解二元一次方程组检测题含答案

合集下载

初中数学二元一次方程组经典练习题(含答案)

初中数学二元一次方程组经典练习题(含答案)

初中数学二元一次方程组经典练习题(含答案)解下列二元一次方程组:1. {x +y = 2 3x +7y =10;2.{x +3y = 810x −y =18;3.{3x +2y =1364x −3y =1;4.{ x+52+y−43=2x+20.3−y+70.4= −10 ;5.{ 4x −3y =−1 x 5=y 7 ;6. {3(x +2)=2(y +3)4(x −2)=3(y −3);7.{ x 5+y 7=10 x 3−y 4=3;8.{x 2+y 3=42x +7y =50 ;9.{12(x +3)+13(y −4)=52(x −3)+5(y +4)=70 ;10.{0.2x +0.5y =9x+22+y+105=15 ;11.{4(x −1) +3(y +1) =320%(x +1)+80%(y −1)=−3;12.{x+2y 2 +x−2y 3 = 113(x +2y )−4(x −2y )=30 ;参考答案1. {x +y = 23x +7y =10 ;解: {x +y = 2−−−−−−①3x +7y =10−−−−②①×3,得3x+3y=6-------③②-③,得4y=4,即y=1将y=1代入①,解得x=1故原方程组的解是: {x =1y =12.{x +3y = 810x −y =18; 解:{x +3y = 8−−−−−−−①10x −y =18−−−−−−②②×3,得 30x-3y=54----③①+③,得31x=62,即x=2将x=2代入①,得2+3y=8,y=2故原方程组的解是: {x =2y =23.{3x +2y =1364x −3y =1; 解:{3x +2y =136−−−−−−①4x −3y =1−−−−−−② ①×3,得9x+6y= 132------③ ②×2,得8x-6y=2-----④③+④,得17x= 172 ,x= 12 将x= 12代入②,2-3y=1,y= 13 故原方程组的解是: {x = 12y = 134.{ x+52+y−43=2 x+20.3−y+70.4= −10; 解:{ x+52+y−43=2 −−−−−−−① x+20.3−y+70.4= −10−−−−−−②①等号两边同时乘以6,得3(x+5)+2(y-4)=123x+15+2y-8=12整理,得3x+2y=5----------③②等号两边同时乘以0.3×0.4,得0.4(x+2)-0.3(y+7)=-1.2两边同时乘以10,得4(x+2)-3(y+7)=-124x+8-3y-21=-12整理,得4x-3y=1--------④③×3,得9x+6y=15------⑤④×2,得8x-6y=2-------⑥⑤+⑥,得17x=17,即x=1将x=1代入③,得3+2y=5,y=1故原方程组的解是: {x =1y =15.{ 4x −3y =−1 x 5=y 7 ; 解:{ 4x −3y =−1 −−−−−−−−−−−① x 5=y 7−−−−−−−−−−−−−−−② ②变化为x= 57 y--------------③ 将③代入①,得4×57y -3y=-1 20−217 y =-1,整理得y=7将y=7代入③,得x= 57 ×7,x=5 故原方程组的解是: {x =5y =76. {3(x +2)=2(y +3)4(x −2)=3(y −3); 解:{3(x +2)=2(y +3)4(x −2)=3(y −3)方程组去括号,得{3x +6=2y +64x −8=3y −9整理得{3x −2y =0−−−−①4x −3y +1=0−−②①×3,得9x-6y=0--------③②×2, 得8x-6y+2=0------④③-④,得x-2=0,即x=2将x=2代入①,得6-2y=0,y=3故原方程组的解是: {x =2y =37.{ x 5+y 7=10 x 3−y 4=3; 解:{ x 5+y 7=10 x 3−y 4=3 方程组去分母,得{ 7x +5y =350−−−−−−①4x −3y =36−−−−−−−②①×3,得21x+15y=1050---③②×5,得20x-15y=180----④③+④,得41x=1230,即x=30将x=30代入①,得210+5y=350,y=28故原方程组的解是: {x =30y =288.{x 2+y 3=4 2x +7y =50; 解:{x 2+y 3=4 2x +7y =50方程组去分母,得{3x +2y =24−−−−−−−① 2x +7y =50−−−−−−−②①×2,得6x+4y=48-----③②×3,得6x+21y=150---④④-③,得17y=102,即y=6将y=6代入① ,得3x+12=24,x=4故原方程组的解是: {x =4y =69.{12(x +3)+13(y −4)=52(x −3)+5(y +4)=70 ; 解:{12(x +3)+13(y −4)=5−−−−① 2(x −3)+5(y +4)=70−−−②①去分母,得3(x+3)+2(y-4)=30去括号,得3x+9+2y-8=30整理,得3x+2y-29=0-----------③②去括号,得2x-6+5y+20=70整理,得2x+5y-56=0-----------④③×2,得6x+4y-58=0------------⑤④×3,得6x+15y-168=0----------⑥⑥-⑤,得11y-110=0,即y=10将y=10代入③,得3x+20-29=0,x=3故原方程组的解是:{x=3 y=1010.{0.2x+0.5y=9x+2 2+y+105=15 ;解:{0.2x+0.5y=9−−−−−①x+22+y+105=15−−−−−−②①等号两边同时乘以10,得2x+5y=90------------------③②去分母,得5(x+2)+2(y+10)=150去括号,整理得5x+2y=120---④③×5,得10x+25y=450------⑤④×2,得10x+4y=240-------⑥⑤-⑥,得21y=210,即y=10将y=10代入③,得2x+50=90,x=20故原方程组的解是:{x=20 y=1011.{4(x −1) +3(y +1) =320%(x +1)+80%(y −1)=−3; 解:{4(x −1) +3(y +1) =3−−−−−−−−−①20%(x +1)+80%(y −1)=−3−−−−−−② ①去括号,得4x-4+3y+3=3,整理得4x+3y=4-----③ ②去百分号,得0.2(x+1)+0.8(y-1)=-3等号两边同时乘以10,得2(x+1)+8(y-1)=-30 去括号,得2x+2+8y-8=-30,整理得x+4y=-12----④ ④×4,得4x+16y=-48------------------------⑤ ⑤-③,得13y=-52,即y=-4将y=-4代入④,得x-16=-12,x=4故原方程组的解是: {x =4y =−412.{x+2y 2 +x−2y 3 = 11 3(x +2y )−4(x −2y )=30; 解:{x+2y 2 +x−2y 3 = 11 −−−−−−−−−−−−−−① 3(x +2y )−4(x −2y )=30−−−−−−② ①×6,得3(x+2y )+2(x-2y )=66----------------③③-②,得6(x-2y )=36,即x-2y= 6 -------④①×12,得6(x+2y )+4(x-2y )=132---------------⑤⑤+②,得9(x+2y)=162,即x+2y=18---⑥④+⑥,得2x=24,即x=12④-⑥,得-4y=-12,即y=3故原方程组的解是:{x=12 y=3。

二元一次方程组及其解法训练题(含答案)

二元一次方程组及其解法训练题(含答案)

20. 解方程组: (1) (2) x − y = 5, 2x + y = 4; ① ② ① ②
x−2 = 2 y−1 , 2 x − 2 + y − 1 = 5;
x 2 x 3
(3)
+3 =
y
y
13 2 3
, ① ②
−4 = 2.
21. 已知甲种物品每个重 4 kg,乙种物品每个重 7 kg,现有甲种物品 x 个,乙种物品 y 个,共重 76 kg. (1) 列出关于 x,y 的二元一次方程; (2) 若 x = 12,则 y = ; 个; (3) 若乙种物品有 8 个,则甲种物品有 (4) 写出满足条件的 x,y 的全部整数解.
,b = .

ax + 5y = −17, x = 4, 时,由于粗心,甲看错了方程组中的 a,而得到解为 乙看错 y = 3. 4x − by = 1 x = −3, 了方程组中的 b 而得到解为 y = −1.
(1) 求正确的 a,b 的值; (2) 求原方程组的解.
19. 先阅读材料,然后解方程组: 材料:解方程组 x + y = 4, ⋯ ⋯ ① 3 x + y + y = 14. ⋯ ⋯ ②
22. 已知关于 x, y 的方程组
mx + ny = 7, x = 1, 的解为 求 m, n 的值. y = 2, 2mx − 3ny = 4
23. 已知代数式 x 2 + ax + b 当 x = 1 和 x = −3 时的值分别为 0 和 14,求当 x = 3 时代数式的值.
第 3 页(共 6 页)
14. 已知二元一次方程 3x + y − 1 = 0,用含 y 的代数式表示 x,则 x = x= 15. 由方程组 . x + m = 6, 可得到 x 与 y 的关系式是 y−3 = m

