求得BC,进而求得B'B,过点B'作B'H⊥AB于点H,解Rt△B'HB,得B'H,BH的长,结合AM=13AB,可求得MH,最后在Rt△B'HM中,利用勾股定理求出B'M,即可得解.归纳:在一条直线同侧有两点,则直线上存在到两点的距离之和最短的点,可以通过轴对称来确定,即作出其中一点关于直线的对称点,对称点与另一点的连线与直线的交点即为所求点.跟踪训练1.下列图形中,是轴对称图形但不是中心对称图形的是()A B C D2.在平面直角坐标系中,点M(﹣2,4)关于原点对称的点的坐标是.3.如图,在△ABC中,AC=BC,∠B=38°,D是AB边上一点,点B关于直线CD的对称点为B′.若B′D∥AC,则∠BCD的度数为.第3题图第4题图4.如图,在菱形ABCD中,BC=2,∠C=120°,Q为AB的中点,P为对角线BD上任意一点,则AP+PQ 的最小值为.专项二图形的平移知识清单1.平移:在平面内,把一个图形由一个位置整体沿某一直线方向移动到另一个位置,这样的图形运动叫做平移.2.平移两要素:平移的和平移的.3.平移的性质:(1)平移不改变图形的形状和大小,即平移前后的两个图形;(2)平移前后,对应线段(或在同一条直线上)且,对应角;(3)平移前后,连接对应点的线段(或在同一条直线上)且.考点例析例如图,△ABC沿BC所在直线向右平移得到△DEF,已知EC=2,BF=8,则平移的距离为.分析:由平移的性质可知BE=CF,结合题中给出的数据计算即可.跟踪训练1.四盏灯笼的位置如图所示,已知点A,B,C,D的坐标分别是(﹣1,b),(1,b),(2,b),(3.5,b).若平移y轴右侧的一盏灯笼,使得y轴两侧的灯笼对称,则平移的方法可以是()A.将B向左平移4.5个单位长度B.将C向左平移4个单位长度C.将D向左平移5.5个单位长度D.将C向左平移3.5个单位长度第2题图2.在平面直角坐标系中,点A(3,2)关于x轴的对称点为A1,将点A1向左平移3个单位长度得到点A2,则点A2的坐标为.3.在平面直角坐标系中,平行四边形ABCD的对称中心是坐标原点,顶点A,B的坐标分别是(﹣1,1)和(2,1),将平行四边形ABCD沿x轴向右平移3个单位长度,则顶点C的对应点C1的坐标是.专项三图形的旋转知识清单1.旋转:在平面内,把一个图形绕着平面内某一点O转动一个角度,这样的图形运动叫做旋转,点O 叫做,转动的角叫做.2.旋转三要素:、和.3.旋转的性质:(1)旋转不改变图形的形状和大小,即旋转前后的两个图形;(2)对应点到的距离相等;(3)对应点与旋转中心所连线段的夹角等于.考点例析例如图,将△ABC绕点A逆时针旋转55°得到△ADE.若∠E=70°,AD⊥BC于点F,则∠BAC的度数为( )A .65°B .70°C .75°D .80°分析:由旋转的性质,得∠BAD =55°,∠C =∠E =70°,再由直角三角形的性质,得∠DAC 的度数,进而得解.归纳:图形的旋转为全等变换,解题时可充分利用其性质,得出线段的长或角的度数.另外,注意旋转角为60°时考虑运用等边三角形的性质,旋转角为90°时考虑运用等腰直角三角形的性质.跟踪训练1.如图,在△AOB 中,AO =1,BO =AB =32.将△AOB 绕点O 逆时针方向旋转90°,得到△A ′OB ′,连接AA ′,则线段AA ′的长为( )A .1BC .32 D第1题图 第2题图2.如图,在△ABC 中,∠ACB =90°,∠BAC =α,将△ABC 绕点C 顺时针旋转90°得到△A 'B 'C ,点B 的对应点B '在AC 边上(不与点A ,C 重合),则∠AA 'B '的度数为( )A .αB .α﹣45°C .45°﹣αD .90°﹣α3.如图,在平面直角坐标系中,线段OA 与x 轴正方向的夹角为45°,且OA =2.若将线段OA 绕点O 沿逆时针方向旋转105°得到线段OA ′,则点A ′的坐标为( )A .)1-B .(-C .()D .(1,第3题图 第4题图 4.如图,在平面直角坐标系中,点C 的坐标为(﹣1,0),点A 的坐标为(﹣3,3),将点A 绕点C 顺时针旋转90°得到点B ,则点B 的坐标为 .专项四立体图形的展开与折叠知识清单正方体的表面展开图考点例析例1 下列图形是正方体展开图的个数为()A.1个B.2个C.3个D.4个分析:根据正方体的表面展开图的特征解答即可.归纳:判断正方体表面展开图的方法:(12)若展开图有三行,3布在该图形上下两侧.借助这些方法可采用排除法快速判断正方体的表面展开图.例2 如图是一个正方体的表面展开图,把它折叠成正方体后,有“学”字一面的相对面上的字是()A.雷B.锋C.精D.神分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点解答即可.归纳:判断正方体表面展开图的相对面的方法:(1)在一条直线上的三个正方形,首尾两个正方形一定是正方体的相对面;(2)由几个小正方形组成的“Z”字型两端的小正方形是相对面.正方体的每个面都有且只有一个相对面,所以在展开图中分析每个小正方形相对面的个数也可用来判断其是否能围成正方体.跟踪训练1.下列四个图形中,不能作为正方体的展开图的是()A B C D2.把图中的纸片沿虚线折叠,可以围成一个几何体,这个几何体的名称是()A.五棱锥B.五棱柱C.六棱锥D.六棱柱第2题图第3题图3.一个骰子相对两面的点数之和为7,它的展开图如图所示,则下列判断正确的是()A.A代表B.B代表C.C代表D.B代表专项五投影知识清单1.一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面.2.投影分为投影(由平行光线形成的投影,如太阳光线)和投影(由点光源发出的光线形成的投影).3.在平行投影中,当投影线与投影面时,物体在投影面上的投影叫做正投影.平面图形的正投影的规律:平行形不变,倾斜形改变,垂直成线段.考点例析例在同一时刻,物体的高度与它在阳光下的影长成正比.在某一时刻,有人测得一高为1.8 m的竹竿的影长为3 m,某一高楼的影长为60 m,那么这幢高楼的高度是()A.18 m B.20 m C.30 m D.36 m分析:设此高楼的高度为x m,根据同一时刻物高与影长成正比例列出关于x的比例式,求解即可.归纳:投影中蕴含着相似三角形,借助相似三角形的性质进行相关计算可使问题迎刃而解.跟踪训练1.如图,正方形纸板的一条对角线垂直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板.在灯光照射下,正方形纸板在地面上形成的影子的形状可以是()A B C D2.学习投影后,小华利用灯光下自己的影子长度来测量一路灯的高度.如图,身高1.7 m的小明从路灯灯泡A的正下方点B处,沿着平直的道路走8 m到达点D处,测得影子DE长为2 m,则路灯灯泡A 离地面的高度AB为m.第2题图专项六三视图知识清单1.对一个物体在三个投影面内进行正投影,在正面内得到的由前向后观察物体的视图,叫做;在水平面内得到的由上向下观察物体的视图,叫做;在侧面内得到的由左向右观察物体的视图,叫做.2.画三视图时,三个视图都要放在正确的位置,并且注意视图与视图的长对正,视图与视图的高平齐,视图与视图的宽相等.考点例析例1一个几何体如图1所示,它的左视图是()A B C D 图1分析:左视图是由左向右观察物体的视图.归纳:画三视图时一定要将物体的边缘、棱、顶点都体现出来,并规定:看得见部分的轮廓线画成实线,因被其他部分遮挡而看不见部分的轮廓线画成虚线,不能漏掉.例2 由若干个完全相同的小立方块搭成的几何体的左视图和俯视图如图2所示,则搭成该几何体所用的小立方块的个数可能是()A.4个B.5个C.7个D.8个图2分析:由左视图第一行有1个正方形,结合俯视图可知几何体上面一层有1或2个小立方块,由左视图第二行有2个正方形,结合俯视图可知几何体下面一层有4个小立方块,所以该几何体有5或6个小立方块.例3 如图是一个几何体的三视图,根据图中所标数据计算这个几何体的体积为()A.12πB.18πC.24πD.30π图3分析:观察三视图可知该几何体是空心圆柱,根据圆柱体积公式结合图中数据计算即可.归纳:根据三视图计算几何体的表面积或体积时,首先要确定几何体的形状,若是常见几何体,根据几何体的表面积公式或体积公式直接计算即可;若是较复杂的组合体,可拆分成常见几何体再进行计算.注意要准确判断三视图中的已知数据在实物图中对应的含义.跟踪训练1.如图是一个几何体的三视图,则这个几何体是()A.圆锥B.长方体C.球D.圆柱第1题图第2题图2.如图所示的几何体是由5个大小相同的小正方体搭成的,其左视图是()A B C D3.如图,该几何体的左视图是()A B C D第3题图第4题图4.如图是由若干个相同的小立方体搭成的几何体的主视图和左视图,则搭成这个几何体的小立方体的个数不可能是( )A .3B .4C .5D .65.我国某型号运载火箭的整流罩的三视图如图所示,根据图中数据(单位:米)计算该整流罩的侧面积(单位:平方米)是( )A .7.2πB .11.52πC .12πD .13.44π第5题图 第6题图 6.已知某几何体的三视图如图所示,则该几何体的侧面展开图中圆心角的度数为( )A .214°B .215°C .216°D .217°专项七 图形变换中的分类讨论思想知识清单在解决图形变换的有关问题时,由于经过变换的图形位置或形状不确定常导致问题的结果有多种可能,这时就需要把待求解的问题根据图形变换的可能性结合题目要求进行分类讨论,分类讨论时要选择恰当的分类标准,做到不重复、不遗漏.考点例析例 如图1,已知AD ∥BC ,AB ⊥BC ,AB =3,E 为射线BC 上一动点,连接AE ,将△ABE 沿AE 折叠,点B 落在点B ′处,过点B ′作AD 的垂线,分别交AD ,BC 于M ,N 两点.当B ′为线段MN 的三等分点时,BE 的长为( )A .32BC .32D图1分析:当MB '=13MN 时,如图2所示;当NB '=13MN 时,如图3所示.可设BE =x ,由折叠的性质表示出相关线段,再在Rt△B'EN中,利用勾股定理列方程即可求得BE的长.图2 图3跟踪训练1.如图,在△AOB中,OA=4,OB=6,AB=△AOB绕原点O旋转90°,则旋转后点A的对应点A′的坐标是()A.(4,2)或(﹣4,2)B.()4-或()-C.()-或()2-D.(2,-或(-第1题图第3题图2.)在矩形ABCD中,AB=2 cm,将矩形ABCD沿某直线折叠,使点B与点D重合,折痕与直线AD 交于点E,且DE=3 cm,则矩形ABCD的面积为cm2.3.如图,腰长为2的等腰三角形ABC中,顶角∠A=45°,D为腰AB上的一个动点,将△ACD沿CD折叠,点A落在点E处.当CE与△ABC的某一条腰垂直时,BD的长为.参考答案专项一轴对称与中心对称例1 A 例2 B1.D 2.(2,﹣4)3.33°4专项二图形的平移例 31.C 2.(0,﹣2) 3.(4,﹣1)专项三图形的旋转例 C1.B 2.C 3.C 4.(2,2)专项四立体图形的展开与折叠例1 C 例2 D1.D 2.A 3.A专项五投影例 D1.D 2.8.5专项六三视图例1 B 例2 B 例3 B1.D 2.A 3.D 4.D 5.C 6.C专项七图形变换中的分类讨论思想例 D1.C 2.(或(6-3或- 11 -。

