2020年山东省日照市中考数学试卷(解析版)
2020年中考数学参考答案和试题解析-山东省日照市
8.(3分)(2020•日照)如图,正六边形ABCDEF是边长为2cm的螺母,点P是FA延长线上的点, 在A、P之间拉一条长为12cm的无伸缩性细线,一端固定在点A,握住另一端点P拉直细线,把它全 部紧紧缠绕在螺母上(缠绕时螺母不动),则点P运动的路径长为( )
∴△CGH∽△CAB.
∴
,
∵GF=MN=GH,设GH=x,三角形ABC的底为a,高为h,
∴CN=CM﹣MN=CM﹣GH=CM﹣x.
∴
,
…以此类推,
由此,当为n个正方形时以x= , 故选D.
点评:本题考查了相似三角形的判定和性质,解题的关键是需要对正方形的性质、直角三角形的勾 股定理和相似三角形的判定和性质熟练地掌握.并把它运用到实际的题目中去.
解答:解:周长为13,边长为整数的等腰三角形的边长只能为:3,5,5;或4,4,5; 或6,6,1,共3个. 故选:C.
点评:本题考查了等腰三角形的判定;所构成的等腰三角形的三边必须满足任意两边之和大于第三 边,任意两边之差小于第三边.解答本题时要进行多次的尝试验证.
6.(3分)(2020•日照)李大伯在承包的果园里种植了100棵樱桃树,今年已经进入收获期,收获
时,从中任意采摘了6棵树上的樱桃,分别称得每棵树的产量(单位:千克)如下表:
序 号
1
2
3
4
5
6
产量量
17
21
19
18
20
19
这组数据的中位数为m,樱桃的总产量约为n,则m,n分别是( )
A.18,2020
B.19,1900
C.18.5,1900
山东省日照市2019-2020学年中考数学第二次调研试卷含解析
山东省日照市2019-2020学年中考数学第二次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.计算:9115()515÷⨯-得( ) A .-95 B .-1125 C .-15 D .11252.如图:将一个矩形纸片ABCD ,沿着BE 折叠,使C D 、点分别落在点11,C D 处.若150C BA ∠=︒,则ABE ∠的度数为( )A .15︒B .20︒C .25︒D .30°3.一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球则两次摸到的球的颜色不同的概率为( ) A .13 B .23 C .12 D .254.计算(-18)÷9的值是( )A .-9B .-27C .-2D .25.点P (4,﹣3)关于原点对称的点所在的象限是( )A .第四象限B .第三象限C .第二象限D .第一象限6.下列各数中,为无理数的是( )A .38B .4C .13D .27.如图,若AB ∥CD ,则α、β、γ之间的关系为( )A .α+β+γ=360°B .α﹣β+γ=180°C .α+β﹣γ=180°D .α+β+γ=180°8.如图,嘉淇同学拿20元钱正在和售货员对话,且一本笔记本比一支笔贵3元,请你仔细看图,1本笔记本和1支笔的单价分别为( )A .5元,2元B .2元,5元C .4.5元,1.5元D .5.5元,2.5元9.如图,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得30BAD ∠=︒,在C 点测得60BCD ∠=︒,又测得50AC =米,则小岛B 到公路l 的距离为( )米.A .25B .253C .10033D .25253+10.下列等式从左到右的变形,属于因式分解的是A .8a 2b=2a·4abB .-ab 3-2ab 2-ab=-ab(b 2+2b)C .4x 2+8x-4=4x 12-x x ⎛⎫+ ⎪⎝⎭ D .4my-2=2(2my-1)11.如图,在正三角形ABC 中,D,E,F 分别是BC,AC,AB 上的点,DE ⊥AC,EF ⊥AB,FD ⊥BC ,则△DEF 的面积与△ABC 的面积之比等于( )A .1∶3B .2∶3C .3∶2D .3∶312.2017年,全国参加汉语考试的人数约为6500000,将6500000用科学记数法表示为( ) A .6.5×105 B .6.5×106 C .6.5×107 D .65×105二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,半圆O 的直径AB=2,弦CD ∥AB ,∠COD=90°,则图中阴影部分的面积为_____.14.已知,如图,正方形ABCD 的边长是8,M 在DC 上,且DM =2,N 是AC 边上的一动点,则DN+MN 的最小值是_____.15.若关于x 的一元二次方程(a ﹣1)x 2﹣x+1=0有实数根,则a 的取值范围为________.16.已知菱形的周长为10cm ,一条对角线长为6cm ,则这个菱形的面积是_____cm 1.17.如图,圆锥底面半径为r cm ,母线长为10cm ,其侧面展开图是圆心角为216°的扇形,则r 的值为 .18.某种商品两次降价后,每件售价从原来元降到元,平均每次降价的百分率是__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系xOy 中,直线y =x+b 与双曲线y =k x相交于A ,B 两点, 已知A (2,5).求:b 和k 的值;△OAB 的面积.20.(6分)如图,矩形OABC 的顶点A 、C 分别在x 、y 轴的正半轴上,点D 为BC 边上的点,AB=BD ,反比例函数()0k y k x =≠在第一象限内的图象经过点D (m ,2)和AB 边上的点E (n ,23). (1)求m 、n 的值和反比例函数的表达式.(2)将矩形OABC 的一角折叠,使点O 与点D 重合,折痕分别与x 轴,y 轴正半轴交于点F ,G ,求线段FG 的长.21.(6分)如图,在△ABC 中,∠C=90°.作∠BAC 的平分线AD ,交BC 于D ;若AB=10cm ,CD=4cm ,求△ABD的面积.22.(8分)某市教育局为了了解初一学生第一学期参加社会实践活动的情况,随机抽查了本市部分初一学生第一学期参加社会实践活动的天数,并将得到的数据绘制成了下面两幅不完整的统计图.请根据图中提供的信息,回答下列问题:扇形统计图中a的值为%,该扇形圆心角的度数为;补全条形统计图;如果该市共有初一学生20000人,请你估计“活动时间不少于5天”的大约有多少人?23.(8分)如图,点O为Rt△ABC斜边AB上的一点,以OA为半径的⊙O与BC切于点D,与AC交于点E,连接AD.求证:AD平分∠BAC;若∠BAC=60∘,OA=4,求阴影部分的面积(结果保留π).24.(10分)已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF.求证:BE = DF;连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.25.(10分)先化简,再求值:22()11x x xxx x+÷-++,其中x=2.26.(12分)如图,已知AB是⊙O的直径,CD与⊙O相切于C,BE∥CO.(1)求证:BC是∠ABE的平分线;(2)若DC=8,⊙O的半径OA=6,求CE的长.27.(12分)综合与实践﹣﹣﹣折叠中的数学在学习完特殊的平行四边形之后,某学习小组针对矩形中的折叠问题进行了研究.问题背景:在矩形ABCD中,点E、F分别是BC、AD 上的动点,且BE=DF,连接EF,将矩形ABCD沿EF折叠,点C落在点C′处,点D落在点D′处,射线EC′与射线DA相交于点M.猜想与证明:(1)如图1,当EC′与线段AD交于点M时,判断△MEF的形状并证明你的结论;操作与画图:(2)当点M与点A重合时,请在图2中作出此时的折痕EF和折叠后的图形(要求:尺规作图,不写作法,保留作图痕迹,标注相应的字母);操作与探究:(3)如图3,当点M在线段DA延长线上时,线段C′D'分别与AD,AB交于P,N两点时,C′E与AB 交于点Q,连接MN 并延长MN交EF于点O.求证:MO⊥EF 且MO平分EF;(4)若AB=4,AD=43,在点E由点B运动到点C的过程中,点D'所经过的路径的长为.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】同级运算从左向右依次计算,计算过程中注意正负符号的变化.【详解】919111551551515⎛⎫⎛⎫÷⨯-=⨯⨯-= ⎪ ⎪⎝⎭⎝⎭-1125 故选B.【点睛】本题考查的是有理数的混合运算,熟练掌握运算法则是解题的关键.2.B【解析】根据折叠前后对应角相等可知.解:设∠ABE=x ,根据折叠前后角相等可知,∠C1BE=∠CBE=50°+x , 所以50°+x+x=90°,解得x=20°.故选B .“点睛”本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.3.B【解析】【分析】本题主要需要分类讨论第一次摸到的球是白球还是红球,然后再进行计算.【详解】 ①若第一次摸到的是白球,则有第一次摸到白球的概率为23,第二次,摸到白球的概率为12,则有211323⨯=;②若第一次摸到的球是红色的,则有第一次摸到红球的概率为13,第二次摸到白球的概率为1,则有11133⨯=,则两次摸到的球的颜色不同的概率为112333+=. 【点睛】掌握分类讨论的方法是本题解题的关键.4.C【解析】【分析】直接利用有理数的除法运算法则计算得出答案.【详解】解:(-18)÷9=-1. 故选:C .【点睛】此题主要考查了有理数的除法运算,正确掌握运算法则是解题关键.5.C【解析】【分析】由题意得点P 的坐标为(﹣4,3),根据象限内点的符号特点可得点P 1的所在象限.【详解】∵设P (4,﹣3)关于原点的对称点是点P 1,∴点P 1的坐标为(﹣4,3),∴点P 1在第二象限.故选 C【点睛】本题主要考查了两点关于原点对称,这两点的横纵坐标均互为相反数;符号为(﹣,+)的点在第二象限.6.D【解析】A =2,是有理数;B =2,是有理数;C .13,是有理数;D ,是无理数, 故选D.7.C【解析】【分析】过点E 作EF ∥AB ,如图,易得CD ∥EF ,然后根据平行线的性质可得∠BAE+∠FEA=180°,∠C=∠FEC=γ,进一步即得结论.【详解】解:过点E 作EF ∥AB ,如图,∵AB ∥CD ,AB ∥EF ,∴CD ∥EF ,∴∠BAE+∠FEA=180°,∠C=∠FEC=γ,∴∠FEA=β﹣γ,∴α+(β﹣γ)=180°,即α+β﹣γ=180°.故选:C .【点睛】本题考查了平行公理的推论和平行线的性质,属于常考题型,作EF ∥AB 、熟练掌握平行线的性质是解题的关键.8.A【解析】【分析】可设1本笔记本的单价为x 元,1支笔的单价为y 元,由题意可得等量关系:①3本笔记本的费用+2支笔的费用=19元,②1本笔记本的费用﹣1支笔的费用=3元,根据等量关系列出方程组,再求解即可.【详解】设1本笔记本的单价为x 元,1支笔的单价为y 元,依题意有:322013x y x y +=-⎧⎨-=⎩,解得:52x y =⎧⎨=⎩. 故1本笔记本的单价为5元,1支笔的单价为2元.故选A .【点睛】本题考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系设出未知数,列出方程组.9.B【解析】【分析】【详解】解:过点B 作BE ⊥AD 于E .设BE=x .∵∠BCD=60°,tan ∠BCE BE CE=, 33CE x ∴=,在直角△ABE 中,,AC=50米,503x -=,解得x =即小岛B 到公路l 的距离为故选B.10.D【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A 、是整式的乘法,故A 不符合题意;B 、没把一个多项式转化成几个整式积的形式,故B 不符合题意;C 、没把一个多项式转化成几个整式积的形式,故C 不符合题意;D 、把一个多项式转化成几个整式积的形式,故D 符合题意;故选D .【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.11.A【解析】∵DE ⊥AC ,EF ⊥AB ,FD ⊥BC ,∴∠C+∠EDC=90°,∠FDE+∠EDC=90°,∴∠C=∠FDE ,同理可得:∠B=∠DFE ,∠A=DEF ,∴△DEF ∽△CAB ,∴△DEF 与△ABC 的面积之比=2DE AC ⎛⎫ ⎪⎝⎭, 又∵△ABC 为正三角形,∴∠B=∠C=∠A=60°∴△EFD 是等边三角形,∴EF=DE=DF ,又∵DE ⊥AC ,EF ⊥AB ,FD ⊥BC ,∴△AEF ≌△CDE ≌△BFD ,∴BF=AE=CD ,AF=BD=EC ,在Rt △DEC 中,DE=DC×sin ∠,EC=cos ∠C×DC=12DC , 又∵DC+BD=BC=AC=32DC ,∴2332DC DE AC DC ==, ∴△DEF 与△ABC的面积之比等于:221:3DE AC ⎛⎫== ⎪⎝⎭⎝⎭ 故选A .点晴:本题主要通过证出两个三角形是相似三角形,再利用相似三角形的性质:相似三角形的面积之比等于对应边之比的平方,进而将求面积比的问题转化为求边之比的问题,并通过含30度角的直角三角形三边间的关系(锐角三角形函数)即可得出对应边DE AC 之比,进而得到面积比. 12.B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将6500000用科学记数法表示为:6.5×106. 故答案选B.【点睛】本题考查了科学计数法,解题的关键是熟练的掌握科学计数法的表示形式.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.4π 【解析】解:∵弦CD ∥AB ,∴S △ACD =S △OCD ,∴S 阴影=S 扇形COD =2901360π⨯=4π.故答案为4π. 14.1【解析】分析:要求DN+MN的最小值,DN,MN不能直接求,可考虑通过作辅助线转化DN,MN的值,从而找出其最小值求解.解答:解:如图,连接BM,∵点B和点D关于直线AC对称,∴NB=ND,则BM就是DN+MN的最小值,∵正方形ABCD的边长是8,DM=2,∴CM=6,∴BM==1,∴DN+MN的最小值是1.故答案为1.点评:考查正方形的性质和轴对称及勾股定理等知识的综合应用.15.a≤54且a≠1.【解析】【分析】根据一元二次方程有实数根的条件列出关于a的不等式组,求出a的取值范围即可.【详解】由题意得:△≥0,即(-1)2-4(a-1)×1≥0,解得a≤54,又a-1≠0,∴a≤54且a≠1.故答案为a≤54且a≠1.点睛:本题考查的是根的判别式及一元二次方程的定义,根据题意列出关于a的不等式组是解答此题的关键.16.14【解析】【分析】根据菱形的性质,先求另一条对角线的长度,再运用菱形的面积等于对角线乘积的一半求解.【详解】解:如图,在菱形ABCD中,BD=2.∵菱形的周长为10,BD=2,∴AB =5,BO =3, ∴22534AO =-=, AC =3.∴面积168242S =⨯⨯=. 故答案为 14.【点睛】此题考查了菱形的性质及面积求法,难度不大.17.1.【解析】试题分析:∵圆锥底面半径为rcm ,母线长为10cm ,其侧面展开图是圆心角为211°的扇形, ∴2πr=360216×2π×10,解得r=1. 故答案为:1.【考点】圆锥的计算.18.【解析】【分析】设降价的百分率为x ,则第一次降价后的单价是原来的(1−x ),第二次降价后的单价是原来的(1−x )2,根据题意列方程解答即可.【详解】解:设降价的百分率为x ,根据题意列方程得:100×(1−x )2=81解得x 1=0.1,x 2=1.9(不符合题意,舍去).所以降价的百分率为0.1,即10%.故答案为:10%.【点睛】本题考查了一元二次方程的应用.找到关键描述语,根据等量关系准确的列出方程是解决问题的关键.还要判断所求的解是否符合题意,舍去不合题意的解.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)b=3,k=10;(2)S △AOB =212. 【解析】 (1)由直线y=x+b 与双曲线y=k x相交于A 、B 两点,A (2,5),即可得到结论; (2)过A 作AD ⊥x 轴于D ,BE ⊥x 轴于E ,根据y=x+3,y=10x ,得到(-5,-2),C (-3,0).求出OC=3,然后根据三角形的面积公式即可得到结论.解:(1)把()2,5A 代入y x b =+.∴52b =+∴3b =.把()2,5A 代入k y x =,∴52k =, ∴10k =.(2)∵10y x =,3y x =+. ∴103x x=+时,2103x x =+, ∴12x =,25x =-.∴()5,2B --.又∵()3,0C -,∴AOB AOC BOC S S S =+V V V 353222⨯⨯=+ 10.5=. 20.(1)y=2x;(2【解析】【分析】 (1)根据题意得出2232m n m n ⎧=⎪⎨⎪=-⎩,解方程即可求得m 、n 的值,然后根据待定系数法即可求得反比例函数的解析式;(2)设OG=x ,则GD=OG=x ,CG=2﹣x ,根据勾股定理得出关于x 的方程,解方程即可求得DG 的长,过F 点作FH ⊥CB 于H ,易证得△GCD ∽△DHF ,根据相似三角形的性质求得FG ,最后根据勾股定理即可求得.【详解】(1)∵D (m ,2),E (n ,23), ∴AB=BD=2,∴m=n ﹣2, ∴2232m n m n ⎧=⎪⎨⎪=-⎩,解得13m n =⎧⎨=⎩,∴D(1,2),∴k=2,∴反比例函数的表达式为y=2x;(2)设OG=x,则GD=OG=x,CG=2﹣x,在Rt△CDG中,x2=(2﹣x)2+12,解得x=54,过F点作FH⊥CB于H,∵∠GDF=90°,∴∠CDG+∠FDH=90°,∵∠CDG+∠CGD=90°,∴∠CGD=∠FDH,∵∠GCD=∠FHD=90°,∴△GCD∽△DHF,∴DG CDFD FH=,即5142FD=,∴FD=52,∴FG=2222555524FD GD⎛⎫⎛⎫+=+=⎪ ⎪⎝⎭⎝⎭.【点睛】本题考查了反比例函数与几何综合题,涉及了待定系数法、勾股定理、相似三角形的判定与性质等,熟练掌握待定系数法、相似三角形的判定与性质是解题的关键.21.(1)答案见解析;(2)220cm【解析】【分析】(1)根据三角形角平分线的定义,即可得到AD;(2)过D作于DE⊥ABE,根据角平分线的性质得到DE=CD=4,由三角形的面积公式即可得到结论.【详解】解:(1)如图所示,AD即为所求;(2)如图,过D作DE⊥AB于E, ∵AD平分∠BAC,∴DE=CD=4,∴S△ABD=12AB·DE=20cm2.【点睛】掌握画角平分线的方法和角平分线的相关定义知识是解答本题的关键.22.(1)25,90°;(2)见解析;(3)该市“活动时间不少于5天”的大约有1.【解析】试题分析:(1)根据扇形统计图的特征即可求得a的值,再乘以360°即得扇形的圆心角;(2)先算出总人数,再乘以“活动时间为6天”对应的百分比即得对应的人数;(3)先求得“活动时间不少于5天”的学生人数的百分比,再乘以20000即可.(1)由图可得该扇形圆心角的度数为90°;(2)“活动时间为6天” 的人数,如图所示:(3)∵“活动时间不少于5天”的学生人数占75%,20000×75%=1∴该市“活动时间不少于5天”的大约有1人.考点:统计的应用点评:统计的应用初中数学的重点,在中考中极为常见,一般难度不大.23.(1)见解析;(2)8 3【解析】试题分析:(1)连接OD,则由已知易证OD∥AC,从而可得∠CAD=∠ODA,结合∠ODA=∠OAD,即可得到∠CAD=∠OAD,从而得到AD平分∠BAC;(2)连接OE、DE,由已知易证△AOE是等边三角形,由此可得∠ADE=12∠AOE=30°,由AD平分∠BAC可得∠OAD=30°,从而可得∠ADE=∠OAD,由此可得DE∥AO,从而可得S阴影=S扇形ODE,这样只需根据已知条件求出扇形ODE的面积即可.试题解析:(1)连接OD.∵BC是⊙O的切线,D为切点,∴OD⊥BC.又∵AC⊥BC,∴OD∥AC,∴∠ADO=∠CAD.又∵OD=OA,∴∠ADO=∠OAD,∴∠CAD=∠OAD,即AD平分∠BAC.(2)连接OE,ED.∵∠BAC=60°,OE=OA,∴△OAE为等边三角形,∴∠AOE=60°,∴∠ADE=30°.又∵1302OAD BAC∠=∠=o,∴∠ADE=∠OAD,∴ED∥AO,∴S△AED=S△OED,∴阴影部分的面积= S扇形ODE = 601683603ππ⨯⨯=.24.(1)证明见解析;(2)四边形AEMF 是菱形,证明见解析.【解析】【分析】(1)求简单的线段相等,可证线段所在的三角形全等,即证△ABE ≌△ADF ;(2)由于四边形ABCD 是正方形,易得∠ECO=∠FCO=45°,BC=CD ;联立(1)的结论,可证得EC=CF ,根据等腰三角形三线合一的性质可证得OC (即AM )垂直平分EF ;已知OA=OM ,则EF 、AM 互相平分,再根据一组邻边相等的平行四边形是菱形,即可判定四边形AEMF 是菱形.【详解】(1)证明:∵四边形ABCD 是正方形,∴AB=AD ,∠B=∠D=90°,在Rt △ABE 和Rt △ADF 中,∵AD AB AF AE⎧⎨⎩==, ∴Rt △ADF ≌Rt △ABE (HL )∴BE=DF ;(2)四边形AEMF 是菱形,理由为:证明:∵四边形ABCD 是正方形,∴∠BCA=∠DCA=45°(正方形的对角线平分一组对角),BC=DC (正方形四条边相等),∵BE=DF (已证),∴BC-BE=DC-DF (等式的性质),即CE=CF ,在△COE 和△COF 中,CE CF ACB ACD OC OC ⎪∠⎪⎩∠⎧⎨===,∴△COE ≌△COF (SAS ),∴OE=OF ,又OM=OA ,∴四边形AEMF 是平行四边形(对角线互相平分的四边形是平行四边形),∵AE=AF ,∴平行四边形AEMF 是菱形.25.1+2 【解析】 【分析】 先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可. 【详解】 解:原式()22,111x x x x x x x x +⎛⎫+=÷- ⎪+++⎝⎭()22,11x x x x x +=÷++ ()221,1x x x x x++=⋅+ 2.x x += 当2x =时,原式=221 2.2+=+ 【点睛】考查分式的混合运算,掌握运算顺序是解题的关键.26.(1)证明见解析;(2)4.1.【解析】试题分析:(1)由BE ∥CO ,推出∠OCB=∠CBE ,由OC=OB ,推出∠OCB=∠OBC ,可得∠CBE=∠CBO ;(2)在Rt △CDO 中,求出OD ,由OC ∥BE ,可得,由此即可解决问题;试题解析:(1)证明:∵DE 是切线,∴OC ⊥DE ,∵BE ∥CO ,∴∠OCB=∠CBE ,∵OC=OB ,∴∠OCB=∠OBC ,∴∠CBE=∠CBO ,∴BC 平分∠ABE .(2)在Rt △CDO 中,∵DC=1,OC=0A=6,∴OD==10,∵OC ∥BE ,∴,∴,∴EC=4.1. 考点:切线的性质.27.(1)△MEF 是等腰三角形(2)见解析(3)证明见解析(4)163π【解析】【分析】(1)由AD∥BC,可得∠MFE=∠CEF,由折叠可得,∠MEF=∠CEF,依据∠MFE=∠MEF,即可得到ME=MF,进而得出△MEF是等腰三角形;(2)作AC的垂直平分线,即可得到折痕EF,依据轴对称的性质,即可得到D'的位置;(3)依据△BEQ≌△D'FP,可得PF=QE,依据△NC'P≌△NAP,可得AN=C'N,依据Rt△MC'N≌Rt△MAN,可得∠AMN=∠C'MN,进而得到△MEF是等腰三角形,依据三线合一,即可得到MO⊥EF 且MO平分EF;(4)依据点D'所经过的路径是以O为圆心,4为半径,圆心角为240°的扇形的弧,即可得到点D'所经过的路径的长.【详解】(1)△MEF是等腰三角形.理由:∵四边形ABCD是矩形,∴AD∥BC,∴∠MFE=∠CEF,由折叠可得,∠MEF=∠CEF,∴∠MFE=∠MEF,∴ME=MF,∴△MEF是等腰三角形.(2)折痕EF和折叠后的图形如图所示:(3)如图,∵FD=BE,由折叠可得,D'F=DF,∴BE=D'F,在△NC'Q和△NAP中,∠C'NQ=∠ANP,∠NC'Q=∠NAP=90°,∴∠C'QN=∠APN , ∵∠C'QN=∠BQE ,∠APN=∠D'PF , ∴∠BQE=∠D'PF , 在△BEQ 和△D'FP 中, {BQE DPFBE D F AP C Q∠=∠='=', ∴△BEQ ≌△D'FP (AAS ), ∴PF=QE ,∵四边形ABCD 是矩形, ∴AD=BC ,∴AD ﹣FD=BC ﹣BE , ∴AF=CE ,由折叠可得,C'E=EC , ∴AF=C'E ,∴AP=C'Q ,在△NC'Q 和△NAP 中, {C NQ ANPNC Q NAP AP C Q''∠∠=∠='∠=, ∴△NC'P ≌△NAP (AAS ), ∴AN=C'N ,在Rt △MC'N 和Rt △MAN 中, {MN MN AN C N==', ∴Rt △MC'N ≌Rt △MAN (HL ), ∴∠AMN=∠C'MN ,由折叠可得,∠C'EF=∠CEF , ∵四边形ABCD 是矩形, ∴AD ∥BC ,∴∠AFE=∠FEC ,∴∠C'EF=∠AFE ,∴ME=MF ,∴△MEF 是等腰三角形,∴MO⊥EF 且MO平分EF;(4)在点E由点B运动到点C的过程中,点D'所经过的路径是以O为圆心,4为半径,圆心角为240°的扇形的弧,如图:故其长为L=2404161803ππ⨯⨯=.故答案为163π.【点睛】此题是四边形综合题,主要考查了折叠问题与菱形的判定与性质、弧长计算公式,等腰三角形的判定与性质以及全等三角形的判定与性质的综合应用,熟练掌握等腰三角形的判定定理和性质定理是解本题的关键.。
2020年山东省日照市中考数学三模试卷 (解析版)
2020年山东省日照市中考数学三模试卷一、选择题(共12小题).1.下列各数中,最大的数是()A.﹣B.C.0D.﹣22.下列国旗图案是轴对称图形但不是中心对称图形的是()A.B.C.D.3.下列运算正确的是()A.(﹣a3)2=﹣a6B.a2•a3=a6C.a8÷a2=a4D.3a2﹣2a2=a2 4.若式子有意义,则实数的取值范围是()A.a≥﹣2B.a≠1C.a>1D.a≥﹣2且a≠1 5.如图,⊙O的半径为3,四边形ABCD内接于⊙O,连接OB、OD,若∠BOD=∠BCD,则劣弧的长为()A.πB.C.2πD.3π6.如图,直线l1∥l2,∠1=20°,则∠2+∠3=()A.160°B.180°C.200°D.220°7.若不等式组无解,则m的取值范围为()A.m≤4B.m<4C.m≥4D.m>48.如图,在△ABC中,AC=3,BC=6,D为BC边上的一点,且∠CAD=∠B.若△ADC 的面积为a,则△ABD的面积为()A.2a B.a C.3a D.a9.如图,在矩形ABCD中,AB=2,BC=3,动点P沿折线BCD从点B开始运动到点D.设运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是()A.B.C.D.10.若关于x的方程+=3的解为正数,则m的取值范围是()A.m<B.m<且m≠C.m>﹣D.m>﹣且m≠﹣11.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,与x轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示.则下列结论:①4a﹣b=0;②c<0;③﹣3a+c>0;④4a﹣2b>at2+bt(t为实数);⑤点(﹣,y1),(﹣,y2),(﹣,y3)是该抛物线上的点,则y1<y2<y3,正确的个数有()A.4个B.3个C.2个D.1个12.将一列有理数﹣1,2,﹣3,4,﹣5,6,……,如图所示有序排列,根据图中的排列规律可知,“峰1”中峰顶的位置(C的位置)是有理数4,那么,“峰5”中C的位置是有理数___,﹣2019应排在A、B、C、D、E中的___位置.其中两个填空依次为()A.24,C B.24.A C.25,B D.﹣25,E二、填空题(本大题共4小题,每小题4分,满分16分,不需写出解答过程,请将答案直接写在答题卡相应位置上)13.如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体展开图的圆心角是.14.已知关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根,则+c的值等于.15.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半径为2,圆心角为60°,则图中阴影部分的面积是.16.如图,在平面直角坐标系中.点A、B在反比例函数y=的图象上运动,且始终保持线段AB=4的长度不变,M为线段AB的中点,连接OM,则线段OM的长度是.三、解答题(本大题其6小题,满分63分.请在答题卡指定区城内作答,解答时应写出必要的文字说明、证明过程或演算步骤).17.(1)﹣12020﹣|1﹣|++(2017﹣π)0.(2)化简:先化简,再求值:,其中x=3+.18.学校准备租用一批汽车,现有甲、乙两种大客车,甲种客车每辆载客量45人,乙种客车每辆载客量30人.已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?(2)学校计划租用甲、乙两种客车共8辆,送330名师生集体外出活动,最节省的租车费用是多少?19.中华文明,源远流长;中华汉字,寓意深广.为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整.请你根据统计图解答下列问题:(1)参加比赛的学生共有名;(2)在扇形统计图中,m的值为,表示“D等级”的扇形的圆心角为度;(3)组委会决定从本次比赛获得A等级的学生中,选出2名去参加全市中学生“汉字听写”大赛.已知A等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.20.已知:如图,在△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D.过点D 作DE⊥AD交AB于点E,以AE为直径作⊙O.(1)求证:BC是⊙O的切线;(2)若AC=6,BC=8,求BE的长.21.如图1,点A在x轴上,OA=4,将OA绕点O逆时针旋转120°至OB的位置.(1)求经过A、O、B三点的抛物线的函数解析式;(2)在此抛物线的对称轴上是否存在点P使得以P、O、B三点为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由;(3 )如图2,OC=4,⊙A的半径为2,点M是⊙A上的一个动点,求MC+OM的最小值.22.