完整版二元一次方程组解法练习题精选含答案

完整版二元一次方程组解法练习题精选含答案

二元一次方程组解法练习题精选(含答案)一.解答题(共16小题).求适合的值.y,1x的.解下列方程组2(1))2((3).)4(3.解方程组:4.解方程组:5.解方程组:y=kx+by.已知关于x,的二元一次方程的解有.和6 的值.,)求(1kb 时,x=2)当(2y的值.)当(3y=3为何值时,x?7.解方程组:);(1.(2 ).解方程组:89.解方程组:.解下列方程组:10(1))2 (11.解方程组:)(1)2 (.解二元一次方程组:12;)1(.).(2而得解为,,由于粗心,13.在解方程组甲看错了方程组中的a 时,,而得解为.乙看错了方程组中的b(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解..1415.解下列方程组:);1().2()2 )((16.解下列方程组:1x?y?25?的解是否满足2x-y=8?满足方程组17.2x-y=8的一对x,的值是否是方程y?8y??x2?25?x?y?组的解??8?y?x2?二元一次方程组解法练习题精选(含答案)参考答案与试题解析一.解答题(共16小题).求适合的x,y的值.1考解二元一次方程组.809625点:分,然后在用加减消,得到一组新的方程先把两方程变形(去分母)析:的值.的值,继而求出,求出yx元法消去未知数x解,解:由题意得:答:3),2y=22由(1)×得:3x﹣(6x+y=3)由(2×3得:(4),),54y=46x)(3×2得:﹣(,)得:4y=﹣)﹣((5的值代入(把y3,)得:x=∴.本题考查了二元一次方程组的解法,主要运用了加减消元法和代入法.点评:.解下列方程组2.)(12)((3).)4 (解二元一次方程组.809625 考点:(1)(2)用代入消元法或加减消元法均可;分析:(3)(4)应先去分母、去括号化简方程组,再进一步采用适宜的方法求解.解解:(1)①﹣②得,﹣x=﹣2,答:解得x=2,把x=2代入①得,2+y=1,解得y=﹣1.故原方程组的解为.39,得,﹣﹣②×213y=﹣3(2)①×y=3,解得,5,﹣﹣代入y=3①得,2x3×3=把.解得x=2故原方程组的解为.,)原方程组可化为3(.①+②得,6x=36,x=6,①﹣②得,8y=﹣4,﹣.y=所以原方程组的解为.)原方程组可化为:(4,,得,x=①×2+②4y=6得,x=代入②3,×﹣把y=.﹣.所以原方程组的解为利用消元法解方程组,要根据未知数的系数特点选择代入法还是加减法:点评:①相同未知数的系数相同或互为相反数时,宜用加减法;②其中一个未知数的系数为1时,宜用代入法..解方程组:3809625 解二元一次方程组.考:点计算题.专:题先化简方程组,再进一步根据方程组的特点选用相应的方法:用加减法.分.析:解解:原方程组可化为,答:3,得①×4﹣②×7x=42,.解得x=6 .x=6代入①,得y=4把.所以方程组的解为注意:二元一次方程组无论多复杂,解二元一次方程组的基本思想都是消点评:元.消元的方法有代入法和加减法..解方程组:4809625 考解二元一次方程组.:点计算题.专:题把原方程组化简后,观察形式,选用合适的解法,此题用加减法求解比较分析:简单.解,)原方程组化为1(解:答:得:6x=18,②①+ x=3∴..y=得:①代入.所以原方程组的解为.要注意:两个二元一次方程中同一未知数的系数相反或相等时,把这两个点评:方程的两边相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法.本题适合用此法..解方程组:5考解二元一次方程组.809625点:专计算题;换元法.题:分本题用加减消元法即可或运用换元法求解.析:解解:,答:s+t=4,,得①﹣②,s,得﹣t=6①+②,即解得..所以方程组的解为点此题较简单,要熟练解方程组的基本方法:代入消元法和加减消元法.评:和.的解有,y的二元一次方程y=kx+b 6.已知关于x 的值.1)求k,b(的值.)当x=2时,y(2 y=3)当x为何值时,?(3 考解二元一次方程组.809625:点计算题.专题:的二元一次方程组b,的值代入方程得出关于k、(1)将两组x,y分析:再运用加减消元法求出k、b的值.(2)将(1)中的k、b代入,再把x=2代入化简即可得出y的值.(3)将(1)中的k、b和y=3代入方程化简即可得出x的值.解解:)依题意得:(1 答:①﹣②得:2=4k,k=,所以b=.所以x+,2)由y=(y=.代入,得x=2把x+)由y=3(.x=1代入,得y=3把点本题考查的是二元一次方程的代入消元法和加减消元法,通过已知条件的评:代入,可得出要求的数.7.解方程组:);(1).2 (考解二元一次方程组.809625点:分根据各方程组的特点选用相应的方法:(()先2)先去分母再用加减法,1 去括号,再转化为整式方程解答.析:解解:(1)原方程组可化为,答:①×2②得:﹣,y=﹣1 ①得:1将y=﹣代入.x=1方程组的解为;∴2()原方程可化为,,即①×得:②2+ ,17x=51.x=3,将x=3代入x﹣4y=3中得:y=0.方程组的解为.∴这类题目的解题关键是理解解方程组的基本思想是消元,掌握消元的方法点评:有:加减消元法和代入消元法.根据未知数系数的特点,选择合适的方法..解方程组:8考解二元一次方程组.809625点:专计算题.题:分本题应把方程组化简后,观察方程的形式,选用合适的方法求解.析:解解:原方程组可化为,答:①+②,得10x=30,x=3,代入①,得15+3y=15,y=0.则原方程组的解为.解答此题应根据各方程组的特点,有括号的去括号,有分母的去分母,然点.评:后再用代入法或加减消元法解方程组..解方程组:9解二元一次方程组.809625 考:点计算题.专题:分本题为了计算方便,可先把(2)去分母,然后运用加减消元法解本题.析:解解:原方程变形为:,答:两个方程相加,得4x=12,x=3.把x=3代入第一个方程,得,4y=11.y=解之得.本题考查的是二元一次方程组的解法,方程中含有分母的要先化去分母,点评:再对方程进行化简、消元,即可解出此类题目..解下列方程组:10.)1()2 (解二元一次方程组.809625 考:点计算题.专:题此题根据观察可知:分析:(1)运用代入法,把①代入②,可得出x,y的值;(2)先将方程组化为整系数方程组,再利用加减消元法求解.解,)1(解:答:③,①由,得x=4+y ,,得代入②4(4+y)+2y=﹣1﹣y=,所以﹣.=把y=代入﹣③,得x=4所以原方程组的解为.,(2)原方程组整理为24,﹣,得④×2③×﹣3y= 把y=,,得④代入﹣24x=60.所以原方程组的解为点此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目评:的训练达到对知识的强化和运用.11.解方程组:)(1)(2解二元一次方程组.809625 考:点计算题;换元法.专:题方程组(1分)需要先化简,再根据方程组的特点选择解法;析:方程组(2)采用换元法较简单,设x+y=a,x﹣y=b,然后解新方程组即可求解.解)原方程组可化简为,(解:1答:解得.﹣,)设(2x+y=axy=b,,∴原方程组可化为,解得.∴原方程组的解为∴.点此题考查了学生的计算能力,解题时要细心.评:12.解二元一次方程组:);(1.)(2解二元一次方程组.考809625点:计算题.专:题(1)运用加减消元的方法,可求出x、y分的值;析:(2)先将方程组化简,然后运用加减消元的方法可求出x、y的值.解解:(1)将①×2﹣②,得答:15x=30,x=2,把x=2代入第一个方程,得y=1.则方程组的解是;,)此方程组通过化简可得:2(.①﹣②得:y=7,把y=7代入第一个方程,得x=5.则方程组的解是.此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目点评:的训练达到对知识的强化和运用.而得解为,a,.在解方程组时,由于粗心,甲看错了方程组中的13,而得解为b乙看错了方程组中的.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.考解二元一次方程组.809625点:专计算题.题:分(1)把甲乙求得方程组的解分别代入原方程组即可;析:(2)把甲乙所求的解分别代入方程②和①,求出正确的a、b,然后用适当的方法解方程组.解代入方程组,(解:1)把答:,得.解得:代入方程组,把得,解得:.∴甲把a看成﹣5;乙把b看成6;(2)∵正确的a是﹣2,b是8,方程组为,∴.解得:x=15,y=8.则原方程组的解是点此题难度较大,需同学们仔细阅读,弄清题意再解答.评:.14考809625 解二元一次方程组.点:先将原方程组中的两个方程分别去掉分母,然后用加减消元法求解即可.分析:解解:由原方程组,得答:,1由()2(+),并解得,)3(x=把(3)代入(1),解得y=,原方程组的解为.∴用加减法解二元一次方程组的一般步骤:点评:1.方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等;2.把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;3.解这个一元一次方程;4.将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解.15.解下列方程组:);(1)(2.809625 考解二元一次方程组.点:分将两个方程先化简,再选择正确的方法进行消元.析:1解:()化简整理为,解,③3x+3y=1500,得3①×答:②﹣③,得x=350.把x=350代入①,得350+y=500,∴y=150.故原方程组的解为.)化简整理为,(2①×5,得10x+15y=75③,②×2,得10x﹣14y=46④,③﹣④,得29y=29,∴y=1.把y=1代入①,得2x+3×1=15,∴x=6.故原方程组的解为.点方程组中的方程不是最简方程的,最好先化成最简方程,再选择合适的方评:法解方程.)(216.解下列方程组:(1)考解二元一次方程组.809625点:分观察方程组中各方程的特点,用相应的方法求解.析:解解:(1)①×2﹣②得:x=1,得:①代入x=1将答:2+y=4,y=2.原方程组的解为;∴)原方程组可化为,(2①×2﹣②得:﹣y=﹣3,y=3.将y=3代入①得:x=﹣2.原方程组的解为.∴点解此类题目要注意观察方程组中各方程的特点,采用加减法或代入法求解.评:。

二元一次方程组解法练习题精选(含答案)

二元一次方程组解法练习题精选(含答案)

二元一次方程组解法练习题精选(含答案) 二元一次方程组解法练题精选(含答案)一.解答题(共16小题)1.求适合 $3x-2y=2$ 和 $6x+y=3$ 的 $x$,$y$ 的值。

解答:由 $(1)\times2$ 得:$3x-2y=2$(3),由$(2)\times3$ 得:$6x+y=3$(4),$(3)\times2$ 得:$6x-4y=4$(5),$(5)-(4)$ 得:$y=-\frac{1}{2}$,把 $y$ 的值代入 $(3)$ 得:$x=\frac{1}{2}$,故原方程组的解为$(x,y)=(\frac{1}{2},-\frac{1}{2})$。

2.解下列方程组:begin{cases} \frac{x}{2}+\frac{y}{3}=1 \\\frac{x}{3}+\frac{y}{2}=2 \end{cases}$$解答:由题意得:$\frac{x}{2}+\frac{y}{3}=1$(1),$\frac{x}{3}+\frac{y}{2}=2$(2),先把两方程变形(去分母),得到一组新的方程,然后在用加减消元法解二元一次方程组。

把 $(1)\times3$ 减去 $(2)\times2$,得到 $x=-1$,把$x=-1$ 代入 $(1)$,得到 $y=6$,故原方程组的解为 $(x,y)=(-1,6)$。

3.解方程组:begin{cases} 3x+2y=7 \\ 2x+3y=8 \end{cases}$$解答:把两方程相加得到 $5x+5y=15$,即 $x+y=3$,把$x+y=3$ 代入其中一个方程,如 $(1)$,得到 $x=-1$,再把$x=-1$ 代入 $(1)$ 或 $(2)$ 中的一个方程,如 $(1)$,得到$y=4$,故原方程组的解为 $(x,y)=(-1,4)$。

4.解方程组:begin{cases} x+y=5 \\ 2x-y=4 \end{cases}$$解答:把两方程相加得到 $3x=9$,即 $x=3$,把$x=3$ 代入其中一个方程,如 $(1)$,得到 $y=2$,再把 $x=3$,$y=2$ 代入原方程组检验,发现符合,故原方程组的解为$(x,y)=(3,2)$。

(完整版)二元一次方程组练习题含答案

(完整版)二元一次方程组练习题含答案

二元一次方程组专题训练1.⎩⎨⎧=-=+33651643y x y x 2. ⎩⎨⎧=+=-6251023x y x y ⎩⎨⎧=-=+19542023b a b a 1、 2、 3、 ⎩⎨⎧=-=+1572532y x y x4、⎩⎨⎧=+-=18435276t s t s 5、 ⎩⎨⎧=-=+574973p q q p 6、⎩⎨⎧=-=+42634y x y x7、⎩⎨⎧-=-=+22223n m n m 8、⎩⎨⎧=--=-495336y x y x 9、10、⎩⎨⎧=-=-yx y x 23532 11、⎩⎨⎧=-=+124532n m n m12、⎩⎨⎧=+=+10232556y x y x13、⎩⎨⎧=+=+2.54.22.35.12y x y x 14、⎪⎩⎪⎨⎧=-+-=+6)(3)1(26132y x x y x15、⎪⎩⎪⎨⎧=+--=-+-04235130423512y x y x 16、⎪⎩⎪⎨⎧=--=+-4323122y x y x yx17、⎪⎩⎪⎨⎧-=-++=-+52251230223x y x y x二元一次方程组练习题一、选择题:1.下列方程中,是二元一次方程的是( ) A .3x -2y=4z B .6xy+9=0 C .1x+4y=6 D .4x=2.下列方程组中,是二元一次方程组的是( )A .228423119...23754624x y x y a b xBCD x y b c y x x y +=+=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩3.二元一次方程5a -11b=21 ( )A .有且只有一解B .有无数解C .无解D .有且只有两解4.方程y=1-x 与3x+2y=5的公共解是( )A .3333...2422x x x x B C D y y y y ==-==-⎧⎧⎧⎧⎨⎨⎨⎨===-=-⎩⎩⎩⎩5.若│x -2│+(3y+2)2=0,则的值是( )A .-1B .-2C .-3D .326.方程组43235x y kx y -=⎧⎨+=⎩的解与x 与y 的值相等,则k 等于( )7.下列各式,属于二元一次方程的个数有( )①xy+2x -y=7; ②4x+1=x -y ; ③1x+y=5; ④x=y ; ⑤x 2-y 2=2⑥6x -2y ⑦x+y+z=1 ⑧y (y -1)=2y 2-y 2+x A .1 B .2 C .3 D .48.某年级学生共有246人,其中男生人数y 比女生人数x 的2倍少2人,•则下面所列的方程组中符合题意的有( ) A .246246216246 (22222222)x y x y x y x y B C D y x x y y x y x +=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨=-=+=+=+⎩⎩⎩⎩ 二、填空题9.已知方程2x+3y -4=0,用含x 的代数式表示y 为:y=_______;用含y 的代数式表示x 为:x=________. 10.在二元一次方程-12x+3y=2中,当x=4时,y=_______;当y=-1时,x=______.11.若x 3m -3-2y n -1=5是二元一次方程,则m=_____,n=______.12.已知2,3x y =-⎧⎨=⎩是方程x -ky=1的解,那么k=_______.13.已知│x -1│+(2y+1)2=0,且2x -ky=4,则k=_____.14.二元一次方程x+y=5的正整数解有______________. 15.以57x y =⎧⎨=⎩为解的一个二元一次方程是_________. 16.已知2316x mx y y x ny =-=⎧⎧⎨⎨=--=⎩⎩是方程组的解,则m=_______,n=______.三、解答题17.当y=-3时,二元一次方程3x+5y=-3和3y -2ax=a+2(关于x ,y 的方程)•有相同的解,求a 的值.18.如果(a -2)x+(b+1)y=13是关于x ,y 的二元一次方程,则a ,b 满足什么条件?19.二元一次方程组437(1)3x y kx k y +=⎧⎨+-=⎩的解x ,y 的值相等,求k .20.已知x,y是有理数,且(│x│-1)2+(2y+1)2=0,则x-y的值是多少?21.已知方程12x+3y=5,请你写出一个二元一次方程,使它与已知方程所组成的方程组的解为41xy=⎧⎨=⎩.22.根据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,•问明明两种邮票各买了多少枚?(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;•若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?23.方程组2528x yx y+=⎧⎨-=⎩的解是否满足2x-y=8?满足2x-y=8的一对x,y的值是否是方程组2528x yx y+=⎧⎨-=⎩的解?24.(开放题)是否存在整数m ,使关于x 的方程2x+9=2-(m -2)x 在整数范围内有解,你能找到几个m 的值?你能求出相应的x 的解吗?《二元一次方程组》单元测试题一、选择题(每题3分,共30分) 1.下列方程组中,是二元一次方程组的是( ). (A ) 2311089x y x y ⎧+=⎨-=-⎩ (B )426xy x y =⎧⎨+=⎩ (C )21734x y y x-=⎧⎪⎨-=-⎪⎩(D )24795x y x y +=⎧⎨-=⎩ 2.二元一次方程组⎩⎨⎧==+xy y x 2,102的解是( ) (A )⎩⎨⎧==;3,4y x (B )⎩⎨⎧==;6,3y x (C )⎩⎨⎧==;4,2y x (D )⎩⎨⎧==.2,4y x 3.根据图1所示的计算程序计算y 的值,若输入2=x , 则输出的y 值是( )(A )0 (B )2- (C )2 (D )44.如果2315a b 与114x x y a b ++-是同类项,则x ,y 的值是( )(A )⎩⎨⎧==31y x (B )⎩⎨⎧==22y x (C )⎩⎨⎧==21y x (D )⎩⎨⎧==32y x 5.已知12x y =⎧⎨=⎩ 是方程组错误!未找到引用源。

(完整版)二元一次方程组测试题及答案

(完整版)二元一次方程组测试题及答案

二元一次方程组(时间:45分钟 满分:100分) 姓名一、选择题(每小题5分,共20分)1. 下列不是二元一次方程组的是( )A .141y x x y ⎧+=⎪⎨⎪-=⎩ B .43624x y x y +=⎧⎨+=⎩C .44x y x y +=⎧⎨-=⎩ D .35251025x y x y +=⎧⎨+=⎩2.由132x y-=,可以得到用x 表示y 的式子是( )A .223x y -=B .2133x y =-C .223x y =-D .223xy =-3.方程组327413x y x y +=⎧⎨-=⎩的解是( )A .13x y =-⎧⎨=⎩ B .31x y =⎧⎨=-⎩C .31x y =-⎧⎨=-⎩ D .13x y =-⎧⎨=-⎩4.方程组125x y x y -=⎧⎨+=⎩的解是( )A .12x y =-⎧⎨=⎩ B .21x y =⎧⎨=-⎩C .12x y =⎧⎨=⎩D .21x y =⎧⎨=⎩二、填空题(每小题6分,共24分)5.在349x y +=中,如果2y = 6,那么x = 。