2024年九年级中考数学复习课件++微专题5 图形的折叠与旋转

2024年九年级中考数学复习课件++微专题5 图形的折叠与旋转

OA,试判断△AOD的形状,并说明理由. 解:△AOD为直角三角形.
理由:∵将△BOC绕点C按顺时针方向旋转60°得到△ADC,
∴∠OCD=60°,OC=CD,∠ADC=∠BOC=150°.
∴△COD是等边三角形.∴∠ODC=60°.
∴∠ADO=∠ADC-∠ODC=150°-60°=90°.
∴△AOD是直角三角形.
40°,将△ABD沿AD翻折得到△AED,则∠CDE=___2_0_°_____. 思路点拨 结合已知条件和三角形内角和定理可求出∠ADB的度数,
根据折叠前后对应角相等,得到∠ADE=∠ADB,根据三角形外角的性 质得到∠ADC的度数,再利用两角 之差求出∠CDE的度数.
图1
例2 如图2,在矩形ABCD中,AB=5,AD=3,点E为BC边上一
微专题5 图形的折叠与旋转
折叠和旋转都属于全等变换,折叠或旋转前后的图形对应的边和角 都相等.图形折叠后,“折痕”所在的直线是对应点连线的垂直平分线, 也是对应线段所在直线夹角的平分线;图形旋转后,对应点到旋转中心 的距离相等,各组对应点与旋转中心连线所成的角都相等.
类型 折叠 例1 如图1,在△ABC中,点D是BC边上一点,∠BAD=∠B=
点,把△CDE沿DE翻折,点C恰好落在AB边上的点F处,则CE的长是 5
___3_______. 思路点拨 根据折叠前后对应边相等和矩形的
性质,得到EF=CE,DF=CD=AB;在Rt△ADF中,
根据勾股定理求出AF的长,继而求出BF的长.
图2
方法1:在Rt△BEF中,设EF=CE=x,则BE=3-x,
图2
3.(2016 广东)如图 3,矩形 ABCD 中,对角线 AC=2 3 ,E 为 BC 边 上一点,BC=3BE,将矩形 ABCD 沿 AE 所在的直线折叠,点 B 恰好落在 对角线 AC 上的点 B′处,则 AB=____3____.