定义:有一组邻边相等且对角互补的四边形叫做等补四边形.理解:(1)如图1,点A,B,C在⊙O上,∠ABC的平分线交⊙O于点D,连接AD,CD.求证:四边形ABCD是等补四边形;探究:(2)如图2,在等补四边形ABCD中,AB=AD,连接AC,AC是否平分∠BCD?请说明理由.运用:(3)如图3,在等补四边形ABCD中,AB=AD,其外角∠EAD的平分线交CD的延长线于点F,CD=10,AF=5,求DF的长.参考答案一、选择题(本大题共12小题,每小题3分,满分36分,在每小题所给出的四个选项中,只有一项是符合题目要求的)1.下列各数中,最大的数是()A.﹣B.C.0D.﹣2【分析】比较确定出最大的数即可.解:﹣2<﹣<0<,则最大的数是,故选:B.2.下列国旗图案是轴对称图形但不是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.解:A、是轴对称图形,不是中心对称图形,符合题意;B、是轴对称图形,也是中心对称图形,不合题意;C、不是轴对称图形,也不是中心对称图形,不合题意;D、不是轴对称图形,也不是中心对称图形,不合题意.故选:A.3.下列运算正确的是()A.(﹣a3)2=﹣a6B.a2•a3=a6C.a8÷a2=a4D.3a2﹣2a2=a2【分析】各项计算得到结果,即可作出判断.解:A、原式=a6,不符合题意;B、原式=a5,不符合题意;C、原式=a6,不符合题意;D、原式=a2,符合题意,故选:D.4.若式子有意义,则实数的取值范围是()A.a≥﹣2B.a≠1C.a>1D.a≥﹣2且a≠1【分析】直接利用二次根式有意义的条件进而分析得出答案.解:式子有意义,则a+2≥0,且a﹣1≠0,解得:a≥﹣2且a≠1.故选:D.5.如图,⊙O的半径为3,四边形ABCD内接于⊙O,连接OB、OD,若∠BOD=∠BCD,则劣弧的长为()A.πB.C.2πD.3π【分析】由圆内接四边形的性质和圆周角定理求出∠A=60°,得出∠BOD=120°,再由弧长公式即可得出答案.解:∵四边形ABCD内接于⊙O,∴∠BCD+∠A=180°,∵∠BOD=2∠A,∠BOD=∠BCD,∴2∠A+∠A=180°,解得:∠A=60°,∴∠BOD=120°,∴的长==2π;故选:C.6.如图,直线l1∥l2,∠1=20°,则∠2+∠3=()A.160°B.180°C.200°D.220°【分析】过点E作EF∥11,利用平行线的性质解答即可.解:过点E作EF∥11,∵11∥12,EF∥11,∴EF∥11∥12,∴∠1=∠AEF=20°,∠FEC+∠3=180°,∴∠2+∠3=∠AEF+∠FEC+∠3=20°+180°=200°.故选:C.7.若不等式组无解,则m的取值范围为()A.m≤4B.m<4C.m≥4D.m>4【分析】解不等式式<﹣1得出x>8,结合x<2m且不等式组无解,利用“大大小小无解了”求解可得.解:解不等式<﹣1,得:x>8,又x<2m且不等式组无解,∴2m≤8,解得m≤4,故选:A.8.如图,在△ABC中,AC=3,BC=6,D为BC边上的一点,且∠CAD=∠B.若△ADC 的面积为a,则△ABD的面积为()A.2a B.a C.3a D.a【分析】首先证明△ACD∽△BCA,再根据相似三角形的性质求出△BCA的面积为4a,计算即可得到△ABD的面积.解:∵∠CAD=∠B,∠ACD=∠BCA,∴△ACD∽△BCA,∴=()2,∵AC=3,BC=6,∴()2=,∵△ADC的面积为a,∴=,解得,△BCA的面积为4a,∴△ABD的面积为:4a﹣a=3a,故选:C.9.如图,在矩形ABCD中,AB=2,BC=3,动点P沿折线BCD从点B开始运动到点D.设运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是()A.B.C.D.【分析】由题意当0≤x≤3时,y=3,当3<x<5时,y=×3×(5﹣x)=﹣x+.由此即可判断.解:由题意当0≤x≤3时,y=3,当3<x<5时,y=×3×(5﹣x)=﹣x+.故选:D.10.若关于x的方程+=3的解为正数,则m的取值范围是()A.m<B.m<且m≠C.m>﹣D.m>﹣且m≠﹣【分析】直接解分式方程,再利用解为正数列不等式,解不等式得出x的取值范围,进而得出答案.解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=,∵关于x的方程+=3的解为正数,∴﹣2m+9>0,解得:m<,当x=3时,x==3,解得:m=,故m的取值范围是:m<且m≠.故选:B.11.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,与x轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示.则下列结论:①4a﹣b=0;②c<0;③﹣3a+c>0;④4a﹣2b>at2+bt(t为实数);⑤点(﹣,y1),(﹣,y2),(﹣,y3)是该抛物线上的点,则y1<y2<y3,正确的个数有()A.4个B.3个C.2个D.1个【分析】根据抛物线的对称轴可判断①,由抛物线与x轴的交点及抛物线的对称性可判断②,由x=﹣1时y>0可判断③,由x=﹣2时函数取得最大值可判断④,根据抛物线的开口向下且对称轴为直线x=﹣2知图象上离对称轴水平距离越小函数值越大,可判断⑤.解:∵抛物线的对称轴为直线x=﹣=﹣2,∴4a﹣b=0,所以①正确;∵与x轴的一个交点在(﹣3,0)和(﹣4,0)之间,∴由抛物线的对称性知,另一个交点在(﹣1,0)和(0,0)之间,∴抛物线与y轴的交点在y轴的负半轴,即c<0,故②正确;∵由②知,x=﹣1时y>0,且b=4a,即a﹣b+c=a﹣4a+c=﹣3a+c>0,所以③正确;由函数图象知当x=﹣2时,函数取得最大值,∴4a﹣2b+c≥at2+bt+c,即4a﹣2b≥at2+bt(t为实数),故④错误;∵抛物线的开口向下,且对称轴为直线x=﹣2,∴抛物线上离对称轴水平距离越小,函数值越大,∴y1<y3<y2,故⑤错误;故选:B.12.将一列有理数﹣1,2,﹣3,4,﹣5,6,……,如图所示有序排列,根据图中的排列规律可知,“峰1”中峰顶的位置(C的位置)是有理数4,那么,“峰5”中C的位置是有理数___,﹣2019应排在A、B、C、D、E中的___位置.其中两个填空依次为()A.24,C B.24.A C.25,B D.﹣25,E【分析】观察不难发现,每个峰排列5个数,求出5个峰排列的数的个数,再求出,“峰5”中C位置的数的序数,然后根据排列的奇数为负数,偶数为正数解答;用(2019﹣1)除以5,根据商和余数的情况确定所在峰中的位置即可.解:∵每个峰需要5个数,∴4×5=20,20+1+3=24,∴“峰5”中C位置的数的是24,∵(2019﹣1)÷5=403余3,∴﹣2019为“峰404”的第3个数,排在C的位置.故选:A.二、填空题(本大题共4小题,每小题4分,满分16分,不需写出解答过程,请将答案直接写在答题卡相应位置上)13.如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体展开图的圆心角是120°.【分析】根据圆锥的底面半径得到圆锥的底面周长,也就是圆锥的侧面展开图的弧长,根据勾股定理得到圆锥的母线长,利用弧长公式可求得圆锥的侧面展开图中扇形的圆心角.解:∵圆锥的底面直径为2cm,半径为1cm,∴圆锥的底面周长为2πcm,∵圆锥的高是2cm,∴圆锥的母线长为3cm,设扇形的圆心角为n°,∴=2π,解得n=120.故这个几何体展开图的圆心角是120°.故答案为:120°.14.已知关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根,则+c的值等于2.【分析】根据“关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根”,结合根的判别式公式,得到关于a和c的等式,整理后即可得到的答案.解:根据题意得:△=4﹣4a(2﹣c)=0,整理得:4ac﹣8a=﹣4,4a(c﹣2)=﹣4,∵方程ax2+2x+2﹣c=0是一元二次方程,∴a≠0,等式两边同时除以4a得:c﹣2=﹣,则+c=2,故答案为:2.15.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半径为2,圆心角为60°,则图中阴影部分的面积是.【分析】根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.解:如图,连接BD.∵四边形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等边三角形,∵AB=2,∴△ABD的高为,∵扇形BEF的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD、BE相交于点G,设BF、DC相交于点H,在△ABG和△DBH中,,∴△ABG≌△DBH(ASA),∴四边形GBHD的面积等于△ABD的面积,∴图中阴影部分的面积是:S扇形EBF﹣S△ABD=﹣×2×=﹣.故答案是:﹣.16.如图,在平面直角坐标系中.点A、B在反比例函数y=的图象上运动,且始终保持线段AB=4的长度不变,M为线段AB的中点,连接OM,则线段OM的长度是3.【分析】如图,当OM⊥AB时,线段OM长度的最小.首先证明点A与点B关于直线y=x对称,因为点A,B在反比例函数y=(k≠0)的图象上,AB=4,所以可以假设A(m,),则B(m+4,﹣4),则(m+4)(﹣4)=5,整理得5=m2+4m,推出A(1,5),B(5,1),可得M(3,3),求出OM即可解决问题.解:如图,因为反比例函数关于直线y=x对称,观察图象可知:当线段AB与直线y=x 垂直时,垂足为M,此时AM=BM,OM的值最小,∵M为线段AB的中点,∴OA=OB,∵点A,B在反比例函数y=的图象上,∴点A与点B关于直线y=x对称,∵AB=4,∴可以假设A(m,),则B(m+4,﹣4),∴(m+4)(﹣4)=5,整理得5=m2+4m,解得:m=1(负值舍去),∴A(1,5),B(5,1),∴M(3,3),∴OM=3,∴线段OM的长度为3.故答案为3.三、解答题(本大题其6小题,满分63分.请在答题卡指定区城内作答,解答时应写出必要的文字说明、证明过程或演算步骤).17.(1)﹣12020﹣|1﹣|++(2017﹣π)0.(2)化简:先化简,再求值:,其中x=3+.【分析】(1)按照乘方、特殊角的三角函数值、绝对值、二次根式的化简、负整数指数幂及零次幂的运算法则分别计算,再合并同类项即可;(2)先将原式按照通分的方法、分式的除法运算法则及因式分解的方法化简,再将x=3+代入计算即可.解:(1)﹣12020﹣|1﹣|++(2017﹣π)0.=﹣1﹣|1﹣×|+2×4+1=﹣1﹣0+8+1=8;(2)=÷=÷=×=.∴x=3+时,原式==.18.学校准备租用一批汽车,现有甲、乙两种大客车,甲种客车每辆载客量45人,乙种客车每辆载客量30人.已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?(2)学校计划租用甲、乙两种客车共8辆,送330名师生集体外出活动,最节省的租车费用是多少?【分析】(1)可设1辆甲种客车的租金是x元,1辆乙种客车的租金是y元,根据等量关系:①1辆甲种客车和3辆乙种客车共需租金1240元,②3辆甲种客车和2辆乙种客车共需租金1760元,列出方程组求解即可;(2)由于求最节省的租车费用,可知租用甲种客车6辆,租用乙客车2辆,进而求解即可.解:(1)设1辆甲种客车的租金是x元,1辆乙种客车的租金是y元,依题意有,解得.故1辆甲种客车的租金是400元,1辆乙种客车的租金是280元;(2)方法1:租用甲种客车6辆,租用乙客车2辆是最节省的租车费用,400×6+280×2=2400+560=2960(元).方法2:设租用甲种客车x辆,依题意有45x+30(8﹣x)≥330,解得x≥6,租用甲种客车6辆,租用乙客车2辆的租车费用为:400×6+280×2=2400+560=2960(元);租用甲种客车7辆,租用乙客车1辆的租车费用为:400×7+280=2800+280=3080(元);2960<3080,故最节省的租车费用是2960元.19.中华文明,源远流长;中华汉字,寓意深广.为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整.请你根据统计图解答下列问题:(1)参加比赛的学生共有20名;(2)在扇形统计图中,m的值为40,表示“D等级”的扇形的圆心角为72度;(3)组委会决定从本次比赛获得A等级的学生中,选出2名去参加全市中学生“汉字听写”大赛.已知A等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.【分析】(1)根据等级为A的人数除以所占的百分比求出总人数;(2)根据D级的人数求得D等级扇形圆心角的度数和m的值;(3)列表得出所有等可能的情况数,找出一男一女的情况数,即可求出所求的概率.解:(1)根据题意得:3÷15%=20(人),故答案为:20;(2)C级所占的百分比为×100%=40%,表示“D等级”的扇形的圆心角为×360°=72°;故答案为:40、72.(3)列表如下:男女女男(男,女)(男,女)女(男,女)(女,女)女(男,女)(女,女)所有等可能的结果有6种,其中恰好是一名男生和一名女生的情况有4种,则P恰好是一名男生和一名女生==.20.已知:如图,在△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D.过点D 作DE⊥AD交AB于点E,以AE为直径作⊙O.(1)求证:BC是⊙O的切线;(2)若AC=6,BC=8,求BE的长.【分析】(1)连接OD,由AE为直径、DE⊥AD可得出点D在⊙O上且∠DAO=∠ADO,根据AD平分∠CAB可得出∠CAD=∠DAO=∠ADO,由“内错角相等,两直线平行”可得出AC∥DO,再结合∠C=90°即可得出∠ODB=90°,进而即可证出BC是⊙O的切线;(2)在Rt△ACB中,利用勾股定理可求出AB的长度,设OD=r,则BO=10﹣r,由OD∥AC可得出=,代入数据即可求出r值,再根据BE=AB﹣AE即可求出BE 的长度.【解答】(1)证明:连接OD,如图所示.在Rt△ADE中,点O为AE的中点,∴DO=AO=EO=AE,∴点D在⊙O上,且∠DAO=∠ADO.又∵AD平分∠CAB,∴∠CAD=∠DAO,∴∠ADO=∠CAD,∴AC∥DO.∵∠C=90°,∴∠ODB=90°,即OD⊥BC.又∵OD为半径,∴BC是⊙O的切线;(2)解:∵在Rt△ACB中,AC=6,BC=8,∴AB==10.设OD=r,则BO=10﹣r.∵OD∥AC,∴△BDO∽△BCA,∴,即,解得:r=,∴BE=AB﹣AE=10﹣=.21.如图1,点A在x轴上,OA=4,将OA绕点O逆时针旋转120°至OB的位置.(1)求经过A、O、B三点的抛物线的函数解析式;(2)在此抛物线的对称轴上是否存在点P使得以P、O、B三点为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由;(3 )如图2,OC=4,⊙A的半径为2,点M是⊙A上的一个动点,求MC+OM的最小值.【分析】(1)OB=OA=4,∠AOB=120°,B在第二象限,则∠BOD=60°,即可求解;(2)分OP=OB=4、BP=OB=4、OP=BP,三种情况,分别求解即可;(3)在OA上取点K,使AK=1,连接CK交圆与点M,连接OM、CM,此时,OM =KM,即可求解.解:(1)如图1,过点B作BD⊥x轴于点D,∴∠BDO=90°,∵OA绕点O逆时针旋转120°至OB,∴OB=OA=4,∠AOB=120°,B在第二象限,∴∠BOD=60°,∴sin∠BOD=,cos∠BOD=,∴BD=OB=2,OD=OB=2,∴B(﹣2,2),设过点A(4,0),B(﹣2,2),O(0,0)的抛物线解析式为y=ax2+bx+c,∴,解得:,∴抛物线的函数解析式为y=x2﹣x;(2)存在△POB为等腰三角形,∵抛物线与x轴交点为A(4,0),O(0,0),∴对称轴为直线x=2,设点P坐标为(2,p),则OP2=22+p2=4+p2,BP2=(2+2)2+(p﹣2)2=p2﹣4p+28,①若OP=OB=4,则4+p2=42解得:p1=2,p2=﹣2,当p=﹣2时,∠POA=60°,即点P、O、B在同一直线上,∴p≠﹣2,∴P(2,2),②若BP=OB=4,则p2﹣4p+28=42解得:p1=p2=2,∴P(2,2);③若OP=BP,则4+p2=p2﹣4p+28,解得:p=2,∴P(2,2);综上所述,符合条件的点P只有一个,坐标为(2,2);(3)在OA上取点K,使AK=1,连接CK交圆与点M,连接OM、CM,此时,MC+OM=MC+KM=CK为最小值,理由:∵AK=1,MA=2,OA=4,∴AM2=AK•OA,而∠MAO=∠OAM,∴△AKM∽△AMO,∴=,即:MC+OM=MC+KM=CK,CK==5,即:MC+OM的最小值为CK=5.22.定义:有一组邻边相等且对角互补的四边形叫做等补四边形.理解:(1)如图1,点A,B,C在⊙O上,∠ABC的平分线交⊙O于点D,连接AD,CD.求证:四边形ABCD是等补四边形;探究:(2)如图2,在等补四边形ABCD中,AB=AD,连接AC,AC是否平分∠BCD?请说明理由.运用:(3)如图3,在等补四边形ABCD中,AB=AD,其外角∠EAD的平分线交CD的延长线于点F,CD=10,AF=5,求DF的长.【分析】(1)由圆内接四边形互补可知∠A+∠C=180°,∠ABC+∠ADC=180°,再证AD=CD,即可根据等补四边形的定义得出结论;(2)过点A分别作AE⊥BC于点E,AF垂直CD的延长线于点F,证△ABE≌△ADF,得到AE=AF,根据角平分线的判定可得出结论;(3)连接AC,先证∠EAD=∠BCD,推出∠FCA=∠FAD,再证△ACF∽△DAF,利用相似三角形对应边的比相等可求出DF的长.解:(1)证明:∵四边形ABCD为圆内接四边形,∴∠A+∠C=180°,∠ABC+∠ADC=180°,∵BD平分∠ABC,∴∠ABD=∠CBD,∴,∴AD=CD,∴四边形ABCD是等补四边形;(2)AC平分∠BCD,理由如下:如图2,过点A分别作AE⊥BC于点E,AF垂直CD的延长线于点F,则∠AEB=∠AFD=90°,∵四边形ABCD是等补四边形,∴∠B+∠ADC=180°,又∠ADC+∠ADF=180°,∴∠B=∠ADF,∵AB=AD,∴△ABE≌△ADF(AAS),∴AE=AF,∴AC是∠BCF的平分线,即AC平分∠BCD;(3)如图3,连接AC,∵四边形ABCD是等补四边形,∴∠BAD+∠BCD=180°,又∠BAD+∠EAD=180°,∴∠EAD=∠BCD,∵AF平分∠EAD,∴∠FAD=∠EAD,由(2)知,AC平分∠BCD,∴∠FCA=∠BCD,∴∠FCA=∠FAD,又∠AFC=∠DFA,∴△ACF∽△DAF,∴,即,∴DF=5﹣5.。
2023年山东省日照市中考数学试卷(含答案)164452
2023年山东省日照市中考数学试卷试卷考试总分:120 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 12 小题 ,每题 3 分 ,共计36分 )1. 已知=,,,判断下列叙述何者正确?( )A.=,=B.=,C.,=D.,2. 下列四个图形中,既是轴对称图形又是中心对称图形的是 A.B.C.D.3. 华为是世界上首款应用纳米手机芯片的手机,纳米就是米,数据用科学记数法表示为 A.B.C.D.4. 如图是由四个相同的小正方体组成的立体图形,它的主视图为( )A.a (−)−314215116b =−(−)314215116c =−−314215116a c b ca cb ≠ca ≠cb ca ≠cb ≠c()mate20770.0000000070.000000007()0.7×10−87×10−87×10−97×10−10B. C. D.5. 如图将直尺与含角的三角尺摆放在一起,若,则的度数是( )A.B.C.D.6. 已知,,,则,,的大小关系是( )A.B.C.D.7. 在中国数学名著《九章算术》中,有这样一个问题:“今有共买牛,七家共出一百九十,不足三百三十;九家共出二百七十,盈三十.问家数、牛价各几何?”大意是:几家人凑钱合伙买牛,如果每家共出元,那么还缺少元钱;如果每家共出元,又多了元钱.问共有多少人家,每头牛的价钱是多少元?若设有户人家,则可列方程为( )A.B.C.D.8. 在同一水平线上有两个观测点,,从点观测点,俯角为,从点观测点,俯角为,则符合条件的示意图是( )30∘∠1=20∘∠230∘40∘50∘60∘a =212b =38c =54a b c a >b >cc >b >aa <c <bb >a >c7190330927030x x+330=x−3019072709x−330=x+3019072709+330=−307×190x 9×270x−330=+307×190x 9×270x P Q P R 30∘Q R 45∘A. B. C. D.9. 把直角三角形的两条直角边同时扩大到原来的倍,则其斜边( )A.扩大到原来的倍B.扩大到原来的倍C.不变D.扩大到原来的倍10. 关于的分式方程的解是负数,则可能是( )A.B.C.D.11. 与轴的交点坐标为( )A.B.C.D.12. 如图所示,动点在平面直角坐标系中按图中箭头所示方向运动,第次从原点运动到点 ;第次运动到点,第次运动到点 ,……,按照这样的运动规律,点第次运动到点( )3369x =32x+m x−2m −4−5−6−7y =−7x−514x 2y −5(−5,0)(0,−5)(0,−20)P 1(1,1)2(2,0)3(3,−1)P 2021A.B.C.D.二、 填空题 (本题共计 4 小题 ,每题 3 分 ,共计12分 )13. 分解因式:________.14. 已知点的坐标为在第二象限,则的取值范围是_______.15. 若双曲线与直线无交点,则的取值范围是________.16. 如图,在平行四边形中,对角线与相交于点,为的中点,交于点,则的值为________.三、 解答题 (本题共计 6 小题 ,每题 12 分 ,共计72分 )17. 计算:;. 18. 为了检验寒假自学效果,开学后七年级进行了开学小检测,并随机抽取了名学生的成绩,数据如下:根据上述数据,将下列表格补充完整.数据分析:样本数据的平均数、众数和中位数如下表:根据所给数据,如果本次决赛的学生为“良好”等次,你认为“良好”等次的测评成绩至少定为________分.数据应用:该校七年级共有新生名,若规定本次测试成绩分(含分)以上的学生为优秀,请估计七年级新生共有多少人达到优秀? 19. 如图,在中,对角线与相交于点,=,过点作交于点.(2021,1)(2021,0)(2021,−1)(2022,0)a −a =m 2n 2P (a −2,3a)a y =k −1xy =−3x+1k ABCD AC BD O E BC AE BD F OF DF (1)sin +−sin ⋅tan 60∘cos 245∘30∘60∘(2)2cos +tan cos −30∘30∘60∘(1−tan )60∘2−−−−−−−−−−−√2091908896919893979198989790100909794989688(1)(2)50%(3)5009898▱ABCD AC BD O ∠CAB ∠ACB B BE ⊥AB AC E(1)求证:;(2)若=,,求线段的长. 20. 下面的图形是由边长为的正方形按照某种规律排列而组成的.推测第个图形中,正方形的个数为________,周长为________;推测第个图形中,正方形的个数为________,周长为________;(都用含的代数式表示)这些图形中,任意一个图形的周长记为,它所含正方形个数记为,则,之间满足的数量关系为________.(用含,的等式表示)21. 如图,在四边形中,,为中点,过作交于点,连接交于点,连接交于点,若,求证:.22. 如图,在平面直角坐标系中,二次函数的图像与轴交于点,与轴交于点,其对称轴与轴交于点.求二次函数的解析式及其对称轴;若点是线段上的一点,过点作,轴的垂线,垂足为,且,求点的坐标;若点是抛物线对称轴上的一个动点,连接,,设点的纵坐标为,当不小于时,求的取值范围.AC ⊥BD AB 14cos ∠CAB =78OE 1(1)4(2)n n (3)a b a b a b ABFC ∠BAC =∠BFC =∠BCN =90∘E BC C CN ⊥BC AF N EN BF M CM AN G AB =AF MG =GC y =a +bx+3x 2x A(−,0),B(3,0)3–√3–√y C x D (1)(2)E BC E F EF =2EC E (3)P PA PC P t ∠APC 60∘t参考答案与试题解析2023年山东省日照市中考数学试卷试卷一、 选择题 (本题共计 12 小题 ,每题 3 分 ,共计36分 )1.【答案】B【考点】有理数的减法【解析】根据有理数的减法的运算方法,判断出、,、的关系即可.【解答】∵=,,,∴=,.2.【答案】D【考点】中心对称图形轴对称图形【解析】根据轴对称图形与中心对称图形的概念求解.【解答】解:、不是轴对称图形,是中心对称图形.故错误;、不是轴对称图形,是中心对称图形.故错误;、不是轴对称图形,是中心对称图形.故错误;、是轴对称图形,也是中心对称图形.故正确.故选.3.【答案】C【考点】科学记数法—表示较小的数【解析】此题暂无解析【解答】a cbc a (−)−=−−314215116314215116b =−(−)=−+314215116314215116c =−−314215116a c b ≠c A B C D D =1×−9解:∵纳米米,∴纳米米.故选.4.【答案】A【考点】简单组合体的三视图【解析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一列有个正方形,第二列底层有个正方形.故选.5.【答案】C【考点】三角形的外角性质平行线的性质【解析】先根据三角形外角的性质求出的度数,再根据平行线的性质得到的度数.【解答】解:如图,∵是的外角,,,∴,∵,∴.故选.6.【答案】D【考点】幂的乘方及其应用有理数大小比较【解析】1=1×10−97=7×10−9C 21A ∠BEF ∠2∠BEF △AEF ∠1=20∘∠F=30∘∠BEF =∠1+∠F =50∘AB//CD ∠2=∠BEF =50∘C本题考查了有理数的比较大小,幂的乘方运算.【解答】解:,,,则.故选.7.【答案】A【考点】由实际问题抽象出一元一次方程数学常识【解析】设有户人家,根据题意可得每头牛的价钱是,由每头牛的价钱不变可得方程.【解答】设有户人家,则.8.【答案】A【考点】解直角三角形的应用-仰角俯角问题【解析】根据俯角的定义分析即可解答.【解答】解:根据“朝下看时,视线与水平线夹角为俯角”可知只有正确.故选.9.【答案】A【考点】勾股定理【解析】设原来直角三角形的两直角边为、,斜边为,根据勾股定理得出,即可求出答案.【解答】解:设原来直角三角形的两直角边为、,斜边为,则根据勾股定理得:,a ==212=23×484b ==38=32×494c =54b >a >c D x x+330x−3019072709x x+330=x−3019072709A A a b c +=a 2b 2c 2a b c +=a 2b 2c 2(3a +(3b =9(+)=9=(3c )2)2222)2所以,即把直角三角形的两直角边同时扩大到原来的倍,则其斜边扩大到原来的倍.故选.10.【答案】D【考点】分式方程的解解一元一次不等式【解析】根据解分式方程,可得分式方程的解,根据分式方程的解为负数,可得不等式,解不等式,可得答案.【解答】解:解方程得,故,故选.11.【答案】C【考点】二次函数图象上点的坐标特征【解析】令,代入函数解析式即可求出的值为.【解答】解:由题知当轴上点的横坐标为时,令,,即与轴的交点坐标为.故选.12.【答案】A【考点】规律型:点的坐标【解析】设点第次运动到的点为点(为自然数),列出部分点的坐标,根据点的坐标变化找出规律”,根据该规律即可得出结论.【解答】解:令点第次运动到的点为点(为自然数),(3a +(3b =9(+)=9=(3c )2)2a 2b 2c 2)233A =32x+m x−2x =m+6<0m<−6D x =0y −5y 0x =0y =−5y =−7x−514x 2y (0,−5)C P n P n n P n (4n,0),(4n+1),(4n+2,0),(4n+3,−1)P 4n P 4n+1P 4n+2P 4n+3P n P n n观察,发现规律:,,,,,,.....,则 ,,, ,∵,∴第次运动到点.故选.二、 填空题 (本题共计 4 小题 ,每题 3 分 ,共计12分 )13.【答案】【考点】提公因式法与公式法的综合运用【解析】原式提取,再利用平方差公式分解即可.【解答】解:原式.故答案为:.14.【答案】【考点】点的坐标解一元一次不等式组【解析】根据第二象限的横坐标小于零,纵坐标大于零,可得不等式组,根据解不等式组,可得答案.【解答】解:由点在第二象限,得解得.故答案为:.15.【答案】【考点】反比例函数与一次函数的综合【解析】联立与并整理得:,得出 ,即可求解.(0,0)P 0(1,1)P 1(2,0)P 2(3,−1)P 3(4,0)P 4(5,1)P 5(4n,0)P 4n (4n+1,1)P 4n+1(4n+2,0)P 4n+2(4n+3,−1)P 4n+32021=505×4+1P 2021(2021,1)A a(m+n)(m−n)a =a(−)=a(m+n)(m−n)m 2n 2a(m+n)(m−n)0<a <2P (a −2,3a){a −2<0,3a >0,0<a <20<a <2k >1312y=k −1x y =−3x+13−x+k −1=0x 2Δ=1−3×4(k −1)<0【解答】解:联立可得:整理得:,,解得:.故答案为:.16.【答案】【考点】相似三角形的判定与性质平行四边形的性质三角形中位线定理【解析】由平行四边形的性质及三角形中位线定理的得出,进而得出答案.【解答】解:连结,在平行四边形中,对角线与相交于点,,,为的中点,是的中位线,,且,,,.故答案为:.三、 解答题 (本题共计 6 小题 ,每题 12 分 ,共计72分 )17.【答案】解:原式.原式 y =,k −1x y =−3x+1,3−x+k −1=0x 2∴Δ=1−3×4(k −1)<0k >1312k >131214△ABF ∼△EOF OE ABCD AC BD O ∴OB =OD AB =CD ∵E BC ∴OE △BCD ∴OE//CD//ABOE =CD =AB 1212∴△ABF ∼△EOF ∴==OF BF OE AB 12∴==OF DF OF OF +OD 1414(1)=+−×3–√212123–√=+−3–√2123–√2=12(2)=2×+×−+13–√23–√3123–√+1–√.