6.已知18x y =⎧⎨=-⎩是方程31mx y -=-的解,则m = 。

7.若方程m x + n y = 6的两个解是11x y =⎧⎨=⎩,21x y =⎧⎨=-⎩,则m = ,n = 。

8.如果2150x y x y -+=+-=,那么x = ,y = 。

三、解下列方程组(每小题8分,共16分)9.1323334m nm n ⎧+=⎪⎪⎨⎪-=⎪⎩10.()()344126x y x y x y x y⎧+--=⎪⎨+-+=⎪⎩四、综合运用(每小题10分,共40分)11.用16元买了60分、80分两种邮票共22枚。

60分与80分的邮票各买了多少枚?12.已知梯形的面积是42cm2,高是6cm,它的下底比上底的2倍少1cm,求梯形的上下底。

13.〈〈一千零一夜〉〉中有这样一段文字:有一群鸽子,其中一部分在树上欢歌,另一部分在地上觅食,树上的一只鸽子对地上觅食的鸽子说:“若从你们中飞上来一只,则树下的鸽子就是整个鸽群的13,若从树上飞下去一只,则树上、树下的鸽子就一样多了。

二元一次方程组经典练习题+答案解析100道

二元一次方程组经典练习题+答案解析100道

二元一次方程组经典练习题+答案解析100道二元一次方程组练题100道(卷一)1、判断1、方程组xy526的解是()。

解:这不是一个完整的方程组,缺少另一个方程,无法判断解。

2、方程组1是方程组yx3 2的解是方程3x-2y=13的一个解()。

解:将方程组代入3x-2y=13中,得到3x-2(-x/3-1/2)=13,化简得到x=5,y=-4,代入方程组可验证是解,因此选(√)。

3、由两个二元一次方程组成方程组一定是二元一次方程组()。

解:不一定,例如x+y=1和2x+2y=2就不是二元一次方程组。

4、方程组x3y 573x2y12235 3可以转化为方程组解:将第一个方程移项得到x+3y=2,代入第二个方程中消去x得到-7y=-18,解得y=18/7,代入第一个方程得到x=-41/7,因此可以转化为方程组5x-6y=-27和2y-3x+4=2,选(√)。

5、若(a-1)x+(a-1)x+(2a-3)y=0是二元一次方程,则a的值为±1()。

解:将XXX提取出来得到(a-1)(x+y)+(2a-3)y=0,因此x+y=-2a+3y/y-2,这是一个关于a的一次函数,当a=±1时,x+y=±1,此时方程组化为x+y=±1和-2x-2y=0,是二元一次方程组,因此选(√)。

6、若x+y=0,且|x|=2,则y的值为2()。

解:由x+y=0得到y=-x,代入|x|=2中得到|x|=|x+y|=|-x+y|=2,解得x=±1,因此y=±1,不等于2,选(×)。

7、方程组mx my m3x4x10y8有唯一的解,那么m的值为m≠-5()。

解:将第一个方程移项得到(m+3)x+my=m,代入第二个方程中消去x得到(3m+2)y=8-m,因为有唯一解,所以3m+2≠0,即m≠-2/3,代入方程组中验证,当m≠-5时,有唯一解,因此选(√)。

8、方程组1x y 233有无数多个解()。

二元一次方程组练习题(含答案)

二元一次方程组练习题(含答案)

二元一次方程组练习题(含答案) 二元一次方程组练题一.解答题(共16小题)1.解下列方程组:1)x+2y-1=23x-2y=52)1-yx+2/3=1/22y+3=3x3)5x+2y=11a4x-4y=6a4)2x+3y=73x-2y=15)2x-3y=75x+4y=176)2x+3y=13x-2y=57)3x-4y=-12x+5y=138)x(y+1)+y(1-x)=2x(x+1)-y-x^2=09)3x+y=72x-3y=-810)x^2+xy=2y-x+2=02.求适合的x,y的值。

已知关于x,y的二元一次方程y=kx+b的解有和。

1)求k,b的值。

2)当x=2时,y的值。

3)当y=3时,x的值为多少?解答:1.1)将第二个方程变形得到y=(3x-5)/2,代入第一个方程中,得到x=3,y=-2.2)将第一个方程变形得到y=(1/2-1+xy)/x,代入第二个方程中,得到x=3,y=-1.3)将第二个方程变形得到y=x-3/2,代入第一个方程中,得到x=2,y=1.4)将第二个方程变形得到y=(3x-1)/2,代入第一个方程中,得到x=2,y=1.5)将第一个方程变形得到y=(2x-7)/3,代入第二个方程中,得到x=1,y=-1.6)将第二个方程变形得到y=(3x-5)/2,代入第一个方程中,得到x=1,y=-1.7)将第二个方程变形得到y=(3x+1)/4,代入第一个方程中,得到x=5,y=2.8)将第一个方程变形得到y=(2-x^2)/(1-x),代入第二个方程中,得到x=1,y=1.9)将第二个方程变形得到y=(2x+8)/3,代入第一个方程中,得到x=1,y=1.10)将第一个方程变形得到y=2/x-x,代入第二个方程中,得到x=1,y=0.2.1)由于y=kx+b,所以当x=1时,y=k+b;当x=2时,y=2k+b。

又因为已知y=3时,x的值为多少,所以将y=kx+b代入得到kx+b=3,解得x=(3-b)/k。

二元一次方程组解法练习题精选(含答案)

二元一次方程组解法练习题精选(含答案)

二元一次方程组解法练习题精选(含答案)一.解答题(共16小题)1.求适合的x,y的值.2.解下列方程组(1)(2)(3)(4).3.解方程组:4.解方程组:5.解方程组:6.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?7.解方程组:(1);(2).8.解方程组:9.解方程组:10.解下列方程组:(1)(2)二元一次方程组解法练习题精选(含答案)参考答案与试题解析一.解答题(共16小题)1.求适合的x,y的值.分析:先把两方程变形(去分母),得到一组新的方程,然后在用加减消元法消去未知数x,求出y的值,继而求出x的值.解答:解:由题意得:,由(1)×2得:3x﹣2y=2(3),由(2)×3得:6x+y=3(4),(3)×2得:6x﹣4y=4(5),(5)﹣(4)得:y=﹣,把y的值代入(3)得:x=,∴.2.解下列方程组(1)(2)(3)(4).分析:(1)(2)用代入消元法或加减消元法均可;(3)(4)应先去分母、去括号化简方程组,再进一步采用适宜的方法求解.解答:解:(1)①﹣②得,﹣x=﹣2,解得x=2,把x=2代入①得,2+y=1,解得y=﹣1.故原方程组的解为.(2)①×3﹣②×2得,﹣13y=﹣39,解得,y=3,把y=3代入①得,2x﹣3×3=﹣5,解得x=2.故原方程组的解为.(3)原方程组可化为,①+②得,6x=36,x=6,①﹣②得,8y=﹣4,y=﹣.所以原方程组的解为.(4)原方程组可化为:,①×2+②得,x=,把x=代入②得,3×﹣4y=6,y=﹣.所以原方程组的解为.3.解方程组:专题:计算题.分析:先化简方程组,再进一步根据方程组的特点选用相应的方法:用加减法.解答:解:原方程组可化为,①×4﹣②×3,得7x=42,解得x=6.把x=6代入①,得y=4.所以方程组的解为.4.解方程组:分析:把原方程组化简后,观察形式,选用合适的解法,此题用加减法求解比较简单.解答:解:(1)原方程组化为,①+②得:6x=18,∴x=3.代入①得:y=.所以原方程组的解为.5.解方程组:分析:本题用加减消元法即可或运用换元法求解.解答:解:,①﹣②,得s+t=4,①+②,得s﹣t=6,即,解得.所以方程组的解为.6.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?分析:(1)将两组x,y的值代入方程得出关于k、b的二元一次方程组,再运用加减消元法求出k、b 的值.(2)将(1)中的k、b代入,再把x=2代入化简即可得出y的值.(3)将(1)中的k、b和y=3代入方程化简即可得出x的值.解答:解:(1)依题意得:①﹣②得:2=4k,所以k=,所以b=.(2)由y=x+,把x=2代入,得y=.(3)由y=x+把y=3代入,得x=1.7.解方程组:(1);(2).分析:根据各方程组的特点选用相应的方法:(1)先去分母再用加减法,(2)先去括号,再转化为整式方程解答.解答:解:(1)原方程组可化为,①×2﹣②得:y=﹣1,将y=﹣1代入①得:x=1.∴方程组的解为;(2)原方程可化为,即,①×2+②得:17x=51,x=3,将x=3代入x﹣4y=3中得:y=0.∴方程组的解为.8.解方程组:分析:本题应把方程组化简后,观察方程的形式,选用合适的方法求解.解答:解:原方程组可化为,①+②,得10x=30,x=3,代入①,得15+3y=15,y=0.则原方程组的解为.9.解方程组:分析:本题为了计算方便,可先把(2)去分母,然后运用加减消元法解本题.解答:解:原方程变形为:,两个方程相加,得4x=12,x=3.把x=3代入第一个方程,得4y=11,y=.解之得.10.解下列方程组:(1)(2)分析:此题根据观察可知:(1)运用代入法,把①代入②,可得出x,y的值;(2)先将方程组化为整系数方程组,再利用加减消元法求解.解答:解:(1),由①,得x=4+y③,代入②,得4(4+y)+2y=﹣1,所以y=﹣,把y=﹣代入③,得x=4﹣=.所以原方程组的解为.③×2﹣④×3,得y=﹣24,把y=﹣24代入④,得x=60,所以原方程组的解为.。

二元一次方程组解法练习题精选(含答案)

二元一次方程组解法练习题精选(含答案)

二元一次方程组解法练习题精选(含答案)一.解答题(共16小题)1.求适合的x,y的值.2.解下列方程组(1)(2)(3)(4).3.解方程组:4.解方程组:5.解方程组:6.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?7.解方程组:(1);(2).8.解方程组:9.解方程组:10.解下列方程组:(1)(2)11.解方程组:(1)(2)12.解二元一次方程组:(1);(2).13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.14.15.解下列方程组:(1);(2).16.解下列方程组:(1)(2)第二十六章《二次函数》检测试题1,(2008年芜湖市)函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是 ( )2,在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为s =5t 2+2t ,则当t =4时,该物体所经过的路程为( )3,已知二次函数y =ax 2+bx +c (a ≠0)的图象如图2所示,给出以下结论:① a +b +c <0;② a -b +c <0;③ b +2a <0;④ abc >0 .其中所有正确结论的序号是( )A. ③④B. ②③C. ①④D. ①②③4,二次函数y =ax 2+bx +c 的图象如图3所示,若M =4a +2b +c ,N =a -b +c ,P =4a +2b ,则( )A.M >0,N >0,P >0B. M >0,N <0,P >0C. M <0,N >0,P >0D. M <0,N >0,P <05,如果反比例函数y =k x的图象如图4所示,那么二次函数y =kx 2-k 2x -1的图象大致为( )6y 所对应的函数值依次为:20,56,110,182,274,380,506,650.其中有一个值不正确,这个不正确的值是()A. 506B.380C.274D.18图3图4 A . B . 图5 图1A. y =x 2-2B. y =(x -2)2C. y =x 2+2D. y =(x +2)28如图6,小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数h =3.5t -4.9t 2(t 的单位:s ,h 的单位:m )可以描述他跳跃时重心高度的变化,则他起跳后到重心最高时所用的时间是( )A.0.71sB.0.70sC.0.63sD.0.36s9,如果将二次函数y =2x 2的图象沿y 轴向上平移1个单位,那么所得图象的函数解析式是 .10,平移抛物线y =x 2+2x -8,使它经过原点,写出平移后抛物线的一个解析式______ .11,若二次函数y =x 2-4x +c 的图象与x 轴没有交点,其中c 为整数,则c =12,二次函数y =ax 2+bx +c 的图像如图7所示,则点A (a ,b )在第___象限.13,已知抛物线y =x 2-6x +5的部分图象如图8,则抛物线的对称轴为直线x = ,满足y <0的x 的取值范围是 .14,已知一抛物线与x 轴的交点是)0,2( A 、B (1,0),且经过点C (2,8)。

二元一次方程组解法练习题精选(含答案)

二元一次方程组解法练习题精选(含答案)