中考旋转的几种类型

中考旋转的几种类型

(一)正三角形类型在正ΔABC中,P为ΔABC内一点,将ΔABP绕A点按逆时针方向旋转600,使得AB与AC重合。

经过这样旋转变化,将图(1-1-a)中的PA、PB、PC三条线段集中于图(1-1-b)中的一个ΔP'CP中,此时ΔP'AP 也为正三角形。

例1. 如图:(1-1):设P是等边ΔABC内的一点,PA=3, PB=4,PC=5,∠APB的度数是________.(二)正方形类型在正方形ABCD中,P为正方形ABCD内一点,将ΔABP绕B点按顺时针方向旋转900,使得BA与BC重合。

经过旋转变化,将图(2-1-a)中的PA、PB、PC三条线段集中于图(2-1-b)中的ΔCPP'中,此时ΔBPP'为等腰直角三角形。

例2. 如图(2-1):P是正方形ABCD内一点,点P到正方形的三个顶点A、B、C的距离分别为PA=1,PB=2,PC=3。

求此正方形ABCD面积。

(三)等腰直角三角形类型在等腰直角三角形ΔABC中,∠C=Rt∠, P为ΔABC内一点,将ΔAPC绕C点按逆时针方向旋转900,使得AC与BC重合。

经过这样旋转变化,在图(3-1-b)中的一个ΔP'CP为等腰直角三角形。

例3.如图,在ΔABC中,∠ACB =900,BC=AC,P为ΔABC内一点,且PA=3,PB=1,PC=2。

求∠BPC的度数。

一.平移、旋转平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.“一定的方向”称为平移方向,“一定的距离”称为平移距离。

平移特征:图形平移时,图形中的每一点的平移方向都相同,平移距离都相等。

旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度成为与原来相等的图形,这样的图形运动叫做图形的旋转,这个定点叫做旋转中心,图形转动的角叫做旋转角.旋转特征:图形旋转时,图形中的每一点旋转的角都相等,都等于图形的旋转角。

例1.(2006年绵阳市中考试题)如图,将ΔABC绕顶点A顺时针旋转60º后得到ΔAB´C´,且C´为BC 的中点,则C´D:DB´=()A.1:2 B.1: C.1: D.1:3分析:由于ΔAB´C´是ΔABC绕顶点A顺时针旋转60º后得到的,所以,旋转角∠CAC′=60º,ΔAB´C´≌ΔABC,∴AC´=AC,∠CAC′=60º,∴ΔAC´C是等边三角形,∴AC´=AC´.又C´为BC的中点,∴BC´=CC´,易得ΔAB´C、ΔABC是含30º角的直角三角形,从而ΔAC´D也是含30º角的直角三角形二、翻折翻折:翻折是指把一个图形按某一直线翻折180º后所形成的新的图形的变化。

初中数学旋转的六大模型,初中几何旋转经典例题

初中数学旋转的六大模型,初中几何旋转经典例题

初中数学旋转的六大模型,初中几何旋转经典例题标题:初中数学旋转的六创作者,初中几何旋转经典例题在初中的数学学习中,旋转是一个重要的概念,它不仅在几何学中占据着核心地位,还在代数学、统计学等其他领域有着广泛的应用。

本文将详细介绍初中数学旋转的六创作者,并通过经典例题来深化理解。

旋转是指一个图形绕着某一点转动一定的角度。

在这个过程中,图形上任意一点所经过的路径形成一个圆,这个圆叫做旋转圆,点叫做旋转中心。

旋转的角度一般用角度或者弧度来表示。

中心对称旋转:图形以旋转中心为对称中心,旋转角度为偶数倍的180度。

绕固定点旋转:图形围绕一个固定点旋转,这个固定点称为旋转中心。

旋转对称图形:图形可以通过旋转得到,这种图形称为旋转对称图形。

旋转角相等:如果两个图形可以通过旋转互相得到,那么它们的旋转角必然相等。

旋转角互补:如果两个图形的一条边和另一条边的延长线组成一个平角,那么这两个图形的旋转角互补。

旋转改变形状:旋转可以改变图形的形状,但不会改变图形的面积。

例1:在正方形ABCD中,E是BC的中点,F是AC上一点,且CF=2AF。

求证:EF平分∠AEB。

证明:我们可以通过旋转证明。

把△ABE绕B点按逆时针方向旋转60°,得到△CBG,则BG//AE,所以∠FGB=∠FEA。

因为CF=2AF,所以FG=2FE。

所以可以得出∠FEB=∠FGB+∠GBF=∠FEA+∠AEB+∠ABE=∠FEA+∠AEB+∠EAB=180°即∠FEA+∠AEB=180°-∠EAB=∠BEF所以∠BEF = ∠FEA即 EF平分∠AEB。

例2:在Rt△ABC中,∠C=90°,D是AB的中点,E、F分别在AC和BC上,且DE⊥DF。

求证:EF^2=AE^2+BF^2。

证明:把Rt△ABC绕D点按顺时针方向旋转90°得到Rt△AB’C’,则可知:△ABC≌△AB’C’,所以可知DE=DF,因为DE⊥DF,所以可知四边形DECF’是正方形。