【考点】特殊角的三角函数值【解析】此题暂无解析【解答】解:原式.原式.18.【答案】,,本次测评成绩为分(含分)的学生有人,七年级新生达到优秀的约有(人),七年级新生约有人达到“优秀”.【考点】众数中位数用样本估计总体【解析】(1)根据平均数,众数,中位数的定义,逐一解答,即可; (2)根据中位数的特征,即可解答; (3)x 先求出样本中的优秀率,再估算七年级新生的优秀人数.【解答】解:∵通过测评数据,可知成绩为分的有人,表格中下面填,众数:一组数据中出现次数最多的数据.通过测评数据,可知分出现的次数最多,为次,∴众数下面应填,中位数:按大小顺序排列的一组数据中居于中间位置的数或中间位置的两个数的平均数.居于中间的是第个,分别为、,因此:中位数为: ,∴中位数下面填:.故答案为:;;.想确定七年级前的学生为“良好”,可以看中位数,等级测评成绩至少定为:分.故答案为:.本次测评成绩为分(含分)的学生有人,七年级新生达到优秀的约有(人),=+13–√6(1)=+−×3–√212123–√=+−3–√2123–√2=12(2)=2×+×−+13–√23–√3123–√=+13–√63989595(3)∵98985∴500×=125520∴125(1)913∴9139849810,119496(94+96)÷2=959539895(2)∵50%∴∴9595(3)∵98985∴500×=125520七年级新生约有人达到“优秀”.19.【答案】∵=,∴=,∴是菱形.∴;在中,,=,∴=,在中,,=,∴=,∴==.【考点】平行四边形的性质解直角三角形菱形的判定与性质【解析】(1)根据=利用等角对等边得到=,从而判定平行四边形是菱形,根据菱形的对角线互相垂直即可证得结论;(2)分别在中和在中求得和,从而利用=求解即可.【解答】∵=,∴=,∴是菱形.∴;在中,,=,∴=,在中,,=,∴=,∴==.20.【答案】,,【考点】规律型:图形的变化类【解析】(1)第个图形中,正方形的个数为,周长为;第个图形中,正方形的个数为=,周长为=,第个图形中,正方形的个数为=,周长为=.(2)第个图形中,正方形的个数为=,周长为=;∴125∠CAB ∠ACB AB CB ▱ABCD AC ⊥BD Rt △AOB cos ∠CAB ==AO AB 78AB 14AO 14×=78494Rt △ABE cos ∠EAB ==AB AE 78AB 14AE =AB 8716OE AE−AO 16−=494154∠CAB ∠ACB AB CB ABCD Rt △AOB Rt △ABE AO AE OE AE−AO ∠CAB ∠ACB AB CB ▱ABCD AC ⊥BD Rt △AOB cos ∠CAB ==AO AB 78AB 14AO 14×=78494Rt △ABE cos ∠EAB ==AB AE 78AB 14AE =AB 8716OE AE−AO 16−=49415423485n+310n+8a =2b +2181828+51318+102838+5×21818+10×238n 8+5×(n−1)5n+318+10×(n−1)10n+8(3)任意一个图形的周长=所含正方形个数.【解答】解:第①个图形中,正方形的个数为,周长为;第②个图形中,正方形的个数为,周长为;第③个图形中,正方形的个数为,周长为;则第④个图形中,正方形的个数为,周长为.故答案为:;.由中的规律可得,第个图形中,正方形的个数为,周长为.故答案为:;.由可知,第个图形中,正方形的个数为,周长为,则,即任意一个图形的周长所含正方形个数,∵任意一个图形的周长记为,它所含正方形个数记为,∴.故答案为:.21.【答案】证明:如图,过点作于,连接,则有.∵,∴,,∴、、、四点共圆,、、、四点共圆,∴,,∴,∴,∴.∵、、、四点共圆,,∴是该圆的直径.∵为中点,∴,点为该圆的圆心.∵,∴根据垂径定理可得.∴.又∵,∴,∴.∵、、、四点共圆,∴.∵,∴.∵,∴,∴,∴.∵,∴,,∴,∴,∴.【考点】四点共圆圆的综合题【解析】×2+2(1)8188+5=1318+10=288+5×2=1818+10×2=388+5×3=2318+10×3=482348(2)(1)n 8+5(n−1)=5n+318+10(n−1)=10n+85n+310n+8(3)(2)n 5n+310n+82×(5n+3)+2=10n+8=×2+2a b a =2b +2a =2b +2E EH ⊥AF H CH ∠EHN =90∘∠BAC =∠BFC =∠BCN =90∘∠BAC +∠BFC =180∘∠EHN =∠ECN =90∘A B F C E H C N ∠CAF =∠CBF ∠CHN =∠CEN ∠AHC =∠BEM △AHC ∽△BEM =AC BM AH BE A B F C ∠BAC =90∘BC E BC BE =EC =BC 12E EH ⊥AF AH =HF =AF 12==AC BM AH BE AF BC ∠CAF =∠MBC △CAF ∽△MBC ∠ACF =∠BMC A B F C ∠ACF +∠ABF =180∘∠BMC +∠FMC =180∘∠ABF =∠FMC AB =AF ∠ABF =∠AFB ∠FMC =∠AFB GM =GF ∠MFC =90∘∠MFG+∠GFC =90∘∠FMC +∠FCM =90∘∠GFC =∠FCM GF =GC GM =GF =GC如图,过点作于,连接,易证、、、四点共圆,、、、四点共圆,根据圆周角定理可得,,从而可得,即可得到,则有.易证点为过、、、的圆的圆心,根据垂径定理可得.即可得到,由此可证到,则有.根据圆内接四边形对角互补可得,根据平角的定义可得,根据等角的补角相等可得.由可得,从而可得,则有.由可得,,根据等角的余角相等可得,则有,即可得到.【解答】证明:如图,过点作于,连接,则有.∵,∴,,∴、、、四点共圆,、、、四点共圆,∴,,∴,∴,∴.∵、、、四点共圆,,∴是该圆的直径.∵为中点,∴,点为该圆的圆心.∵,∴根据垂径定理可得.∴.又∵,∴,∴.∵、、、四点共圆,∴.∵,∴.∵,∴,∴,∴.∵,∴,,∴,∴,∴.22.【答案】解:将,,,代入得:解得:∴,对称轴为:直线.由,,,得,∴.设,则,,∴,E EH ⊥AF H CH A B F C E H C N ∠CAF =∠CBF ∠CHN =∠CEN ∠AHC =∠BEM △AHC ∽△BEM =AC BM AH BE E A B F C AH =HF =AF 12==AC BM AH BE AF BC △CAF ∽△MBC ∠ACF =∠BMC ∠ACF +∠ABF =180∘∠BMC +∠FMC =180∘∠ABF =∠FMC AB =AF ∠ABF =∠AFB ∠FMC =∠AFB GM =GF ∠MFC =90∘∠MFG+∠GFC =90∘∠FMC +∠FCM =90∘∠GFC =∠FCM GF =GC GM =GF =GC E EH ⊥AF H CH ∠EHN =90∘∠BAC =∠BFC =∠BCN =90∘∠BAC +∠BFC =180∘∠EHN =∠ECN =90∘A B F C E H C N ∠CAF =∠CBF ∠CHN =∠CEN ∠AHC =∠BEM △AHC ∽△BEM =AC BM AH BE A B F C ∠BAC =90∘BC E BC BE =EC =BC 12E EH ⊥AF AH =HF =AF12==AC BM AH BE AF BC ∠CAF =∠MBC △CAF ∽△MBC ∠ACF =∠BMC A B F C ∠ACF +∠ABF =180∘∠BMC +∠FMC =180∘∠ABF =∠FMC AB =AF ∠ABF =∠AFB ∠FMC =∠AFB GM =GF ∠MFC =90∘∠MFG+∠GFC =90∘∠FMC +∠FCM =90∘∠GFC =∠FCM GF =GC GM =GF =GC (1)A(−3–√0)B(33–√0)y =+bx+3ax 2{3a −b +3=0,3–√27a +3b +3=0,3–√ a =−,13b =,23–√3y =−+x+313x 223–√3x =3–√(2)B(33–√0)C(03)BC ==6+(3)3–√232−−−−−−−−−−√∠OBC =30∘EC =m EF =2m EB =6−m 2m=(6−m)12=6解得:.利用三角函数求得,∴,∴,.由题意知,,作的平分线,交轴于,则,∴.以为圆心,为半径作圆,与抛物线对称轴交于点,,当点在圆上时,则,当点在圆内时,则,当点在圆外时,则,过作垂直于对称轴,在中,求得:,∴,∴,,∴.【考点】二次函数综合题【解析】(1)将,两点坐标代入到二次函数解析式中进行求解.(2)先设未知数列出关系方程求出的长度,即求出点纵坐标,然后利用三角函数求出的长度,从而得出的长度,即点横坐标.(3)引入圆,分点在圆上、内、外进行分析即可得到的范围.【解答】解:将,,,代入得:解得:∴,对称轴为:直线.由,,,得,∴.设,则,,∴,解得:.利用三角函数求得,∴,∴,.由题意知,,作的平分线,交轴于,则,∴.以为圆心,为半径作圆,与抛物线对称轴交于点,,当点在圆上时,则,当点在圆内时,则,当点在圆外时,则,过作垂直于对称轴,在中,求得:,∴,m=65BF =EF ÷tan =30∘123–√5OF =3−=3–√123–√533–√5E(33–√5)125(3)∠CAO =60∘∠CAO AQ y Q ∠QAC =∠QCA =30∘∠AQC =120∘Q QA M 1M 2M ∠C =∠C =AM 1AM 260∘M ∠AMC >60∘M ∠AMC <60∘Q QH Rt △AOQ AQ =2H ==1M 1−22()3–√2−−−−−−−−−√D =1+1=2M 1D =1−1=0M 20≤t ≤2A B EF E BF OF E t (1)A(−3–√0)B(33–√0)y =+bx+3ax 2{3a −b +3=0,3–√27a +3b +3=0,3–√ a =−,13b =,23–√3y =−+x+313x 223–√3x =3–√(2)B(33–√0)C(03)BC ==6+(3)3–√232−−−−−−−−−−√∠OBC =30∘EC =m EF =2m EB =6−m 2m=(6−m)12m=65BF =EF ÷tan =30∘123–√5OF =3−=3–√123–√533–√5E(33–√5)125(3)∠CAO =60∘∠CAO AQ y Q ∠QAC =∠QCA =30∘∠AQC =120∘Q QA M 1M 2M ∠C =∠C =AM 1AM 260∘M ∠AMC >60∘M ∠AMC <60∘Q QH Rt △AOQ AQ =2H ==1M 1−22()3–√2−−−−−−−−−√∴,,∴.D =1+1=2M 1D =1−1=0M 20≤t ≤2。
2020年山东省日照市中等学校招生考试数学试题及答案
2020年山东省日照市中等学校招生考试数学试题及答案山东省日照市二○○九年中等学校招生考试数学试题本卷须知:1.本试题分第一卷和第二卷两部分.第一卷4页为选择题,36分;第二卷8页为非选择题,84分;全卷共12页,总分值120分,考试时刻为120分钟.2.答第一卷前,考生务必将自己的姓名、考号、考试科目涂写在答题卡上,考试终止,试题和答题卡一并收回.3.第一卷每题选出答案后,必须用2B铅笔把答题卡上对应题目的答案标号【ABCD】涂黑.如需改动,先用橡皮擦洁净,再改涂其它答案.第一卷〔选择题共36分〕一、选择题:本大题共12小题,在每题给出的四个选项中,只有一项为哪一项正确的,请把正确的选项选出来.每题选对得3分,选错、不选或选出的答案超过一个均记零分.1.某市2018年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高〔A〕-10℃〔B〕-6℃〔C〕6℃〔D〕10℃2.运算()4323b a--的结果是〔A〕12881b a 〔B 〕7612b a 〔C 〕7612b a -〔D 〕12881b a -3.如下图,把一个长方形纸片沿EF 折叠后,点D ,C 分不落在D ′,C ′的位置.假设∠EFB =65°,那么∠AED ′等于 〔A 〕 70°〔B 〕 65° 〔C 〕 50°〔D 〕 25° 4.点M (-2,3 )在双曲线xky =上,那么以下各点一定在该双曲线上的是 〔A 〕(3,-2 ) 〔B 〕(-2,-3 ) 〔C 〕(2,3 )〔D 〕(3,2)5.如图,在□ABCD 中,AD =8㎝, AB =6㎝, DE 平分∠ADC 交BC 边于点E ,那么BE 等于〔 〕 〔A 〕2cm 〔B 〕4cm〔C 〕6cm〔D 〕8cm6.如图,以下四个几何体中,它们各自的三视图〔主视图、左视图、俯视图〕有两个相同,而另一个不同的几何体是〔A 〕①② 〔B 〕②③ 〔C 〕 ②④ 〔D 〕 ③④①正方体②圆柱③圆锥④球〔第5题图〕EDBC′FCD ′A〔第3题图〕ABCD〔第5题图〕E7.不等式组⎪⎩⎪⎨⎧≥--+2321123x ,x x >的解集在数轴上表示正确的选项是8.在以下图4×4的正方形网格中,△MNP 绕某点旋转一定的角度,得到△M 1N 1P 1,那么其旋转中心可能是 〔A 〕点A〔B 〕点B 〔C 〕点C 〔D 〕点D9.假设关于x ,y 的二元一次方程组⎩⎨⎧=-=+k y x ,k y x 95的解也是二元一次方程632=+y x 的解,那么k 的值为〔A 〕43- 〔B 〕43〔C 〕34〔D 〕34-10.将直径为60cm 的圆形铁皮,做成三个相同的圆锥容器的侧面〔不白费材料,不计接缝处的材料损耗〕,那么每个圆锥容器的底面半径为 〔A 〕10cm 〔B 〕30cm 〔C 〕40cm〔D 〕300cm〔A 〕〔B〕〔C 〕〔D 〕11 〔第7题图〕11.假设n 〔0n ≠〕是关于x 的方程220x mx n ++=的根,那么m +n 的值为〔A 〕1 〔B 〕2〔C 〕-1 〔D 〕-212.如图,点A 的坐标为(-1,0),点B 在直线y =x 上运动,当线段AB 最短时,点B 的坐标为〔A 〕〔0,0〕 〔B 〕〔22,22-〕 〔C 〕〔-21,-21〕〔D 〕〔-22,-22〕〔第12题图〕绝密★启用前试卷类型:A 山东省日照市二○○九年中等学校招生考试数学试题第二卷〔非选择题共84分〕本卷须知:1.第二卷共8页,用钢笔或圆珠笔直截了当写在试卷上.2.答卷前将密封线内的项目填写清晰.得分评卷人二、填空题:本大题共5小题,共20分,只要求填写最后结果,每题填对得4分.13.2009年4月16日,国家统计局公布:一季度,城镇居民人均可支配收入为4834元,与去年同时期相比增长10.2%.4838元用科学记数法表示为.14.甲、乙两位棉农种植的棉花,连续五年的单位面积产量〔千克/亩〕统计如下表,那么产量较稳固的是棉农_________________.15.如图,在四边形ABCD 中,AB 与CD 不平行,∠ABD =∠ACD ,请你添加一个条件: ,使得加上那个条件后能够推出AD ∥BC 且AB =CD .16.将三角形纸片〔△ABC 〕按如下图的方式折叠,使点B 落在边AC 上,记为点B ′,折痕为EF .AB =AC =3,BC =4,假设以点B ′,F ,C 为顶点的三角形与△ABC 相似,那么BF 的长度是 .17.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如下图的方式放置.点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分 不在直线y kx b =+(k >0)和x 轴上,点B 1(1,1),B 2(3,2),那么B n 的坐标是______________.三、解答题:本大题共7小题,共64分.解答要写出必要的文字讲明、证明过程或演算步骤.18. (此题总分值7分)化简:22222369x y x y yx y x xy y x y--÷-++++. 得 分评 卷 人BC DAO〔第15题图〕E〔第16题图〕AB ′CFB得分评卷人19.(此题总分值9分)某中学对全校学生60秒跳绳的次数进行了统计,全校平均次数是100次.某班体育委员统计了全班50名学生60秒跳绳的成绩,列出的频数分布直方图如下〔每个分组包括左端点,不包括右端点〕:求:〔1〕该班60秒跳绳的平均次数至少是多少?是否超过全校平均次数?〔2〕该班一个学生讲:〝我的跳绳成绩在我班是中位数〞,请你给出该生跳绳成绩的所在范畴.〔3〕从该班中任选一人,其跳绳次数达到或超过校平均次数的概率是多少?〔第19题图〕20. (此题总分值9分)如图,⊙O 的直径AB =4,C 为圆周上一点,AC =2,过点C 作⊙O 的切线l ,过点B 作l 的垂线BD ,垂足为D ,BD 与⊙O 交于点 E . (1) 求∠AEC 的度数;〔2〕求证:四边形OBEC 是菱形.得 分评 卷 人〔第20题图〕得分评卷人21.(此题总分值9分)为了贯彻落实国务院关于促进家电下乡的指示精神,有关部门自2007年12月底起进行了家电下乡试点,对彩电、冰箱〔含冰柜〕、手机三大类产品给予产品销售价格13%的财政资金直补.企业数据显示,截至2018年12月底,试点产品已销售350万台〔部〕,销售额达50亿元,与上年同期相比,试点产品家电销售量增长了40%.〔1〕求2007年同期试点产品类家电销售量为多少万台〔部〕?〔2〕假如销售家电的平均价格为:彩电每台1500元,冰箱每台2000元,•3倍,求彩电、冰箱、手机每部800元,销售的冰箱〔含冰柜〕数量是彩电数量的2手机三大类产品分不销售多少万台〔部〕,并运算获得的政府补贴分不为多少万元?22. (此题总分值10分)如图,斜坡AC 的坡度〔坡比〕为1:3,AC =10米.坡顶有一旗杆BC ,旗杆顶端B 点与A 点有一条彩带AB 相连,AB =14米.试求旗杆BC 的高度.得 分评 卷 人ABC 〔第22题图〕D得分评卷人23.(此题总分值10分)某仓库为了保持库内的湿度和温度,四周墙上均装有如下图的自动通风设施.该设施的下部ABCD是矩形,其中AB=2米,BC=1米;上部CDG是等边三角形,固定点E为AB的中点.△EMN是由电脑操纵其形状变化的三角通风窗〔阴影部分均不通风〕,MN 是能够沿设施边框上下滑动且始终保持和AB 平行的伸缩横杆.〔1〕当MN 和AB 之间的距离为0.5米时,求现在△EMN 的面积; 〔2〕设MN 与AB 之间的距离为x 米,试将△EMN 的面积S 〔平方米〕表示成关于x 的函数;〔3〕请你探究△EMN 的面积S 〔平方米〕有无最大值,假设有,要求出那个最大值;假设没有,请讲明理由.EC〔第23题图〕24. (此题总分值10分)正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF ⊥BD 交BC 于F ,连接DF ,G 为DF 中点,连接EG ,CG .〔1〕求证:EG =CG ;〔2〕将图①中△BEF 绕B 点逆时针旋转45º,如图②所示,取DF 中点G ,连接EG ,CG .咨询〔1〕中的结论是否仍旧成立?假设成立,请给出证明;假设不成立,请讲明理由.〔3〕将图①中△BEF 绕B 点旋转任意角度,如图③所示,再连接相应的线段,咨询〔1〕中的结论是否仍旧成立?通过观看你还能得出什么结论?〔均不要求证明〕得 分评 卷 人D第24题图①DD第24题图②第24题图③山东省日照市二○○九年中等学校招生考试数学试题参考解答及评分意见评卷讲明:1.选择题和填空题中的每题,只有总分值和零分两个评分档,不给中间分.2.解答题每题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.本答案对每题只给出一种或两种解法,对考生的其他解法,请参照评分意见进行评分.3.假如考生在解答的中间过程显现运算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;假设显现严峻的逻辑错误,后续部分就不再给分.一、选择题:(本大题共12小题,每题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12答案 D D C A A B A B B A D C二、填空题:(本大题共5小题,每题4分,共20分)13.4.834×103;14.乙;15.∠DAC=∠ADB,∠BAD=∠CDA,∠DBC=∠ACB,∠ABC=∠DCB,OB=OC,OA=OD;(任选其一)16.或2; 17..三、解答题:(本大题共7小题, 共64分)18.(本小题总分值6分)解:原式= o ………………………1分= o ………………………4分= …………………………………………6分= =1. ……………………………………………7分19.(本小题总分值9分)解:〔1〕该班60秒跳绳的平均次数至少是:=100.8.因为100.8>100,因此一定超过全校平均次数.…………………3分〔2〕那个学生的跳绳成绩在该班是中位数,由4+13+19=36,因此中位数一定在100~120范畴内.…………………………………………6分〔3〕该班60秒跳绳成绩大于或等于100次的有:19+7+5+2=33〔人〕,……………………………………………………………………………8分.因此,从该班任选一人,跳绳成绩达到或超过校平均次数的概率为0.66.…………………………………………………………9分20.(此题总分值9分)〔1〕解:在△AOC中,AC=2,∵AO=OC=2,∴△AOC是等边三角形.………2分∴∠AOC=60°,∴∠AEC=30°.…………………4分〔2〕证明:∵OC⊥l,BD⊥l.∴OC∥BD.……………………5分∴∠ABD=∠AOC=60°.∵AB为⊙O的直径,∴△AEB为直角三角形,∠EAB=30°.…………………………7分∴∠EAB=∠AEC.∴四边形OBEC 为平行四边形.…………………………………8分又∵OB=OC=2.∴四边形OBEC是菱形.…………………………………………9分21.(此题总分值9分)解:〔1〕2007年销量为a万台,那么a(1+40%)=350,a =250〔万台〕.…………………………………………………………………………3分〔2〕设销售彩电x万台,那么销售冰箱x万台,销售手机(350- x)万台.由题意得:1500x+2000×+800(350 x)=500000.……………6分解得x=88.………………………………………………………7分∴,.因此,彩电、冰箱〔含冰柜〕、手机三大类产品分不销售88万台、132万台、130万部.………………………………………………………………8分∴88×1500×13%=17160〔万元〕,132×2000×13%=34320〔万元〕,130×800×13%=13520〔万元〕.获得的政府补贴分不是17160万元、34320万元、13520万元.……9分22.〔此题总分值10分〕解:延长BC交AD于E点,那么CE⊥AD.……1分在Rt△AEC中,AC=10,由坡比为1: 可知:∠CAE=30°,………2分∴CE=AC·sin30°=10×=5,………3分AE=AC·cos30°=10×=.……5分在Rt△ABE中,BE===11.……………………………8分∵BE=BC+CE,∴BC=BE-CE=11-5=6〔米〕.答:旗杆的高度为6米.…………………………………………10分23.〔此题总分值10分〕解:〔1〕由题意,当MN和AB之间的距离为0.5米时,MN应位于DC下方,且现在△EMN中MN边上的高为0.5米.因此,S△EMN= =0.5〔平方米〕.即△EMN的面积为0.5平方米. …………2分〔2〕①如图1所示,当MN在矩形区域滑动,即0<x≤1时,△EMN的面积S= = ;……3分②如图2所示,当MN在三角形区域滑动,即1<x<时,如图,连接EG,交CD于点F,交MN于点H,∵E为AB中点,∴F为CD中点,GF⊥CD,且FG=.又∵MN∥CD,∴△MNG∽△DCG.∴,即.……4分故△EMN的面积S==;…………………5分综合可得:……………………………6分〔3〕①当MN在矩形区域滑动时,,因此有;………7分②当MN在三角形区域滑动时,S= .因而,当〔米〕时,S得到最大值,最大值S= = = 〔平方米〕. ……………9分∵,∴S有最大值,最大值为平方米. ……………………………10分24.〔此题总分值10分〕解:〔1〕证明:在Rt△FCD中,∵G为DF的中点,∴CG= FD.………………1分同理,在Rt△DEF中,EG= FD.………………2分∴CG=EG.…………………3分〔2〕〔1〕中结论仍旧成立,即EG=CG.…………………………4分证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG.∴AG=CG.………………………5分在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG.∴MG=NG在矩形AENM中,AM=EN.……………6分在Rt△AMG 与Rt△ENG中,∵AM=EN,MG=NG,∴△AMG≌△ENG.∴AG=EG.∴EG=CG.……………………………8分证法二:延长CG至M,使MG=CG,连接MF,ME,EC,……………………4分在△DCG 与△FMG中,∵FG=DG,∠MGF=∠CGD,MG=CG,∴△DCG ≌△FMG.∴MF=CD,∠FMG=∠DCG.∴MF∥CD∥AB.………………………5分∴.在Rt△MFE 与Rt△CBE中,∵MF=CB,EF=BE,∴△MFE ≌△CBE.∴.…………………………………………………6分∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°.…………7分∴△MEC为直角三角形.∵MG = CG,∴EG= MC.∴.………………………………8分〔3〕〔1〕中的结论仍旧成立,即EG=CG.其他的结论还有:EG⊥CG.……10分。
2020年山东省日照市近三年中考数学真题重组模拟卷(解析版)
2020年山东省日照市近三年中考真题数学重组模拟卷一.选择题(本大题共12小题,每小题3分,满分36分,在每小题所给出的四个选项中,只有一项是符合题目要求的)1.(2018•日照)|﹣5|的相反数是()A.﹣5B.5C .D .﹣2.(2017•日照)剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是()A.B.C.D.3.(2019•日照)在实数,,,中有理数有()A.1个B.2个C .3个D.4个4.(2017•日照)在Rt△ABC中,∠C=90°,AB=13,AC=5,则sin A的值为()A.B.C.D.5.(2018•日照)某校为了解学生的课外阅读情况,随机抽取了一个班级的学生,对他们一周的读书时间进行了统计,统计数据如下表所示:7891011读书时间(小时)学生人数610987则该班学生一周读书时间的中位数和众数分别是()A.9,8B.9,9C.9.5,9D.9.5,8 6.(2019•日照)如图,将一块三角尺的直角顶点放在直尺的一边上,当∠1=35°时,∠2的度数为()A.35°B.45°C.55°D.65°7.(2017•日照)下列说法正确的是()A.圆内接正六边形的边长与该圆的半径相等B.在平面直角坐标系中,不同的坐标可以表示同一点C.一元二次方程ax2+bx+c=0(a≠0)一定有实数根D.将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE不全等8.(2018•日照)如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO.添加下列条件,不能判定四边形ABCD是菱形的是()A.AB=AD B.AC=BD C.AC⊥BD D.∠ABO=∠CBO 9.(2017•日照)如图,AB是⊙O的直径,P A切⊙O于点A,连结PO并延长交⊙O于点C,连结AC,AB=10,∠P=30°,则AC的长度是()A.B.C.5D.10.(2019•日照)某省加快新旧动能转换,促进企业创新发展.某企业一月份的营业额是1000万元,月平均增长率相同,第一季度的总营业额是3990万元.若设月平均增长率是x,那么可列出的方程是()A.1000(1+x)2=3990B.1000+1000(1+x)+1000(1+x)2=3990C.1000(1+2x)=3990D.1000+1000(1+x)+1000(1+2x)=399011.(2018•日照)已知二次函数y=ax2+bx+c(a≠0)图象如图所示,下列结论:①abc<0;②2a﹣b<0;③b2>(a+c)2;④点(﹣3,y1),(1,y2)都在抛物线上,则有y1>y2.其中正确的结论有()A.4个B.3个C.2个D.1个12.(2019•日照)如图,在单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上,斜边长分别为2,4,6,…的等腰直角三角形,若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,1),A3(0,0),则依图中所示规律,A2019的坐标为()A.(﹣1008,0)B.(﹣1006,0)C.(2,﹣504)D.(1,505)二.填空题(本大题共4小题,每小题4分,满分16分,不需写出解答过程请将答案直接写在答题卡相应位置上)13.(2018•日照)一个角是70°39′,则它的余角的度数是.14.(2019•日照)如图,已知AB=8cm,BD=3cm,C为AB的中点,则线段CD的长为cm.15.(2017•日照)如图,四边形ABCD中,AB=CD,AD∥BC,以点B为圆心,BA为半径的圆弧与BC交于点E,四边形AECD是平行四边形,AB=6,则扇形(图中阴影部分)的面积是.16.(2019•日照)规定:在平面直角坐标系xOy中,如果点P的坐标为(a,b),那么向量可以表示为:=(a,b),如果与互相垂直,=(x1,y1),=(x2,y2),那么x1x2+y1y2=0.若与互相垂直,=(sinα,1),=(2,﹣),则锐角∠α=.三.解答题(本大题共6小题,满分68分。
2020年山东省日照市中考数学试卷(有解析)