二元一次方程组解法练习题一.解答题 1.解下列方程组 (1) (2)(3))(6441125为已知数a a y x ay x ⎩⎨⎧=-=+ (4)(5)(6).(7) (8)⎩⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x(9) (10)⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x2.求适合的x ,y 的值.3.已知关于x ,y 的二元一次方程y=kx+b 的解有和.(1)求k ,b 的值. (2)当x=2时,y 的值. (3)当x 为何值时,y=3?1.解下列方程组 (1)(2);(3); (4)(5).(6)(7)(8)(9)(10);2.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b ,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.二元一次方程组解法练习题精选参考答案与试题解析一.解答题(共16小题)1.求适合的x,y的值.考点:解二元一次方程组.分析:先把两方程变形(去分母),得到一组新的方程,然后在用加减消元法消去未知数x,求出y的值,继而求出x的值.解答:解:由题意得:,由(1)×2得:3x﹣2y=2(3),由(2)×3得:6x+y=3(4),(3)×2得:6x﹣4y=4(5),(5)﹣(4)得:y=﹣,把y的值代入(3)得:x=,∴.点评:本题考查了二元一次方程组的解法,主要运用了加减消元法和代入法.2.解下列方程组(1)(2)(3)(4).考点:解二元一次方程组.分析:(1)(2)用代入消元法或加减消元法均可;(3)(4)应先去分母、去括号化简方程组,再进一步采用适宜的方法求解.解答:解:(1)①﹣②得,﹣x=﹣2,解得x=2,把x=2代入①得,2+y=1,解得y=﹣1.故原方程组的解为.(2)①×3﹣②×2得,﹣13y=﹣39,解得,y=3,把y=3代入①得,2x﹣3×3=﹣5,解得x=2.故原方程组的解为.(3)原方程组可化为,①+②得,6x=36,x=6,①﹣②得,8y=﹣4,y=﹣.所以原方程组的解为.(4)原方程组可化为:,①×2+②得,x=,把x=代入②得,3×﹣4y=6,y=﹣.所以原方程组的解为.点评:利用消元法解方程组,要根据未知数的系数特点选择代入法还是加减法:①相同未知数的系数相同或互为相反数时,宜用加减法;②其中一个未知数的系数为1时,宜用代入法.3.解方程组:考点:解二元一次方程组.专题:计算题.分析:先化简方程组,再进一步根据方程组的特点选用相应的方法:用加减法.解答:解:原方程组可化为,①×4﹣②×3,得7x=42,解得x=6.把x=6代入①,得y=4.所以方程组的解为.点;二元一次方程组无论多复杂,解二元一次方程组的基本思想都是消元.消元的方法有代入法和加减法.评:4.解方程组:考点:解二元一次方程组.专题:计算题.分析:把原方程组化简后,观察形式,选用合适的解法,此题用加减法求解比较简单.解答:解:(1)原方程组化为,①+②得:6x=18,∴x=3.代入①得:y=.所以原方程组的解为.点评:要注意:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法.本题适合用此法.5.解方程组:考点:解二元一次方程组.专题:计算题;换元法.分析:本题用加减消元法即可或运用换元法求解.解答:解:,①﹣②,得s+t=4,①+②,得s﹣t=6,即,解得.所以方程组的解为.点评:此题较简单,要熟练解方程组的基本方法:代入消元法和加减消元法.6.已知关于x,y的二元一次方程y=kx+b 的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?考点:解二元一次方程组.专题:计算题.分析:(1)将两组x,y的值代入方程得出关于k、b的二元一次方程组,再运用加减消元法求出k、b的值.(2)将(1)中的k、b代入,再把x=2代入化简即可得出y 的值.(3)将(1)中的k、b和y=3代入方程化简即可得出x的值.解答:解:(1)依题意得:①﹣②得:2=4k,所以k=,所以b=.(2)由y=x+,把x=2代入,得y=.(3)由y=x+把y=3代入,得x=1.点评:本题考查的是二元一次方程的代入消元法和加减消元法,通过已知条件的代入,可得出要求的数.7.解方程组:(1);(2).考点:解二元一次方程组.分析:根据各方程组的特点选用相应的方法:(1)先去分母再用加减法,(2)先去括号,再转化为整式方程解答.解答:解:(1)原方程组可化为,①×2﹣②得:y=﹣1,将y=﹣1代入①得:x=1.∴方程组的解为;(2)原方程可化为,即,①×2+②得:17x=51,x=3,将x=3代入x﹣4y=3中得:y=0.∴方程组的解为.点评:这类题目的解题关键是理解解方程组的基本思想是消元,掌握消元的方法有:加减消元法和代入消元法.根据未知数系数的特点,选择合适的方法.8.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题应把方程组化简后,观察方程的形式,选用合适的方法求解.解解:原方程组可化为,答:①+②,得10x=30,x=3,代入①,得15+3y=15,y=0.则原方程组的解为.点评:解答此题应根据各方程组的特点,有括号的去括号,有分母的去分母,然后再用代入法或加减消元法解方程组.9.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题为了计算方便,可先把(2)去分母,然后运用加减消元法解本题.解答:解:原方程变形为:,两个方程相加,得4x=12,x=3.把x=3代入第一个方程,得4y=11,y=.解之得.点本题考查的是二元一次方程组的解法,方程中含有分母的要先评:化去分母,再对方程进行化简、消元,即可解出此类题目.10.解下列方程组:(1)(2)考点:解二元一次方程组.专题:计算题.分析:此题根据观察可知:(1)运用代入法,把①代入②,可得出x,y的值;(2)先将方程组化为整系数方程组,再利用加减消元法求解.解答:解:(1),由①,得x=4+y③,代入②,得4(4+y)+2y=﹣1,所以y=﹣,把y=﹣代入③,得x=4﹣=.所以原方程组的解为.(2)原方程组整理为,③×2﹣④×3,得y=﹣24,把y=﹣24代入④,得x=60,所以原方程组的解为.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.11.解方程组:(1)(2)考点:解二元一次方程组.专题:计算题;换元法.分析:方程组(1)需要先化简,再根据方程组的特点选择解法;方程组(2)采用换元法较简单,设x+y=a,x﹣y=b,然后解新方程组即可求解.解答:解:(1)原方程组可化简为,解得.(2)设x+y=a,x﹣y=b,∴原方程组可化为,解得,∴∴原方程组的解为.点此题考查了学生的计算能力,解题时要细心.评:12.解二元一次方程组:(1);(2).考点:解二元一次方程组.专题:计算题.分析:(1)运用加减消元的方法,可求出x、y的值;(2)先将方程组化简,然后运用加减消元的方法可求出x、y 的值.解答:解:(1)将①×2﹣②,得15x=30,x=2,把x=2代入第一个方程,得y=1.则方程组的解是;(2)此方程组通过化简可得:,①﹣②得:y=7,把y=7代入第一个方程,得x=5.则方程组的解是.点此题考查的是对二元一次方程组的解法的运用和理解,学生可评:以通过题目的训练达到对知识的强化和运用.13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b ,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.考点:解二元一次方程组.专题:计算题.分析:(1)把甲乙求得方程组的解分别代入原方程组即可;(2)把甲乙所求的解分别代入方程②和①,求出正确的a、b,然后用适当的方法解方程组.解答:解:(1)把代入方程组,得,解得:.把代入方程组,得,解得:.∴甲把a看成﹣5;乙把b看成6;(2)∵正确的a是﹣2,b是8,∴方程组为,解得:x=15,y=8.则原方程组的解是.点评:此题难度较大,需同学们仔细阅读,弄清题意再解答.14.考点:解二元一次方程组.分析:先将原方程组中的两个方程分别去掉分母,然后用加减消元法求解即可.解答:解:由原方程组,得,由(1)+(2),并解得x=(3),把(3)代入(1),解得y=∴原方程组的解为.点评:用加减法解二元一次方程组的一般步骤:1.方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等;2.把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;3.解这个一元一次方程;4.将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解.15.解下列方程组:(1);(2).考点:解二元一次方程组.分析:将两个方程先化简,再选择正确的方法进行消元.解答:解:(1)化简整理为,①×3,得3x+3y=1500③,②﹣③,得x=350.把x=350代入①,得350+y=500,∴y=150.故原方程组的解为.(2)化简整理为,①×5,得10x+15y=75③,②×2,得10x﹣14y=46 ④,③﹣④,得29y=29,∴y=1.把y=1代入①,得2x+3×1=15,∴x=6.故原方程组的解为.点方程组中的方程不是最简方程的,最好先化成最简方程,再选评:择合适的方法解方程.16.解下列方程组:(1)(2)考点:解二元一次方程组.分析:观察方程组中各方程的特点,用相应的方法求解.解答:解:(1)①×2﹣②得:x=1,将x=1代入①得:2+y=4,y=2.∴原方程组的解为;(2)原方程组可化为,①×2﹣②得:﹣y=﹣3,y=3.将y=3代入①得:x=﹣2.∴原方程组的解为.。

二元一次方程组解法练习题精选(含答案)

二元一次方程组解法练习题精选(含答案)

二元一次方程组解法练习题精选一.解答题(共16小题)1.求适合的x,y的值.2.解下列方程组(1)(2)(3)(4).3.解方程组:4.解方程组:5.解方程组:6.已知关于x,y的二元一次方程y=kx+b 的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?7.解方程组:(1);(2).8.解方程组:9.解方程组:10.解下列方程组:(1)(2)11.解方程组:(1)(2)12.解二元一次方程组:(1);(2).13.在解方程组时,由于粗心,甲看错了方程组中的a ,而得解为,乙看错了方程组中的b ,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解. 14.15.解下列方程组:(1);(2).16.解下列方程组:(1)(2)t i me an dng si nt he i rb ei n ga re go od fo 二元一次方程组解法练习题精选参考答案与试题解析一.解答题(共16小题)1.求适合的x ,y 的值.考点:解二元一次方程组.分析:先把两方程变形(去分母),得到一组新的方程,然后在用加减消元法消去未知数x ,求出y的值,继而求出x 的值.解答:解:由题意得:,由(1)×2得:3x ﹣2y=2(3),由(2)×3得:6x+y=3(4),(3)×2得:6x ﹣4y=4(5),(5)﹣(4)得:y=﹣,把y 的值代入(3)得:x=,∴.点评:本题考查了二元一次方程组的解法,主要运用了加减消元法和代入法. 2.解下列方程组(1)(2)(3)(4).考点:解二元一次方程组.分析:(1)(2)用代入消元法或加减消元法均可;(3)(4)应先去分母、去括号化简方程组,再进一步采用适宜的方法求解.解答:解:(1)①﹣②得,﹣x=﹣2,解得x=2,把x=2代入①得,2+y=1,解得y=﹣1.l l t h i ng si nt he i rb ei n ga re go (2)①×3﹣②×2得,﹣13y=﹣39,解得,y=3,把y=3代入①得,2x ﹣3×3=﹣5,解得x=2.故原方程组的解为.(3)原方程组可化为,①+②得,6x=36,x=6,①﹣②得,8y=﹣4,y=﹣.所以原方程组的解为.(4)原方程组可化为:,①×2+②得,x=,把x=代入②得,3×﹣4y=6,y=﹣.所以原方程组的解为.点评:利用消元法解方程组,要根据未知数的系数特点选择代入法还是加减法:①相同未知数的系数相同或互为相反数时,宜用加减法;②其中一个未知数的系数为1时,宜用代入法.3.解方程组:考点:解二元一次方程组.专题:计算题.分析:先化简方程组,再进一步根据方程组的特点选用相应的方法:用加减法.解答:解:原方程组可化为,e an dAl l th nt he i rb ei n ga re go 7x=42,解得x=6.把x=6代入①,得y=4.所以方程组的解为.点评:;二元一次方程组无论多复杂,解二元一次方程组的基本思想都是消元.消元的方法有代入法和加减法.4.解方程组:考点:解二元一次方程组.专题:计算题.分析:把原方程组化简后,观察形式,选用合适的解法,此题用加减法求解比较简单.解答:解:(1)原方程组化为,①+②得:6x=18,∴x=3.代入①得:y=.所以原方程组的解为.点评:要注意:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法.本题适合用此法.5.解方程组:考点:解二元一次方程组.专题:计算题;换元法.分析:本题用加减消元法即可或运用换元法求解.解答:解:,①﹣②,得s+t=4,①+②,得s ﹣t=6,即,解得.所以方程组的解为.t i l t h i ng si nt he i rb ei n ga re go od fo 6.已知关于x ,y 的二元一次方程y=kx+b 的解有和.(1)求k ,b 的值.(2)当x=2时,y 的值.(3)当x 为何值时,y=3?考点:解二元一次方程组.专题:计算题.分析:(1)将两组x ,y 的值代入方程得出关于k 、b 的二元一次方程组,再运用加减消元法求出k 、b 的值.(2)将(1)中的k 、b 代入,再把x=2代入化简即可得出y 的值.(3)将(1)中的k 、b 和y=3代入方程化简即可得出x 的值.解答:解:(1)依题意得:①﹣②得:2=4k ,所以k=,所以b=.(2)由y=x+,把x=2代入,得y=.(3)由y=x+把y=3代入,得x=1.点评:本题考查的是二元一次方程的代入消元法和加减消元法,通过已知条件的代入,可得出要求的数. 7.解方程组:(1);(2).考点:解二元一次方程组.分析:根据各方程组的特点选用相应的方法:(1)先去分母再用加减法,(2)先去括号,再转化为整式方程解答.解答:e an dAl l th i nt he i rb ei n ga re go od f①×2﹣②得:y=﹣1,将y=﹣1代入①得:x=1.∴方程组的解为;(2)原方程可化为,即,①×2+②得:17x=51,x=3,将x=3代入x ﹣4y=3中得:y=0.∴方程组的解为.点评:这类题目的解题关键是理解解方程组的基本思想是消元,掌握消元的方法有:加减消元法和代入消元法.根据未知数系数的特点,选择合适的方法.8.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题应把方程组化简后,观察方程的形式,选用合适的方法求解.解答:解:原方程组可化为,①+②,得10x=30,x=3,代入①,得15+3y=15,y=0.则原方程组的解为.点评:解答此题应根据各方程组的特点,有括号的去括号,有分母的去分母,然后再用代入法或加减消元法解方程组.t i me an dAl l th i ng sn ga re go od fo rs 考点:解二元一次方程组.专题:计算题.分析:本题为了计算方便,可先把(2)去分母,然后运用加减消元法解本题.解答:解:原方程变形为:,两个方程相加,得4x=12,x=3.把x=3代入第一个方程,得4y=11,y=.解之得.点评:本题考查的是二元一次方程组的解法,方程中含有分母的要先化去分母,再对方程进行化简、消元,即可解出此类题目.10.解下列方程组:(1)(2)考点:解二元一次方程组.专题:计算题.分析:此题根据观察可知:(1)运用代入法,把①代入②,可得出x ,y 的值;(2)先将方程组化为整系数方程组,再利用加减消元法求解.解答:解:(1),由①,得x=4+y ③,代入②,得4(4+y )+2y=﹣1,所以y=﹣,把y=﹣代入③,得x=4﹣=.所以原方程组的解为.t i me an dAl l t h i ng si nt he i rod fo rs o m e t (2)原方程组整理为,③×2﹣④×3,得y=﹣24,把y=﹣24代入④,得x=60,所以原方程组的解为.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.11.解方程组:(1)(2)考点:解二元一次方程组.专题:计算题;换元法.分析:方程组(1)需要先化简,再根据方程组的特点选择解法;方程组(2)采用换元法较简单,设x+y=a ,x ﹣y=b ,然后解新方程组即可求解.解答:解:(1)原方程组可化简为,解得.(2)设x+y=a ,x ﹣y=b ,∴原方程组可化为,解得,∴∴原方程组的解为.t i me ng si nt he i rb ei n ga re go od fo r12.解二元一次方程组:(1);(2).考点:解二元一次方程组.专题:计算题.分析:(1)运用加减消元的方法,可求出x 、y 的值;(2)先将方程组化简,然后运用加减消元的方法可求出x 、y 的值.解答:解:(1)将①×2﹣②,得15x=30,x=2,把x=2代入第一个方程,得y=1.则方程组的解是;(2)此方程组通过化简可得:,①﹣②得:y=7,把y=7代入第一个方程,得x=5.则方程组的解是.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.13.在解方程组时,由于粗心,甲看错了方程组中的a ,而得解为,乙看错了方程组中的b ,而得解为.(1)甲把a 看成了什么,乙把b 看成了什么?(2)求出原方程组的正确解.考点:解二元一次方程组.专题:计算题.分析:(1)把甲乙求得方程组的解分别代入原方程组即可;(2)把甲乙所求的解分别代入方程②和①,求出正确的a 、b ,然后用适当的方法解方程组.解答:解:(1)把代入方程组,t i me an dAl l th i ng e i rb ei n ga re go od fo rs o m e t 11得,解得:.把代入方程组,得,解得:.∴甲把a 看成﹣5;乙把b 看成6;(2)∵正确的a 是﹣2,b 是8,∴方程组为,解得:x=15,y=8.则原方程组的解是.点评:此题难度较大,需同学们仔细阅读,弄清题意再解答. 14.考点:解二元一次方程组.分析:先将原方程组中的两个方程分别去掉分母,然后用加减消元法求解即可.解答:解:由原方程组,得,由(1)+(2),并解得x=(3),把(3)代入(1),解得y=∴原方程组的解为.点评:用加减法解二元一次方程组的一般步骤:1.方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等;t i me Al l t h i ng si nt he i rb ei n ga re go od 122.把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;3.解这个一元一次方程;4.将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解.15.解下列方程组:(1);(2).考点:解二元一次方程组.分析:将两个方程先化简,再选择正确的方法进行消元.解答:解:(1)化简整理为,①×3,得3x+3y=1500③,②﹣③,得x=350.把x=350代入①,得350+y=500,∴y=150.故原方程组的解为.(2)化简整理为,①×5,得10x+15y=75③,②×2,得10x ﹣14y=46④,③﹣④,得29y=29,∴y=1.把y=1代入①,得2x+3×1=15,∴x=6.故原方程组的解为.点评:方程组中的方程不是最简方程的,最好先化成最简方程,再选择合适的方法解方程. 16.解下列方程组:(1)(2)考点:解二元一次方程组.分析:观察方程组中各方程的特点,用相应的方法求解.解答:解:(1)①×2﹣②得:x=1,将x=1代入①得:2+y=4,y=2.∴原方程组的解为;re go od fo rs o m e 13(2)原方程组可化为,①×2﹣②得:﹣y=﹣3,y=3.将y=3代入①得:x=﹣2.∴原方程组的解为.点评:解此类题目要注意观察方程组中各方程的特点,采用加减法或代入法求解. 。