初三复习 数学几何中折叠问题 4大类 分类 含答案

初三复习 数学几何中折叠问题 4大类 分类 含答案

初中数学中的折叠问题折叠问题(对称问题)是近几年来中考出现频率较高的一类题型,学生往往由于对折叠的实质理解不够透彻,导致对这类中档问题失分严重。

本文试图通过对在初中数学中经常涉及到的几种折叠的典型问题的剖析,从中抽象出基本图形的基本规律,找到解决这类问题的常规方法。

其实对于折叠问题,我们要明白:1、折叠问题(翻折变换)实质上就是轴对称变换.2、折叠是一种对称变换,它属于轴对称.对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3、对于折叠较为复杂的问题可以实际操作图形的折叠,在画图时,画出折叠前后的图形,这样便于找到图形之间的数量关系和位置关系.4、在矩形(纸片)折叠问题中,重合部分一般会是一个以折痕为底边的等腰三角形5、利用折叠所得到的直角和相等的边或角,设要求的线段长为x,然后根据轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求解.一、矩形中的折叠1.将一张长方形纸片按如图的方式折叠,其中BC,BD为折痕,折叠后BG和BH在同一条直线上,∠CBD= 度.BC、BD是折痕,所以有∠ABC = ∠GBC,∠EBD = ∠HBD则∠CBD = 90°折叠前后的对应角相等2.如图所示,一张矩形纸片沿BC折叠,顶点A落在点A′处,再过点A′折叠使折痕DE∥BC,若AB=4,AC=3,则△ADE的面积是.沿BC折叠,顶点落在点A’处,根据对称的性质得到BC垂直平分AA’,即AF = 12AA’,又DE∥BC,得到△ABC ∽△ADE,再根据相似三角形的面积比等于相似比的平方即可求出三角形ADE的面积= 24对称轴垂直平分对应点的连线3.如图,矩形纸片ABCD 中,AB=4,AD=3,折叠纸片使AD 边与对角线BD 重合,得折痕DG ,求AG 的长.由勾股定理可得BD = 5,由对称的性质得△ADG ≌ △A ’DG ,由A ’D = AD = 3,AG ’ = AG ,则A ’B = 5 – 3 = 2,在Rt △A ’BG 中根据勾股定理,列方程可以求出AG 的值根据对称的性质得到相等的对应边和对应角,再在直角三角形中根据勾股定理列方程求解即可4.把矩形纸片ABCD 沿BE 折叠,使得BA 边与BC 重合,然后再沿着BF 折叠,使得折痕BE 也与BC 边重合,展开后如图所示,则∠DFB 等于( )根据对称的性质得到∠ABE=∠CBE ,∠EBF=∠CBF ,据此即可求出∠FBC 的度数,又知道∠C=90°,根据三角形外角的定义即可求出∠DFB = 112.5°注意折叠前后角的对应关系5.如图,沿矩形ABCD 的对角线BD 折叠,点C 落在点E 的位置,已知BC=8cm ,AB=6cm ,求折叠后重合部分的面积. ∵点C 与点E 关于直线BD 对称,∴∠1 = ∠2 ∵AD ∥BC ,∴∠1 = ∠3∴∠2 = ∠3 ∴FB = FD设FD = x ,则FB = x ,FA = 8 – x在Rt △BAF 中,BA 2 + AF 2 = BF 2∴62 + (8 - x)2 = x 2 解得x = 254所以,阴影部分的面积S △FBD = 12 FD ×AB = 12 ×254 ×6 = 754cm2重合部分是以折痕为底边的等腰三角形6.将一张矩形纸条ABCD 按如图所示折叠,若折叠角∠FEC=64°,则∠1= 度;△EFG 的形状 三角形.∵四边形CDFE 与四边形C ’D ’FE 关于直线EF 对称∴∠2 = ∠3 = 64°∴∠4 = 180° - 2 × 64° = 52° ∵AD ∥BC321F E D C B A54132G D‘FC‘DAGA'CA B D∴∠1 = ∠4 = 52°∠2 = ∠5又∵∠2 = ∠3∴∠3 = ∠5∴GE = GF∴△EFG是等腰三角形对折前后图形的位置变化,但形状、大小不变,注意一般情况下要画出对折前后的图形,便于寻找对折前后图形之间的关系,注意以折痕为底边的等腰△GEF7.如图,将矩形纸片ABCD按如下的顺序进行折叠:对折,展平,得折痕EF(如图①);延CG折叠,使点B落在EF上的点B′处,(如图②);展平,得折痕GC(如图③);沿GH折叠,使点C落在DH上的点C′处,(如图④);沿GC′折叠(如图⑤);展平,得折痕GC′,GH(如图⑥).(1)求图②中∠BCB′的大小;(2)图⑥中的△GCC′是正三角形吗?请说明理由.(1)由对称的性质可知:B’C=BC,然后在Rt△B′FC中,求得cos∠B’CF= 12,利用特殊角的三角函数值的知识即可求得∠BCB’= 60°;(2)首先根据题意得:GC平分∠BCB’,即可求得∠GCC’= 60°,然后由对称的性质知:GH是线段CC’的对称轴,可得GC’= GC,即可得△GCC’是正三角形.理清在每一个折叠过程中的变与不变8.如图,正方形纸片ABCD的边长为8,将其沿EF折叠,则图中①②③④四个三角形的周长之和为四边形BCFE与四边形B′C′FE关于直线EF对称,则①②③④这四个三角形的周长之和等于正方形ABCD的周长折叠前后对应边相等9.如图,将边长为4的正方形ABCD沿着折痕EF折叠,使点B落在边AD的中点G处,求四边形BCFE的面积设AE = x,则BE = GE = 4 - x,在Rt△AEG中,根据勾股定理有:AE2 + AG2 = GE2即:x2 + 4 = (4 - x)2解得x = 1.5,BE = EG = 4 – 1.5 = 2.5∵∠1 + ∠2 = 90°,∠2 + ∠3 = 90°∴∠1 = ∠3又∵∠A = ∠D = 90°∴△AEG ∽△DGP∴AEDG=EGGP,则1.52=2.5GP,解得GP =103PH = GH – GP = 4 - 103=23∵∠3 = ∠4,tan∠3 = tan∠1 = 3 4∴tan∠4 = 34,FHPH=34,FH =34×PH =34×23=12∴CF = FH = 1 2∴S梯形BCFE = 12(12+52)×4 = 6注意折叠过程中的变与不变,图形的形状和大小不变,对应边与对应角相等10.如图,将一个边长为1的正方形纸片ABCD折叠,使点B落在边AD上不与A、D 重合.MN为折痕,折叠后B’C’与DN交于P.(1)连接BB’,那么BB’与MN的长度相等吗?为什么?(2)设BM=y,AB’=x,求y与x的函数关系式;(3)猜想当B点落在什么位置上时,折叠起来的梯形MNC’B’面积最小?并验证你的猜想.(1)BB’ = MN过点N作NH∥BC交AB于点H),证△ABB’≌△HNM(2)MB’ = MB = y,AM = 1 – y,AB’ = x在Rt△ABB’中BB’ = AB2 + AB'2= 1 + x2因为点B与点B’关于MN对称,所以BQ = B’Q,则BQ = 12 1 + x2由△BMQ∽△BB’A得BM×BA = BQ×BB’PC'NB CA DMB'QPHC'NB CA DMB'∴y = 12 1 + x2× 1 + x2=12(1 + x2)(3) 梯形MNC′B′的面积与梯形MNCB的面积相等由(1)可知,HM = AB’ = x,BH = BM – HM = y – x,则CN = y - x∴梯形MNCB的面积为:12(y – x + y) ×1 = 12(2y - x)= 12(2×12(1 + x2) – x)= 12(x -12)2 +38当x = 12时,即B点落在AD的中点时,梯形MNC’B’的面积有最小值,且最小值是38二、纸片中的折叠11.