2020年山东省日照市中考数学试卷一、单选题1.下列四个图案中,不是轴对称图案的是( )A .B .C .D .2.下列合并同类项的运算结果中正确的是( )A .33xy xy xy -+=B .224a a a +=C .22ab ab -=D .556222+= 3.+5的相反数是( )A .15B .-5C .+5D .-154.下列说法正确的是( )A .4不是单项式B .−xy 2的系数是−2C .πr 2的次数是3D .多项式xy 2+4x 2y 3−x 3+2的次数是5 5.已知,将直线21y x =-向左平移2个单位长度后得到直线y kx b =+,则下列关于直线y kx b =+的说法正确的是( )A .经过第一、三、四象限B .与x 轴交于(3,0)C .y 随x 的增大而减小D .与y 轴交于(0,3)6.新行星距离太阳约14480000000公里,这个数据用科学记数法表示( )A .91.44810⨯公里B .101.44810⨯公里C .81.44810⨯公里D .914.4810⨯公里7.不等式组21x x ≥-⎧⎨<⎩的解集在数轴上表示为( ). A .B .C .D . 8.如图是二次函数()20y ax bx c a =++≠的图象的一部分,给出下列命题,其中正确的命题是( )(1)0a b c ++=;(2)2b a >;(3)20ax bx c ++=的两根分别-3和1;(4)3c a =-;A .(1)(2)B .(2)(3)C .(1)(3)D .(1)(3)(4)9.如图,△ABC 内接于⊙O ,AB=BC ,∠ABC=120°,⊙O 的直径AD=6,则BD 的长为( )A .2B .3C .D .10.下列图形都是由同样大小的矩形按一定规律组成,其中第(1)个图形的面积为22cm ,第(2)个图形的面积为82cm ,第(3)个图形的面积为182cm ,……,由第(1)个图形的面积为( )A .1962cmB .2002cmC .2162cmD .2562cm11.下列调查中,最适合采用抽样调查的是( )A .对旅客上飞机前的安检B .了解全班同学每周体育锻炼的时间C .调查奥运会金牌获得者的兴奋剂使用情况D .调查我国居民对汽车废气污染环境的看法12.如图,菱形ABCD 的对角线,AC BD 相交于点 O ,过点A 作AE BC ⊥于点E ,连接OE .若6OB =,菱形ABCD 的面积为54,则OE 的长为( )A .4B .4.5C .8D .9二、填空题 13.已知a +b =6,ab =5,求a ²b +ab ²= .14.某玩具车间每天能生产甲种零件200个或乙种零件100个.甲种零件1个与乙种零件2个能组成一个完整的玩具,问怎样安排生产才能在30天内组装出最多的玩具?若设生产甲种零件x 天,乙种零件y 天,则根据题意列二元一次方程组是__.15.如图,矩形ABCD 的对角线经过原点,各边分别平行于坐标轴,点C 在反比例函数y=2k 5k x-的图象上.若点A 的坐标为(﹣2,﹣3),则k 的值为________.16.如图,∠AOB 的一边OA 为平面镜,∠AOB=37°45′,在OB 边上有一点E ,从点E 射出一束光线经平面镜反射后,反射光线DC 恰好与OB 平行,则∠DEB 的度数是_____.三、解答题17.如图,已知抛物线2y x 2x 3=-++与x 轴交于A 、B 两点(点A 在点B 左侧),与y 轴交于点C .连接BC ,点P 是线段BC 上方抛物线上的点,过点P 作PM BC ⊥于点M ,求PM 的最大值.18.(1)解不等式组:25031x x ->⎧⎨-<-⎩(2)化简:2224144a a a a ⎛⎫+- ⎪-⎝⎭19.如图,在Rt △ABC 中,∠BAC =90°,以AB 为直径的⊙O 交BC 于点E ,且点E 是AD 的中点,连接AD 交BE 于点F ,连接EA ,ED .(1)求证:AC =AF ;(2)若EF =2,BF =8,求AF 的长.20.如图,在正方形ABCD 中,E 是AB 上一点,连接DE .过点A 作AF DE ⊥,垂足为F .O 经过点C 、D 、F ,与AD 相交于点G .(1)求证AFG DFC ∽△△;(2)若正方形ABCD 的边长为4,1AE =,求O 的半径.21.信息化时代的到来,手机已经成为我们生活中不可缺少的一部分,为了解中学生在假期使用手机的情况(选项:A .聊天;B .游戏;C .学习;D .其它),清明节后,某中学在全校范围内随机抽取了若干名学生进行调查,得到如下图表(部分信息未给出):根据以上信息解答下列问题:(1)这次被调查的学生有多少人?被调查的学生中,用手机学习的有多少人?(2)将两个统计图补充完整;(3)从用手机学习的学生中随机抽取5名同学,其中3名女生、2名男生,现从这5名学生中任意抽取2名学生做报告,请用画树状图或列表的方法,求出恰是1名男同学和1名女同学的概率是?22.如图,抛物线y =﹣13x 2+bx +c 经过点B (0)、C (0,2)两点,与x 轴的另一个交点为A .(1)求抛物线的解析式;(2)点D 从点C 出发沿线段CB B 运动,作DE ⊥CB 交y 轴于点E ,以CD 、DE 为边作矩形CDEF ,设点D 运动时间为t (s ).①当点F 落在抛物线上时,求t 的值;②若点D 在运动过程中,设△ABC 与矩形CDEF 重叠部分的面积为S ,请直接写出S 与t 之间的函数关系式,并写出自变量t 的取值范围.参考答案1.B根据轴对称图形的定义逐项识别即可,一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.A 、是轴对称图形,故本选项错误;B 、不是轴对称图形,故本选项正确;C 、是轴对称图形,故本选项错误;D 、是轴对称图形,故本选项错误.故选:B .本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解答本题的关键.2.D根据合并同类项的法则,系数相加,所得的结果作为系数,字母部分保持不变,逐项计算即可判断. 解:A. 330xy xy -+=,此选项错误;B. 2222a a a +=,此选项错误;C. 2ab ab ab -=,此选项错误;D. 555622222+=⨯=,此选项正确.故选:D .本题考查的知识点是合并同类项,掌握合并同类项的运算法则是解此题的关键.3.B由相反数的定义进行解题,即可得到答案.解:+5的相反数是-5,故选:B .本题考查了相反数的定义,解题的关键是熟练掌握相反数的定义进行解题.4.D根据单项式和多项式的有关概念逐一进行判断即可.A 选项,单独的一个数或字母也是单项式,所以4是单项式,故A 错误;B 选项,−xy 2的系数是−12,不是-2,故B 错误;C 选项,πr 2的次数是2,不是3,故C 错误;D 选项,多项式xy 2+4x 2y 3−x 3+2的次数是5,故D 正确;故选D.。
2020年山东省日照市中考数学试卷(含答案解析)
2020年山东省日照市中考数学试卷副标题题号 一 二 三 四 总分 得分一、选择题(本大题共12小题,共36.0分) 1. 2020的相反数是( )A. −12020B. 12020C. −2020D. 20202. 单项式−3ab 的系数是( )A. 3B. −3C. 3aD. −3a3. “扶贫”是新时期党和国家的重点工作之一,为落实习近平总书记提出的“精准扶贫”战略构想,某省预计三年内脱贫1020000人,数字1020000用科学记数法可表示为( )A. 1.02×106B. 1.02×105C. 10.2×105D. 102×1044. 下列调查中,适宜采用全面调查的是( )A. 调查全国初中学生视力情况B. 了解某班同学“三级跳远”的成绩情况C. 调查某品牌汽车的抗撞击情况D. 调查2019年央视“主持人大赛”节目的收视率5. 将函数y =2x 的图象向上平移3个单位后,所得图象对应的函数表达式是( )A. y =2x +3B. y =2(x +3)C. y =2x −3D. y =2(x −3)6. 下列各式中,运算正确的是( )A. x 3+x 3=x 6B. x 2⋅x 3=x 5C. (x +3)2=x 2+9D. √5−√3=√27. 已知菱形的周长为8,两邻角的度数比为1:2,则菱形的面积为( )A. 8√3B. 8C. 4√3D. 2√38. 不等式组{x +1≥23(x −5)<−9的解集在数轴上表示为( )A.B.C.D.9. 如图,几何体由5个相同的小正方体构成,该几何体三视图中为轴对称图形的是( )A. 主视图B. 左视图C. 俯视图D. 主视图和俯视图10. 如图,AB 是⊙O 的直径,CD 为⊙O 的弦,AB ⊥CD 于点E ,若CD =6√3,AE =9,则阴影部分的面积为( )A. 6π−92√3B. 12π−9√3C. 3π−94√3D.9√311. 用大小相同的圆点摆成如图所示的图案,按照这样的规律摆放,则第10个图案中共有圆点的个数是( )A. 59B. 65C. 70D. 7112. 如图,二次函数y =ax 2+bx +c(a ≠0)图象的对称轴为直线x =−1,下列结论:①abc <0;②3a <−c ;③若m 为任意实数,则有a −bm ≤am 2+b ;④若图象经过点(−3,−2),方程ax 2+bx +c +2=0的两根为x 1,x 2(|x 1|<|x 2|),则2x 1−x 2=5.其中正确的结论的个数是( )A. 4个B. 3个C. 2个D. 1个二、填空题(本大题共4小题,共16.0分) 13. 分解因式:mn +4n =______.14. 如图,有一个含有30°角的直角三角板,一顶点放在直尺的一条边上,若∠2=65°,则∠1的度数是______.15. 《孙子算经》记载:今有3人共车,二车空;二人共车,九人步,问人与车各几何?译文:今有若干人乘车,若每三人共乘一辆车,最终剩余2辆车;若每2人共乘一辆车,最终剩余9人无车可乘.问共有多少人?多少辆车?若设有x 人,则可列方程组为______. 16. 如图,在平面直角坐标系中,▱ABCD 的顶点B 位于y 轴的正半轴上,顶点C ,D 位于x 轴的负半轴上,双曲线y =kx (k <0,x <0)与▱ABCD 的边AB ,AD 交于点E 、F ,点A 的纵坐标为10,F(−12,5),把△BOC 沿着BC 所在直线翻折,使原点O 落在点G 处,连接EG ,若EG//y 轴,则△BOC 的面积是______. 三、计算题(本大题共1小题,共10.0分) 17. (1)计算:√−83+(23)−1−√3×cos30°;(2)解方程:x−3x−2+1=32−x .四、解答题(本大题共5小题,共58.0分)18. 如图,某小区有一块靠墙(墙的长度不限)的矩形空地ABCD ,为美化环境,用总长为100m 的篱笆围成四块矩形花圃(靠墙一侧不用篱笆,篱笆的厚度不计). (1)若四块矩形花圃的面积相等,求证:AE =3BE ;(2)在(1)的条件下,设BC 的长度为xm ,矩形区域ABCD 的面积为ym 2,求y 与x 之间的函数关系式,并写出自变量x 的取值范围.19. 为落实我市关于开展中小学课后服务工作的要求,某学校开设了四门校本课程供学生选择:A.趣味数学;B.博乐阅读;C.快乐英语;D.硬笔书法.某年级共有100名学生选择了A 课程,为了解本年级选择A 课程学生的学习情况,从这100名学生中随机抽取了30名学生进行测试,将他们的成绩(百分制)分成六组,绘制成频数分布直方图.(1)已知70≤x <80这组的数据为:72,73,74,75,76,76,79.则这组数据的中位数是______;众数是______;(2)根据题中信息,估计该年级选择A 课程学生成绩在80≤x <90的总人数; (3)该年级学生小乔随机选取了一门课程,则小乔选中课程D 的概率是______;(4)该年级每名学生选两门不同的课程,小张和小王在选课程的过程中,若第一次都选了课程C ,那么他俩第二次同时选择课程A 或课程B 的概率是多少?请用列表法或树状图的方法加以说明.20. 如图,Rt △ABC 中,∠C =90°,以AB 为边在AB 上方作正方形ABDE ,过点D 作DF ⊥CB ,交CB 的延长线于点F ,连接BE . (1)求证:△ABC≌△BDF ;(2)P ,N 分别为AC ,BE 上的动点,连接AN ,PN ,若DF =5,AC =9,求AN +PN 的最小值.21. 阅读理解:如图1,Rt △ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,∠C =90°,其外接圆半径为R.根据锐角三角函数的定义:sinA =ac ,sinB =bc ,可得asinA =bsinB =c =2R , 即:asinA =bsinB =csinC =2R ,(规定sin90°=1).探究活动:如图2,在锐角△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,其外接圆半径为R ,那么:asinA______b sinB______csinC (用>、=或<连接),并说明理由.事实上,以上结论适用于任意三角形. 初步应用:在△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,∠A =60°,∠B =45°,a =8,求b . 综合应用:如图3,在某次数学活动中,小凤同学测量一古塔CD 的高度,在A 处用测角仪测得塔顶C 的仰角为15°,又沿古塔的方向前行了100m 到达B 处,此时A ,B ,D 三点在一条直线上,在B 处测得塔顶C 的仰角为45°,求古塔CD 的高度(结果保留小数点后一位).(√3≈1.732,sin15°=√6−√24)22. 如图,函数y =−x 2+bx +c 的图象经过点A(m,0),B(0,n)两点,m ,n 分别是方程x 2−2x −3=0的两个实数根,且m <n . (Ⅰ)求m ,n 的值以及函数的解析式;(Ⅱ)设抛物线y =−x 2+bx +c 与x 轴的另一个交点为C ,抛物线的顶点为D ,连接AB ,BC ,BD ,CD.求证:△BCD∽△OBA ; (Ⅲ)对于(Ⅰ)中所求的函数y =−x 2+bx +c , (1)当0≤x ≤3时,求函数y 的最大值和最小值;(2)设函数y 在t ≤x ≤t +1内的最大值为p ,最小值为q ,若p −q =3,求t 的值.答案和解析1.【答案】C【解析】解:2020的相反数是:−2020.故选:C.直接利用相反数的定义得出答案.此题主要考查了相反数,正确把握相反数的定义是解题关键.2.【答案】B【解析】解:单项式−3ab的系数是−3.故选:B.根据单项式系数的定义即可求解.考查了单项式,单项式的系数是单项式字母前的数字因数3.【答案】A【解析】解:1020000=1.02×106.故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】B【解析】解:对于调查方式,适宜于全面调查的常见存在形式有:范围小或准确性要求高的调查,A.调查全国初中学生视力情况没必要用全面调查,只需抽样调查即可,B.了解某班同学“三级跳远”的成绩情况,因调查范围小且需要具体到某个人,适宜全面调查,C.调查某品牌汽车的抗撞击情况,此调查兼破坏性,显然不能适宜全面调查,D.调查2019年央视“主持人大赛”节目的收视率,因调查受众广范围大,故不适宜全面调查,故选:B.根据全面调查和抽样调查的适用条件即可求解.本题考查了全面调查和抽样调查的适用条件,解题关键是要知道这个适用条件.5.【答案】A【解析】解:∵将函数y=2x的图象向上平移3个单位,∴所得图象的函数表达式为:y=2x+3.故选A.直接利用一次函数“上加下减”的平移规律即可得出答案.此题主要考查了一次函数图象与几何变换,正确记忆“左加右减,上加下减”的平移规律是解题关键.6.【答案】B【解析】解:A、x3+x3=2x3,故选项A不符合题意;B、x2⋅x3=x5计算正确,故选项B符合题意;C、(x+3)2=x2+6x+9,故选项C不符合题意;D、二次根式√5与√3不是同类二次根式故不能合并,故选项D不符合题意.故选:B.根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂的乘法法则,底数不变,指数相加;完全平方公式:(a±b)2=a2±2ab+b2;以及二次根式的减法运算法则逐项分析即可.本题考查了同底数幂的乘法法则、完全平方公式、合并同类项的法则以及二次根式的减法运算法则,解题的关键是熟记各种运算法则.7.【答案】D【解析】解:如图,∵两邻角度数之比为1:2,两邻角和为180°,∴∠ABC=60°,∠BAD=120°,∵菱形的周长为8,∴边长AB=2,∴菱形的对角线AC=2,BD=2×2sin60°=2√3,∴菱形的面积=12AC⋅BD=12×2×2√3=2√3.故选:D.根据菱形的性质和菱形面积公式即可求出结果.本题考查了菱形的性质,解决本题的关键是掌握菱形的性质.8.【答案】D【解析】解:不等式组{x+1≥2①3(x−5)<−9②,由①得:x≥1,由②得:x<2,∴不等式组的解集为1≤x<2.数轴上表示如图:,故选:D.首先解出不等式的解集,然后再根据不等式组解集的规律:大小小大中间找,确定不等式组的解集,再在数轴上表示即可.此题主要考查了解一元一次不等式组,以及在数轴上表示不等式的解集,关键是正确确定不等式组的解集.9.【答案】B【解析】解:由如图所示的几何体可知:该几何体的主视图、左视图和俯视图分别是,其中左视图是轴对称图形.故选:B.先得到该几何体的三视图,再根据轴对称图形的定义即可求解.考查了简单组合体的三视图,轴对称图形,关键是得到该几何体的三视图.10.【答案】A【解析】解:∵AB是⊙O的直径,CD为⊙O的弦,AB⊥CD于点E,∴CE=DE=12CD=3√3.设⊙O的半径为r,在直角△OED中,OD2=OE2+DE2,即r2=(9−r)2+(3√3)2,解得,r=6,∴OE=3,∴cos∠BOD=OEOD=36=12,∴∠EOD=60°,∴S扇形BOD=16π×36=6π,S Rt△OED=12×3×3√3=92√3,∴S阴影=6π−92√3,故选:A.根据垂径定理得出CE=DE=12CD=3√3,再利用勾股定理求得半径,根据锐角三角函数关系得出∠EOD= 60°,进而结合扇形面积求出答案.此题主要考查了垂径定理,勾股定理以及锐角三角函数和扇形面积求法等知识,正确得出∠EOD=60°是解题关键.11.【答案】C【解析】解:根据图中圆点排列,当n=1时,圆点个数5+2;当n=2时,圆点个数5+2+3;当n=3时,圆点个数5+2+3+4;当n=4时,圆点个数5+2+3+4+5,…∴当n=10时,圆点个数5+2+3+4+5+6+7+8+9+10+11=4+(1+2+3+4+5+6+7+8+9+10+11)=4+12×11×(11+1)=70.故选:C.观察图形可知,第1个图形共有三角形5+2个;第2个图形共有三角形5+2+3个;第3个图形共有三角形5+2+3+4个;第4个图形共有三角形5+2+3+4+5个;…;则第n个图形共有三角形5+2+3+4+⋯+n+(n+1)个;由此代入n=10求得答案即可.此题考查图形的变化规律,找出数量上的变化规律,从而推出一般性的结论,利用规律解决问题.12.【答案】C【解析】解:由图象可知:a<0,c>0,−b2a=−1,∴b=2a<0,∴abc>0,故①abc<0错误;当x=1时,y=a+b+c=a+2a+c=3a+c<0,∴3a<−c,故②3a<−c正确;∵x=−1时,y有最大值,∴a−b+c≥am2+bm+c(m为任意实数),即a−b≥am2+bm,即a−bm≥am2+b,故③错误;∵二次函数y=ax2+bx+c(a≠0)图象经过点(−3,−2),方程ax2+bx+c+2=0的两根为x1,x2(|x1|< |x2|),∴二次函数y=ax2+bx+c与直线y=−2的一个交点为(−3,−2),∵抛物线的对称轴为直线x=−1,∴二次函数y=ax2+bx+c与直线y=−2的另一个交点为(1,−2),即x1=1,x2=−3,∴2x1−x2=2−(−3)=5,故④正确.所以正确的是②④;故选:C.由图象可知a<0,c>0,由对称轴得b=2a<0,则abc>0,故①错误;当x=1时,y=a+b+c=a+ 2a+c=3a+c<0,得②正确;由x=−1时,y有最大值,得a−b+c≥am2+bm+c,得③错误;由题意得二次函数y=ax2+bx+c与直线y=−2的一个交点为(−3,−2),另一个交点为(1,−2),即x1=1,x2=−3,进而得出④正确,即可得出结论.本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b 同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).13.【答案】n(m+4)【解析】解:mn+4n=n(m+4).故答案为:n(m+4).直接提取公因式n分解因式即可求解.考查了因式分解−提公因式法,口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶.14.【答案】25°【解析】解:如图,延长EF交BC于点G,∵直尺,∴AD//BC,∴∠2=∠3=65°,又∵30°角的直角三角板,∴∠1=90°−65°=25°.故答案为:25°.延长EF交BC于点G,根据平行线的性质可得∠2=∠3=65°,再根据直角三角形的两个锐角互余即可求解.此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.15.【答案】{3(x−2)=y2x+9=y【解析】解:依题意,得:{3(x−2)=y2x+9=y.故答案为:{3(x−2)=y2x+9=y.根据“每3人乘一车,最终剩余2辆空车;若每2人同乘一车,最终剩下9人因无车可乘而步行”,即可得出关于x,y的二元一次方程组,此题得解.本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.16.【答案】503【解析】解:∵双曲线y=kx(k<0,x<0)经过点F(−12,5),∴k=−60,∴双曲线解析式为y=−60x.∵▱ABCD的顶点A的纵坐标为10,∴BO=10,点E的纵坐标为10,且在双曲线y=−60x上,∴点E的横坐标为−6,即BE=6.∵△BOC和△BGC关于BC对称,∴BG=BO=10,GC=OC.∵EG//y轴,在Rt△BEG中,BE=6,BG=10,∴EG=√102−62=8.延长EG交x轴于点H,∵EG//y轴,∴∠GHC是直角,在Rt△GHC中,设GC=m,则有CH=OH−OC=BE−GC=6−m,GH=EH−EG=10−8=2,则有m2=22+(6−m)2,∴m=103,∴GC=103=OC,∴S△BOC=12×103×10=503,故答案为:503.将点F坐标代入解析式,可求双曲线解析式为y=−60x,由平行四边形的性质可得OB=10,BE=6,由勾股定理可求EG的长,由勾股定理可求CO的长,即可求解.本题考查了反比例函数系数k的几何意义,折叠的性质,平行四边形的性质,正确的作出辅助线是解题的关键.17.【答案】解:(1)原式=−2+32−√3×√32=−2+32−32=−2.(2)x−3x−2+1=32−x,两边同乘以(x−2)得,x−3+(x−2)=−3,解得,x=1.经检验x=1是原分式方程的解.【解析】(1)原式利用立方根的定义,负整数指数幂的意义以及特殊角的三角形函数进行计算即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根;也考查了实数的运算.18.【答案】解:(1)证明:∵矩形MEFN与矩形EBCF面积相等,∴ME=BE,AM=GH.∵四块矩形花圃的面积相等,即S矩形AMDND=2S矩形MEFN,∴AM=2ME,∴AE=3BE;(2)∵篱笆总长为100m,∴2AB+GH+3BC=100,即2AB+12AB+3BC=100,∴AB=40−65BC.设BC的长度为xm,矩形区域ABCD的面积为ym2,则y=BC⋅AB=x(40−65x)=−65x2+40x,∵AB=40−65BC,∴BE=403−25x>0,解得x<1003,∴y=−65x2+40x(0<x<1003).【解析】(1)矩形MEFN与矩形EBCF面积相等,则ME=BE,AM=GH,而四块矩形花圃的面积相等,即S矩形AMDND=2S矩形MEFN,即可证明;(2)设BC的长度为xm,矩形区域ABCD的面积为ym2,则y=BC⋅AB=x(40−65x)=−65x2+40x,即可求解.本题考查了二次函数的性质在实际生活中的应用,其中(2),用确定BE的长度方法求出x的取值范围是本题的关键.19.【答案】75 76 14【解析】解:(1)在72,73,74,75,76,76,79这组已经按从小到大排列好的数据中,中位数为75,众数为76;故答案为:75,76;(2)观察直方图,抽取的30名学生成绩在80≤x<90范围内选取A课程的有9人,所占比为930,那么估计该年级100名学生,学生成绩在80≤x<90范围内,选取A课程的总人数为100×930=30(人);(3)因为学校开设了四门校本课程供学生选择,小乔随机选取一门课程,则他选中课程D的概率为14;故答案为:14;(4)因该年级每名学生选两门不同的课程,第一次都选了课程C,列树状图如下:等可能结果共有9种,他俩第二次同时选择课程A或课程B的有2种,所以,他俩第二次同时选择课程A或课程B的概率是29.(1)根据中位数和众数的定义求解即可;(2)利用样本估计总体的方法即可估计该年级选择A课程学生成绩在80≤x<90的总人数;(3)直接利用概率公式计算;(4)画树状图展示所有16种等可能的结果数,找出他俩第二次选课相同的结果数,然后根据概率公式计算.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A 或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20.【答案】(1)证明:∵Rt△ABC中,∠C=90°,DF⊥CB,∴∠C=∠DFB=90°.∵四边形ABDE是正方形,∴BD=AB,∠DBA=90°,∵∠DBF+∠ABC=90°,∠CAB+∠ABC=90°,∴∠DBF=∠CAB,∴△ABC≌△BDF(AAS);(2)解:∵△ABC≌△BDF,∴DF=BC=5,BF=AC=9,∴FC=BF+BC=9+5=14.如图,连接DN,∵BE是正方形顶点A与顶点D的对称轴,∴AN=DN.如使得AN+PN最小,只需D、N、P在一条直线上,由于点P、N分别是AC和BE上的动点,作DP1⊥AC,交BE于点N1,垂足为P1,所以,AN+PN的最小值等于DP1=FC=14.【解析】(1)根据正方形的性质得出BD=AB,∠DBA=90°,进而得出∠DBF=∠CAB,因为∠C=∠DFB= 90°.根据AAS即可证得结论;(2)根据正方形的性质AN=DN,如使得AN+PN最小,只需D、N、P在一条直线上,根据垂线段最短,作DP1⊥AC,交BE于点N1,垂足为P1,则AN+PN的最小值等于DP1=FC=14.本题考查了正方形的性质,三角形全等的判定和性质,轴对称−最短路线问题,熟练掌握正方形的性质是解题的关键.21.【答案】==【解析】解:探究活动:asinA=bsinB=csinC,理由如下:如图2,过点C作直径CD交⊙O于点D,连接BD,∴∠A=∠D,∠DBC=90°,∴sinA=sinD,sinD=a2R,∴asinA=a a2R=2R,同理可证:bsinB=2R,csinC=2R,∴asinA=bsinB=csinC=2R;故答案为:=,=,=.初步应用:∵asinA=bsinB=2R,∴8sin60∘=bsin45∘,∴b=8sin45°sin60∘=8×√22√32=8√63.综合应用:由题意得:∠D =90°,∠A =15°,∠DBC =45°,AB =100, ∴∠ACB =30°.设古塔高DC =x ,则BC =√2x , ∵AB sin∠ACB =BC sinA,∴100sin30∘=√2xsin15°, ∴10012=√2x√6−√24,∴x =25√2(√6−√2)=50(√3−1)≈50×0.732=36.6, ∴古塔高度约为36.6m .探究活动:由锐角三角函数可得asinA =bsinB =csinC =2R ,可求解; 初步应用:将数值代入解析式可求解;综合应用:由三角形的外角性质可求∠ACB =30°,利用(1)的结论可得ABsin∠ACB =BCsinA ,即可求解. 本题是圆的综合题,考查了圆的有关知识,锐角三角函数,读懂材料是本题的关键.22.【答案】(I)解:∵m ,n 分别是方程x 2−2x −3=0的两个实数根,且m <n ,用因式分解法解方程:(x +1)(x −3)=0, ∴x 1=−1,x 2=3, ∴m =−1,n =3, ∴A(−1,0),B(0,3),把(−1,0),(0,3)代入得,{−1−b +c =0c =3,解得{b =2c =3,∴函数解析式为y =−x 2+2x +3.(II)证明:令y =−x 2+2x +3=0,即x 2−2x −3=0, 解得x 1=−1,x 2=3,∴抛物线y =−x 2+2x +3与x 轴的交点为A(−1,0),C(3,0), ∴OA =1,OC =3, ∴对称轴为x =−1+32=1,顶点D(1,−1+2+3),即D(1,4),∴BC =√32+32=3√2,BD =√12+12=√2,DC =√42+22=2√5, ∵CD 2=DB 2+CB 2,∴△BCD 是直角三角形,且∠DBC =90°, ∴∠AOB =∠DBC , 在Rt △AOB 和Rt △DBC 中,AOBD=√2=√22,OB BC=3√2=√22, ∴AO BD =OB BC,∴△BCD∽△OBA ;(III)解:抛物线y =−x 2+2x +3的对称轴为x =1,顶点为D(1,4), (1)在0≤x ≤3范围内,当x =1时,y 最大值=4;当x =3时,y 最小值=0;(2)①当函数y 在t ≤x ≤t +1内的抛物线完全在对称轴的左侧,当x =t 时取得最小值q =−t 2+2t +3,最大值p =−(t +1)2+2(t +1)+3,令p −q =−(t +1)2+2(t +1)+3−(−t 2+2t +3)=3,即−2t +1=3,解得t =−1.②当t +1=1时,此时p =4,q =3,不合题意,舍去; ③当函数y 在t ≤x ≤t +1内的抛物线分别在对称轴的两侧,此时p =4,令p −q =4−(−t 2+2t +3)=3,即t 2−2t −2=0解得:t 1=1+√3(舍),t 2=1−√3; 或者p −q =4−[−(t +1)2+2(t +1)+3]=3,即t =±√3(不合题意,舍去); ④当t =1时,此时p =4,q =3,不合题意,舍去;⑤当函数y 在t ≤x ≤t +1内的抛物线完全在对称轴的右侧,当x =t 时取得最大值p =−t 2+2t +3,最小值q =−(t +1)2+2(t +1)+3,令p −q =−t 2+2t +3−[−(t +1)2+2(t +1)+3]=3,解得t =2. 综上,t =−1或t =1−√3或t =2.【解析】(I)首先解方程求得A 、B 两点的坐标,然后利用待定系数法确定二次函数的解析式即可; (II)根据解方程直接写出点C 的坐标,然后确定顶点D 的坐标,根据两点的距离公式可得△BDC 三边的长,根据勾股定理的逆定理可得∠DBC =90°,根据边长可得△AOB 和△DBC 两直角边的比相等,则两直角三角形相似;(III)(1)确定抛物线的对称轴是x =1,根据增减性可知:x =1时,y 有最大值,当x =3时,y 有最小值; (2)分5种情况:①当函数y 在t ≤x ≤t +1内的抛物线完全在对称轴的左侧;②当t +1=1时;③当函数y 在t ≤x ≤t +1内的抛物线分别在对称轴的两侧;④当t =1时,⑤函数y 在t ≤x ≤t +1内的抛物线完全在对称轴的右侧;分别根据增减性可解答.本题是二次函数的综合题型,其中涉及到的知识点有利用待定系数法求抛物线的解析式,抛物线的顶点公式,三角形相似的性质和判定,勾股定理的逆定理,最值问题等知识,注意运用分类讨论的思想解决问题.。