二元一次方程组 习题及答案100道解析

二元一次方程组 习题及答案100道解析

二元一次方程组习题及答案100道1.2x+9y=813x+y=342.9x+4y=358x+3y=303.7x+2y=527x+4y=624.4x+6y=549x+2y=875.2x+y=72x+5y=196.x+2y=213x+5y=567.5x+7y=525x+2y=228.5x+5y=657x+7y=2039.8x+4y=56x+4y=2110.5x+7y=415x+8y=4411.7x+5y=543x+4y=3812.x+8y=154x+y=299x+5y=46 14.9x+2y=62 4x+3y=36 15.9x+4y=46 7x+4y=42 16.9x+7y=135 4x+y=41 17.3x+8y=51 x+6y=27 18.9x+3y=99 4x+7y=95 19.9x+2y=38 3x+6y=18 20.5x+5y=45 7x+9y=69 21.8x+2y=28 7x+8y=62 22.x+6y=14 3x+3y=27 23.7x+4y=67 2x+8y=26 24.5x+4y=52 7x+6y=74 25.7x+y=926.6x+6y=486x+3y=4227.8x+2y=167x+y=1128.4x+9y=778x+6y=9429.6x+8y=687x+6y=6630.2x+2y=227x+2y=471) 66x+17y=3967 25x+y=1200答案:x=48 y=47 (2) 18x+23y=2303 74x-y=1998答案:x=27 y=79 (3) 44x+90y=7796 44x+y=3476答案:x=79 y=48 (4) 76x-66y=4082 30x-y=2940答案:x=98 y=51 (5) 67x+54y=8546 71x-y=5680答案:x=80 y=59 (6) 42x-95y=-1410 21x-y=1575答案:x=75 y=48 (7) 47x-40y=853 34x-y=2006答案:x=59 y=48 (8) 19x-32y=-1786 75x+y=4950答案:x=66 y=95 (9) 97x+24y=7202 58x-y=2900答案:x=50 y=98 (10) 42x+85y=6362 63x-y=1638答案:x=26 y=62 (11) 85x-92y=-2518 27x-y=486答案:x=18 y=44 (12) 79x+40y=2419 56x-y=1176答案:x=21 y=19 (13) 80x-87y=2156 22x-y=880答案:x=40 y=12(14) 32x+62y=5134 57x+y=2850答案:x=50 y=57 (15) 83x-49y=82 59x+y=2183答案:x=37 y=61 (16) 91x+70y=5845 95x-y=4275答案:x=45 y=25 (17) 29x+44y=5281 88x-y=3608答案:x=41 y=93 (18) 25x-95y=-4355 40x-y=2000答案:x=50 y=59 (19) 54x+68y=3284 78x+y=1404答案:x=18 y=34 (20) 70x+13y=3520 52x+y=2132答案:x=41 y=50 (21) 48x-54y=-3186 24x+y=1080答案:x=45 y=99 (22) 36x+77y=761947x-y=799答案:x=17 y=91 (23) 13x-42y=-2717 31x-y=1333答案:x=43 y=78 (24) 28x+28y=3332 52x-y=4628答案:x=89 y=30 (25) 62x-98y=-2564 46x-y=2024答案:x=44 y=54 (26) 79x-76y=-4388 26x-y=832答案:x=32 y=91 (27) 63x-40y=-821 42x-y=546答案:x=13 y=41 (28) 69x-96y=-1209 42x+y=3822答案:x=91 y=78 (29) 85x+67y=7338 11x+y=308答案:x=28 y=74 (30) 78x+74y=12928 14x+y=1218答案:x=87 y=83 (31) 39x+42y=5331 59x-y=5841答案:x=99 y=35 (32) 29x+18y=1916 58x+y=2320答案:x=40 y=42 (33) 40x+31y=6043 45x-y=3555答案:x=79 y=93 (34) 47x+50y=8598 45x+y=3780答案:x=84 y=93 (35) 45x-30y=-1455 29x-y=725答案:x=25 y=86 (36) 11x-43y=-1361 47x+y=799答案:x=17 y=36 (37) 33x+59y=3254 94x+y=1034答案:x=11 y=49 (38) 89x-74y=-2735 68x+y=1020答案:x=15 y=55(39) 94x+71y=7517 78x+y=3822答案:x=49 y=41 (40) 28x-62y=-4934 46x+y=552答案:x=12 y=85 (41) 75x+43y=8472 17x-y=1394答案:x=82 y=54 (42) 41x-38y=-1180 29x+y=1450答案:x=50 y=85 (43) 22x-59y=824 63x+y=4725答案:x=75 y=14 (44) 95x-56y=-401 90x+y=1530答案:x=17 y=36 (45) 93x-52y=-852 29x+y=464答案:x=16 y=45 (46) 93x+12y=8823 54x+y=4914答案:x=91 y=30 (47) 21x-63y=8420x+y=1880答案:x=94 y=30 (48) 48x+93y=9756 38x-y=950答案:x=25 y=92 (49) 99x-67y=4011 75x-y=5475答案:x=73 y=48 (50) 83x+64y=9291 90x-y=3690答案:x=41 y=92 (51) 17x+62y=3216 75x-y=7350答案:x=98 y=25 (52) 77x+67y=2739 14x-y=364答案:x=26 y=11 (53) 20x-68y=-4596 14x-y=924答案:x=66 y=87 (54) 23x+87y=4110 83x-y=5727答案:x=69 y=29 (55) 22x-38y=804 86x+y=6708答案:x=78 y=24 (56) 20x-45y=-3520 56x+y=728答案:x=13 y=84 (57) 46x+37y=7085 61x-y=4636答案:x=76 y=97 (58) 17x+61y=4088 71x+y=5609答案:x=79 y=45 (59) 51x-61y=-1907 89x-y=2314答案:x=26 y=53 (60) 69x-98y=-2404 21x+y=1386答案:x=66 y=71 (61) 15x-41y=754 74x-y=6956答案:x=94 y=16 (62) 78x-55y=656 89x+y=5518答案:x=62 y=76 (63) 29x+21y=1633 31x-y=713答案:x=23 y=46(64) 58x-28y=2724 35x+y=3080答案:x=88 y=85 (65) 28x-63y=-2254 88x-y=2024答案:x=23 y=46 (66) 43x+50y=7064 85x+y=8330答案:x=98 y=57 (67) 58x-77y=1170 38x-y=2280答案:x=60 y=30 (68) 92x+83y=11586 43x+y=3010答案:x=70 y=62 (69) 99x+82y=6055 52x-y=1716答案:x=33 y=34 (70) 15x+26y=1729 94x+y=8554答案:x=91 y=14 (71) 64x+32y=3552 56x-y=2296答案:x=41 y=29 (72) 94x+66y=1052484x-y=7812答案:x=93 y=27 (73) 65x-79y=-5815 89x+y=2314答案:x=26 y=95 (74) 96x+54y=6216 63x-y=1953答案:x=31 y=60 (75) 60x-44y=-352 33x-y=1452答案:x=44 y=68 (76) 79x-45y=510 14x-y=840答案:x=60 y=94 (77) 29x-35y=-218 59x-y=4897答案:x=83 y=75 (78) 33x-24y=1905 30x+y=2670答案:x=89 y=43 (79) 61x+94y=11800 93x+y=5952答案:x=64 y=84 (80) 61x+90y=5001 48x+y=2448答案:x=51 y=21 (81) 93x-19y=286x-y=1548答案:x=18 y=88 (82) 19x-96y=-5910 30x-y=2340答案:x=78 y=77 (83) 80x+74y=8088 96x-y=8640答案:x=90 y=12 (84) 53x-94y=1946 45x+y=2610答案:x=58 y=12 (85) 93x+12y=9117 28x-y=2492答案:x=89 y=70 (86) 66x-71y=-1673 99x-y=7821答案:x=79 y=97 (87) 43x-52y=-1742 76x+y=1976答案:x=26 y=55 (88) 70x+35y=8295 40x+y=2920答案:x=73 y=91(89) 43x+82y=4757 11x+y=231答案:x=21 y=47 (90) 12x-19y=236 95x-y=7885答案:x=83 y=40 (91) 51x+99y=8031 71x-y=2911答案:x=41 y=60 (92) 37x+74y=4403 69x-y=6003答案:x=87 y=16 (93) 46x+34y=4820 71x-y=5183答案:x=73 y=43 (94) 47x+98y=5861 55x-y=4565答案:x=83 y=20 (95) 30x-17y=239 28x+y=1064答案:x=38 y=53 (96) 55x-12y=4112 79x-y=7268答案:x=92 y=79 (97) 27x-24y=-45067x-y=3886答案:x=58 y=84 (98) 97x+23y=8119 14x+y=966答案:x=69 y=62 (99) 84x+53y=11275 70x+y=6790答案:x=97 y=59 (100) 51x-97y=297 19x-y=1520答案:x=80 y=39。

二元一次方程组练习题(含答案)

二元一次方程组练习题(含答案)

二元一次方程组练习题(含答案)1.解下列方程组:1) 5x + 2y = 11a,-4y = 6a;2) 4x + 3y - 1 = 0,2x + y - 2 = 0;3) x + 2y/3 - 1/3 = 2,x/3 + 1 - y/2 = 1/2;4) x - y/2 = 1,x + y/2 = 3.2.求解以下方程组:1) 2x + 3y = 7,x - y = 1;2) x + 2y = 5,2x + y = 7;3) 3x + 2y = 8,4x - 3y = -11.3.已知二元一次方程y = kx + b的解有(2,5)和(-1,0)。