如图,有一条直的宽纸带,按图折叠,则∠α的度数等于()∵∠α= ∠1,∠2 = ∠1∴∠α= ∠2∴2∠α+∠ABE=180°,即2∠α+30°=180°,解得∠α=75°.题考查的是平行线的性质,同位角相等,及对称的性质,折叠的角与其对应角相等,和平角为180度的性质,注意△EAB是以折痕AB为底的等腰三角形12.如图,将一宽为2cm的纸条,沿BC,使∠CAB=45°,则后重合部分的面积为作CD⊥AB,∵CE∥AB,∴∠1=∠2,根据翻折不变性,∠1=∠BCA,故∠2=∠BCA.∴AB=AC.又∵∠CAB=45°,∴在Rt△ADC中,AC = 2 2 ,AB = 2 2S△ABC=12AB×CD = 2 2a2130°BEFACD在折叠问题中,一般要注意折叠前后图形之间的联系,将图形补充完整,对于矩形(纸片)折叠,折叠后会形成“平行线+角平分线”的基本结构,即重叠部分是一个以折痕为底边的等腰三角形ABC13.将宽2cm 的长方形纸条成如图所示的形状,那么折痕PQ 的长是如图,作QH ⊥PA ,垂足为H ,则QH=2cm , 由平行线的性质,得∠DPA=∠PAQ=60° 由折叠的性质,得∠DPA =∠PAQ , ∴∠APQ=60°,又∵∠PAQ=∠APQ=60°, ∴△APQ 为等边三角形, 在Rt △PQH 中,sin ∠HPQ = HQPQ∴32 = 2PQ ,则PQ = 433注意掌握折叠前后图形的对应关系.在矩形(纸片)折叠问题中,会出现“平行线+角平分线”的基本结构图形,即有以折痕为底边的等腰三角形APQ14.如图a 是长方形纸带,∠DEF=20°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是( )图c 图b图aCDGFEC GDFEFBCAEBB∵AD ∥BC ,∴∠DEF=∠EFB=20°,在图b 中,GE = GF ,∠GFC=180°-2∠EFG=140°, 在图c 中∠CFE=∠GFC-∠EFG=120°,本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.由题意知∠DEF=∠EFB=20°图b ∠GFC=140°,图c 中的∠CFE=∠GFC-∠EFG15.将一张长为70 cm 的长方形纸片ABCD ,沿对称轴EF 折叠成如图的形状,若折叠后,AB 与CD 间的距离为60cm ,则原纸片的宽AB 是( )设AB=xcm .右图中,AF = CE = 35,EF = x根据轴对称图形的性质,得AE=CF=35-x (cm ). 则有2(35-x )+x=60, x=10.16.一根30cm 、宽3cm 的长方形纸条,将其按照图示的过程折叠(阴影部分表示纸条的反面),为了美观,希望折叠完成后纸条两端超出点P 的长度相等,则最初折叠时,求MA 的长将折叠这条展开如图,根据折叠的性质可知,两个梯形的上底等于纸条宽,即3cm , 下底等于纸条宽的2倍,即6cm , 两个三角形都为等腰直角三角形, 斜边为纸条宽的2倍,即6cm ,故超出点P 的长度为(30-15)÷2=7.5, AM=7.5+6=13.5GEFD AE FD B C A B C 60cm三、三角形中的折叠17.如图,把Rt △ABC (∠C=90°),使A ,B 两点重合,得到折痕ED ,再沿BE 折叠,C 点恰好与D 点重合,则CE :AE=18.在△ABC 中,已知AB=2a ,∠A=30°,CD 是AB 边的中线,若将△ABC 沿CD 对折起来,折叠后两个小△ACD 与△BCD 重叠部分的面积恰好等于折叠前△ABC 的面积的14 .(1)当中线CD 等于a 时,重叠部分的面积等于 ;(2)有如下结论(不在“CD 等于a ”的限制条件下):①AC 边的长可以等于a ;②折叠前的△ABC 的面积可以等于32a 2;③折叠后,以A 、B 为端点的线段AB 与中线CD 平行且相等.其中, 结论正确(把你认为正确结论的代号都填上,若认为都不正确填“无”). (1)∵CD = 12 AB∴∠ACB = 90°∵AB = 2a ,BC = a ,∴AC = 3a ∴S △ABC = 12 ×AC ×BC = 32a 2∴重叠部分的面积为:14×32a 2 = 38a 2(2)若AC = a ,如右图∵AD = a ,∴∠2 = 180°- 30°2 = 75°∠BDC = 180°- 75°= 105° ∴∠B'DC = 105°∴∠3 = 105°- 75°= 30° ∴∠1 = ∠3 ∴AC ∥B'D∴四边形AB'DC 是平行四边形∴重叠部分△CDE 的面积等于△ABC的面积的14若折叠前△ABC 的面积等于32a 2 过点C 作CH ⊥AB 于点H ,则 12 ×AB ×CH = 32a 2 B'CDAB231EB'CDBACH =32a 又tan ∠1 =CH AH∴AH = 32a∴BH = 12a则tan ∠B =CHBH,得∠B = 60° ∴△CBD 是等边三角形 ∴∠2 = ∠4∴∠3 = ∠4,AD ∥CB 2又CB 2 = BC = BD = a ,∴CB 2 = AD ∴四边形ADCB 2是平行四边形则重叠部分△CDE 的面积是△ABC 面积的14(3)如右图,由对称的性质得,∠3 = ∠4,DA = DB 3 ∴∠1 = ∠2又∵∠3 + ∠4 = ∠1 +∠2 ∴∠4 = ∠1 ∴AB 3∥CD注意“角平分线+等腰三角形”的基本构图,折叠前后图形之间的对比,找出相等的对应角和对应边19.在△ABC 中,已知∠A=80°,∠C=30°,现把△CDE 沿DE 进行不同的折叠得△C ′DE ,对折叠后产生的夹角进行探究:(1)如图(1)把△CDE 沿DE 折叠在四边形ADEB 内,则求∠1+∠2的和; (2)如图(2)把△CDE 沿DE 折叠覆盖∠A ,则求∠1+∠2的和;(3)如图(3)把△CDE 沿DE 斜向上折叠,探求∠1、∠2、∠C 的关系.(1)根据折叠前后的图象全等可知,∠1=180°-2∠CDE ,∠2=180°-2∠CED ,再根据三角形内角和定理比可求出答案;(2)连接DG ,将∠ADG+∠AGD 作为一个整体,根据三角形内角和定理来求;3241EHB 2DABC3412B 3DA BC在第一次折叠中可得到∠EAD = ∠FAD在第二次折叠中可得到EF是AD的垂直平分线,则AD⊥EF∴∠AEF = ∠AFE∴△AEF是等腰三角形(1)由折叠可知∠AEB = ∠FEB,∠DEG = ∠BEG而∠BEG = 45°+ ∠α因为∠AEB + ∠BEG + ∠DEG = 180°所以 45°+ 2(45°+∠α)= 180°∠α = 22.5°由于角平分线所在的直线是角的对称轴,所以在三角形中的折叠通常都与角平分线有关。