2020年部编人教版山东省日照市中考数学试题及答案(Word精析版)
2020年山东日照初中学业考试数学试卷本试题分第Ⅰ卷和第Ⅱ卷两部分,共6页,满分120分,考试时间为120分钟.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号填写在答题卡规定的位置上.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.第Ⅰ卷每小题选出答案后,必须用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.只答在试卷上无效.2.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内,在试卷上答题不得分;如需改动,先划掉原来的答案,然后再写上新的答案. 4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.第Ⅰ卷(选择题40分)一、选择题:本大题共12小题,其中1-8题每小题3分,9-12题每小题4分,满分40分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上. 1.计算-22+3的结果是A .7B .5C .1-D . 5- 答案:C解析:原式=-4+3=-1,选C 。
2.下面所给的交通标志图中是轴对称图形的是答案:A解析:A 中,等边三角形底边的中算线为对称轴,是轴对称图形,其它都不是轴对称图形。
3.如图,H7N9病毒直径为30纳米(1纳米=10-9米),用科学计数法表示这个病毒直径的大小,正确的是 A.30×10-9米 B. 3.0×10-8米 C. 3.0×10-10米 D. 0.3×10-9米 答案:B解析:科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.30纳米=30×10-9=3.0×10-8米 4.下列计算正确的是 A.222)2(a a =- B.632a a a ÷= C.a a 22)1(2-=-- D.22a a a =⋅答案:C解析:因为.22(2)4a a -=, 633a a a ÷=,23a a a ⋅=,故A 、B 、D 都错,只有C 正确。
2020日照市中考数学试卷分析
日照市
年级
九年级
考试类型
中考
学科
数学
分值
120
考察范围
本试卷共22个题目,12个选择题,4道填空题,6道解答题,涵盖了初中所有知识。数与式占21分,约占17.5%,方程与不等式12分,约占10%,函数类34分,约占28.3%,几何类题型34分,约占28.3%,统计与概率13分,约占10.8%。其他约占5.1%
考查题型及
占分比重
考查题型
占分比重
考察知识点说明
单选(12题)
36分
1、考察了相反数的概念,注意区分倒数与相反数的辨别,基础题
2、考察了单项式的系数的概念,整式的基本概念是考试的考点,基础题
3、考察了科学计数法的概念,科学计数法的表示: ,基础题
4、考察了统计中的全面调查,与抽样调查进行对比,基础题
11、考察了图形规律题,易错题
12、考察二次函数图像的性质,易错题
填空(4题)
16分
13、考察了因式分解。基础题
14、考察了平行线的性质和三角形的性质,易错题
15、考察了中国古代数学书籍中的方程组问题,知识迁移能力的考察,易错题。
16、考察了反比例函数面积的综合问题。易错题,难题。
2020年日照中考数学试卷分析
2020年9月
考查题型及
占分比重
考查题型
占分比重
考察知识点说明
解答题
(6题)
68分
17、实数运算和分式方程问题。方程解的步骤规范性是失分点,基础题
18、实际应用题,将几何图形与函数结合。易错题,基础题
19、概率与统计问题。易错题
20、几何证明题,重点考察线段最值问题,易错题。
21、几何探究类题型,给出新定义和公式,探究解题方法,易错题
山东省日照市2019-2020学年中考数学第二次调研试卷含解析
山东省日照市2019-2020学年中考数学第二次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.计算:9115()515÷⨯-得( ) A .-95 B .-1125 C .-15 D .11252.如图:将一个矩形纸片ABCD ,沿着BE 折叠,使C D 、点分别落在点11,C D 处.若150C BA ∠=︒,则ABE ∠的度数为( )A .15︒B .20︒C .25︒D .30°3.一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球则两次摸到的球的颜色不同的概率为( ) A .13 B .23 C .12 D .254.计算(-18)÷9的值是( )A .-9B .-27C .-2D .25.点P (4,﹣3)关于原点对称的点所在的象限是( )A .第四象限B .第三象限C .第二象限D .第一象限6.下列各数中,为无理数的是( )A .38B .4C .13D .27.如图,若AB ∥CD ,则α、β、γ之间的关系为( )A .α+β+γ=360°B .α﹣β+γ=180°C .α+β﹣γ=180°D .α+β+γ=180°8.如图,嘉淇同学拿20元钱正在和售货员对话,且一本笔记本比一支笔贵3元,请你仔细看图,1本笔记本和1支笔的单价分别为( )A .5元,2元B .2元,5元C .4.5元,1.5元D .5.5元,2.5元9.如图,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得30BAD ∠=︒,在C 点测得60BCD ∠=︒,又测得50AC =米,则小岛B 到公路l 的距离为( )米.A .25B .253C .10033D .25253+10.下列等式从左到右的变形,属于因式分解的是A .8a 2b=2a·4abB .-ab 3-2ab 2-ab=-ab(b 2+2b)C .4x 2+8x-4=4x 12-x x ⎛⎫+ ⎪⎝⎭ D .4my-2=2(2my-1)11.如图,在正三角形ABC 中,D,E,F 分别是BC,AC,AB 上的点,DE ⊥AC,EF ⊥AB,FD ⊥BC ,则△DEF 的面积与△ABC 的面积之比等于( )A .1∶3B .2∶3C .3∶2D .3∶312.2017年,全国参加汉语考试的人数约为6500000,将6500000用科学记数法表示为( ) A .6.5×105 B .6.5×106 C .6.5×107 D .65×105二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,半圆O 的直径AB=2,弦CD ∥AB ,∠COD=90°,则图中阴影部分的面积为_____.14.已知,如图,正方形ABCD 的边长是8,M 在DC 上,且DM =2,N 是AC 边上的一动点,则DN+MN 的最小值是_____.15.若关于x 的一元二次方程(a ﹣1)x 2﹣x+1=0有实数根,则a 的取值范围为________.16.已知菱形的周长为10cm ,一条对角线长为6cm ,则这个菱形的面积是_____cm 1.17.如图,圆锥底面半径为r cm ,母线长为10cm ,其侧面展开图是圆心角为216°的扇形,则r 的值为 .18.某种商品两次降价后,每件售价从原来元降到元,平均每次降价的百分率是__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系xOy 中,直线y =x+b 与双曲线y =k x相交于A ,B 两点, 已知A (2,5).求:b 和k 的值;△OAB 的面积.20.(6分)如图,矩形OABC 的顶点A 、C 分别在x 、y 轴的正半轴上,点D 为BC 边上的点,AB=BD ,反比例函数()0k y k x =≠在第一象限内的图象经过点D (m ,2)和AB 边上的点E (n ,23). (1)求m 、n 的值和反比例函数的表达式.(2)将矩形OABC 的一角折叠,使点O 与点D 重合,折痕分别与x 轴,y 轴正半轴交于点F ,G ,求线段FG 的长.21.(6分)如图,在△ABC 中,∠C=90°.作∠BAC 的平分线AD ,交BC 于D ;若AB=10cm ,CD=4cm ,求△ABD的面积.22.(8分)某市教育局为了了解初一学生第一学期参加社会实践活动的情况,随机抽查了本市部分初一学生第一学期参加社会实践活动的天数,并将得到的数据绘制成了下面两幅不完整的统计图.请根据图中提供的信息,回答下列问题:扇形统计图中a的值为%,该扇形圆心角的度数为;补全条形统计图;如果该市共有初一学生20000人,请你估计“活动时间不少于5天”的大约有多少人?23.(8分)如图,点O为Rt△ABC斜边AB上的一点,以OA为半径的⊙O与BC切于点D,与AC交于点E,连接AD.求证:AD平分∠BAC;若∠BAC=60∘,OA=4,求阴影部分的面积(结果保留π).24.(10分)已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF.求证:BE = DF;连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.25.(10分)先化简,再求值:22()11x x xxx x+÷-++,其中x=2.26.(12分)如图,已知AB是⊙O的直径,CD与⊙O相切于C,BE∥CO.(1)求证:BC是∠ABE的平分线;(2)若DC=8,⊙O的半径OA=6,求CE的长.27.(12分)综合与实践﹣﹣﹣折叠中的数学在学习完特殊的平行四边形之后,某学习小组针对矩形中的折叠问题进行了研究.问题背景:在矩形ABCD中,点E、F分别是BC、AD 上的动点,且BE=DF,连接EF,将矩形ABCD沿EF折叠,点C落在点C′处,点D落在点D′处,射线EC′与射线DA相交于点M.猜想与证明:(1)如图1,当EC′与线段AD交于点M时,判断△MEF的形状并证明你的结论;操作与画图:(2)当点M与点A重合时,请在图2中作出此时的折痕EF和折叠后的图形(要求:尺规作图,不写作法,保留作图痕迹,标注相应的字母);操作与探究:(3)如图3,当点M在线段DA延长线上时,线段C′D'分别与AD,AB交于P,N两点时,C′E与AB 交于点Q,连接MN 并延长MN交EF于点O.求证:MO⊥EF 且MO平分EF;(4)若AB=4,AD=43,在点E由点B运动到点C的过程中,点D'所经过的路径的长为.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】同级运算从左向右依次计算,计算过程中注意正负符号的变化.【详解】919111551551515⎛⎫⎛⎫÷⨯-=⨯⨯-= ⎪ ⎪⎝⎭⎝⎭-1125 故选B.【点睛】本题考查的是有理数的混合运算,熟练掌握运算法则是解题的关键.2.B【解析】根据折叠前后对应角相等可知.解:设∠ABE=x ,根据折叠前后角相等可知,∠C1BE=∠CBE=50°+x , 所以50°+x+x=90°,解得x=20°.故选B .“点睛”本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.3.B【解析】【分析】本题主要需要分类讨论第一次摸到的球是白球还是红球,然后再进行计算.【详解】 ①若第一次摸到的是白球,则有第一次摸到白球的概率为23,第二次,摸到白球的概率为12,则有211323⨯=;②若第一次摸到的球是红色的,则有第一次摸到红球的概率为13,第二次摸到白球的概率为1,则有11133⨯=,则两次摸到的球的颜色不同的概率为112333+=. 【点睛】掌握分类讨论的方法是本题解题的关键.4.C【解析】【分析】直接利用有理数的除法运算法则计算得出答案.【详解】解:(-18)÷9=-1. 故选:C .【点睛】此题主要考查了有理数的除法运算,正确掌握运算法则是解题关键.5.C【解析】【分析】由题意得点P 的坐标为(﹣4,3),根据象限内点的符号特点可得点P 1的所在象限.【详解】∵设P (4,﹣3)关于原点的对称点是点P 1,∴点P 1的坐标为(﹣4,3),∴点P 1在第二象限.故选 C【点睛】本题主要考查了两点关于原点对称,这两点的横纵坐标均互为相反数;符号为(﹣,+)的点在第二象限.6.D【解析】A =2,是有理数;B =2,是有理数;C .13,是有理数;D ,是无理数, 故选D.7.C【解析】【分析】过点E 作EF ∥AB ,如图,易得CD ∥EF ,然后根据平行线的性质可得∠BAE+∠FEA=180°,∠C=∠FEC=γ,进一步即得结论.【详解】解:过点E 作EF ∥AB ,如图,∵AB ∥CD ,AB ∥EF ,∴CD ∥EF ,∴∠BAE+∠FEA=180°,∠C=∠FEC=γ,∴∠FEA=β﹣γ,∴α+(β﹣γ)=180°,即α+β﹣γ=180°.故选:C .【点睛】本题考查了平行公理的推论和平行线的性质,属于常考题型,作EF ∥AB 、熟练掌握平行线的性质是解题的关键.8.A【解析】【分析】可设1本笔记本的单价为x 元,1支笔的单价为y 元,由题意可得等量关系:①3本笔记本的费用+2支笔的费用=19元,②1本笔记本的费用﹣1支笔的费用=3元,根据等量关系列出方程组,再求解即可.【详解】设1本笔记本的单价为x 元,1支笔的单价为y 元,依题意有:322013x y x y +=-⎧⎨-=⎩,解得:52x y =⎧⎨=⎩. 故1本笔记本的单价为5元,1支笔的单价为2元.故选A .【点睛】本题考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系设出未知数,列出方程组.9.B【解析】【分析】【详解】解:过点B 作BE ⊥AD 于E .设BE=x .∵∠BCD=60°,tan ∠BCE BE CE=, 33CE x ∴=,在直角△ABE 中,,AC=50米,503x -=,解得x =即小岛B 到公路l 的距离为故选B.10.D【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A 、是整式的乘法,故A 不符合题意;B 、没把一个多项式转化成几个整式积的形式,故B 不符合题意;C 、没把一个多项式转化成几个整式积的形式,故C 不符合题意;D 、把一个多项式转化成几个整式积的形式,故D 符合题意;故选D .【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.11.A【解析】∵DE ⊥AC ,EF ⊥AB ,FD ⊥BC ,∴∠C+∠EDC=90°,∠FDE+∠EDC=90°,∴∠C=∠FDE ,同理可得:∠B=∠DFE ,∠A=DEF ,∴△DEF ∽△CAB ,∴△DEF 与△ABC 的面积之比=2DE AC ⎛⎫ ⎪⎝⎭, 又∵△ABC 为正三角形,∴∠B=∠C=∠A=60°∴△EFD 是等边三角形,∴EF=DE=DF ,又∵DE ⊥AC ,EF ⊥AB ,FD ⊥BC ,∴△AEF ≌△CDE ≌△BFD ,∴BF=AE=CD ,AF=BD=EC ,在Rt △DEC 中,DE=DC×sin ∠,EC=cos ∠C×DC=12DC , 又∵DC+BD=BC=AC=32DC ,∴2332DC DE AC DC ==, ∴△DEF 与△ABC的面积之比等于:221:3DE AC ⎛⎫== ⎪⎝⎭⎝⎭ 故选A .点晴:本题主要通过证出两个三角形是相似三角形,再利用相似三角形的性质:相似三角形的面积之比等于对应边之比的平方,进而将求面积比的问题转化为求边之比的问题,并通过含30度角的直角三角形三边间的关系(锐角三角形函数)即可得出对应边DE AC 之比,进而得到面积比. 12.B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将6500000用科学记数法表示为:6.5×106. 故答案选B.【点睛】本题考查了科学计数法,解题的关键是熟练的掌握科学计数法的表示形式.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.4π 【解析】解:∵弦CD ∥AB ,∴S △ACD =S △OCD ,∴S 阴影=S 扇形COD =2901360π⨯=4π.故答案为4π. 14.1【解析】分析:要求DN+MN的最小值,DN,MN不能直接求,可考虑通过作辅助线转化DN,MN的值,从而找出其最小值求解.解答:解:如图,连接BM,∵点B和点D关于直线AC对称,∴NB=ND,则BM就是DN+MN的最小值,∵正方形ABCD的边长是8,DM=2,∴CM=6,∴BM==1,∴DN+MN的最小值是1.故答案为1.点评:考查正方形的性质和轴对称及勾股定理等知识的综合应用.15.a≤54且a≠1.【解析】【分析】根据一元二次方程有实数根的条件列出关于a的不等式组,求出a的取值范围即可.【详解】由题意得:△≥0,即(-1)2-4(a-1)×1≥0,解得a≤54,又a-1≠0,∴a≤54且a≠1.故答案为a≤54且a≠1.点睛:本题考查的是根的判别式及一元二次方程的定义,根据题意列出关于a的不等式组是解答此题的关键.16.14【解析】【分析】根据菱形的性质,先求另一条对角线的长度,再运用菱形的面积等于对角线乘积的一半求解.【详解】解:如图,在菱形ABCD中,BD=2.∵菱形的周长为10,BD=2,∴AB =5,BO =3, ∴22534AO =-=, AC =3.∴面积168242S =⨯⨯=. 故答案为 14.【点睛】此题考查了菱形的性质及面积求法,难度不大.17.1.【解析】试题分析:∵圆锥底面半径为rcm ,母线长为10cm ,其侧面展开图是圆心角为211°的扇形, ∴2πr=360216×2π×10,解得r=1. 故答案为:1.【考点】圆锥的计算.18.【解析】【分析】设降价的百分率为x ,则第一次降价后的单价是原来的(1−x ),第二次降价后的单价是原来的(1−x )2,根据题意列方程解答即可.【详解】解:设降价的百分率为x ,根据题意列方程得:100×(1−x )2=81解得x 1=0.1,x 2=1.9(不符合题意,舍去).所以降价的百分率为0.1,即10%.故答案为:10%.【点睛】本题考查了一元二次方程的应用.找到关键描述语,根据等量关系准确的列出方程是解决问题的关键.还要判断所求的解是否符合题意,舍去不合题意的解.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)b=3,k=10;(2)S △AOB =212. 【解析】 (1)由直线y=x+b 与双曲线y=k x相交于A 、B 两点,A (2,5),即可得到结论; (2)过A 作AD ⊥x 轴于D ,BE ⊥x 轴于E ,根据y=x+3,y=10x ,得到(-5,-2),C (-3,0).求出OC=3,然后根据三角形的面积公式即可得到结论.解:(1)把()2,5A 代入y x b =+.∴52b =+∴3b =.把()2,5A 代入k y x =,∴52k =, ∴10k =.(2)∵10y x =,3y x =+. ∴103x x=+时,2103x x =+, ∴12x =,25x =-.∴()5,2B --.又∵()3,0C -,∴AOB AOC BOC S S S =+V V V 353222⨯⨯=+ 10.5=. 20.(1)y=2x;(2【解析】【分析】 (1)根据题意得出2232m n m n ⎧=⎪⎨⎪=-⎩,解方程即可求得m 、n 的值,然后根据待定系数法即可求得反比例函数的解析式;(2)设OG=x ,则GD=OG=x ,CG=2﹣x ,根据勾股定理得出关于x 的方程,解方程即可求得DG 的长,过F 点作FH ⊥CB 于H ,易证得△GCD ∽△DHF ,根据相似三角形的性质求得FG ,最后根据勾股定理即可求得.【详解】(1)∵D (m ,2),E (n ,23), ∴AB=BD=2,∴m=n ﹣2, ∴2232m n m n ⎧=⎪⎨⎪=-⎩,解得13m n =⎧⎨=⎩,∴D(1,2),∴k=2,∴反比例函数的表达式为y=2x;(2)设OG=x,则GD=OG=x,CG=2﹣x,在Rt△CDG中,x2=(2﹣x)2+12,解得x=54,过F点作FH⊥CB于H,∵∠GDF=90°,∴∠CDG+∠FDH=90°,∵∠CDG+∠CGD=90°,∴∠CGD=∠FDH,∵∠GCD=∠FHD=90°,∴△GCD∽△DHF,∴DG CDFD FH=,即5142FD=,∴FD=52,∴FG=2222555524FD GD⎛⎫⎛⎫+=+=⎪ ⎪⎝⎭⎝⎭.【点睛】本题考查了反比例函数与几何综合题,涉及了待定系数法、勾股定理、相似三角形的判定与性质等,熟练掌握待定系数法、相似三角形的判定与性质是解题的关键.21.(1)答案见解析;(2)220cm【解析】【分析】(1)根据三角形角平分线的定义,即可得到AD;(2)过D作于DE⊥ABE,根据角平分线的性质得到DE=CD=4,由三角形的面积公式即可得到结论.【详解】解:(1)如图所示,AD即为所求;(2)如图,过D作DE⊥AB于E, ∵AD平分∠BAC,∴DE=CD=4,∴S△ABD=12AB·DE=20cm2.【点睛】掌握画角平分线的方法和角平分线的相关定义知识是解答本题的关键.22.(1)25,90°;(2)见解析;(3)该市“活动时间不少于5天”的大约有1.【解析】试题分析:(1)根据扇形统计图的特征即可求得a的值,再乘以360°即得扇形的圆心角;(2)先算出总人数,再乘以“活动时间为6天”对应的百分比即得对应的人数;(3)先求得“活动时间不少于5天”的学生人数的百分比,再乘以20000即可.(1)由图可得该扇形圆心角的度数为90°;(2)“活动时间为6天” 的人数,如图所示:(3)∵“活动时间不少于5天”的学生人数占75%,20000×75%=1∴该市“活动时间不少于5天”的大约有1人.考点:统计的应用点评:统计的应用初中数学的重点,在中考中极为常见,一般难度不大.23.(1)见解析;(2)8 3【解析】试题分析:(1)连接OD,则由已知易证OD∥AC,从而可得∠CAD=∠ODA,结合∠ODA=∠OAD,即可得到∠CAD=∠OAD,从而得到AD平分∠BAC;(2)连接OE、DE,由已知易证△AOE是等边三角形,由此可得∠ADE=12∠AOE=30°,由AD平分∠BAC可得∠OAD=30°,从而可得∠ADE=∠OAD,由此可得DE∥AO,从而可得S阴影=S扇形ODE,这样只需根据已知条件求出扇形ODE的面积即可.试题解析:(1)连接OD.∵BC是⊙O的切线,D为切点,∴OD⊥BC.又∵AC⊥BC,∴OD∥AC,∴∠ADO=∠CAD.又∵OD=OA,∴∠ADO=∠OAD,∴∠CAD=∠OAD,即AD平分∠BAC.(2)连接OE,ED.∵∠BAC=60°,OE=OA,∴△OAE为等边三角形,∴∠AOE=60°,∴∠ADE=30°.又∵1302OAD BAC∠=∠=o,∴∠ADE=∠OAD,∴ED∥AO,∴S△AED=S△OED,∴阴影部分的面积= S扇形ODE = 601683603ππ⨯⨯=.24.(1)证明见解析;(2)四边形AEMF 是菱形,证明见解析.【解析】【分析】(1)求简单的线段相等,可证线段所在的三角形全等,即证△ABE ≌△ADF ;(2)由于四边形ABCD 是正方形,易得∠ECO=∠FCO=45°,BC=CD ;联立(1)的结论,可证得EC=CF ,根据等腰三角形三线合一的性质可证得OC (即AM )垂直平分EF ;已知OA=OM ,则EF 、AM 互相平分,再根据一组邻边相等的平行四边形是菱形,即可判定四边形AEMF 是菱形.【详解】(1)证明:∵四边形ABCD 是正方形,∴AB=AD ,∠B=∠D=90°,在Rt △ABE 和Rt △ADF 中,∵AD AB AF AE⎧⎨⎩==, ∴Rt △ADF ≌Rt △ABE (HL )∴BE=DF ;(2)四边形AEMF 是菱形,理由为:证明:∵四边形ABCD 是正方形,∴∠BCA=∠DCA=45°(正方形的对角线平分一组对角),BC=DC (正方形四条边相等),∵BE=DF (已证),∴BC-BE=DC-DF (等式的性质),即CE=CF ,在△COE 和△COF 中,CE CF ACB ACD OC OC ⎪∠⎪⎩∠⎧⎨===,∴△COE ≌△COF (SAS ),∴OE=OF ,又OM=OA ,∴四边形AEMF 是平行四边形(对角线互相平分的四边形是平行四边形),∵AE=AF ,∴平行四边形AEMF 是菱形.25.1+2 【解析】 【分析】 先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可. 【详解】 解:原式()22,111x x x x x x x x +⎛⎫+=÷- ⎪+++⎝⎭()22,11x x x x x +=÷++ ()221,1x x x x x++=⋅+ 2.x x += 当2x =时,原式=221 2.2+=+ 【点睛】考查分式的混合运算,掌握运算顺序是解题的关键.26.(1)证明见解析;(2)4.1.【解析】试题分析:(1)由BE ∥CO ,推出∠OCB=∠CBE ,由OC=OB ,推出∠OCB=∠OBC ,可得∠CBE=∠CBO ;(2)在Rt △CDO 中,求出OD ,由OC ∥BE ,可得,由此即可解决问题;试题解析:(1)证明:∵DE 是切线,∴OC ⊥DE ,∵BE ∥CO ,∴∠OCB=∠CBE ,∵OC=OB ,∴∠OCB=∠OBC ,∴∠CBE=∠CBO ,∴BC 平分∠ABE .(2)在Rt △CDO 中,∵DC=1,OC=0A=6,∴OD==10,∵OC ∥BE ,∴,∴,∴EC=4.1. 考点:切线的性质.27.(1)△MEF 是等腰三角形(2)见解析(3)证明见解析(4)163π【解析】【分析】(1)由AD∥BC,可得∠MFE=∠CEF,由折叠可得,∠MEF=∠CEF,依据∠MFE=∠MEF,即可得到ME=MF,进而得出△MEF是等腰三角形;(2)作AC的垂直平分线,即可得到折痕EF,依据轴对称的性质,即可得到D'的位置;(3)依据△BEQ≌△D'FP,可得PF=QE,依据△NC'P≌△NAP,可得AN=C'N,依据Rt△MC'N≌Rt△MAN,可得∠AMN=∠C'MN,进而得到△MEF是等腰三角形,依据三线合一,即可得到MO⊥EF 且MO平分EF;(4)依据点D'所经过的路径是以O为圆心,4为半径,圆心角为240°的扇形的弧,即可得到点D'所经过的路径的长.【详解】(1)△MEF是等腰三角形.理由:∵四边形ABCD是矩形,∴AD∥BC,∴∠MFE=∠CEF,由折叠可得,∠MEF=∠CEF,∴∠MFE=∠MEF,∴ME=MF,∴△MEF是等腰三角形.(2)折痕EF和折叠后的图形如图所示:(3)如图,∵FD=BE,由折叠可得,D'F=DF,∴BE=D'F,在△NC'Q和△NAP中,∠C'NQ=∠ANP,∠NC'Q=∠NAP=90°,∴∠C'QN=∠APN , ∵∠C'QN=∠BQE ,∠APN=∠D'PF , ∴∠BQE=∠D'PF , 在△BEQ 和△D'FP 中, {BQE DPFBE D F AP C Q∠=∠='=', ∴△BEQ ≌△D'FP (AAS ), ∴PF=QE ,∵四边形ABCD 是矩形, ∴AD=BC ,∴AD ﹣FD=BC ﹣BE , ∴AF=CE ,由折叠可得,C'E=EC , ∴AF=C'E ,∴AP=C'Q ,在△NC'Q 和△NAP 中, {C NQ ANPNC Q NAP AP C Q''∠∠=∠='∠=, ∴△NC'P ≌△NAP (AAS ), ∴AN=C'N ,在Rt △MC'N 和Rt △MAN 中, {MN MN AN C N==', ∴Rt △MC'N ≌Rt △MAN (HL ), ∴∠AMN=∠C'MN ,由折叠可得,∠C'EF=∠CEF , ∵四边形ABCD 是矩形, ∴AD ∥BC ,∴∠AFE=∠FEC ,∴∠C'EF=∠AFE ,∴ME=MF ,∴△MEF 是等腰三角形,∴MO⊥EF 且MO平分EF;(4)在点E由点B运动到点C的过程中,点D'所经过的路径是以O为圆心,4为半径,圆心角为240°的扇形的弧,如图:故其长为L=2404161803ππ⨯⨯=.故答案为163π.【点睛】此题是四边形综合题,主要考查了折叠问题与菱形的判定与性质、弧长计算公式,等腰三角形的判定与性质以及全等三角形的判定与性质的综合应用,熟练掌握等腰三角形的判定定理和性质定理是解本题的关键.。
【zhen题】2020年部编人教版山东省日照市中考数学试题有答案精析