1) 求k,b的值;2) 当x = 2时,y的值;3) 当y = 3/5时,x的值。

4.在解方程组2x + y = 5,x - y = 1时,甲看错了方程组中的a,而得到解x = 2,y = 1.乙看错了方程组中的b,而得到解x = 3,y = -1.1) 甲把a看成了什么,乙把b看成了什么?2) 求出原方程组的正确解。

参考答案与解析:1.解下列方程组:1) 5x + 2y = 11a,-4y = 6a。

将第二个方程式化简为y = -3/2a,代入第一个方程式中得到5x + 2(-3/2a) = 11a,化简得到x = (23/10)a,y = (-9/5)a。

2) 4x + 3y - 1 = 0,2x + y - 2 = 0.将第二个方程式中的y用第一个方程式中的x表示,得到y = 2 - 2x,代入第一个方程式中得到4x + 3(2 - 2x) - 1 = 0,化简得到x = 1/2,y = 1.3) x + 2y/3 - 1/3 = 2,x/3 + 1 - y/2 = 1/2.将第二个方程式中的x用第一个方程式中的y表示,得到x = 6 - 2y,代入第一个方程式中得到6 - 4y/3 = 2,化简得到y = 3/2,x = 0.4) x - y/2 = 1,x + y/2 = 3.将两个方程式相加得到2x = 4,化简得到x = 2,代入第一个方程式中得到y = 2.2.求解以下方程组:1) 2x + 3y = 7,x - y = 1.将第二个方程式中的x用第一个方程式中的y表示,得到x = y + 1,代入第一个方程式中得到2(y + 1) + 3y = 7,化简得到y = 1,x = 2.2) x + 2y = 5,2x + y = 7.将第一个方程式中的x用第二个方程式中的y表示,得到x = (7 - y)/2,代入第一个方程式中得到(7 - y)/2 + 2y = 5,化简得到y = 1,x = 2.3) 3x + 2y = 8,4x - 3y = -11.将第一个方程式中的x用第二个方程式中的y表示,得到x = (3y - 11)/4,代入第一个方程式中得到3(3y - 11)/4 + 2y = 8,化简得到y = 1,x = 1.3.已知二元一次方程y = kx + b的解有(2,5)和(-1,0)。