初三数学旋转知识点总结(K12教育文档)

初三数学旋转知识点总结(K12教育文档)

初三数学旋转知识点总结(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(初三数学旋转知识点总结(word 版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为初三数学旋转知识点总结(word版可编辑修改)的全部内容。

第23章旋转知识点总结一、旋转1、定义把一个图形绕某一点O转动一个角度的叫做旋转,其中O叫做,叫做旋转角。

2、性质(1)对应点到的距离相等。

(2)对应点与旋转中心所连线段的夹角等于。

二、中心对称1、定义把一个图形绕着某一个点旋转,如果旋转后的图形能够和原来的图形互相,那么这个图形叫做中心对称图形,这个点就是它的。

2、性质(1)关于中心对称的两个图形是形。

(2)关于中心对称的两个图形,对称点连线都经过对称,并且被对称中心。

(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。

3、判定如果两个图形的对应点连线都经过某一点,并且被这一点,那么这两个图形关于这一点对称。

三、坐标系中对称点的特征1、关于原点对称的点的特征两个点关于原点对称时,它们的坐标的符号,即点P(x,y)关于原点的对称点为P’( , ) 。

2、关于x轴对称的点的特征两个点关于x轴对称时,它们的坐标中,x ,y的符号,即点P (x,y)关于x轴的对称点为P’( , ) .3、关于y轴对称的点的特征两个点关于y 轴对称时,它们的坐标中, 相等, 的符号相反,即点P (x ,y )关于y 轴的对称点为P ’( , ) 。

旋转练习题一、细心选一选(每题3分,共30分)1.下面的图形中,既是轴对称图形又是中心对称图形的是 ( )..2.如果一个多边形绕它的中心旋转60°,才和原来的图形重合,那么这个多边形是 ( )A .正三角形B .正四边形C .正五边形D .正六边形3.在线段,等腰梯形,平行四边形,矩形,正五角星,圆,正方形,等边三角形中,既是轴对称图形,又是中心对称图形的图形有( )A 。

初中数学中考冲刺必备旋转几个类型题

初中数学中考冲刺必备旋转几个类型题

初中数学中考冲刺必备几何图形变换主要包括5个模型平移、旋转和翻折是几何变换中的三种基本变换。

所谓几何变换就是根据确定的法则,对给定的图形(或其一部分)施行某种位置变化,然后在新的图形中分析有关图形之间的关系。

一、旋转的定义在平面内,将一个图形绕一个定点沿某个方向转动一定的角度j这样的图形变换称为旋转,这个定点叫旋转中心,转动的角度叫旋转角口旋转变换不改变图形的形状和大小.通过旋转,图形上的每一点都绕旋转中心沿相同的方向转动同样大小的角度,旋转变换前后的图形有下列性质:(1 )对应点到旋转中心的距离相等;(2)对应点与旋转中心的连线所成的角等于旋转角;(3)对应线段相等,对应线段的夹角等于旋转角,对应线段的垂直平分线都经过旋转中心口」.易与/等,次初」列二、中考常见的几种旋转图形模型一:安膝三角烟时栽幡模型二二步边三角帝妁题楼旋转类型题目举例1、正三角形类型在正AABC中,P为△ABC内一点,将AABP绕A点按逆时针方向旋转60°,使得AB与AC重合。

经过这样旋转变化,将图(l-1-a)中的PA、PB、PC三条线段集中于图(l-1-b)中的一个AP'CP中,此时AP'AP也为正三角形。

例1如图(1-1),设P是等边AABC内的一点,PA=3, PB=4, PC=5,NAPB的度数是.二2APB^N APP+ Z FPB=60: + 9T = 150^2、正方形类型在正方形ABCD 中,P 为正方形ABCD 内一点,将AABP 绕B 点按 顺时针方向旋转90 ° ,使得BA 与BC 重合。

经过旋转变化,将图(2-1-a )中的PA 、PB 、PC 三条线段集中于图(2-1-b )中的ACPP'中,此时△个顶点A 、B 、C 的距离分别为PA=1, PB=2, PC=3。

求正方形ABCD 面 △ PEF 为 Rt △口 简解多在△ABC 的外糊.作NBX9二/CAK 且A 产二晔X 连则△BAF 箜△CAP 。

中考复习3-图形的运动之旋转

中考复习3-图形的运动之旋转

上海初中中考复习图形的运动之旋转教学内容一.图形的运动:平移,翻折,旋转。

二.性质:1.【共性】全等性。

(对应边相等,对应角相等。

)2.【特性】①平移:平移后的对应点的连线平行且相等。

②翻折:翻折后的对应点的连线被折痕(对称轴)垂直平分。

③旋转:旋转后的对应点与旋转中心的连线相等,其夹角是旋转角,也相等。

平移:翻折:旋转:知识点一(旋转求线段的长)【例题精讲】例1.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2cm,△A′B′C是Rt△ABC绕点C 按顺时针方向旋转30°后得到的,设A′B′边交BC边于点D,则△CDB′的面积是例2.如图,在△ABC中,∠ACB=90°,AC=4,BC=3,将△ABC绕点C顺时针旋转至△A1B1C的位置,其中B1C⊥AB,B1C、A1B1交AB于M、N两点,则线段MN的长为.(0.8)【课堂练习】1.如图,在Rt△ACB中,∠ACB=90°,点O在AB上,且CA=CO=6,cos∠CAB=,若将△ACB绕点A顺时针旋转得到Rt△AC′B′,且C′落在CO的延长线上,连接BB′交CO的延长线于点F,则BF=.(14)2.如图,在梯形ABCD中,已知AB∥CD,∠A=90°,AB=5cm,BC=13cm.以点B为旋转中心,将BC逆时针旋转90°至BE,BE交CD于F点.如果点E恰好落在射线AD上,那么DF 的长为cm.()知识点二(旋转求角的度数)【例题精讲】例1.如图,已知钝角三角形ABC,∠A=35°,OC为边AB上的中线,将△AOC绕着点O顺时针旋转,点C落在BC边上的点C′处,点A落在点A′处,联结BA′,如果点A、C、A′在同一直线上,那么∠BA′C′的度数为.(200)例2.将矩形ABCD(如图)绕点A旋转后,点D落在对角线AC上的点D′,点C落到C′,如果AB=3,BC=4,那么CC′的长为.(10)【课堂练习】1.如图,在Rt△ABC中,∠C=90°,∠B=60°,若将Rt△ABC绕直角顶点C顺时针旋转90°,点A、B分别旋转至点A′、B′,连接AA’,则A′B′=.(150)2.如图,等腰△ABC的顶角A的度数是36°,点D是腰AB的黄金分割点(AD>BD),将△BCD绕着点C按照顺时针方向旋转一个角度后点D落在点E处,联结AE,当AE∥CD 时,这个旋转角是度.(70或108)知识点三(旋转求三角比)【例题精讲】例1.如图,在Rt △ABC 中,∠C=90°,BC=9,AC=12,点D 在边AC 上,且CD=AC ,过点D 作DE ∥AB ,交边BC 于点E ,将△DCE 绕点E 旋转,使得点D 落在AB 边上的D′处,则sin ∠DED′= .(2524)例2.已知在平面直角坐标系中,O 为坐标原点,A 、B 两点的坐标分别为(1,1)和(4,0),如果将△OAB 绕着原点O 旋转后,点A 落在x 轴上,点B 落在点C 处,那么cot ∠OCB 的值为 .(1-212或 )【课堂练习】1.在Rt △ABC 中,∠C=90°,sinA=,将△ABC 绕点A 旋转后,点C 落在射线BA 上,点B 落到点D 处,那么sin ∠ADB 的值等于 .(55255或) 2.如图,在等腰△ABC 中,底边BC 的中点是点D ,底角的正切值是,将该等腰三角形绕其腰AC 上的中点M 顺时针旋转,使旋转后的点D 与A 重合,得到△A′B′C′,如果旋转后的底边B′C′与BC 交于点N ,那么∠ANB 的正切值等于 .(43)知识点四(旋转求面积)【例题精讲】例1.如图1,将△ABC 绕点B 逆时针旋转30°后得到△A 1BC 1,BC =2,那么△BC 1C 的面积是 1 .例2. 如图,已知正方形ABCD 中,点E 在边DC 上,DE=2,EC=1。