2020年山东省日照市中考数学试卷(解析版)一、选择题:本大题共12小题,每小题3分,满分36分,在每小题所给出的四个选项中,只有一项是符合题目要求的1.|﹣5|的相反数是()A.﹣5 B.5 C.D.﹣【分析】根据绝对值、相反数的定义即可得出答案.【解答】解:根据绝对值的定义,∴︳﹣5︳=5,根据相反数的定义,∴5的相反数是﹣5.故选:A.【点评】本题主要考查了绝对值和相反数的定义,比较简单.2.在下列图案中,既是轴对称又是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、此图案既不是轴对称图形又不是中心对称图形;B、此图案是轴对称图形,不是中心对称图形;C、此图案既是轴对称图形又是中心对称图形;D、此图案是中心对称图形,不是轴对称图形;故选:C.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.下列各式中,运算正确的是()A.(a3)2=a5B.(a﹣b)2=a2﹣b2C.a6÷a2=a4D.a2+a2=2a4【分析】根据同底数幂的乘法、除法法则,合并同类项法则,幂的乘方,乘法公式一一判断即可;【解答】解:A、错误.(a3)2=a5;B、错误.(a﹣b)2=a2﹣2ab+b2;C、正确.D、错误.a2+a2=2a2故选:C.【点评】本题考查同底数幂的乘法、除法法则,合并同类项法则,幂的乘方,乘法公式等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4.若式子有意义,则实数m的取值范围是()A.m>﹣2 B.m>﹣2且m≠1 C.m≥﹣2 D.m≥﹣2且m≠1【分析】根据二次根式有意义的条件即可求出答案.【解答】解:由题意可知:∴m≥﹣2且m≠1故选:D.【点评】本题考查二次根式有意义的条件,解题的关键是熟练运用二次根式的条件,本题属于基础题型.5.某校为了解学生的课外阅读情况,随机抽取了一个班级的学生,对他们一周的读书时间进行了统计,统计数据如下表所示:7 8 9 10 11读书时间(小时)学生人数 6 10 9 8 7则该班学生一周读书时间的中位数和众数分别是()A.9,8 B.9,9 C.9.5,9 D.9.5,8【分析】根据表格中的数据可知该班有学生40人,从而可以求得中位数和众数,本题得以解决.【解答】解:由表格可得,该班学生一周读书时间的中位数和众数分别是:9、8,故选:A.【点评】本题考查众数、中位数,解答本题的关键是明确题意,会求一组数据的众数和中位数.6.如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则∠1=()A.30°B.25°C.20°D.15°【分析】根据平行线的性质可得∠A=∠FDE=45°,再根据三角形内角与外角的性质可得∠1的度数.【解答】解:∵AB∥CD,∴∠A=∠FDE=45°,又∵∠C=30°.∴∠1=∠FDE﹣∠C=45°﹣30°=15°,故选:D.【点评】此题主要考查了平行线的性质,关键是掌握两直线平行,同位角相等.7.计算:()﹣1+tan30°•sin60°=()A.﹣B.2 C.D.【分析】根据实数的运算,即可解答.【解答】解:()﹣1+tan30°•sin60°=2+=2+=故选:C.【点评】本题考查了实数的运算,解决本题的关键是熟记实数的运算.8.如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO.添加下列条件,不能判定四边形ABCD是菱形的是()A.AB=AD B.AC=BD C.AC⊥BD D.∠ABO=∠CBO【分析】根据菱形的定义及其判定、矩形的判定对各选项逐一判断即可得.【解答】解:∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,当AB=AD或AC⊥BD时,均可判定四边形ABCD是菱形;当∠ABO=∠CBO时,由AD∥BC知∠CBO=∠ADO,∴∠ABO=∠ADO,∴AB=AD,∴四边形ABCD是菱形;当AC=BD时,可判定四边形ABCD是矩形;故选:B.【点评】本题主要考查菱形的判定,解题的关键是掌握菱形的定义和各判定及矩形的判定.9.已知反比例函数y=﹣,下列结论:①图象必经过(﹣2,4);②图象在二,四象限内;③y随x的增大而增大;④当x>﹣1时,则y>8.其中错误的结论有()个A.3 B.2 C.1 D.0【分析】根据反比例函数的性质,可得答案.【解答】解:①当x=﹣2时,y=4,即图象必经过点(﹣2,4);②k=﹣8<0,图象在第二、四象限内;③k=﹣8<0,每一象限内,y随x的增大而增大,错误;④k=﹣8<0,每一象限内,y随x的增大而增大,若0>x>﹣1,﹣y>8,故④错误,故选:B.【点评】本题考查了反比例函数的性质,熟记反比例函数的性质是解题关键.10.如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠BED的正切值等于()A.B.C.2 D.【分析】根据同弧或等弧所对的圆周角相等来求解.【解答】解:∵∠DAB=∠DEB,∴tan∠DAB=tan∠DEB=.故选:D.【点评】此题主要考查了圆周角定理(同弧或等弧所对的圆周角相等)和正切的概念,正确得出相等的角是解题关键.11.已知二次函数y=ax2+bx+c(a≠0)图象如图所示,下列结论:①abc<0;②2a﹣b<0;③b2>(a+c)2;④点(﹣3,y1),(1,y2)都在抛物线上,则有y1>y2.其中正确的结论有()A.4个B.3个C.2个D.1个【分析】观察图象判断出a、b、c的符号,即可得出结论①正确,利用对称轴公式x<﹣1,可得结论②正确;判断出﹣b<a+c<b,可得结论③正确,利用图象法可以判断出④错误;【解答】解:∵抛物线开口向上,∴a>0,∵﹣<0,∴b>0,∵抛物线交y轴于负半轴,∴c<0,∴abc<0,故①正确,∵﹣<﹣1,a>0,∴b>2a,∴2a﹣b<0,故②正确,∵x=1时,y>0,∴a+b+c>0,∴a+c>﹣b,∵x=﹣1时,y<0,∴a﹣b+c<0,∴a+c<b,∴b2>(a+c)2,故③正确,∵点(﹣3,y1),(1,y2)都在抛物线上,观察图象可知y1<y2,故④错误.故选:B.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab >0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c).抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.12.定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,F (n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2020次“F”运算的结果是()A.1 B.4 C.2020 D.42020【分析】计算出n=13时第一、二、三、四、五、六次运算的结果,找出规律再进行解答即可.【解答】解:若n=13,第1次结果为:3n+1=40,第2次结果是:=5,第3次结果为:3n+1=16,第4次结果为:=1,第5次结果为:4,第6次结果为:1,…可以看出,从第四次开始,结果就只是1,4两个数轮流出现,且当次数为偶数时,结果是1;次数是奇数时,结果是4,而2020次是偶数,因此最后结果是1.故选:A.【点评】本题主要考查了数字的变化类,能根据所给条件得出n=13时六次的运算结果,找出规律是解答此题的关键.二、填空题:本大题共4小题,每小题4分,满分16分,不需写出解答过程13.一个角是70°39′,则它的余角的度数是19°21′.【分析】依据余角的定义列出算式进行计算即可.【解答】解:它的余角=90°﹣70°39′=19°21′.故答案为:19°21′.【点评】本题主要考查的是余角的定义以及度分秒的换算,掌握相关概念是解题的关键.14.为创建“国家生态园林城市”,某小区在规划设计时,在小区中央设置一块面积为1200平方米的矩形绿地,并且长比宽多40米.设绿地宽为x米,根据题意,可列方程为x(x+40)=1200.【分析】先表示出矩形场地的长,再根据矩形的面积公式即可列出方程.【解答】解:由题意可得,x(x+40)=1200,故答案是:x(x+40)=1200.【点评】本题考查由实际问题抽象出一元二次方程,解题的关键是明确题意,列出相应的方程.15.如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积是4πcm2.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其表面积.【解答】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为cm,底面半径为1cm,故表面积=πrl+πr2=π×1×3+π×12=4πcm2,故答案为:4πcm2,【点评】考查学生对三视图掌握程度和灵活运用能力,关键是由主视图和左视图确定是柱体,锥体还是球体.16.在平面直角坐标系中,我们把横、纵坐标均为整数的点叫做整点.已知反比例函数y=(m<0)与y=x2﹣4在第四象限内围成的封闭图形(包括边界)内的整点的个数为2,则实数m的取值范围为﹣2≤m<﹣1.【分析】根据题意可知抛物线在第四象限内的部分,然后根据反比例函数y=(m<0)与y=x2﹣4在第四象限内围成的封闭图形(包括边界)内的整点的个数为2,可以得到不等式组,从而可以求得m的取值范围.【解答】解:∵y=x2﹣4,∴当x=0时,y=﹣4,当y=0时,x=±2,当x=1时,y=﹣3,∴抛物线y=x2﹣4在第四象限内的部分是(0,﹣4)到(2,0)这一段曲线部分,∵反比例函数y=(m<0)与y=x2﹣4在第四象限内围成的封闭图形(包括边界)内的整点的个数为2,∴,解得,﹣2≤m<﹣1.【点评】本题考查反比例函数的性质、二次函数的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用不等式的性质解答.三、解答题:本大题共6小题,满分68分,解答时应写出必要的文字说明、证明过程或演算步骤17.(10分)(1)实数x取哪些整数时,不等式2x﹣1>x+1与x﹣1≤7﹣x都成立?(2)化简:(﹣)÷,并从0≤x≤4中选取合适的整数代入求值.【分析】(1)根据题意分别求出每个不等式解集,根据口诀:大小小大中间找,确定两不等式解集的公共部分,即可得整数值.(2)根据分式的减法和除法可以化简题目中的式子,然后在0≤x≤4的范围内选取一个使得原分式有意义的整数代入化简后的式子即可解答本题.【解答】解:(1)根据题意可得不等式组,解不等式①,得:x>2,解不等式②,得:x≤4,所以不等式组的解集为2<x≤4,则整数x的值为3、4;(2)原式=[﹣]•=[﹣]•=•=•=,∵,∴x≠0且x≠2、x≠4,∴在0≤x≤4中,可取的整数为x=1、x=3,当x=1时,原式=1;当x=3时,原式=1.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法与解一元一次不等式组的步骤.18.(10分)“低碳生活,绿色出行”的理念已深入人心,现在越来越多的人选择骑自行车上下班或外出旅游.周末,小红相约到郊外游玩,她从家出发0.5小时后到达甲地,玩一段时间后按原速前往乙地,刚到达乙地,接到妈妈电话,快速返回家中.小红从家出发到返回家中,行进路程y(km)随时间x(h)变化的函数图象大致如图所示.(1)小红从甲地到乙地骑车的速度为20km/h;(2)当1.5≤x≤2.5时,求出路程y(km)关于时间x(h)的函数解析式;并求乙地离小红家多少千米?【分析】(1)根据OA段的速度,可得结论;(2)当1.5≤x≤2.5时,设y=20x+b,利用待定系数法即可解决问题;【解答】解:(1)在OA段,速度==20km/h,故答案为20.(2)当1.5≤x≤2.5时,设y=20x+b,把(1.5,10)代入得到,10=20×1.5+b,解得b=﹣20,∴y=20x﹣20,当x=2.5时,解得y=30,∴乙地离小红家30千米【点评】本题考查一次函数的应用,解题的关键是读懂图象信息,属于中考常考题型.19.(10分)(1)某校招聘教师一名,现有甲、乙、丙三人通过专业知识、讲课、答辩三项测试,他们各自的成绩如下表所示:应聘者专业知识讲课答辩甲70 85 80乙90 85 75丙80 90 85按照招聘简章要求,对专业知识、讲课、答辩三项赋权5:4:1.请计算三名应聘者的平均成绩,从成绩看,应该录取谁?(2)我市举行了某学科实验操作考试,有A、B、C、D四个实验,规定每位学生只参加其中一个实验的考试,并由学生自己抽签决定具体的考试实验.小王,小张,小厉都参加了本次考试.①小厉参加实验D考试的概率是;②用列表或画树状图的方法求小王、小张抽到同一个实验的概率.【分析】(1)根据加权平均数分别计算三人的平均成绩,比较大小即可得;(2)①根据概率公式即可得;②列表得出所有等可能的情况数,找出两位同学抽到同一实验的情况数,即可求出所求概率.【解答】解:(1)==77(分),==86.5(分),==84.5(分),因为乙的平均成绩最高,所以应该录取乙;(2)①小厉参加实验D考试的概率是,故答案为:;②解:列表如下:A B C DA AA BA CA DAB AB BB CB DBC AC BC CC DCD AD BD CD DD所有等可能的情况有16种,其中两位同学抽到同一实验的情况有AA,BB,CC,DD,4种情况,所以小王、小张抽到同一个实验的概率为=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.(12分)如图所示,⊙O的半径为4,点A是⊙O上一点,直线l过点A;P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l于点B,交⊙O于点E,直径PD延长线交直线l于点F,点A是的中点.(1)求证:直线l是⊙O的切线;(2)若PA=6,求PB的长.【分析】(1)连接DE,OA.想办法证明OA⊥BF即可;(2)作OH⊥PA于H,只要证明△AOH∽△PAB,可得=,即可解决问题.【解答】(1)证明:连接DE,OA.∵PD是直径,∴∠DEP=90°,∵PB⊥FB,∴∠DEP=∠FBP,∴DE∥BF,∵=,∴OA⊥DE,∴OA⊥BF,∴直线l是⊙O的切线.(2)解:作OH⊥PA于H.∵OA=OP,OH⊥PA,∴AH=PH=3,∵OA∥PB,∴∠OAH=∠APB,∵∠AHO=∠ABP=90°,∴△AOH∽△PAB,∴=,∴=,∴PB=.【点评】本题考查相似三角形的判定和性质、垂径定理、切线的判定等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.21.(13分)如图,已知点A(﹣1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c上.(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;(3)在x轴下方且在抛物线对称轴上,是否存在一点Q,使∠BQC=∠BAC?若存在,求出Q点坐标;若不存在,说明理由.【分析】(1)设抛物线的解析式为y=a(x+1)(x﹣3),将C(0,1)代入求得a的值即可;(2)过点P作PD⊥x,交BC与点D,先求得直线BC的解析式为y=﹣x+1,设点P(x,﹣x2+x+1),则D(x,﹣x+1),然后可得到PD与x之间的关系式,接下来,依据△PBC的面积为1列方程求解即可;(3)首先依据点A和点C的坐标可得到∠BQC=∠BAC=45°,设△ABC外接圆圆心为M,则∠CMB=90°,设⊙M的半径为x,则Rt△CMB中,依据勾股定理可求得⊙M的半径,然后依据外心的性质可得到点M为直线y=﹣x与x=1的交点,从而可求得点M的坐标,然后由点M的坐标以及⊙M的半径可得到点Q的坐标.【解答】解:(1)设抛物线的解析式为y=a(x+1)(x﹣3),将C(0,1)代入得﹣3a=1,解得:a=﹣,∴抛物线的解析式为y=﹣x2+x+1.(2)过点P作PD⊥x,交BC与点D.设直线BC的解析式为y=kx+b,则,解得:k=﹣,∴直线BC的解析式为y=﹣x+1.设点P(x,﹣x2+x+1),则D(x,﹣x+1)∴PD=(﹣x2+x+1)﹣(﹣x+1)=﹣x2+x,∴S△PBC=OB•D P=×3×(﹣x2+x)=﹣x2+x.又∵S△PBC=1,∴﹣x2+x=1,整理得:x2﹣3x+2=0,解得:x=1或x=2,∴点P的坐标为(1,)或(2,1).(3)存在.∵A(﹣1,0),C(0,1),∴OC=OA=1∴∠BAC=45°.∵∠BQC=∠BAC=45°,∴点Q为△ABC外接圆与抛物线对称轴在x轴下方的交点.设△ABC外接圆圆心为M,则∠CMB=90°.设⊙M的半径为x,则Rt△CMB中,由勾股定理可知CM2+BM2=BC2,即2x2=10,解得:x=(负值已舍去),∵AC的垂直平分线的为直线y=﹣x,AB的垂直平分线为直线x=1,∴点M为直线y=﹣x与x=1的交点,即M(1,﹣1),∴Q的坐标为(1,﹣1﹣).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、三角形的外心的性质,求得点M的坐标以及⊙M的半径的长度是解题的关键.22.(13分)问题背景:我们学习等边三角形时得到直角三角形的一个性质:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.即:如图1,在Rt△ABC中,∠ACB=90°,∠ABC=30°,则:AC=AB.探究结论:小明同学对以上结论作了进一步研究.(1)如图1,连接AB边上中线CE,由于CE=AB,易得结论:①△ACE为等边三角形;②BE 与CE之间的数量关系为BE=CE.(2)如图2,点D是边CB上任意一点,连接AD,作等边△ADE,且点E在∠ACB的内部,连接BE.试探究线段BE与DE之间的数量关系,写出你的猜想并加以证明.(3)当点D为边CB延长线上任意一点时,在(2)条件的基础上,线段BE与DE之间存在怎样的数量关系?请直接写出你的结论BE=DE.拓展应用:如图3,在平面直角坐标系xOy中,点A的坐标为(﹣,1),点B是x轴正半轴上的一动点,以AB为边作等边△ABC,当C点在第一象限内,且B(2,0)时,求C点的坐标.【分析】探究结论:(1)只要证明△ACE是等边三角形即可解决问题;(2)如图2中,结论:ED=EB.想办法证明EP垂直平分线段AB即可解决问题;(3)结论不变,证明方法类似;拓展应用:利用(2)中结论,可得CO=CB,设C(1,n),根据OC=CB=AB,构建方程即可解决问题;【解答】解:探究结论(1)如图1中,∵∠ACB=90°,∠B=30°,∴∠A=60°,∵AC=AB=AE=EB,∴△ACE是等边三角形,∴EC=AE=EB,故答案为EC=EB.(2)如图2中,结论:ED=EB.理由:连接PE.∵△ACP,△ADE都是等边三角形,∴AC=AD=DE,AD=AE,∠CAP=∠DAE=60°,∴∠CAD=∠PAE,∴△CAD≌△PAE,∴∠ACD=∠APE=90°,∴EP⊥AB,∵PA=PB,∴EA=EB,∵DE=AE,∴ED=EB.(3)当点D为边CB延长线上任意一点时,同法可证:ED=EB,故答案为ED=EB.拓展应用:如图3中,作AH⊥x轴于H,CF⊥OB于F,连接OA.∵A(﹣,1),∴∠AOH=30°,由(2)可知,CO=CB,∵CF⊥OB,∴OF=FB=1,∴可以假设C(1,n),∵OC=BC=AB,∴1+n2=1+(+2)2,∴n=2+,∴C(1,2+).【点评】本题考查三角形综合题、等边三角形的判定和性质、全等三角形的判定和性质、勾股定理、线段的垂直平分线的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.一、选择题:本大题共12小题,每小题3分,满分36分,在每小题所给出的四个选项中,只有一项是符合题目要求的1.|﹣5|的相反数是()A.﹣5 B.5 C.D.﹣【分析】根据绝对值、相反数的定义即可得出答案.【解答】解:根据绝对值的定义。
2020年山东省日照市中考数学试卷(含答案解析)
2020年山东省日照市中考数学试卷一、选择题(本大题共12小题,共36.0分)1.|−2016|的相反数是()A. 12016B. −2016 C. −12016D. 20162.下列图案,既成轴对称又成中心对称的是()A. B. C. D.3.下列各式中,正确的是()A. a5÷a5=0B. −(a−b)4÷(b−a)3=a−bC. (x3)4÷(−x2)3=−x2D. (x2−y2)2=x4−y44.要使式子√x+4x有意义,则x的取值范围是A. x>0B. x≥−4C. x≥−4且x≠0D. x>0且x≠−45.某中学组织了一次读书活动,随机调查了部分学生平均每天的阅读时间,统计结果如图所示,则在本次调查中,阅读时间的中位数和众数分别是()A. 2,1B. 1,1.5C. 1,2D. 1,16.含30°角的直角三角板与直线l1、l2的位置关系如图所示,已知l1//l2,∠ACD=∠A,则∠1=()A. 70°B. 60°C. 40°D. 30°7.计算:(12)−1−tan60°⋅cos30°=()A. −12B. 1 C. 12D. 328.如图,在△ABC中,DE//BC,EF//AB,要判定四边形DBFE是菱形,还需要添加的条件是()A. AB=ACB. AD=BDC. BE⊥ACD. BE平分∠ABC9.反比例函数y=k+1x的图象,在每个象限内,y的值随x值的增大而增大,则k的值可为()A. −2B. −1C. 0D. 110.如图所示,边长为2的小正方形构成的网格中,半径为2的⊙O的圆心O在格点上,则∠AED的正切值等于()A. 12B. 2C. 2√55D. √5511.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法:①2a+b=0;②当−1≤x≤3时,y<0;③若(x1,y1)、(x2,y2)在函数图象上,当x1<x2时,y1<y2;④4a+2b+c<0;⑤3a+c=0;⑥m(am+b)≥a+b(m为任意实数).其中正确的有()A. 6个B. 5个C. 4个D. 3个12.观察下列运算:21=2;22=4;23=8;24=16;25=32;26=64…..计算1+21+22+23+⋯+22018的个位数是()A. 4B. 6C. 7D. 8二、填空题(本大题共4小题,共16.0分)13.已知∠1=45°28′,则它的余角的度数是.14.如图,在长为32米、宽为20米的长方形绿地内,修筑两条同样宽且分别平行于长方形相邻两边的道路,把绿地分成4块,这4块绿地的总面积为540平方米.如果设道路宽为x米,由题意所列出关于x的方程是______.15.如图为某几何体的三视图(单位:cm),则该几何体的侧面积等于______ cm2.16.已知反比例函数y=5x ,当x>53时,则y的取值范围______ .三、计算题(本大题共1小题,共10.0分)17.先化简,再求值:(1−1+x1−x )÷x2x2−1,再从−2≤x<2中选一个合适的整数代入求值.四、解答题(本大题共5小题,共58.0分)18.周末,小芳骑自行车从家出发到野外郊游,从家出发0.5小时到达甲地,游玩一段时间后按原速前往乙地,小芳离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,行驶10分钟时,恰好经过甲地,如图是她们距乙地的路程y(km)与小芳离家时间x(ℎ)的函数图象.(1)小芳骑车的速度为______ km/ℎ,H点坐标______ .(2)小芳从家出发多少小时后被妈妈追上?此时距家的路程多远?(3)相遇后,妈妈载上小芳和自行车同时到达乙地(彼此交流时间忽略不计),求小芳比预计时间早几分钟到达乙地?19.某市的体育中考采取抽签决定考试项目,有甲、乙、丙三人分别擅长A:游泳;B:50米;C:1000米(假设就这三个项目研究).(1)学生甲能抽到自己的喜欢的项目的概率是___________;(2)如果甲乙丙三人在抽签时箱内只有三个A、B、C不同项目的签,且各自抽签后将考签交给监考老师,求三人至少有一人抽到自己擅长项目的概率.20.已知AB为⊙O的直径,BC⊥AB于B,且BC=AB,D为半圆⊙O上的一点,连接BD并延长交半圆⊙O的切线AE于E.(1)如图1,若CD=CB,求证:CD是⊙O的切线;(2)如图2,若F点在OB上,且CD⊥DF,求AE的值.AF21.如图,在平面直角坐标系中,直线AB和抛物线交于点A(−4,0),B(0,4),且点B是抛物线的顶点.(1)求直线AB和抛物线的解析式.(2)点P是直线上方抛物线上的一点,求当△PAB面积最大时点P的坐标.(3)M是直线AB上一动点,在平面直角坐标系内是否存在点N,使以O、B、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由.22.已知△ABC是等腰直角三角形,∠ACB=90°,动点P在斜边AB所在的直线上,以PC为直角边作等腰直角三角形PCQ,其中∠PCQ=90°,探究并解决下列问题:(1)如图①,若点P在线段AB上,且AC=6,PA=2√2,则:①线段PB=______,PC=______;②直接写出PA2,PB2,PQ2三者之间的数量关系;(2)如图②,若点P在AB的延长线上,在(1)中所猜想的结论仍然成立,请你利用图②给出证明过程;(3)若动点P满足PAAB =14,直接写出PCBC的值:______.【答案与解析】1.答案:B解析:本题考查了相反数和绝对值的定义,理解定义是关键.首先求得绝对值,然后根据相反数的定义求解即可.解:|−2016|=2016,则相反数是−2016.故选B.2.答案:D解析:此题考查了轴对称及中心对称图形的判断,解答本题的关键是熟练掌握掌握中心对称图形与轴对称图形的概念,属于基础题.根据轴对称图形与中心对称图形的概念求解.解:A.是轴对称图形,不是中心对称图形,故本选项错误;B.不是轴对称图形,是中心对称图形,故本选项错误;C.不是轴对称图形,是中心对称图形,故本选项错误;D.是轴对称图形,又是中心对称图形,故本选项正确.故选D.3.答案:B解析:解:A、应为a5÷a5=1,故本选项错误;B、−(a−b)4÷(b−a)3=a−b,正确;C、应为(x3)4÷(−x2)3=x12÷(−x6)=−x6,故本选项错误;D、应为(x2−y2)2=x4−2x2y2+y4,故本选项错误.故选:B.根据同底数幂相除,底数不变,指数相减;幂的乘方,底数不变指数相乘;完全平方公式,对各选项计算后利用排除法求解.本题主要考查同底数幂的除法,幂的乘方的性质,完全平方公式,运算时要注意符号的变化.4.答案:C解析:本题考查的是二次根式有意义的条件和分式有意义的条件,掌握二次根式中的被开方数是非负数、分式分母不为0是解题的关键.根据二次根式有意义的条件和分式有意义的条件列出不等式,解不等式即可.解:由题意得,x+4≥0且x≠0,解得,x≥−4且x≠0,故选C.5.答案:D解析:本题考查了众数和中位数的概念:(1)一组数据中出现次数最多的数据叫做众数.(2)将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.先将图中的数据按照从小到大的顺序排列,找出中位数,再找出图中出现次数最多的数据,求出众数即可.解:将图中的数据按照从小到大的顺序排列,可得出第20名和第21名学生的阅读时间均为1小时,=1(小时),可得出中位数为:1+12由图可得,阅读时间为1小时的学生人数最多,故可得出众数为:1小时.故选D.6.答案:B解析:本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,内错角相等.先根据三角形外角性质得到∠CDB的度数,再根据平行线的性质,即可得到∠1的度数.解:∵∠ACD=∠A=30°,∴∠CDB=∠A+∠ACD=60°,∵l1//l2,∴∠1=∠CDB=60°,故选:B.7.答案:C解析:此题主要考查了实数运算及特殊角的三角函数值,正确记忆相关数据是解题关键.直接利用负指数幂的性质以及特殊角的三角函数值代入求出答案.解:原式=2−√3×√32=2−3 2=12.故选:C.8.答案:D解析:本题考查菱形的判定、平行四边形的判定和性质、角平分线的定义、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.当BE平分∠ABC时,四边形DBFE是菱形,可知先证明四边形BDEF是平行四边形,再证明BD=DE 即可解决问题.解:A.AB=AC,无法判定四边形DBFE是菱形,故A错误;B.AD=BD,无法判定四边形DBFE是菱形,故B错误;C.BE⊥AC,无法判定四边形DBFE是菱形,故C错误;D.当BE平分∠ABC时,四边形DBFE是菱形;理由:∵DE//BC,∴∠DEB=∠EBC,∵BE平分∠ABC,∵∠EBC=∠EBD,∴∠EBD=∠DEB,∴BD=DE,∵DE//BC,EF//AB,∴四边形DBFE是平行四边形,∵BD=DE,∴四边形DBFE是菱形;其余选项均无法判断四边形DBFE是菱形.故选D.9.答案:A解析:此题主要考查了反比例函数的性质,关键是掌握对于反比例函数y=kx(k≠0),当k>0时,在每一个象限内,函数值y随自变量x增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大.根据反比例函数的性质可得k+1<0,解不等式可得k的取值范围,再从选项中选出符合条件的数即可.解:∵反比例函数y=k+1x的图象,在每个象限内,y的值随x值的增大而增大,∴k+1<0,解得:k<−1,故选:A.10.答案:A解析:本题利用了圆周角定理(同弧或等弧所对的圆周角相等)和正切的概念求解.根据同弧或等弧所对的圆周角相等来求解.解:∵∠E=∠ABD,∴tan∠AED=tan∠ABD=ACAB =12.故选A.11.答案:C解析:本题考查了二次函数,属于较难题.根据题意,逐项判断求解,即可得解.解:根据图示知,抛物线开口方向向上,抛物线与y轴交于负半轴,对称轴在y轴右侧,则a>0,c<0,b<0.根据图象得对称轴x=3−12=1,即−b2a=1,所以b=−2a,即2a+b=0,故①正确;根据图示知,当−1<x<3时,y<0;当x=−1或x=3时,y=0;故②错误;若(x1,y1)、(x2,y2)在函数图象上,当1<x1<x2时,y1<y2,当x1<x2<1时,y1>y2,故③错误;可知当x=2时,y<0,即4a+2b+c<0,故④正确;可知b=−2a,当x=−1时,y=0,即a−b+c=0,∴3a+c=0,故⑤正确;∵x=1时,y取得最小值,最小值为a+b+c,x=m时,y=am2+bm+c,∵m为任意的实数,∴a+b+c≤am2+bm+c,∴m(am+b)≥a+b,故⑥正确.所以正确的有①④⑤⑥,共4个.故选C.12.答案:C解析:本题考查了数字的变化规律和有理数的混合运算,根据题意,掌握数字的变化规律是解题的关键.由题意得出规律为个位数四个一组:2、4、8、6,依次循环,由2+4+8+6=20,2018÷4=504…2,求出1+21+22+23+⋯+22018的个位数的和=1+20×504+2+4=10087,即可得出答案.解:∵21=2;22=4;23=8;24=16;25=32;26=64,…∴它们的个位数是四个一组:2、4、8、6,依次循环,∵2+4+8+6=20,2018÷4=504…2,∴1+21+22+23+⋯+22018的个位数的和=1+20×504+2+4=10087,∴1+21+22+23+⋯+22018的个位数是7;故选C.13.答案:44°32′解析:此题考查了余角的定义,解决本题的关键是如果两个角的和是90°,那么这两个角互余.根据余角的定义作答.解:∵∠1=45°28′,∴∠1的余角的度数=90°−∠1=90°−45°28′=44°32′.故答案为44°32′.14.答案:(32−x)(20−x)=540解析:解:设道路的宽为x米.依题意得:(32−x)(20−x)=540,故答案为:(32−x)(20−x)=540.设路宽为xm,得出草坪的长应该为(32−x)米,宽应为(20−x)米,再根据草坪的面积为540平方米,即可得出方程,求解即可.本题考查了由实际问题抽象出一元二次方程,可将草坪面积看作一整块的矩形的面积,根据矩形面积=长×宽求解.15.答案:18π解析:解:由几何体的三视图知,该几何体是底面半径为3cm,母线长是6cm的圆锥.故侧面积为πrl=π×3×6=18π,故答案为:18π.由三视图得到几何体是圆锥,且可得圆锥的半径和母线长,从而求得其侧面积.本题考查了由三视图求几何体的面积体积的问题,注意三视图中:正侧一样高,正俯一样长,俯侧一样宽.16.答案:0<y<3解析:本题考查反比例函数的性质,解题的关键是明确反比例函数的性质.根据反比例函数y=5x,可以用含y的代数式表示x,然后可以求得y的取值范围.解:∵y=5x,∴x=5y,∵x>53,∴5y >53(y>0),解得0<y<3,故答案为0<y<3.17.答案:解:(1−1+x1−x )÷x2x2−1=1−x−1−x1−x⋅(x+1)(x−1)x2=2xx−1⋅(x+1)(x−1)x2=2(x+1)x,当x=−2时,原式=2(−2+1)−2=1解析:根据分式的减法和除法可以化简题目中的式子,然后在−2≤x<2中选一个使得原分式有意义的整数代入化简后的式子即可解答本题.本题考查分式的化简求值、一元一次不等式组的整数解,解答本题的关键是明确分式化简求值的方法.18.