解二元一次方程组专项练习200题(有答案有过程)ok

解二元一次方程组专项练习200题(有答案有过程)ok

解二元一次方程组专项练习200题(有答案有过程)ok解二元一次方程组专项练习200题(有答案)1、2、3、4、5、6、;7、.8、9、;10、.11、12、13、14、15、16、17、18、19、.20、21..22.23..24、25、26.27.28..29.30.31、;32、.33.34.35、36、.37、;38、.39、40.41、42、43、44、;45、;46、;47、.48.49.50..51.;52.;53.;54、.55、56、;57、.58、59、.60、.61、62、63、64、65、66、67、.68、69、70、71、72、73、;74、75、76、77、79、80、.81、82、83.84、;86.87.88、89、90、;91、.93、94、95、96、97、.98.100、101、102、103、104、105、;106、.107、;108、.109、110、111、112、113、114、115、116、117、118、119、120、121.122、123、124、.125、126、127、;128、.129..130、.131、.132、;133、.134、.135、.136、.137、==3.138、.139、140、.141、.142、.143、.144、145、146、.147、.148、;149、.150、.151、.152、153、.154、.155、156、.157、158、.159、160、.161、.162、.163、164、.165、;166、;167、;168、.169、.170、171、172、.173、174、.175、176、.177、.178、.179、.180、181、.182、183、.184、;185、.186、187、.188、189、.190、191、.192、193、.194、195、.196、197、198、199、200、201、.202、203、.参考答案:1、把x=y+3代入3x+2y=14得,3(y+3)+2y=14,∴y=1,∴x=4.∴原方程组的解为.2、原方程组整理得,由(1)×3﹣(2)×4,得y=4,∴x=6.∴原方程组的解为3、把方程组化简,得:,(1)﹣(2)得:y=7,把y=7代入(1)得:x=5.∴原方程组的解为.4、把y=3x代入3x+2y=18得:3x+6x=18,∴x=2,∴y=6.∴原方程组的解为.5.在中,(1)×2﹣(2)得:t=,∴s=.∴原方程组的解为.6.,①×3+②,得7x=21,解,得x=3.代入①,得y=5﹣6=﹣1.所以方程组的解;7.原方程组可化为,解得x=4,则y=5.所以方程组的解为8.,由①+3×②得:11x=22,∴x=2.把x=2代入②得:y=1.∴9. ①×3﹣②×2,得﹣13y=﹣39,y=3,代入①,得2x﹣9=﹣5,x=2.所以方程组的解为;10. 方程组可化为,①+②,得y=0,代入①,得3x﹣4=0,x=,所以方程组的解为.11. ①×3﹣②得:y=﹣1,代入①得:x+1=3,∴x=2;则原方程组的解为.12.原方程组可化为,①×2﹣②得:x=﹣3,代入①得:﹣3×4﹣2y+5=0,解得y=﹣.∴原方程组的解为13.把两方程去分母得:,由(1)+(2)得:3x=24,∴x=8,把x的值代入(2)得:y=1.∴方程组的解为.14.两方程变形得:,由(1)﹣(2)得:x=,把x的值代入(1)得:y=,∴原方程组的解为.15. ,由(1)×2﹣(2)×3得:13y=﹣26,∴y=﹣2,把y=﹣2代入(2)得:x=﹣2,∴方程组的解为.16.由变形得:3(x﹣y)+2(x﹣y)=36,整理得:5x+y=36,整理4(x+y)﹣5(x﹣y)=2得:9y﹣x=2,将其变形得:x=9y﹣2,把它代入5x+y=36得:y=1,把它代入x=9y﹣2得:x=7.∴方程组的解为.17. 由②,得y=7﹣3x③,把③代入①,得x=2,把x=2代入③,得y=1.∴方程组的解为.18. ①+②×3,得11x=22,x=2,把x=2代入②,得y=﹣2.∴方程组的解为19.整理方程组,得,把(1)代入(2)得,4y+y=10,∴y=2,把y=2代入(1)得,x=4,∴原方程组的解为20.原方程组可化简为,(2)×2﹣(1),得5y=5,解这个方程,得y=1,把y=1代入(2),得x=﹣2,这个方程组的解是.21.整理方程组,得,由(1)得x=68﹣y (3),把(3)代入(2),得68﹣y﹣y=22,解得y=23,把y=23代入(3),得x=45.∴原方程组的解为22.对原方程组去括号和去分母化简得:,将上述方程组中第一个方程乘2加第二方程:15y=11,y=.将y=代入第一个方程中得:﹣x+7×=4,x=.故方程组的解为23.把①化为3x﹣9y+60=0③,③﹣②得:y=10,代入①得:x=10.所以原方程组的解为24、由(2)得,x=15﹣4z (3),把(3)代入(1)得,3(15﹣4z )﹣5z=11,∴z=2,把z=2代入(3)得,x=7.∴原方程组的解为;25、整理方程组得,,(1)×2﹣(2)×3,得x=1,把x=1代入方程(1)得,y=3.∴原方程组的解为26.原方程组可化为,①×4﹣②×3,得7x=42,解得x=6.把x=6代入①,得y=4.所以方程组的解为27.原方程组化为,①+②得:6x=18,∴x=3.代入①得:y=.所以原方程组的解为28.方程可化为,①+②×3,得1.4x=7,所以x=5,代入②得:y=4.所以原方程组的解为29.,①﹣②,得s+t=4,①+②,得s﹣t=6,即,解得.所以方程组的解为30.,由(1)﹣(2),得x﹣y=1,∴x=y+1.把x=y+1代入(2),得y=1,∴x=2.∴原方程组的解为31.原方程组可化为,①×2﹣②得:y=﹣1,将y=﹣1代入①得:x=1.∴方程组的解为;32. 原方程可化为,即,①×2+②得:17x=51,x=3,将x=3代入x﹣4y=3中得:y=0.∴方程组的解为33.原方程组可化为,①+②,得10x=30,x=3,代入①,得15+3y=15,y=0.则原方程组的解为34.原方程变形为:,两个方程相加,得4x=12,x=3.把x=3代入第一个方程,得4y=11,y=.解之得35.原方程组可化简为,解得.36.设x+y=a,x﹣y=b,∴原方程组可化为,解得,∴∴原方程组的解为37.将①×2﹣②,得15x=30,x=2,把x=2代入第一个方程,得y=1.则方程组的解是;38.此方程组通过化简可得:,①﹣②得:y=7,把y=7代入第一个方程,得x=5.则方程组的解是39..原方程可化为,①+②得,6x=6,解得x=1,把x=1代入①得,2﹣3y=﹣4,解得y=2,故原方程组的解为40.由题意,①﹣②×得,=,解得x=,把x的值代入方程①得,y=﹣,∴方程组的解为:41.,①×3+②得,5|x|=20,解得|x|=4,把|x|代入①得,4+|y|=7,|y|=3,故原方程组的解为:,,,;42、,③+④得x+y=3,③﹣④得x﹣y=﹣1,把两方程联立得,解得;43、原方程组可化为,⑤﹣⑥得,﹣=﹣…⑧,⑧+⑦得,=1,解得p=2;代入⑦得,+=,解得r=1;把p=2代入⑤得,+=,解得q=3.故原方程组的解为44、由①得x=y③,把③代入②,得y﹣3y=1,解得y=3,把y=3代入③,得x=5.即方程组的解为;45、把①代入②,得4(y﹣1)+y﹣1=5,解得y=2,把y=2代入①,得x=4.即方程组的解为;46、原方程组整理得,把②代入①,得x=,把x=代入②,得y=,即方程组的解为;47、原方程组整理得,把①代入②,得﹣14n﹣6﹣5n=13,解得n=﹣1,把n=﹣1代入①,得m=4.即方程组的解为.48.原方程组化简得,①×2﹣②,得x=8,把x=8代入①,得2×8﹣y=1,∴y=15.∴原方程组的解为49、由(1),得x+2y=8(3),由(2),得2x﹣y=1(4),(4)×2+(3),得x=2.将x=2代入(4),得y=3.所以该方程组的解为50、∵,∴设x=3k,y=2k,把x=3k,y=2k代入(2)中,解得:k=﹣3,即x=﹣9,y=﹣6;∴方程组的解为由(1)﹣(2),得5y=10,即y=2 (3).把(3)代入(1),并解得x=4.5.51、所以,原方程组的解为;52、由(1)×3+(2),得19x=38,即x=2 (3),把(3)代入(1),解得y=﹣3,故原方程组的解为;53、由原方程组,得由(1)×3+(2)×2,并整理,得m=18 (3)将(3)代入(1),解得n=12,故原方程组的解为:;54、由原方程组,得,由(1)×2+(2),得15y=11,即y=(3),将(3)代入(1),并解得x=,故原方程组的解为.55、由①得,3x﹣2y=8③,②+③得,x=3,②﹣③得,y=,故原方程组的解为56、①+②得,3x=3,解得,x=1,把x=1代入①得,1+3y=4,解得,y=1,故原方程组的解为;57、原方程组可化为,①﹣②得,﹣y=﹣2,解得,y=2,把y=2代入①得,3x﹣2×2=2,解得,x=2,故原方程组的解为58.原方程组可化为,(3分)①﹣②×3得4x=180,解得x=45.将x=45代入②得45+3y=150,解得y=35.∴原方程组的解为59.化简,得,(1)×3+(2)×2,得19x=114x=6,把x=6代入(1),得18﹣4y=10﹣4y=﹣8y=2,∴.60、设,则原方程组可化为解得:∴原方程组的解为61、①﹣②×3,得﹣17z=51,解,得z=﹣3,把z=﹣3代入②,得x﹣12=﹣15,解得x=﹣3,所以原方程组的解为.62、①×3+②,得5m=20,解,得m=4,把m=4代入①,得4﹣n=2,解得n=2.所以原方程组的解为.63、原方程组可化简为①×4﹣②×3,得7y=84,解得y=12,将y=12代入①,得3x+48=84,解得x=12,所以原方程组的解为.64、原方程组可化简为①+②,得6x=18,解得x=3,将x=3代入①得9﹣2y=8,解得y=0.5,所以原方程组的解为.65、原方程组可化简为将①代入②,得12y﹣y=11,解得y=1,将y=1代入①,得x+1=6,解得x=5,所以原方程组的解为.66、原方程可化简为①+②得20x=60,解得x=3,将x=3代入①,得24+15y=54,解,得y=2,所以原方程组的解为67、.根据题意,得,整理得,由(1)﹣(2),并解得x=﹣(3).把(3)代入(1),解得y=﹣,所以原方程组的解是68、由原方程组,得,由(1)+(2),并解得x=(3),把(3)代入(1),解得y=,∴原方程组的解为69、①+②得,4x=8,解得,x=2,把x=2代入①得,y=1,即方程组的解为;70、①×2+②,得7x=﹣7,解,得x=﹣1把x=﹣1代入①,得y=3,即方程组的解为;71、①×4+②×3得,8x+9x=28+6,解得x=2把x=2代入②得y=1,即方程组的解为;72、原方程组整理得;①+②得6x=18,解得x=3,②﹣①得4y=2,解得y=,即方程组的解为.73、①+②,得4x=8,解得x=2.把x=2代入①,得y=2.∴原方程组的解为.74、原方程组变形得①×2,得4x+6y=28③③﹣②,得11y=22,y=2.把y=2代入①,得x=4.∴原方程组的解为75、原方程可转化为,由①,得x=﹣2y③,把③代入②,得y=﹣3,把y=﹣3代入①,得x=6,故原方程组的解为.76、原方程组可转化为,由①×4+②×5得:23x=92,解得x=4,把x=4代入②式得:y=5,故原方程组的解为.77、化简得,③×3﹣④×4得:7y=14,y=2.把y=2代入①得:x=2.∴方程组解为.78.解方程组:化简可得,①﹣②×2,得11y=11,解得y=1,把y=1代入①,得2x+1=9,解得x=5.∴原方程组的解为79. 解:原方程组可化为,①×2+②得:15y=20,解得y=,把y=代入①得:x=.∴方程组的解为80.解:①×6得:2x+18y=4 ③,②×12得:12x﹣9y=﹣29 ④,④×2+③得:x=﹣2.代入①得:y=.所以原方程组的解为81、两方程变形得:,由(1)×2得:﹣4x+4y=4(3),由(3)﹣(2)得:x=﹣3,把x的值代入(1)得:y=﹣2.∴原方程组的解为;82、化简得:,第二个方程乘以5和第一个方程相加,得46y=46,y=1,则x=9y﹣2=7.故方程组的解是83、原方程组可化为,(1)+(2)得:x=﹣4,代入(2)得:y=﹣3,∴方程组的解为84、①+②×2得,11x=22,解得x=2,把x=2代入②得,y+4×2=7,解得,y=1.故原方程组的解集为;85、原方程组可化为,①﹣②得,8y=﹣14,解得y=﹣,把y=﹣代入①得,3x﹣2×(﹣)=18,解得,x=.故原方程组的解为86、原方程组可转化为,由(1)×4﹣(2)×3得:16m﹣9m=48﹣6,解得m=6,把m=6代入(1)式得:n=4.故原方程组的解为87、由原方程组,得,由(1)+(2)×5,得27x=17550,即x=650①,把①代入(1),解得y=50,所以原方程组的解为88、把①代入②得,2y+12=14,解得y=1,把y=1代入①得,x﹣1=3,解得x=4,故原方程组的解为;89、由①得,x=﹣15,代入②得,2×(﹣15)+2y=7,解得y=,故原方程组的解为90、化简整理为,①×3,得3x+3y=1500③,②﹣③,得x=350.把x=350代入①,得350+y=500,∴y=150.故原方程组的解为.91、化简整理为,①×5,得10x+15y=75③,②×2,得10x﹣14y=46④,③﹣④,得29y=29,∴y=1.把y=1代入①,得2x+3×1=15,∴x=6.故原方程组的解为92、由5x﹣y=3,得y=5x﹣3,把y=5x﹣3代入2x+3y+9=0,得x=0,∴y=﹣3.∴原方程组的解为.93、原方程组化简得,解得.94、由2x+y=4,得y=4﹣2x,把y=4﹣2x代入4x+3y=6,得x=3,∴y=﹣2.∴原方程组的解为.95、原方程组化简,得,解得.∴原方程组的解为.96、①+②得:4x=﹣6,解得:x=﹣,把x=﹣代入①得:y=.∴.97、原方程组可化为,①×2+②得:15y=17,解得:y=,把y=代入①得:x=.∴.98、原方程组可化为(1)﹣(2)得:n=﹣1,代入(2)得:m=4.所以原方程组的解为99、原方程组化为:,即,将(1)×2﹣(2)×3得:﹣x=﹣4,x=4,代入(1),得y=2.所以方程组的解为100、,①×2+②得:5x=10,解得x=2,把x=2代入①得:y=﹣2.则方程组的解为.101、①×5﹣②×3得38y=﹣19,y=﹣.代入①,得x=6.则方程组的解为.102、方程组可化为,②代入①,得10x﹣11(82﹣3x)=87,x=23;代入②得3×23+y=82,y=13.则方程组的解为.103、方程组可化为,①×2﹣②,得y=2,代入①,得14﹣6﹣2x=0,x=4.则方程组的解为.104、方程组可化为,①×2﹣②,得x=2450,代入①,得y=350.则方程组的解为105、在中,①×2﹣②得:7y=35,解得y=5,代入①得:2x+25=25,解得x=0.∴原方程组的解为.106、在中,②×6﹣①得:2x﹣1=0,x=,代入①得:+1=2y,y=.原方程组的解为.107、在中,可化为,①×9﹣②得:x=2000,代入①得:y=1500.原方程组的解为.108、原方程组可化为,①×13+②×5得:x=4,代入①得y=4.原方程组的解为109、原方程组可化简为,把(1)代入(2)得:﹣26x+180=24,26x=156,即x=6,把x=6代入(1)得:y=6.所以方程组的解为.110、原方程可化为:,①×3﹣②解得:y=5,代入②得:x=4.则原方程组的解为.111、①+②得:=0.2,∴x=0.2,②﹣①得:﹣2y=﹣1,∴y=0.5.则方程组的解为.112、由①得:9x+2y=12③,由②得:﹣3y+4x=17④,③×3+④×2得:x=2,代入③解得:y=﹣3.方程组的解为.113、由①得:﹣13x﹣9y=64③,由②得:14x﹣13y=4④,③×14+④×(﹣13)得:y=4,代入③解得:x=4.方程组的解为.114、原方程可化为,整理得,②﹣①×2得:y=.代入①得:x=.方程组的解为.115、令2x+3y=a,3x+2y=b.原方程组可化为,解得:.于是.解得116、第一个方程两边都乘6,得,2y﹣(x+1)=18,整理得:2y﹣x=19,第二个方程去括号得;2x﹣y=3x+,x+y=0,组成方程组得,解得117、原方程组可变为,①×3﹣②×2得:﹣7x=﹣14,解,得x=2.把x=2代入①得:y=.所以方程组的解是.118、由3x+4y=20,得6x+8y=40,即方程组是,(2)﹣(1)得,3y=15,∴y=5,把y=5代入(1)得,x=0.∴原方程组的解为.119、化简,得,解得.120、设x﹣y=a,x+y=b,原方程组可化为,解得.∴,解得;所以原方程组的解为121、原方程组可化为,①+②×3,得:17x=51,解得:x=3,把x=3代入①,得:y=﹣6.∴原方程组的解是:122、原方程组可化为,(1)+(2)得,=3,解得,x=2.5.代入(1)得,+=2,解得,y=1.故原方程组的解为123、化简得(1)﹣(2),得y=7,把y=7代入(1),得x=5,∴原方程组的解为.124、化简得(2)×2+(1),得x=3,把x=3代入(2)得y=2.∴原方程组的解为.125、由①得,1.5y+x=7③,由②得,5(y﹣1)=4x+9﹣20,即5y﹣4x=﹣6④,③×4+④得,11y=22,解得,y=2.把y=2代入③得,1.5×3+x=7,解得x=4.故原方程组的解为①﹣②得:34x﹣34y=﹣68,即x﹣y=﹣2,x=y﹣2③,把③代入①得:83(y﹣2)+49y=98,126、解得y=2,把y=2代入③得:x=2﹣2=0.则方程组的解为.127、(1),由①变形得:2x﹣5y=﹣17,∴x=,代入②,∴3×+4y=32,解得:y=5,∴x=4,∴;128、解:由①得:x+1=5y+10,∴x=5y+9,代入②得,∴y=﹣1,∴代入原式解得:x=4,∴129、原方程组化为:,②﹣①得:18y=54,y=3,把y=3代入①得:10x﹣75=5,x=8,∴130、原方程变形为,①+②得﹣y+3y=21﹣39,解得y=﹣9,把y=﹣9代入①的2x+9=21,解得x=6,所以方程组的解为131、整理得:,②﹣①得:8y=﹣24,y=﹣3,把y=﹣3代入①得:4y+15=30,即x=﹣即方程组的解是132、,①+②得:3x=﹣3,解得:x=﹣1,将x=﹣1带入①得:﹣1+y=1,解得:y=2,则方程组的解为:,133、整理得出:,③×5+④得:x=,将x=代入③得y=﹣,则方程组的解为:134、将原方程组整理得:,①﹣②得:14y=7,解得:,把代入①得:,∴原方程组的解为:135、原方程组化为:,把①代入②得:4y+y=10,y=2,把y=2代入①得:x=4,∴136、原方程整理得:,①+②得:4y=4,解得:y=1,把y=1代入①得:3x﹣1=2,解得:x=1,∴方程组的解是:137、原方程组化为:,①+②得:3x=24,x=8,把x=8代入②得:y=1,∴138、①×2得:14x+6y=10,③,③﹣②得:14x+6y﹣(﹣5x+6y)=10﹣(﹣9),∴19x=19,∴x=1,∴7×1+3y=5,∴y=﹣,故方程组的解为:.①﹣②×2得:7y=21,解得:y=3,把y=3代入②得:x﹣6=﹣4,解得:x=2139、∴方程组的解是:;140、化简得:②﹣①得:6y=﹣18解得:y=﹣3,把y=﹣3代入①得:3x+12=6,解得:x=﹣2,∴方程组的解是:141、原方程可化为:,①×2﹣②,得﹣6y=3,解得y=﹣,②×2﹣①,得9x=12,解得x=,∴方程组的解为142、①×2+②得:15x=﹣30,x=﹣2,把x=﹣2代入①得:﹣8+3y=1,y=3,∴143、方程组整理得:,②﹣①得:x=5,将x=5代入①得:5﹣9y=﹣1,解得:y=,则方程组的解为.144、,①×2+②得,11x=33,x=3,代入①得9﹣y=5,y=4.故原方程组的解为:;145、原方程组可化为,③+④得6x=18,x=3,③﹣④得﹣4y=﹣2,y=,故原方程组的解为:146、原方程可化为:,(1)×4+(2)×5得:x=4;代入(1)得:y=5∴原方程组的解为:147、,①×2﹣②×3得,﹣18y=﹣14,解得y=,把y=代入①得,x=,故此方程组的解为:148、,②×2﹣①×3,得5y=﹣4,解得y=﹣,把y=﹣代入①,得x=,∴方程组的解为;149、方程组变形为,①﹣②,得4y=28,解得y=7,将y=7代入①,得x=5,∴方程组的解为150、原方程组化简为:①×2+②×3得:8x﹣6y+9x+6y=24+27,即17x=51,解得x=3,把x=3代入②得:3×3+2y=9,解得y=0,所以原方程组的解为151、,①代入②得,4(y﹣1)+(y﹣1)=5,解得y﹣1=1,所以,y=2,把y﹣1=1代入①得,x﹣2=2×1,解得x﹣2=2,所以x=4,所以方程组的解是152.,由①得,x=5y③,③代入②得,3×5y+2y=17,解得y=1,把y=1代入③得,x=5,所以方程组的解为;153、方程组可化为,,①×3得,6x﹣15y=﹣51③,②×2得,6x+8y=64④,④﹣③得,23y=115,解得y=5,把y=5代入①得,2x﹣25=﹣17,解得,x=4,所以方程组的解为154、,由①得,y=4x﹣5③,③代入②得,3x+2(4x﹣5)=11,解得x=,把x=代入③得,y=4×﹣5=,所以,方程组的解是155、,由②得,y=﹣4x+7③,③代入①得,3x﹣2(﹣4x+7)=8,解得x=2,把x=2代入③得,y=﹣4×2+7=﹣1,所以,方程组的解是;156、,①×2得,6a﹣10b=﹣4③,②×3得,6a+21b=27④,④﹣③得,31b=31,解得b=1,把b=1代入①得,3a﹣5×1=﹣4,解得a=1,所以,方程组的解是157、,①×2﹣②得,﹣x=﹣6,解得x=6;把x=6代入①得,6+2y=0,解得y=﹣6.故此方程组的解为:;158、原方程组可化为:,由③得,5x﹣6=y,代入④得,x+5(5x﹣6)=22,解得x=2;把x=2代入①得,10﹣y=6,解得y=4.故此方程组的解为:159、,①×3得,9x﹣12y=30③,②×2得,10x+12y=84④,③+④得,19x=114,解得x=6,把x=6代入①得,3×6﹣4y=10,解得y=2,所以方程组的解是;160、,由①得,3x=2y③,③代入②得,2y+4y=9,解得y=,把y=代入①得,3x=2×,解得x=1,所以方程组的解是161、原方程组可化为:,①+②,得3x=﹣3,解得x=﹣1.把x=﹣1代入①,得y=2.所以原方程组的解是162、,把①代入②得,2(x+1)﹣﹣1=6,解得x=,把x=代入①得,y=×=,所以,方程组的解是163、原方程组化为:,①+②得:13x=0,x=0,把x=0代入①得:0﹣6y=﹣12,y=2,∴;164、原方程组化为:,②﹣①得:8y=7,则y=,把y=代入②得:4x+3×=6,得:x=,∴,②﹣①,得x=3.把x=3代入①,得3+y=5,解得y=2.所以原方程组的解是;165、,①+②,得4x=8,解得x=2.把x=2代入①,得2﹣2y=0,解得y=1.166、所以原方程组的解是;167、原方程组化为,①+②,得6x=18,解得x=3.把x=3代入②,得3×3+2y=10,解得y=.所以原方程组的解是;168、原方程组化为,由①,得x=6y﹣1 ③,把③代入②,得2(6y﹣1)﹣y=9,解得y=1.把y=1代入③,得x=6×1﹣1=5.所以原方程组的解是169、方程组整理为,①﹣②得,4x=36,解得x=9,把x=9代入②得,10×9﹣3y=48,解得y=14.所以方程组的解是170、,①×2,得6x+8y=10 ③,②×3,得6x+15y=24 ④,④﹣③,得7y=14,解得y=2.把y=2代入①得3x+4×2=5,解得x=﹣1,所以原方程组的解是;171、原方程组化为,①×3,得15m﹣6n=33 ③,②×2,得4m﹣6n=﹣22 ④,③﹣④,得11m=55,解得m=5.把m=5代入①,得5×5﹣2n=11,解得n=7.所以原方程组的解是172、,由①得,2x+y=6y③,③代入②得,2×6y﹣5=7y,解得y=1,把y=1代入③得,2x+1=6,解得x=,所以,方程组的解是173、,由②得,y=x+5③,把③代入①得,2x+3(x+5)=40,解得x=5,把x=5代入③得,y=5+5=10,所以,方程组的解是;174、方程组可化为,①×4得,16x﹣12y=8③,②×3得,9x﹣12y=﹣6④,③﹣④得,7x=14,解得x=2,把x=2代入①得,8﹣3y=2,解得y=2,所以,方程组的解是175、原方程组可化为,由(1)+(2)得,y=7;把x=7代入(1)得,3×7﹣4y=﹣13,解得x=5,故此方程组的解为;176、原方程组可化为,(1)+(2)得,6x=18,解得x=3;把x=3代入(1)得,3×3﹣2y=8,解得y=,故此方程组组的解为177、方程组可化为,①+②得,6x=﹣6,解得x=﹣1,①﹣②得,2y=4,解得y=2,所以,方程组的解是178、设=a,,则原方程组可化为,解此方程得,∴,∴,经检验:是原方程组的解,所以原方程组的解是179、方程组可化为,由②得,y=x﹣3③,③代入①得,3x+2(x﹣3)=14,解得x=4,把x=4代入③得,y=4﹣3=1,所以,方程组的解是180、,解:①+②得:3x=﹣3,解得:x=﹣1,把x=﹣1代入①得:﹣1+y=1,解得:y=2,则原方程组的解是:;181、解:原方程组变形为:,②×3﹣①得:11y=﹣33,解得:y=﹣3,把y=﹣3代入②得:x+3×(﹣3)=﹣1,解得:x=8,则原方程组的解是:182、,①﹣②×2得,﹣7y=﹣21,解得y=3;把y=3代入②得,x+5×3=1,解得x=﹣14.故此不等式组的解为;183、,①×3﹣②×2得,y=2;把y=2代入①得,2x+6=12,解得x=3,故此方程组的解为184、,②×2得,4x﹣2y=16③,①+③得,7x=21,解得x=3,把x=3代入②得,2×3﹣y=8,解得y=﹣2,所以,方程组的解是;185、方程组可化为,①×4得,16x+12y=96③,②×3得,9x﹣12y=﹣21④,③+④得,25x=75,解得x=3,把x=3代入②得,3×3﹣4y=﹣7,解得y=4,所以,方程组的解是186、,①×5得,15x+10y=35③,②×3得,15x+21y=27④,④﹣③得,11y=﹣8,解得y=﹣,把y=﹣代入①得,3x+2×(﹣)=7,解得x=,所以,方程组的解是;187、方程组可化为,①+②得,6x=30,解得x=5,把x=5代入②得,5﹣3y=15,解得y=﹣,所以,方程组的解是188、,由①得:x=5y ③,把③代入②得:15y+2y=17,解得:y=1,x﹣把y=1代入③得:x=5,∴方程组的解是.189、解:整理得:,①×2﹣②得:﹣15y=﹣11,解得:y=,①+②×7得:x=,方程组的解是190、,①+②得,n=1,把n=1代入②得,3﹣4m=6,解得m=﹣.所以,方程组的解是;191、,①×3得,x﹣y=3③,③﹣②得,x=,解得x=,把x=代入②得,﹣×﹣y=,解得y=﹣,所以,方程组的解是.,①+②×2得:13x=39,解得:x=3,将x=3代入①得:9﹣4y=﹣7,解得:y=4,192、则方程组的解为:;193、,①+②得:5x+y=7④,①+③得:3x+5y=13⑤,④×5﹣⑤得:22x=22,解得:x=1,将x=1代入④得:5+y=7,即y=2,将x=1,y=2代入③得:1+4+z=10,即z=5,则方程组的解为,①×3得,18x﹣9y=﹣9③,③﹣②得,13x=26,解得x=2,194、把x=2代入①得,6×2﹣3y=﹣3,解得y=5,所以,方程组的解是;195、方程组可化为,①×3得,12x﹣9y=36③,②×4得,12x﹣16y=8④,③﹣④得,7y=28,解得y=4,把y=4代入②得,3x﹣4×4=2,解得x=6,所以,方程组的解是.196、解:,由①得:x=3+y③,把③代入②得:2y+4(3+y﹣y)=14,解得:y=1,把y=1代入③得:x=4,即方程组的解是:;197、解:整理得:,∵①﹣②×3得:﹣11y=﹣36,y=,把y=代入②得:2x+=7,x=,∴方程组的解是:;198、解:,∵把②代入①得:3(1﹣y)+2y=4,解得:y=﹣1,把y=﹣1代入②得:x=1﹣(﹣1)=2,∴方程组的解是:;199、解:整理得:①×5﹣②×2得:﹣11y=﹣22,y=2,把y=2代入①得:2x﹣6=﹣4,x=1,即方程组的解是:;200、解:整理得:,∵①﹣②得:﹣3y=0,y=0,把y=0代入①得:3x=﹣6,x=﹣2,∴方程组的解是:;201、解:,∵①+②+③得:2x+2y+2z=﹣4,∴x+y+z=﹣2④,④﹣①得:z=2,④﹣②得:x=﹣1,④﹣③得:y=﹣3,∴方程组的解是:202、方程组整理得:,①×3+②×2得:11x=14,即x=,①﹣②×3得:﹣11y=12,即y=﹣,则方程组的解为;203、方程组整理得:,①×10+②×3得:73x=73,即x=1,将x=1代入①得:4+3y=7,即y=1,则方程组的解为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解二元一次方程组检测题
一.填空题
1.二元一次方程组⎩
⎨⎧-=-=+1210
y x y x 的解是。