中考数学专题复习 专题33 中考几何折叠翻折类问题(教师版含解析)

中考数学专题复习 专题33 中考几何折叠翻折类问题(教师版含解析)

中考专题33 中考专题几何折叠翻折类问题1.轴对称(折痕)的性质:(1)成轴对称的两个图形全等。

(2)对称轴与连结“对应点的线段”垂直。

(3)对应点到对称轴的距离相等。

(4)对应点的连线互相平行。

也就是不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.对称的图形都全等.2.折叠或者翻折试题解决哪些问题(1)求角度大小;(2)求线段长度;(3)求面积;(4)其他综合问题。

3.解决折叠问题的思维方法(1)折叠后能够重合的线段相等,能够重合的角相等,能够重合的三角形全等,折叠前后的图形关于折痕对称,对应点到折痕的距离相等。

(2)折叠类问题中,如果翻折的直角,那么可以构造三垂直模型,利用三角形相似解决问题。

(3)折叠类问题中,如果有平行线,那么翻折后就可能有等腰三角形,或者角平分线。

这对解决问题有很大帮助。

(4)折叠类问题中,如果有新的直角三角形出现,可以设未知数,利用勾股定理构造方程解决。

(5)折叠类问题中,如果折痕经过某一个定点,往往用辅助圆解决问题。

一般试题考查点圆最值问题。

(6)折叠后的图形不明确,要分析可能出现的情况,一次分析验证可以利用纸片模型分析。

【经典例题1】(2020年•哈尔滨)如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为( )A.10°B.20°C.30°D.40°【标准答案】A【答案剖析】由余角的性质可求∠C=40°,由轴对称的性质可得∠AB'B=∠B=50°,由外角性质可求解.∵∠BAC=90°,∠B=50°,∴∠C=40°,∵△ADB与△ADB'关于直线AD对称,点B的对称点是点B',∴∠AB'B=∠B=50°,∴∠CAB'=∠AB'B﹣∠C=10°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考常考题型(一)正三角形类型在正ΔABC中,P为ΔABC内一点,将ΔABP绕A点按逆时针方向旋转600,使得AB与AC 重合。

经过这样旋转变化,将图(1-1-a)中的PA、PB、PC三条线段集中于图(1-1-b)中的一个ΔP'CP中,此时ΔP'AP也为正三角形。

例1. 如图:(1-1):设P是等边ΔABC内的一点,PA=3,PB=4,PC=5,∠APB的度数是________.(二)正方形类型在正方形ABCD中,P为正方形ABCD内一点,将ΔABP绕B点按顺时针方向旋转900,使得BA与BC重合。

经过旋转变化,将图(2-1-a)中的PA、PB、PC 三条线段集中于图(2-1-b)中的ΔCPP'中,此时ΔBPP'为等腰直角三角形。

例2. 如图(2-1):P是正方形ABCD内一点,点P到正方形的三个顶点A、B、C的距离分别为PA=1,PB=2,PC=3。

求此正方形ABCD面积。

(三)等腰直角三角形类型在等腰直角三角形ΔABC中,∠C=Rt∠, P为ΔABC内一点,将ΔAPC绕C点按逆时针方向旋转900,使得AC与BC重合。

经过这样旋转变化,在图(3-1-b)中的一个ΔP'CP为等腰直角三角形。

例3.如图,在ΔABC中,∠ACB =900,BC=AC,P为ΔABC内一点,且PA=3,PB=1,PC=2。

求∠BPC的度数。

平移、旋转和翻折是几何变换中的三种基本变换。

所谓几何变换就是根据确定的法则,对给定的图形(或其一部分)施行某种位置变化,然后在新的图形中分析有关图形之间的关系.这类实体的特点是:结论开放,注重考查学生的猜想、探索能力;便于与其它知识相联系,解题灵活多变,能够考察学生分析问题和解决问题的能力.在这一理念的引导下,近几年中考加大了这方面的考察力度,特别是2006年中考,这一部分的分值比前两年大幅度提高。

为帮助广大考生把握好平移,旋转和翻折的特征,巧妙利用平移,旋转和翻折的知识来解决相关的问题,下面以近几年中考题为例说明其解法,供大家参考。

一.平移、旋转平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.“一定的方向”称为平移方向,“一定的距离”称为平移距离。

平移特征:图形平移时,图形中的每一点的平移方向都相同,平移距离都相等。

旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度成为与原来相等的图形,这样的图形运动叫做图形的旋转,这个定点叫做旋转中心,图形转动的角叫做旋转角.旋转特征:图形旋转时,图形中的每一点旋转的角都相等,都等于图形的旋转角。

例1.(2006年绵阳市中考试题)如图,将ΔABC绕顶点A顺时针旋转60º后得到ΔAB´C´,且C´为BC的中点,则C´D:DB´=()A.1:2 B.1: C.1: D.1:3分析:由于ΔAB´C´是ΔABC绕顶点A顺时针旋转60º后得到的,所以,旋转角∠CAC′=60º,ΔAB´C´≌ΔABC,∴AC´=AC,∠CAC′=60º,∴ΔAC´C是等边三角形,∴AC´=AC´.又C´为BC的中点,∴BC´=CC´,易得ΔAB´C、ΔABC是含30º角的直角三角形,从而ΔAC´D也是含30º角的直角三角形点评:本例考查灵活运用旋转前后两个图形是全等的性质、等边三角形的判断和含30 º角的直角三角形的性质的能力,解题的关键是发现ΔAC´C是等边三角形.二、翻折翻折:翻折是指把一个图形按某一直线翻折180º后所形成的新的图形的变化。