答案:(1)20,(32,20);(2)设直线AB 的解析式为:y 1=k 1x +b 1,将点A(0,30),B(0.5,20)代入得:y 1=−20x +30,∵AB//CD ,∴设直线CD 的解析式为:y 2=−20x +b 2,将点C(1,20)代入得:b 2=40,故y 2=−20x +40,设直线EF 的解析式为:y 3=k 3x +b 3,将点E(43,30),H(32,20)代入得:k 3=−60,b 3=110,∴y 3=−60x +110,解方程组{y =−60x +110y =−20x +40,得{x =1.75y =5, ∴点D 坐标为(1.75,5),30−5=25(km),所以小芳出发1.75小时后被妈妈追上,此时距家25km ;(3)将y =0代入直线CD 解析式有:−20x +40=0,解得x =2,将y =0代入直线EF 的解析式有:−60x +110=0,解得x =116, 2−116=16(ℎ)=10(分钟), 故小芳比预计时间早10分钟到达乙地.解析:解:(1)由函数图象可以得出,小芳家距离甲地的路程为10km ,花费时间为0.5ℎ, 故小芳骑车的速度为:10÷0.5=20(km/ℎ),由题意可得出,点H 的纵坐标为20,横坐标为:43+16=32,故点H的坐标为(32,20);(2)见答案(3)见答案分析:(1)根据函数图中的数据,由小芳从家到甲地的路程和时间可以求出小芳骑车的速度;(2)先求出直线AB的解析式,再根据直线AB//CD,求出直线CD的解析式,再求出直线EF的解析式,联立直线CD和直线EF的解析式,求出交点D的坐标即可;(3)将y=0,分别代入直线CD和直线EF的解析式,分别求出当y=0时的横坐标,再求出两横坐标的差值即可.本题考查了一次函数的应用,解答本题的关键在于读懂题意,根据函数图所给的信息求出合适的函数解析式并求解.19.答案:解:(1)13;(2)画树状图如下:由树状图可知,P(三人至少有一人抽到自己擅长项目)=46=23.解析:本题考查了列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.(1)依据题意即可得出概率;(2)根据树状图和概率公式求出该事件的概率.20.答案:解:(1)连接DO ,CO ,∵BC ⊥AB 于B ,∴∠ABC =90°,在△CDO 与△CBO 中,{CD =CBOD =OB OC =OC,∴△CDO≌△CBO ,∴∠CDO =∠CBO =90°,∴OD ⊥CD ,∴CD 是⊙O 的切线;(2)连接AD ,∵AB 是直径,∴∠ADB =90°,∴∠ADF +∠BDF =90°,∠DAB +∠DBA =90°,∵∠BDF +∠BDC =90°,∠CBD +∠DBA =90°,∴∠ADF =∠BDC ,∠DAB =∠CBD ,∵在△ADF 和△BDC 中,{∠ADF =∠BDC ∠DAB =∠CBD,∴△ADF∽△BDC ,∴AD BD =AF BC ,∵∠DAE +∠DAB =90°,∠E +∠DAE =90°,∴∠E =∠DAB ,∵在△ADE 和△BDA 中,{∠ADE =∠BDA =90∘∠E =∠DAB, ∴△ADE∽△BDA ,∴AE AB =AD BD ,∴AE AB =AF BC ,即AE AF =AB BC , ∵AB =BC ,∴AE AF =1.解析:(1)连接DO ,CO ,易证△CDO≌△CBO ,即可解题;(2)连接AD ,易证△ADF∽△BDC 和△ADE∽△BDA ,根据相似三角形对应边成比例的性质即可解题. 本题考查了相似三角形的判定和性质,考查了全等三角形的判定和性质,本题中求证△ADF∽△BDC 和△ADE∽△BDA 是解题的关键.21.答案:解:(1)设直线的解析式为y =kx +b .∵将A(−4,0),B(0,4)代入得:{−4k +b =0b =4,解得k =1,b =4, ∴直线AB 的解析式为y =x +4.设抛物线的解析式为y =ax 2+4.∵将A(−4,0)代入得:16a +4=0,解得a =−14,∴抛物线的解析式为y =−14x 2+4;(2)如图1所示,过点P 作PQ ⊥x 轴,交AB 于点Q .设点P的坐标为(a,−14a2+4),则点Q的坐标为(a,a+4).则PQ=−14a2+4−(a+4)=−14a2−a;∵S△ABP的面积=12PQ⋅(x B−x A)=12×4×(−14a2−a)=−12a2−2a=−12(a+2)2+2,∴当a=−2时△ABP的面积最大,此时P(−2,3);(3)如图2所示:延长MN交x轴与点C.∵MN//OB,OB⊥OC,∴MN⊥OC.∵OA=OB,∠AOB=90°,∴∠BAO=45°.∵ON//AB,∴∠NOC=45°.∴OC=ON×√22=4×√22=2√2,NC=ON×√22=4×√22=2√2.∴点N的坐标为(2√2,2√2).如图3所示:过点N作NC⊥y轴,垂足为C.∵OA=OB,∠AOB=90°,∴∠OBA=45°.∵ON//AB,∴∠NOC=45°.∴OC=ON×√22=4×√22=2√2,NC=ON×√22=4×√22=2√2.∴点N的坐标为(−2√2,−2√2).如图4所示:连接MN交y轴与点C.∵四边形BNOM为菱形,OB=4,∴BC=OC=2,MC=CN,MN⊥OB.∴点的纵坐标为2.∵将y=2代入y=x+4得:x+4=2,解得:x=−2,∴点M的坐标为(−2,2).∴点N的坐标为(2,2).如图5所示:∵四边形OBNM为菱形,∴∠NBM=∠ABO=45°.∴四边形OBNM为正方形.∴点N的坐标为(−4,4).综上所述点N的坐标为(2√2,2√2)或(−2√2,−2√2)或(−4,4)或(2,2).解析:本题主要考查的是二次函数的综合应用,本题主要涉及了待定系数法求一次函数、二次函数的解析式、二次函数的最值,三角形的面积公式、菱形的性质、等腰直角三角形的性质,列出△ABP 的面积与a的函数关系式以及根据题意画出符合条件的图形是解题的关键.(1)设直线的解析式为y=kx+b,将A(−4,0),B(0,4)代入得到关于k、b的方程组,然后解得k、b 的值即可;设抛物线的解析式为y=ax2+4,然后将点A的坐标代入求得a的值即可;(2)过点P作PQ⊥x轴,交AB于点Q.设点P(a,−14a2+4),Q(a,a+4).则PQ=−14a2−a,然后依据三角形的面积公式列出△ABP的面积与a的函数关系式,然后依据二次函数的性质求解即可;(3)先根据题意画出图形,需要注意本题共有4种情况,然后依据菱形的性质、等腰直角三角形的性质以及特殊锐角三角函数值求解即可.22.答案:(1)①4√2,2√5;②PA2+PB2=PQ2;(2)如图②,连接BQ,∵∠ACB =∠PCQ =90°,∴∠ACP =∠BCQ ,在△ACP 和△BCQ 中,{CA =CB∠ACP =∠BCQ CP =CQ,∴△ACP≌△BCQ ,∴PA =BQ ,∠CBQ =∠CAP =45°,∴∠PBQ =90°,∴BQ 2+PB 2=PQ 2,∴PA 2+PB 2=PQ 2;(3)√104或√264.解析:(1)①根据等腰直角三角形的性质得AB ,即可得出PB ,作CH ⊥AB 于H ,根据直角三角形的性质求出CH ,根据勾股定理求出PC ;②证明△ACP≌△BCQ ,根据全等三角形的性质得到PA =BQ ,∠CBQ =∠CAP =45°,得∠PBQ =90°,根据勾股定理计算;(2)连接BQ ,仿照(1)②的方法证明;(3)分点P 在线段AB 上、点P 在线段BA 的延长线上两种情况,根据等腰直角三角形的性质、勾股定理计算即可.本题考查的是全等三角形的判定和性质、等腰直角三角形的性质以及勾股定理的应用,掌握相关的性质定理、灵活运用分情况讨论思想是解题的关键.解:(1)①∵△ABC是等腰直角三角形,AC=6,∴AB=√2AC=6√2,∴PB=AB−PA=6√2−2√2=4√2,作CH⊥AB于H,∵CA=CB,CH⊥AB,∴AH=HB=12AB=3√2,CH=12AB=3√2,∴PH=AH−AP=√2,∴PC=√CH2+PH2=2√5,故答案为:4√2;2√5;②PA2+PB2=PQ2,理由如下:如图①,连接QB,∵∠ACB=∠PCQ=90°,∴∠ACP=∠BCQ,在△ACP和△BCQ中,{CA=CB∠ACP=∠BCQ CP=CQ,∴△ACP≌△BCQ,∴PA=BQ,∠CBQ=∠CAP=45°,∴∠PBQ=90°,∴BQ2+PB2=PQ2,∴PA2+PB2=PQ2,故答案为:PA2+PB2=PQ2;(2)见答案;(3)当点P在线段AB上时,设BC=2a,则AB=2√2a,∵△ABC是等腰直角三角形,CH⊥AB,∴AH=CH=12AB=√2a,∵PAAB =14,∴PA=14AB=√22a,∴PH=AH−PA=√22a,由勾股定理得,PC=√PH2+CH2=√102a,∴PCBC =√102a2a=√104;当点P在线段BA的延长线上时,设BC=2x,则AB=2√2x,∵△ABC是等腰直角三角形,CH⊥AB,∴AH=CH=12AB=√2x,∵PAAB =14,∴PA=14AB=√22x∴PH=PA+AH=3√22x,由勾股定理得,PC=√PH2+CH2=√262x,∴PCBC =√262x2x=√264.综上,PCBC 的值为√104或√264.。
山东省日照市2020版中考数学试卷C卷
山东省日照市2020版中考数学试卷C卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019七上·桂林期末) -5的绝对值是()A . -5B . 5C . -D .2. (2分) (2019八上·洪山期末) 下列计算正确的是()A . (a2)3=a5B . (15x2y﹣10xy2)÷5xy=3x﹣2yC . 10ab3÷(﹣5ab)=﹣2ab2D . a﹣2b3•(a2b﹣1)﹣2=3. (2分) (2019七上·富阳月考) 若一个数减去-2的差是-5,则这个数乘以-2的积是()A . -6B . 6C . -14D . 144. (2分)为了了解我市2013年中考数学学科各分数段成绩分布情况,从中抽取150名考生的中考数学成绩进行统计分析。
在这个问题中,样本是指()A . 150B . 被抽取的150名考生C . 被抽取的150名考生的中考数学成绩D . 我市2013年中考数学成绩5. (2分)已知x=2是关于x的一元二次方程(m+2)x2+2x﹣m2=0的一个根,则m的值为()A . 0B . 0或﹣2C . ﹣2或6D . 66. (2分)如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC的面积分别是S1、S2的大小关系是A . S1>S2B . S1=S2C . S1<S2D . 3S1=2S27. (2分) (2015八下·大同期中) 在一组对边平行的四边形中,增加下列条件中的哪一个条件,这个四边形是矩形()A . 另一组对边相等,对角线相等B . 另一组对边相等,对角线互相垂直C . 另一组对边平行,对角线相等D . 另一组对边平行,对角线互相垂直8. (2分) (2016八上·西昌期末) 已知分式方程 =1的解是非负数,则m的值是()A . m≤﹣1B . m≤﹣1且m≠﹣2C . m≥﹣1D . m≥﹣1且m≠29. (2分)已知二次函数y=a(x-1)2+3,当x<1时,y随x的增大而增大,则a的取值范围是()A . a≥0B . a≤0C . a>0D . a<010. (2分)(2017·宁波模拟) 如图,正方形ABCD中,内部有6个全等的正方形,小正方形的顶点E、F、G、H分别在边AD、AB、BC、CD上,则tan∠DEH=()A .B .C .D .二、填空题 (共5题;共5分)11. (1分) (2018七上·江阴期中) 全国每小时约有 510 000 000 吨污水排入江海,这个数据用科学记数法表示为________吨.12. (1分)(2018·新北模拟) 已知x1和x2是一元二次方程x2﹣5x﹣k=0的两个实数根,并且x1和x2满足不等式<4,则实数k的取值范围是________.13. (1分) (2019九上·灌云月考) 数学老师计算同学们一学期的平均成绩时,将平时、期中和期末的成绩按3:3:4计算,若小红平时、期中和期末的成绩分别是90分、100分、90分,则小红一学期的数学平均成绩是________分.14. (1分)对于非零的两个实数 a,b,规定 a b= ,若 1 (x+1)=1,则 x 的值为________.15. (1分)如图:在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=60°,AC=16,则图中长度为8的线段有________ 条.(填具体数字)三、解答题 (共10题;共92分)16. (5分)(2017·茂县模拟) 化简计算(1)计算:﹣(﹣1)0﹣2cos30°(2)解方程: + =2.17. (5分)(2016·雅安) 解下列不等式组,并将它的解集在数轴上表示出来..18. (5分) (2017七下·南通期中) 已知,求y﹣x的平方根.19. (10分) (2019八上·江海期末) 如图所示,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB 的中点.如果点P在线段BC上以1厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动.(1)若点Q与点P的运动速度相等,经过3秒后,△BPD与△CQP是否全等?请说明理由;(2)若点Q与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?20. (5分) (2018九下·扬州模拟) 如图,山坡AB的坡度i=1:,AB=10米,AE=15米.在高楼的顶端竖立一块倒计时牌CD,在点B处测量计时牌的顶端C的仰角是45°,在点A处测量计时牌的底端D的仰角是60°,求这块倒计时牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米,参考数据:≈1.414,≈1.732)21. (10分)(2017·云南) 某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)该商店第一次购进水果多少千克?(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进水果全部售完,利润不低于950元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.22. (17分) (2016九下·农安期中) 某校为了预测九年级男生“排球30秒”对墙垫球的情况,从本校九年级随机抽取了n名男生进行该项目测试,并绘制出如下的频数分布直方图,其中从左到右依次分为七个组(每组含最小值,不含最大值).根据统计图提供的信息解答下列问题:(1)求n的值.(2)这个样本数据的中位数落在第________组.(3)若测试九年级男生“排球30秒”对墙垫球个数不低于10个为合格,根据统计结果,估计该校九年级450名男同学成绩合格的人数.23. (10分) (2018八上·建湖月考) 如图,平面直角坐标系中,直线AB:y=﹣ x+b交y轴于A(0,1),交x轴于点B.过点E(1,0)作x轴的垂线EF交AB于点D,P是直线EF上一动点,且在点D的上方,设P(1,n).(1)直线AB的表达式为________;(2)①求△ABP的面积(用含n的代数式表示);②当S△ABP=2时,求点P的坐标;③在②的条件下,以PB为边在第一象限作等腰直角三角形BPC,请直接写出点C的坐标.24. (15分)(2016·石家庄模拟) 如图1,已知点A(0,9),B(24,9),C(22+3 ,0),半圆P的直径MN=6 ,且P,A重合时,点M,N在AB上,过点C的直线l与x轴的夹角α为60°.现点P从A出发以每秒1个单位长度的速度向B运动,与此同时,半圆P以每秒15°的速度绕点P顺时针旋转,直线l以每秒1个单位长度的速度沿x轴负方向运动(与x轴的交点为Q).当P、B重合时,半圆P与直线l停止运动.设点P的运动时间为t秒.【发现】(1)点N距x轴的最近距离为________,此时,PA的长为________;(2) t=9时,MN所在直线是否经过原点?请说明理由.(3)如图3,当点P在直线l时,求直线l分半圆P所成两部分的面积比.(4)【拓展】如图4,当半圆P在直线左侧,且与直线l相切时,求点P的坐标.(5)【探究】求出直线l与半圆P有公共点的时间有多长?25. (10分)(2019·许昌模拟)(1)阅读理解利用旋转变换解决数学问题是一种常用的方法.如图1,点是等边三角形内一点,,, .求的度数.为利用已知条件,不妨把绕点顺时针旋转得,连接,则的长为________;在中,易证,且的度数为________,综上可得的度数为________;(2)类比迁移如图2,点是等腰内的一点,,,, .求的度数;(3)拓展应用如图,在四边形中,,,,,请直接写出的长.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共10题;共92分)16-1、16-2、17-1、18-1、19-1、19-2、20-1、21-1、21-2、22-1、22-2、22-3、23-1、24-1、24-2、24-3、24-4、24-5、25-1、25-2、25-3、。
最新2020山东省日照市中考数学试卷及答案
9.如图,几何体由5个相同的小正方体构成,该几何体三视图中为轴对称图形的是()A.主视图B.左视图C.俯视图D.主视图和俯视图10.如图,AB是⊙O的直径,CD为⊙O的弦,AB⊥CD于点E,若CD=63,AE=9,则阴影部分的面积为()A.6π﹣932B.12π﹣93C.3π﹣934D.9311.用大小相同的圆点摆成如图所示的图案,按照这样的规律摆放,则第10个图案中共有圆点的个数是()A.59 B.65 C.70 D.7112.如图,二次函数y=ax2+bx+c(a≠0)图象的对称轴为直线x=﹣1,下列结论:①abc <0;②3a<﹣c;③若m为任意实数,则有a﹣bm≤am2+b;④若图象经过点(﹣3,﹣2),方程ax2+bx+c+2=0的两根为x1,x2(|x1|<|x2|),则2x1﹣x2=5.其中正确的结论的个数是()A.4个B.3个C.2个D.1个13.分解因式:mn+4n=_____.14.如图,有一个含有30°角的直角三角板,一顶点放在直尺的一条边上,若∠2=65°,则∠1的度数是_____.15.《孙子算经》记载:今有3人共车,二车空;二人共车,九人步,问人与车各几何?译文:今有若干人乘车,若每三人共乘一辆车,最终剩余2辆车;若每2人共乘一辆车,最终剩余9人无车可乘.问共有多少人?多少辆车?若设有x辆车,有y人,则可列方程组为_____.16.如图,在平面直角坐标系中,▱ABCD的顶点B位于y轴的正半轴上,顶点C,D位于x轴的负半轴上,双曲线y=kx(k<0,x<0)与▱ABCD的边AB,AD交于点E、F,点A的纵坐标为10,F(﹣12,5),把△BOC沿着BC所在直线翻折,使原点O落在点G处,连接EG,若EG∥y轴,则△BOC的面积是_____.17.(138(23)-13cos30°;(2)解方程:32xx--+1=32x-.18.如图,某小区有一块靠墙(墙的长度不限)的矩形空地ABCD,为美化环境,用总长为100m的篱笆围成四块矩形花圃(靠墙一侧不用篱笆,篱笆的厚度不计).(1)若四块矩形花圃的面积相等,求证:AE=3BE;(2)在(1)的条件下,设BC的长度为xm,矩形区域ABCD的面积为ym2,求y与x之间的函数关系式,并写出自变量x的取值范围.19.为落实我市关于开展中小学课后服务工作的要求,某学校开设了四门校本课程供学生选择:A.趣味数学;B.博乐阅读;C.快乐英语;D.硬笔书法.某年级共有100名学生选择了A课程,为了解本年级选择A课程学生的学习情况,从这100名学生中随机抽取了30名学生进行测试,将他们的成绩(百分制)分成六组,绘制成频数分布直方图.(1)已知70≤x<80这组的数据为:72,73,74,75,76,76,79.则这组数据的中位数是;众数是;(2)根据题中信息,估计该年级选择A课程学生成绩在80≤x<90的总人数;(3)该年级学生小乔随机选取了一门课程,则小乔选中课程D的概率是;(4)该年级每名学生选两门不同的课程,小张和小王在选课程的过程中,若第一次都选了课程C,那么他俩第二次同时选择课程A或课程B的概率是多少?请用列表法或树状图的方法加以说明.20.如图,Rt△ABC中,∠C=90°,以AB为边在AB上方作正方形ABDE,过点D作DF⊥CB,交CB的延长线于点F,连接BE.(1)求证:△ABC≌△BDF;(2)P,N分别为AC,BE上的动点,连接AN,PN,若DF=5,AC=9,求AN+PN的最小值.21.阅读理解:如图1,Rt △ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,∠C =90°,其外接圆半径为R .根据锐角三角函数的定义:sin A =a c ,sin B =b c ,可得sin a A =sin b B =c =2R ,即:sin a A =sin b B =sin c C=2R ,(规定sin90°=1).探究活动:如图2,在锐角△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,其外接圆半径为R ,那么:sin a A sin b B sin c C(用>、=或<连接),并说明理由. 事实上,以上结论适用于任意三角形.初步应用:在△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,∠A =60°,∠B =45°,a =8,求b . 综合应用:如图3,在某次数学活动中,小凤同学测量一古塔CD 的高度,在A 处用测角仪测得塔顶C 的仰角为15°,又沿古塔的方向前行了100m 到达B 处,此时A ,B ,D 三点在一条直线上,在B 处测得塔顶C 的仰角为45°,求古塔CD 的高度(结果保留小数点后一位)3 1.732,sin15°=624) 22.如图,函数y =﹣x 2+bx +c 的图象经过点A (m ,0),B (0,n )两点,m ,n 分别是方程x 2﹣2x ﹣3=0的两个实数根,且m <n .(Ⅰ)求m,n的值以及函数的解析式;(Ⅱ)设抛物线y=﹣x2+bx+c与x轴的另一个交点为C,抛物线的顶点为D,连接AB,BC,BD,CD.求证:△BCD∽△OBA;(Ⅲ)对于(Ⅰ)中所求的函数y=﹣x2+bx+c,(1)当0≤x≤3时,求函数y的最大值和最小值;(2)设函数y在t≤x≤t+1内的最大值为p,最小值为q,若p﹣q=3,求t的值.参考答案1.D【解析】【分析】根据相反数的定义可直接进行排除选项.【详解】A、12020是2020的倒数,故错误;B、12020-是2020的倒数的相反数,故错误;C、2020是2020的本身,故错误;D、2020-是2020的相反数,故正确.故选D.【点睛】本题主要考查相反数的定义,关键是熟记概念即可.2.B【解析】【分析】根据单项式系数的定义即可求解.【详解】解:单项式﹣3ab的系数是﹣3.故选:B.【点睛】本题考查单项式,解题关键是单项式的系数是单项式字母前的数字因数.3.A【解析】【分析】由题意利用科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数进行分析即可.【详解】解:1020000=1.02×106.故选:A.【点睛】本题考查科学记数法的表示方法.注意掌握科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.B【解析】【分析】根据全面调查和抽样调查的适用条件即可求解.【详解】解:对于调查方式,适宜于全面调查的常见存在形式有:范围小或准确性要求高的调查,A.调查全国初中学生视力情况没必要用全面调查,只需抽样调查即可,B.了解某班同学“三级跳远”的成绩情况,因调查范围小且需要具体到某个人,适宜全面调查,C.调查某品牌汽车的抗撞击情况,此调查兼破坏性,显然不能适宜全面调查,D.调查2019年央视“主持人大赛”节目的收视率,因调查受众广范围大,故不适宜全面调查,故选:B.【点睛】本题考查全面调查和抽样调查的适用条件,解题关键是要知道这个适用条件.5.A【解析】【分析】直接利用一次函数“上加下减”的平移规律即可得出答案.【详解】解:∵将函数y=2x的图象向上平移3个单位,∴所得图象的函数表达式为:y=2x+3.故选:A.【点睛】本题考查一次函数图象与几何变换,正确记忆“左加右减,上加下减”的平移规律是解题关键.6.B【解析】【分析】由题意根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂的乘法法则,底数不变,指数相加;完全平方公式:(a ±b )2=a 2±2ab+b 2;以及二次根式的减法运算法则逐项分析即可.【详解】解:A 、x 3+x 3=2x 3,故选项A 不符合题意;B 、x 2•x 3=x 5计算正确,故选项B 符合题意;C 、(x+3)2=x 2+6x+9,故选项C 不符合题意;D D 不符合题意.故选:B .【点睛】本题考查同底数幂的乘法法则和完全平方公式与合并同类项的法则以及二次根式的减法运算法则,解题的关键是熟记各种运算法则.7.D【解析】【分析】根据菱形的性质和菱形面积公式即可求出结果.【详解】解:如图,∵两邻角度数之比为1:2,两邻角和为180°,∴∠ABC =60°,∠BAD =120°,∵菱形的周长为8,∴边长AB =2,∴菱形的对角线AC =2,BD =2×2sin60°=∴菱形的面积=12AC •BD =12×2×=故选:D .【点睛】本题考查菱形的性质,解题关键是掌握菱形的性质.8.D【解析】【分析】直接求解一元一次不等式组即可排除选项.【详解】解:不等式组()12256x x +≥⎧⎪⎨-<-⎪⎩①②, 由①得:x ≥1,由②得:x <2,∴不等式组的解集为1≤x <2.数轴上表示如图:,故选:D .【点睛】本题主要考查一元一次不等式组,熟练掌握求解不等式组的方法及在数轴上表示出不等式组解集是解题的关键.9.B【解析】【分析】由题意观察图形先得到该几何体的三视图,再根据轴对称图形的定义进行分析即可求解.【详解】解:由如图所示的几何体可知:该几何体的主视图、左视图和俯视图分别是,其中左视图是轴对称图形.故选:B .【点睛】本题考查简单组合体的三视图以及轴对称图形,解题的关键是得到该几何体的三视图以及掌握轴对称图形的定义.10.A【解析】 【分析】根据垂径定理得出CE=DE=12CD =3再利用勾股定理求得半径,根据锐角三角函数关系得出∠EOD=60°,进而结合扇形面积求出答案.【详解】解:∵AB 是⊙O 的直径,CD 为⊙O 的弦,AB ⊥CD 于点E ,∴CE =DE =12CD =3 设⊙O 的半径为r ,在直角△OED 中,OD 2=OE 2+DE 2,即222(9)(33)r r =-+,解得,r =6,∴OE =3,∴cos ∠BOD =3162OE OD ==, ∴∠EOD =60°,∴13666BOD S ππ=⨯=扇形,19333322RT OED S =⨯⨯=, 根据圆的对称性可得: ∴9=632S π阴影 故选:A .【点睛】本题考查了垂径定理,勾股定理以及锐角三角函数和扇形面积求法等知识,正确得出∠EOD=60°是解题关键.11.C【解析】【分析】由题意观察图形可知,第1个图形共有圆点5+2个;第2个图形共有圆点5+2+3个;第3个图形共有圆点5+2+3+4个;第4个图形共有圆点5+2+3+4+5个;…;则第n个图形共有圆点5+2+3+4+…+n+(n+1)个;由此代入n=10求得答案即可.【详解】解:根据图中圆点排列,当n=1时,圆点个数5+2;当n=2时,圆点个数5+2+3;当n=3时,圆点个数5+2+3+4;当n=4时,圆点个数5+2+3+4+5,…∴当n=10时,圆点个数5+2+3+4+5+6+7+8+9+10+11=4+(1+2+3+4+5+6+7+8+9+10+11)=1411(111) 2+⨯⨯+ 70=.故选:C.【点睛】本题考查图形的变化规律,注意找出数量上的变化规律,从而推出一般性的结论,利用规律解决问题.12.C【解析】由图象可知a <0,c >0,由对称轴得b=2a <0,则abc >0,故①错误;当x=1时,y=a+b+c=a+2a+c=3a+c <0,得②正确;由x=-1时,y 有最大值,得a-b+c ≥am 2+bm+c ,得③错误;由题意得二次函数y=ax 2+bx+c 与直线y=-2的一个交点为(-3,-2),另一个交点为(1,-2),即x 1=1,x 2=-3,进而得出④正确,即可得出结论.【详解】解:由图象可知:a <0,c >0,12b a -=- , ∴b =2a <0,∴abc >0,故①abc <0错误;当x =1时,y =a +b +c =a +2a +c =3a +c <0,∴3a <﹣c ,故②3a <﹣c 正确;∵x =﹣1时,y 有最大值,∴a ﹣b +c ≥am 2+bm +c (m 为任意实数),即a ﹣b ≥am 2+bm ,即a ﹣bm ≥am 2+b ,故③错误;∵二次函数y =ax 2+bx +c (a ≠0)图象经过点(﹣3,﹣2),方程ax 2+bx +c +2=0的两根为x 1,x 2(|x 1|<|x 2|),∴二次函数y =ax 2+bx +c 与直线y =﹣2的一个交点为(﹣3,﹣2),∵抛物线的对称轴为直线x =﹣1,∴二次函数y =ax 2+bx +c 与直线y =﹣2的另一个交点为(1,﹣2),即x 1=1,x 2=﹣3,∴2x 1﹣x 2=2﹣(﹣3)=5,故④正确.所以正确的是②④;故选:C .【点睛】本题考查二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左; 当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).13.n (m +4)【分析】根据题意直接提取公因式n分解因式即可求解.【详解】解:mn+4n=n(m+4).故答案为:n(m+4).【点睛】本题考查因式分解-提公因式法,熟练掌握并找准公因式进行提取,提负要变号,变形看奇偶.14.25°【解析】【分析】延长EF交BC于点G,根据题意及直角三角形的性质可直接进行求解.【详解】解:如图,延长EF交BC于点G,∵直尺,∴AD∥BC,∴∠2=∠3=65°,又∵30°角的直角三角板,∴∠1=90°﹣65°=25°.故答案为:25°.【点睛】本题主要考查平行线的性质及直角三角形的性质,熟练掌握知识点是解题的关键.15.()3229x y x y ⎧-=⎨+=⎩【解析】根据两种乘车方式,找出等量关系,由此建立方程组即可.【详解】由题意,可列方程组为:()3229x yx y ⎧-=⎨+=⎩,故答案为:()3229x y x y ⎧-=⎨+=⎩. 【点睛】本题考查了列二元一次方程组,依据题意,正确找出等量关系是解题关键.16.503【解析】【分析】将点F 坐标代入解析式,可求双曲线解析式为y =−60x,由平行四边形的性质可得OB=10,BE=6,由勾股定理可求EG 的长,由勾股定理可求CO 的长,即可求解.