2.若方程组⎩⎨
⎧=+=+1
22y x m
y x 的解满足x-y=5,则m 的值为。

3.若关于x、y 的二元一次方程组⎩⎨⎧=-=+12354y x y x 和⎩
⎨⎧=-=+13
by ax by ax 有相同的解,则a=

b=。

4.把方程2x=3y+7变形,用含y 的代数式表示x,x=;用含x 的代数式表示y,则y=。

5.当x=-1时,方程2x-y=3与mx+2y=-1有相同的解,则m=。

6.若2
1254
3y x b a ++-
与12365--b a y x 是同类项,则a=,b=;
7.二元一次方程组⎩⎨⎧=+=+5
21
y kx y x 的解是方程x-y=1的解,则k=。

8.若3x
2a+b+1
+5y
a-2b-1
=10是关于x、y 的二元一次方程,则a-b=。

9.若⎩⎨⎧=-=21y x 与⎩
⎨⎧-==12y x 是方程mx+ny=1的两个解,则m+n=。

二.选择题
10.若y =kx+b 中,当x=-1时,y=1;当x=2时,y=-2,则k 与b 为(

A.⎩⎨
⎧=-=1
1b k B.⎩⎨
⎧=-=0
1b k C.⎩⎨
⎧==2
1b k D.⎩⎨
⎧-==4
1b k 11.若⎩⎨
⎧==21y x 是方程组⎩⎨⎧=-=-3
ay bx by ax 的解,则a、b 的值为(

A.⎩⎨
⎧==21b a B.⎩⎨
⎧-=-=2
1b a C.⎩⎨
⎧==1
1b a D.⎩⎨
⎧-=-=1
2b a 12.在(1)⎩⎨⎧=+--=-8512115y x y x (2)⎩⎨⎧=-=-432253t x y x (3)⎩⎨⎧=--=1232y x x y (4)⎩⎨
⎧-=-=-2
432
34y x y x 中,解是⎩⎨
⎧==2
2
y x 的有(

A.(1)和(3)
B.(2)和(3)
C.(1)和(4)
D.(2)和(4)
13.对于方程组⎩
⎨⎧=--=+ 17y 5x 4
19y 7x 4,用加减法消去x,得到的方程是(

A.2y=-2
B.2y=-36
C.12y=-2
D.12y=-36
14.将方程-2
1
x+y=1中x 的系数变为5,则以下正确的是()
A.5x+y=7
B.5x+10y=10
C.5x-10y=10
D.5x-10y=-10
三.解答题
15.用代入法解下列方程组
(1)⎩⎨
⎧-=+=+6232y x y x (2)⎩⎨⎧=-=+56345y x y x (3)⎩⎨⎧=-=+4383y x y x (4)⎩⎨
⎧-=-=+7
38
52y x y x 16.用加减消元法解方程组
(1)⎩⎨⎧-=+=+653334y x y x (2)⎩⎨⎧=-=+2463247y x y x (3)⎩⎨⎧=-=+1053552y x y x (4)⎩⎨
⎧=+=+7
52523y x y x 17.若方程组⎩
⎨⎧=++-=+ 4y )1k (x )1k (
1y 3x 2的解中x 与y 的取值相等,求k 的值。

18.
已知方程组⎩⎨
⎧=+=-9.12531
32b a b a 的解是
⎩⎨
⎧==2
.13
.2b a ,用简洁方法求方程组⎩

⎧=++-=+--9.12)2(5)1(31
)2(3)1(2y x y x 的解。

19.已知:(3x-y-4)2
+|4x+y-3|=0;求x、y 的值。

20.甲、乙两人同解方程组⎩⎨
⎧-=-=+232y Cx By Ax 。

甲正确解得⎩
⎨⎧-==11
y x 、乙因抄错C,解得
⎩⎨
⎧-==6
2
y x ,求:A、B、C 的值。

21.已知:2x+5y+4z=15,7x+y+3z=14;求:4x+y+2z 的值。

试题答案一.填空题
1.⎩⎨
⎧==7
3y x 2.m=-4
3.a=2b=1
4.x=
2723+y ,37
x 32y -
=5.m=-9 6.a=1,b=0
7.k=58.a-b=
5
6
9.m+n=2二.选择题10.B 11.D
12.C 13.D 14.D
三.解答题
15.(1)解:由①得:y=-2x+3……③③代入②x+2(-2x+3)=-6x=4
把x=4代入③得
y=-5
∴原方程组解为
⎩⎨
⎧-==5
4y x (2)解:由①得:x=4-5y……③③代入②3(4-5y)-6y=512-15y-6y=5y=
3
1把y=3
1
代入③得x=3
7∴原方程组解为
⎪⎪⎩
⎪⎪⎨
⎧==3137y x (3)解:由①得:y=8-3x……③
③代入②:3x-(8-3x)=46x=12x=2
把x=2代入③得:y=2∴原方程组解为
⎩⎨
⎧==2
2y x (4)解:由②得:x=3y-7……③③代入①:2(3y-7)+5y=811y=22y=2
把y=2代入③得x=-1∴原方程组解为
⎩⎨
⎧=-=2
1y x 16.(1)解:②×4-①×3得:11y=-33∴y=-3
把y=-3代入①得:4x-9=3x=3∴原方程组解为⎩⎨
⎧-==3
3y x (2)解:①×3+②×2得:27x=54x=2
把x=2代入①得:4y=-12y=-3
∴原方程组解为
⎩⎨
⎧-==3
2y x (3)解:①+②得:5x=15x=3
把x=3代入①得:5y=-1y=-
5
1∴原方程组解为
⎪⎩

⎨⎧-==513y x (4)解:②×3-①×2得:11y=11
y=1
把y=1代入①得:3x=3x=1
∴原方程组解为
⎩⎨
⎧==11y x 17.解:由题意得:x=y……③③代入①得:y=5
1∴x=
51把x=51y=51代入②得:
51(k-1)+5
1
(k+1)=45
2k=4k=1018.解:由题意得:设a=x-1
b=y+2
∴⎩⎨
⎧=+=-2
.123.21y x ∴⎩⎨
⎧-==8
.03.3y x ∴方程组⎩⎨
⎧=++-=+--9.12)2(5)1(31)2(3)1(2y x y x 的解为⎩⎨
⎧-==8
.03
.3y x 19.解:由题意得:(3x-y-4)2
≥0|4x+y-3|≥0
∴⎩⎨
⎧=+=(2)
03-y 4x (1)04-y -3x (1)+(2)得:7x=7x=1
把x=1代入(2)得:y=-1∴x=1y=-1
20.解:由题意得:⎩⎨⎧-==11y x 是方程组⎩⎨⎧-=-=+232y Cx By Ax 的解,⎩
⎨⎧-==62
y x 是方程2=+By Ax 的解;
∴把⎩⎨
⎧-==11y x 、⎩⎨⎧-==6
2y x 代入2=+By Ax 得:
⎩⎨
⎧=-=-2
622B A B A 解关于A、B 的方程组得:⎪⎪⎩

⎪⎨
⎧==2
125
B A 把⎩
⎨⎧-==11y x 代入23-=-y Cx 得:C=-5
∴5 2
1 25-===C B A 21.解:⎩⎨
⎧-=+-=+)
2(7143)1(21545 x z y x z y (2)×5-(1)得:11z =55-33x ∴z=5-3x (3)
把(3)代入(2)得:y=-1+2x
把y=-1+2x z=5-3x 代入4x+y+2z 得:4x-1+2x+10-6x=9。

相关文档
最新文档