翻折特征:平面上的两个图形,将其中一个图形沿着一条直线翻折过去,如果它能够与另一个图形重合,那么说这两个图形关于这条直线对称,这条直线就是对称轴。

解这类题抓住翻折前后两个图形是全等的,弄清翻折后不变的要素。

翻折在三大图形运动中是比较重要的,考查得较多.另外,从运动变化得图形得特殊位置探索出一般的结论或者从中获得解题启示,这种由特殊到一般的思想对我们解决运动变化问题是极为重要的,值得大家留意。

例2.(2006年江苏省宿迁市)如图,将矩形ABCD沿AE折叠,若∠BAD′=30°,则∠AED′等于()A.30°B.45°C.60°D.75°分析:由已知条件∠BAD′=30°,易得∠DAD′=60º,又∵D、D′关于AE 对称,∴∠EAD=∠EAD′=30º,∴∠AED=∠AED′=60º.故选C点评:本例考查灵活运用翻折前后两个图形是全等的性质的能力,解题的关键是发现∠EAD=∠EAD′,∠AED=∠AED′点评:图形沿某条线折叠,这条线就是对称轴,利用轴对称的性质并借助方程的的知识就能较快得到计算结果。

由此看出,近几年中考,重点突出,试题贴近考生,贴近初中数学教学,图形运动的思想(图形的旋转、翻折、平移三大运动)都一一考查到了.因此在平时抓住这三种运动的特征和基本解题思路来指导我们的复习,将是一种事半功倍的好方法。

平移与旋转实际上是一种全等变换,由于具有可操作性,因而是考查同学们动手能力、观察能力的好素材,也就成了近几年中考试题中频繁出现的内容。

题型多以填空题、计算题呈现。

在解答此类问题时,我们通常将其转换成全等求解。

根据变换的特征,找到对应的全等形,通过线段、角的转换达到求解的目的。

例1:如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,将腰CD以D为中心,逆时针旋转90°至ED,连结AE、CE,则△ADE的面积是()A 1B 2C 3D 不能确定分析:解题的关键是求△ADE的边AD上的高。

可先求作直角梯形的高DF,想到将△CDF绕D逆时针旋转90°至△EDG,由EG=GF,只要CF的长,就可以求出△ADE的面积。

解:过D做DF⊥BC于F,过E做EG⊥,交AD的延长线于G∵∠B=90°,AD∥BC∴四边形ABFD为矩形∴FC=BC-AD=3-2=1,∠EDC=∠FDC =90°∴∠FDC =∠EDG,又∵∠DFC =∠G =90°,ED=CD∴△EDG≌△CDF,∴EG=CF=1因此,选择A点评:明确△ADE的边AD上的高的概念不要误写成DE,作梯形高是常见的解题方法之一。

变式题1:如图,已知△ABC中AB=AC,∠BAC =90°,直角∠EPF的顶点P是BC中点,两边PE,PF分别交AB、AC于点E、F,给出以下五个结论:(1)AE=CF(2)∠APE=∠CPF(3)△EPF是等腰直角三角形(4)EF=AP =S△ABC÷2,当∠EPF在△ABC内绕顶点P旋转时(点E不与A、(5)S四边形AEPFB重合)上述结论中始终正确的序号有___例2D、E为AB的中点,将△ABC沿线段DE折叠,使点A落在点F处。

若∠B=50°,则∠BDF=___分析:通过折纸实验,多次尝试,得出结论。

解:∵D、E为AB的中点,∴DE∥BC,∠ADE=∠B=50°由折纸实验得:∠ADE=∠FDE∴∠BDF=180°-∠ADE-∠FDE=180°-2×50°=80°点评:几何变换没有可套用的模式,关键是同学们要善于多角度、多层次、多侧面地思考问题,观察问题、分析问题。

变式题2:如图,矩形纸片ABCD,AB=2,∠ADB=30°,将它沿对角线BD折叠(使△ABD和△EBD落在同一平面内)则A、E两点间的距离为___旋转具有以下特征:(1)图形中的每一点都绕着旋转中心旋转了同样大小的角度;(2)对应点到旋转中心的距离相等;(3)对应角、对应线段相等;(4)图形的形状和大小都不变。

利用旋转的特征,可巧妙解决很多数学问题,如一.求线段长.例:如图,已知长方形ABCD 的周长为20,AB=4,点E在BC上,且AE⊥EF,AE=EF,求CF的长。

【解析】:将△ABE以点E为旋转中心,顺时针旋转90°,此时点B旋转到点B' 处,AE与EF重合,由旋转特征知:B'E⊥BC ,四边形B'ECF 为长方形,∴CE=BF'=AB∵CF+CE=B'E+CE=BE+EC=BC=6∴CF=BC-CE=6-4=2二.求角的大小例:如图,在等边△ABC中,点E、D分别为AB、BC上的两点,且BE=CD,AD与CE交于点M,求∠AME 的大小。

【解析】:因为BC=AC,∠ABC=∠ACD=60°,BE=CD,所以以△ABC的中心(等边三角形三条中线的交点)O为旋转中心,将△ADC顺时针旋转120°就得到了△CEB,∴∠AME=180°-∠AMC=180°-120°=60°三.进行几何推理例:如图,点F在正方形ABCD的边BC上,AE平分∠DAF ,请说明DE=AF-BF 成立的理由。

数学思想是解数学题的精髓和重要的指导方法,在平移和旋转中的应用也相当的广泛,一般可以归结为两种思想——对称的思想和旋转的思想,具体的分析如下:1 、对称的思想:在平移、旋转、对称这些概念中,对称这一概念非常重要.它包括轴对称、旋转对称、中心对称.对称是一种种要的思想方法,在解题的应用非常广泛.例:观察图中所给的图案,它可以看成由哪个较基本的图形经过哪些运动变换产生的?它是不是轴对称图形?旋转对称图形?中心对称图形?分析:这是一个涉及轴对称平移、旋转的综合性例子。

解题思路主要通过直观观察取得。

这个图案较基本的图形是正方形,一个小正方形沿对角线方向平移一个对角线长、两个对角线长后得一正方形串,然后在串的轴线上找一点O为旋转中心,旋转三个90°后得到题目中给出的图案,整个过程如图所示。

这个图形是轴对称、旋转对称.中心对称图形。

方法探究:这里的较基本图形也可以看成线段。

一线段经平移、旋转后得一正方形,然后重复上面的过程。

2、旋转的思想:旋转也是图形的一种基本变换,通过图形旋转变换,从而将一些简单的平面图形按要求旋转到适当的位置,使问题获得简单的解决,它是一种要的解题方法。

例:如图,正方形ABCD内一点P,∠PAD=∠PDA=15°,连结PB、PC,请问:ΔPBC是等边三角形吗?为什么?分析:本题关键是说明∠PCD=∠PBA=30°,利用条件可以设想将ΔAPD 绕点D逆时针方向旋转90°,而使A与C重合,此时问题得到解决.解:将ΔAPD绕点D逆时针旋转90°,得ΔDP’C,再作ΔDP’C 关于DC的轴对称图形ΔDQC,得ΔCDQ与ΔADP经过对折后能够重合。

相关文档
最新文档