【详解】解:∵双曲线 y =k x (k <0,x <0)经过点F (﹣12,5), ∴k =﹣60,∴双曲线解析式为 y =60x-. ∵▱ABCD 的顶点A 的纵坐标为10, ∴BO =10,点E 的纵坐标为10,且在双曲线y =60x -上, ∴点E 的横坐标为﹣6,即BE =6.∵△BOC 和△BGC 关于BC 对称,∴BG =BO =10,GC =OC .∵EG ∥y 轴,在Rt △BEG 中,BE =6,BG =10,∴EG =8.延长EG 交x 轴于点H ,∵EG∥y轴,∴∠GHC是直角,在Rt△GHC中,设GC=m,则有CH=OH﹣OC=BE﹣GC=6﹣m,GH=EH﹣EG=10﹣8=2,则有m2=22+(6﹣m)2,∴m=103,∴GC=103=OC,∴S△BOC=12×103×10=503,故答案为:503.【点睛】本题考查反比例函数系数k的几何意义,折叠的性质,平行四边形的性质,正确的作出辅助线是解题关键.17.(1)2;(2)x=1【解析】【分析】(1)先计算立方根、负指数、三角函数值,再进行有理数加减运算;(2)找出最简公分母(x-2),去分母,变成一元一次方程从而得解.【详解】解:(1)原式=2+32332=2+32-32=2.(2)32xx--+1=32x-,两边同乘以(x﹣2)得,x﹣3+(x﹣2)=﹣3,解得,x=1.经检验x=1是原分式方程的解.本题考查实数的混合运算,尤其是负指数运算,还考查了解分式方程,解题关键是熟练掌握实数混合运算顺序.18.(1)见解析;(2)2610040053⎛⎫=-+<< ⎪⎝⎭y x x x ,见解析. 【解析】【分析】(1)由题意易得AM =2ME ,故可直接得证;(2)由(1)及题意得2AB +GH +3BC =100,设BC 的长度为xm ,矩形区域ABCD 的面积为ym 2即可得出函数关系式.【详解】解:(1)证明:∵矩形MEFN 与矩形EBCF 面积相等,∴ME =BE ,AM =GH .∵四块矩形花圃的面积相等,即S 矩形AMDND =2S 矩形MEFN ,∴AM =2ME ,∴AE =3BE ;(2)∵篱笆总长为100m ,∴2AB +GH +3BC =100, 即1231002AB AB BC ++=, ∴6405AB BC =- 设BC 的长度为xm ,矩形区域ABCD 的面积为ym 2, 则266404055y BC AB x x x x ⎛⎫=⋅=-=-+ ⎪⎝⎭, ∵6405AB BC =-, ∴402035EB x =->, 解得1003x <, ∴2610040053⎛⎫=-+<< ⎪⎝⎭y x x x .本题主要考查二次函数的实际应用,关键是根据题意得到线段的等量关系,然后列出函数关系式即可.19.(1)75,76;(2)30人;(3)14;(4)29,说明见解析.【解析】【分析】(1)先把这组数据从小到大排列,然后直接得到中位数及众数;(2)根据直方图得到80≤x<90范围内选取A课程的人数,然后直接进行求解即可;(3)直接根据概率的求法进行求解即可;(4)根据题意画出树状图,然后求解概率即可.【详解】解:(1)在72,73,74,75,76,76,79这组已经按从小到大排列好的数据中,中位数为75,众数为76;故答案为:75,76;(2)观察直方图,抽取的30名学生成绩在80≤x<90范围内选取A课程的有9人,所占比为3 10,那么估计该年级100名学生,学生成绩在80≤x<90范围内,选取A课程的总人数为3100=3010(人);(3)因为学校开设了四门校本课程供学生选择,小乔随机选取一门课程,则他选中课程D的概率为14;故答案为:14;(4)因该年级每名学生选两门不同的课程,第一次都选了课程C,列树状图如下:等可能结果共有9种,他俩第二次同时选择课程A或课程B的有2种,所以,他俩第二次同时选择课程A或课程B的概率是29.【点睛】本题主要考查数据分析及概率,关键是分析题目所给的数据,然后根据数据求解即可,画树状图及列举法是求概率常用的方法.20.(1)见解析;(2)14【解析】【分析】(1)根据正方形的性质得出BD=AB,∠DBA=90°,进而得出∠DBF=∠CAB,因为∠C=∠DFB=90°.根据AAS即可证得结论;(2)根据正方形的性质AN=DN,如使得AN+PN最小,只需D、N、P在一条直线上,根据垂线段最短,作DP1⊥AC,交BE于点N1,垂足为P1,则AN+PN的最小值等于DP1=FC=14.【详解】(1)证明:∵Rt△ABC中,∠C=90°,DF⊥CB,∴∠C=∠DFB=90°.∵四边形ABDE是正方形,∴BD=AB,∠DBA=90°,∵∠DBF+∠ABC=90°,∠CAB+∠ABC=90°,∴∠DBF=∠CAB,∴△ABC≌△BDF(AAS);(2)解:∵△ABC≌△BDF,∴DF=BC=5,BF=AC=9,∴FC=BF+BC=9+5=14.如图,连接DN,∵BE是正方形顶点A与顶点D的对称轴,∴AN=DN.如使得AN+PN最小,只需D、N、P在一条直线上,由于点P、N分别是AC和BE上的动点,作DP1⊥AC,交BE于点N1,垂足为P1,所以,AN+PN的最小值等于DP1=FC=14.【点睛】 本题考查正方形的性质,三角形全等的判定和性质,轴对称-最短路线问题,熟练掌握正方形的性质是解题关键. 21.探究活动:=,=,=;初步应用:863;综合应用:古塔高度约为36.6m . 【解析】【分析】探究活动:过点C 作直径CD 交⊙O 于点D ,连接BD ,根据圆周角定理和正弦概念即可得出2sin a R A=,同理得出2,2sin sin b c R R B C ==,从而得出答案; 初步应用:根据2sin sin a b R A B==,得出8sin 60sin 45b =︒︒,即可得出b 的值; 综合应用:由题意得:∠D =90°,∠A =15°,∠DBC =45°,AB =100,可知∠ACB =30°.设古塔高DC =x ,则BC =2x ,灾解直角三角形即可得出答案.【详解】解:探究活动:sin sin sin a b c A B C==, 理由如下:如图2,过点C 作直径CD 交⊙O 于点D ,连接BD ,∴∠A =∠D ,∠DBC =90°,∴sin A =sin D ,sin D =2a R,∴2sin 2a a R a A R==, 同理可证:2,2sin sin b c R R B C==, ∴2sin sin sin a b c R A B C===; 故答案为:=,=,=.初步应用: ∵2sin sin a b R A B==, ∴8sin 60sin 45b =︒︒,∴88sin 45sin 60b ︒===︒. 综合应用:由题意得:∠D =90°,∠A =15°,∠DBC =45°,AB =100,∴∠ACB =30°.设古塔高DC =x ,则BC, ∵sin sin AB BC ACB A=∠,∴100sin 30sin15=︒︒,∴10012=∴)501500.73236.6x ==≈⨯=, ∴古塔高度约为36.6m .【点睛】本题考查了圆周角定理、解直角三角形,添加合适的辅助线是解题的关键.22.(I )m =﹣1,n =3,y =﹣x 2+2x +3;(II )见解析;(III )(1)y 最大值=4;y 最小值=0;(2)t =﹣1或t =2.【解析】【分析】(I)首先解方程求得A、B两点的坐标,然后利用待定系数法确定二次函数的解析式即可;(II)根据解方程直接写出点C的坐标,然后确定顶点D的坐标,根据两点的距离公式可得△BDC三边的长,根据勾股定理的逆定理可得∠DBC=90°,根据边长可得△AOB和△DBC两直角边的比相等,则两直角三角形相似;(III)(1)确定抛物线的对称轴是x=1,根据增减性可知:x=1时,y有最大值,当x=3时,y有最小值;(2)分5种情况:①当函数y在t≤x≤t+1内的抛物线完全在对称轴的左侧;②当t+1=1时;③当函数y在t≤x≤t+1内的抛物线分别在对称轴的两侧;④当t=1时,⑤函数y在t≤x≤t+1内的抛物线完全在对称轴的右侧;分别根据增减性可解答.【详解】(I)∵m,n分别是方程x2﹣2x﹣3=0的两个实数根,且m<n,用因式分解法解方程:(x+1)(x﹣3)=0,∴x1=﹣1,x2=3,∴m=﹣1,n=3,∴A(﹣1,0),B(0,3),把(﹣1,0),(0,3)代入得,103b cc--+=⎧⎨=⎩,解得23bc=⎧⎨=⎩,∴函数解析式为y=﹣x2+2x+3.(II)证明:令y=﹣x2+2x+3=0,即x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴抛物线y=﹣x2+2x+3与x轴的交点为A(﹣1,0),C(3,0),∴OA=1,OC=3,∴对称轴为1312x-+==,顶点D(1,﹣1+2+3),即D(1,4),∴BC==BD==224225CD,∵CD2=DB2+CB2,∴△BCD 是直角三角形,且∠DBC =90°,∴∠AOB =∠DBC ,在Rt △AOB 和Rt △DBC 中,2AO BD ==,2BO BC ==, ∴AO BO BD BC=, ∴△BCD ∽△OBA ;( III )抛物线y =﹣x 2+2x +3的对称轴为x =1,顶点为D (1,4),(1)在0≤x ≤3范围内,当x =1时,y 最大值=4;当x =3时,y 最小值=0;(2)①当函数y 在t ≤x ≤t +1内的抛物线完全在对称轴的左侧,当x =t 时取得最小值q =﹣t 2+2t +3,最大值p =﹣(t +1)2+2(t +1)+3,令p ﹣q =﹣(t +1)2+2(t +1)+3﹣(﹣t 2+2t +3)=3,即﹣2t +1=3,解得t =﹣1. ②当t +1=1时,此时p =4,q =3,不合题意,舍去;③当函数y 在t ≤x ≤t +1内的抛物线分别在对称轴的两侧,此时p =4,令p ﹣q =4﹣(﹣t 2+2t +3)=3,即t 2﹣2t ﹣2=0解得:t 1=,t 2=1(舍);或者p ﹣q =4﹣[﹣(t +1)2+2(t +1)+3]=3,即t =;④当t =1时,此时p =4,q =3,不合题意,舍去;⑤当函数y 在t ≤x ≤t +1内的抛物线完全在对称轴的右侧,当x =t 时取得最大值p =﹣t 2+2t +3,最小值q =﹣(t +1)2+2(t +1)+3,令p ﹣q =﹣t 2+2t +3﹣[﹣(t +1)2+2(t +1)+3]=3,解得t =2.综上,t =﹣1或t =2.【点睛】本题是二次函数的综合题型,考查利用待定系数法求抛物线的解析式,抛物线的顶点公式,三角形相似的性质和判定,勾股定理的逆定理,最值问题等知识,解题时需注意运用分类讨论的思想解决问题.。
2020年山东省日照市中考数学试卷(解析版)
2020年山东省日照市中考数学试卷一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合要求的,请把符合要求的的选项选出来.1. 2020的相反数是()A.−12020B.12020C.−2020D.20202. 单项式−3ab的系数是()A.3B.−3C.3aD.−3a3. “扶贫”是新时期党和国家的重点工作之一,为落实习近平总书记提出的“精准扶贫”战略构想,某省预计三年内脱贫1020000人,数字1020000用科学记数法可表示为()A.1.02×106B.1.02×105C.10.2×105D.102×1044. 下列调查中,适宜采用全面调查的是()A.调查全国初中学生视力情况B.了解某班同学“三级跳远”的成绩情况C.调查某品牌汽车的抗撞击情况D.调查2019年央视“主持人大赛”节目的收视率5. 将函数y=2x的图象向上平移3个单位,则平移后的函数解析式是()A.y=2x+3B.y=2x−3C.y=2(x+3)D.y=2(x−3)6. 下列各式中,运算正确的是()A.x3+x3=x6B.x2⋅x3=x5C.(x+3)2=x2+9D.√5−√3=√27. 已知菱形的周长为8,两邻角的度数比为1:2,则菱形的面积为()A.8√3B.8C.4√3D.2√38. 不等式组{x+1≥23(x−5)<−9的解集在数轴上表示为()A. B. C. D.9. 如图,几何体由5个相同的小正方体构成,该几何体三视图中为轴对称图形的是()A.主视图B.左视图C.俯视图D.主视图和俯视图10. 如图,AB是⊙O的直径,CD为⊙O的弦,AB⊥CD于点E,若CD=6√3,AE=9,则阴影部分的面积为()A.6π−92√3 B.12π−9√3 C.3π−94√3 D.9√311. 用大小相同的圆点摆成如图所示的图案,按照这样的规律摆放,则第10个图案中共有圆点的个数是()A.59B.65C.70D.7112. 如图,二次函数y=ax2+bx+c(a≠0)图象的对称轴为直线x=−1,下列结论:①abc<0;②3a<−c;③若m为任意实数,则有a−bm≤am2+b;④若图象经过点(−3, −2),方程ax2+bx+c+2=0的两根为x1,x2(|x1|<|x2|),则2x1−x2=5.其中正确的结论的个数是()A.4个B.3个C.2个D.1个二、填空题:本大题共4小题,每小题4分,共16分.不需写解答过程,只要求填写最后结果.13.分解因式:mn+4n=________.14. 如图,有一个含有30∘角的直角三角板,一顶点放在直尺的一条边上,若∠2=65∘,则∠1的度数是________.15.《孙子算经》记载:今有3人共车,二车空;二人共车,九人步,问人与车各几何?译文:今有若干人乘车,若每三人共乘一辆车,最终剩余2辆车;若每2人共乘一辆车,最终剩余9人无车可乘.问共有多少人?多少辆车?若设有x人,则可列方程组为________.16.如图,在平面直角坐标系中,▱ABCD的顶点B位于y轴的正半轴上,顶点C,D位于x轴的负半轴上,双曲线y=kx(k< 0, x<0)与▱ABCD的边AB,AD交于点E、F,点A的纵坐标为10,F(−12, 5),把△BOC沿着BC所在直线翻折,使原点O落在点G 处,连接EG ,若EG // y 轴,则△BOC 的面积是________.三、解答题:本大题共6小题,共68分.解答要写出必要的文字说明、证明过程或演算步骤.17. (1)计算:√−83+(23)−1−√3×cos30∘;(2)解方程:x−3x−2+1=32−x .18.如图,某小区有一块靠墙(墙的长度不限)的矩形空地ABCD ,为美化环境,用总长为100m 的篱笆围成四块矩形花圃(靠墙一侧不用篱笆,篱笆的厚度不计).(1)若四块矩形花圃的面积相等,求证:AE =3BE ;(2)在(1)的条件下,设BC 的长度为xm ,矩形区域ABCD 的面积为ym 2,求y 与x 之间的函数关系式,并写出自变量x 的取值范围.19. 为落实我市关于开展中小学课后服务工作的要求,某学校开设了四门校本课程供学生选择:A .趣味数学;B .博乐阅读;C .快乐英语;D .硬笔书法.某年级共有100名学生选择了A 课程,为了解本年级选择A 课程学生的学习情况,从这100名学生中随机抽取了30名学生进行测试,将他们的成绩(百分制)分成六组,绘制成频数分布直方图.(1)已知70≤x <80这组的数据为:72,73,74,75,76,76,79.则这组数据的中位数是________;众数是________;(2)根据题中信息,估计该年级选择A 课程学生成绩在80≤x <90的总人数;(3)该年级学生小乔随机选取了一门课程,则小乔选中课程D 的概率是________;(4)该年级每名学生选两门不同的课程,小张和小王在选课程的过程中,若第一次都选了课程C ,那么他俩第二次同时选择课程A 或课程B 的概率是多少?请用列表法或树状图的方法加以说明.20. 如图,Rt △ABC 中,∠C =90∘,以AB 为边在AB 上方作正方形ABDE ,过点D 作DF ⊥CB ,交CB 的延长线于点F ,连接BE .(1)求证:△ABC ≅△BDF ;(2)P ,N 分别为AC ,BE 上的动点,连接AN ,PN ,若DF =5,AC =9,求AN +PN 的最小值.21.阅读理解:如图1,Rt △ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,∠C =90∘,其外接圆半径为R .根据锐角三角函数的定义:sinA =a c ,sinB =b c ,可得a sinA =b sinB =c =2R ,即:asinA =bsinB =csinC =2R ,(规定sin90∘=1).探究活动:如图2,在锐角△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,其外接圆半径为R ,那么:a sinA ________c sinC (用>、=或<连接),并说明理由.事实上,以上结论适用于任意三角形.初步应用:在△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,∠A =60∘,∠B =45∘,a =8,求b .综合应用:如图3,在某次数学活动中,小凤同学测量一古塔CD 的高度,在A 处用测角仪测得塔顶C 的仰角为15∘,又沿古塔的方向前行了100m 到达B 处,此时A ,B ,D 三点在一条直线上,在B 处测得塔顶C 的仰角为45∘,求古塔CD 的高度(结果保留小数点后一位).(√3≈1.732, sin15∘=√6−√24) 22. 如图,函数y =−x 2+bx +c 的图象经过点A(m, 0),B(0, n)两点,m ,n 分别是方程x 2−2x −3=0的两个实数根,且m <n .(Ⅰ)求m ,n 的值以及函数的解析式;(Ⅱ)设抛物线y =−x 2+bx +c 与x 轴的另一个交点为C ,抛物线的顶点为D ,连接AB ,BC ,BD ,CD .求证:△BCD ∽△OBA ;(Ⅲ)对于(Ⅰ)中所求的函数y=−x2+bx+c,(1)当0≤x≤3时,求函数y的最大值和最小值;(2)设函数y在t≤x≤t+1内的最大值为p,最小值为q,若p−q=3,求t的值.参考答案与试题解析2020年山东省日照市中考数学试卷一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合要求的,请把符合要求的的选项选出来.1.【答案】C【考点】相反数【解析】直接利用相反数的定义得出答案.【解答】2020的相反数是:−2020.2.【答案】B【考点】单项式【解析】根据单项式系数的定义即可求解.【解答】单项式−3ab的系数是−3.3.【答案】A【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n 是负数.【解答】1020000=1.02×106.4.【答案】B【考点】全面调查与抽样调查【解析】根据全面调查和抽样调查的适用条件即可求解.【解答】对于调查方式,适宜于全面调查的常见存在形式有:范围小或准确性要求高的调查,A.调查全国初中学生视力情况没必要用全面调查,只需抽样调查即可,B.了解某班同学“三级跳远”的成绩情况,因调查范围小且需要具体到某个人,适宜全面调查,C.调查某品牌汽车的抗撞击情况,此调查兼破坏性,显然不能适宜全面调查,D.调查2019年央视“主持人大赛”节目的收视率,因调查受众广范围大,故不适宜全面调查,5.【答案】A【考点】一次函数图象与几何变换【解析】直接利用一次函数“上加下减”的平移规律即可得出答案.【解答】∵将函数y=2x的图象向上平移3个单位,∴所得图象的函数表达式为:y=2x+3.6.【答案】B【考点】二次根式的加减混合运算同底数幂的乘法完全平方公式合并同类项【解析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂的乘法法则,底数不变,指数相加;完全平方公式:(a±b)2=a2±2ab+b2;以及二次根式的减法运算法则逐项分析即可.【解答】B、x2⋅x3=x5计算正确,故选项B符合题意(1)C、(x+3)2=x2+6x+9,故选项C不符合题意(2)D、二次根式√5与√3不是同类二次根式故不能合并,故选项D不符合题意.故选:B.7.【答案】D【考点】菱形的性质【解析】根据菱形的性质和菱形面积公式即可求出结果.【解答】如图,∵两邻角度数之比为1:2,两邻角和为180∘,∴∠ABC=60∘,∠BAD=120∘,∵菱形的周长为8,∴边长AB=2,∴菱形的对角线AC=2,BD=2×2sin60∘=2√3,∴菱形的面积=12AC⋅BD=12×2×2√3=2√3.8.【答案】D【考点】解一元一次不等式组在数轴上表示不等式的解集【解析】首先解出不等式的解集,然后再根据不等式组解集的规律:大小小大中间找,确定不等式组的解集,再在数轴上表示即可.【解答】不等式组{x+1≥23(x−5)<−9,由①得:x≥1,由②得:x<2,∴不等式组的解集为1≤x<2.数轴上表示如图:,9.【答案】B【考点】简单组合体的三视图轴对称图形【解析】先得到该几何体的三视图,再根据轴对称图形的定义即可求解.【解答】由如图所示的几何体可知:该几何体的主视图、左视图和俯视图分别是,其中左视图是轴对称图形.10.【答案】A【考点】扇形面积的计算垂径定理勾股定理【解析】根据垂径定理得出CE=DE=12CD=3√3,再利用勾股定理求得半径,根据锐角三角函数关系得出∠EOD=60∘,进而结合扇形面积求出答案.【解答】∵AB是⊙O的直径,CD为⊙O的弦,AB⊥CD于点E,∴CE=DE=12CD=3√3.设⊙O的半径为r,在直角△OED中,OD2=OE2+DE2,即r2=(9−r)2+(3√3)2,解得,r=6,∴OE=3,∴cos∠BOD=OEOD =36=12,∴∠EOD=60∘,∴S BOD=16π×36=6π,S Rt△OED=12×3×3√3=92√3,∴S=6π−92√3,11.【答案】C【考点】规律型:图形的变化类规律型:点的坐标规律型:数字的变化类【解析】观察图形可知,第1个图形共有三角形5+2个;第2个图形共有三角形5+2+3个;第3个图形共有三角形5+2+ 3+4个;第4个图形共有三角形5+2+3+4+5个;…;则第n个图形共有三角形5+2+3+4+...+n+(n+1)个;由此代入n=10求得答案即可.【解答】根据图中圆点排列,当n=1时,圆点个数5+2;当n=2时,圆点个数5+2+3;当n=3时,圆点个数5+2+3+4;当n=4时,圆点个数5+2+3+4+5,…∴当n=10时,圆点个数5+2+3+4+5+6+7+8+9+10+11=4+(1+2+3+4+5+6+7+8+9+10+11)=4+12×11×(11+1)=70.12.【答案】C【考点】二次函数图象上点的坐标特征抛物线与x轴的交点根与系数的关系二次函数图象与系数的关系【解析】由图象可知a<0,c>0,由对称轴得b=2a<0,则abc>0,故①错误;当x=1时,y=a+b+c=a+2a+c =3a+c<0,得②正确;由x=−1时,y有最大值,得a−b+c≥am2+bm+c,得③错误;由题意得二次函数y=ax2+ bx+c与直线y=−2的一个交点为(−3, −2),另一个交点为(1, −2),即x1=1,x2=−3,进而得出④正确,即可得出结论.【解答】由图象可知:a <0,c >0,−b 2a =−1,∴ b =2a <0,∴ abc >0,故①abc <0错误;当x =1时,y =a +b +c =a +2a +c =3a +c <0,∴ 3a <−c ,故②3a <−c 正确;∵ x =−1时,y 有最大值,∴ a −b +c ≥am 2+bm +c (m 为任意实数),即a −b ≥am 2+bm ,即a −bm ≥am 2+b ,故③错误;∵ 二次函数y =ax 2+bx +c(a ≠0)图象经过点(−3, −2),方程ax 2+bx +c +2=0的两根为x 1,x 2(|x 1|<|x 2|), ∴ 二次函数y =ax 2+bx +c 与直线y =−2的一个交点为(−3, −2),∵ 抛物线的对称轴为直线x =−1,∴ 二次函数y =ax 2+bx +c 与直线y =−2的另一个交点为(1, −2),即x 1=1,x 2=−3,∴ 2x 1−x 2=2−(−3)=5,故④正确.所以正确的是②④;二、填空题:本大题共4小题,每小题4分,共16分.不需写解答过程,只要求填写最后结果.13.【答案】n(m +4)【考点】因式分解-提公因式法【解析】直接提取公因式n 分解因式即可求解.【解答】mn +4n =n(m +4).14.【答案】25∘【考点】平行线的性质【解析】延长EF 交BC 于点G ,根据平行线的性质可得∠2=∠3=65∘,再根据直角三角形的两个锐角互余即可求解.【解答】如图,延长EF 交BC 于点G ,∵ 直尺,∴ AD // BC ,∴ ∠2=∠3=65∘,又∵ 30∘角的直角三角板,∴ ∠1=90∘−65∘=25∘.15.【答案】{3(x −2)=y 2x +9=y【考点】由实际问题抽象出二元一次方程组【解析】根据“每3人乘一车,最终剩余2辆空车;若每2人同乘一车,最终剩下9人因无车可乘而步行”,即可得出关于x ,y 的二元一次方程组,此题得解.【解答】依题意,得:{3(x −2)=y 2x +9=y. 16.【答案】503 【考点】反比例函数系数k 的几何意义 坐标与图形变化-对称 反比例函数的性质 平行四边形的性质 反比例函数图象上点的坐标特征【解析】将点F 坐标代入解析式,可求双曲线解析式为y =−60x ,由平行四边形的性质可得OB =10,BE =6,由勾股定理可求EG 的长,由勾股定理可求CO 的长,即可求解.【解答】∵ 双曲线y =k x (k <0,x <0)经过点F(−12, 5),∴ k =−60,∴ 双曲线解析式为y =−60x . ∵ ▱ABCD 的顶点A 的纵坐标为10,∴ BO =10,点E 的纵坐标为10,且在双曲线y =−60x 上, ∴ 点E 的横坐标为−6,即BE =6.∵ △BOC 和△BGC 关于BC 对称,∴ BG =BO =10,GC =OC .∵ EG // y 轴,在Rt △BEG 中,BE =6,BG =10,∴ EG =√102−62=8.延长EG 交x 轴于点H ,∵ EG // y 轴,∴ ∠GHC 是直角,在Rt △GHC 中,设GC =m ,则有CH =OH −OC =BE −GC =6−m ,GH =EH −EG =10−8=2, 则有m 2=22+(6−m)2,∴ m =103,∴ GC =103=OC ,∴ S △BOC =12×103×10=503,三、解答题:本大题共6小题,共68分.解答要写出必要的文字说明、证明过程或演算步骤.17.【答案】 原式=−2+32−√3×√32=−2+32−32=−2.x−3 x−2+1=32−x,两边同乘以(x−2)得,x−3+(x−2)=−3,解得,x=1.经检验x=1是原分式方程的解.【考点】特殊角的三角函数值实数的运算负整数指数幂解分式方程【解析】(1)原式利用立方根的定义,负整数指数幂的意义以及特殊角的三角形函数进行计算即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】原式=−2+32−√3×√32=−2+32−32=−2.x−3 x−2+1=32−x,两边同乘以(x−2)得,x−3+(x−2)=−3,解得,x=1.经检验x=1是原分式方程的解.18.【答案】证明:∵矩形MEFN与矩形EBCF面积相等,∴ME=BE,AM=GH.∵四块矩形花圃的面积相等,即S矩形AMDND =2S矩形MEFN,∴AM=2ME,∴AE=3BE;∵篱笆总长为100m,∴2AB+GH+3BC=100,即2AB+12AB+3BC=100,∴AB=40−65BC.设BC的长度为xm,矩形区域ABCD的面积为ym2,则y=BC⋅AB=x(40−65x)=−65x2+40x,∵AB=40−65BC,∴BE=403−25x>0,解得x<1003,∴y=−65x2+40x(0<x<1003).【考点】二次函数的应用【解析】(1)矩形MEFN与矩形EBCF面积相等,则ME=BE,AM=GH,而四块矩形花圃的面积相等,即S矩形AMDND=2S矩形MEFN,即可证明;(2)设BC的长度为xm,矩形区域ABCD的面积为ym2,则y=BC⋅AB=x(40−65x)=−65x2+40x,即可求解.19.【答案】75,76观察直方图,抽取的30名学生成绩在80≤x<90范围内选取A课程的有9人,所占比为930,那么估计该年级100名学生,学生成绩在80≤x<90范围内,选取A课程的总人数为100×930=30(人);14因该年级每名学生选两门不同的课程,第一次都选了课程C,列树状图如下:等可能结果共有9种,他俩第二次同时选择课程A或课程B的有2种,所以,他俩第二次同时选择课程A或课程B的概率是29.【考点】中位数用样本估计总体列表法与树状图法概率公式频数(率)分布直方图众数【解析】(1)根据中位数和众数的定义求解即可;(2)利用样本估计总体的方法即可估计该年级选择A课程学生成绩在80≤x<90的总人数;(3)直接利用概率公式计算;(4)画树状图展示所有16种等可能的结果数,找出他俩第二次选课相同的结果数,然后根据概率公式计算.【解答】在72,73,74,75,76,76,79这组已经按从小到大排列好的数据中,中位数为75,众数为76;故答案为:75,76;观察直方图,抽取的30名学生成绩在80≤x<90范围内选取A课程的有9人,所占比为930,那么估计该年级100名学生,学生成绩在80≤x<90范围内,选取A课程的总人数为100×930=30(人);因为学校开设了四门校本课程供学生选择,小乔随机选取一门课程,则他选中课程D的概率为14;故答案为:14;因该年级每名学生选两门不同的课程,第一次都选了课程C,列树状图如下:等可能结果共有9种,他俩第二次同时选择课程A或课程B的有2种,所以,他俩第二次同时选择课程A或课程B的概率是29.20.【答案】证明:∵Rt△ABC中,∠C=90∘,DF⊥CB,∴∠C=∠DFB=90∘.∵四边形ABDE是正方形,∴BD=AB,∠DBA=90∘,∵∠DBF+∠ABC=90∘,∠CAB+∠ABC=90∘,∴∠DBF=∠CAB,∴△ABC≅△BDF(AAS);∵△ABC≅△BDF,∴DF=BC=5,BF=AC=9,∴FC=BF+BC=9+5=14.如图,连接DN,∵BE是正方形顶点A与顶点D的对称轴,∴AN=DN.如使得AN+PN最小,只需D、N、P在一条直线上,由于点P、N分别是AC和BE上的动点,作DP1⊥AC,交BE于点N1,垂足为P1,所以,AN+PN的最小值等于DP1=FC=14.【考点】正方形的性质全等三角形的性质与判定轴对称——最短路线问题【解析】(1)根据正方形的性质得出BD=AB,∠DBA=90∘,进而得出∠DBF=∠CAB,因为∠C=∠DFB=90∘.根据AAS即可证得结论;(2)根据正方形的性质AN=DN,如使得AN+PN最小,只需D、N、P在一条直线上,根据垂线段最短,作DP1⊥AC,交BE于点N1,垂足为P1,则AN+PN的最小值等于DP1=FC=14.【解答】证明:∵Rt△ABC中,∠C=90∘,DF⊥CB,∴∠C=∠DFB=90∘.∵四边形ABDE是正方形,∴BD=AB,∠DBA=90∘,∵∠DBF+∠ABC=90∘,∠CAB+∠ABC=90∘,∴∠DBF=∠CAB,∴△ABC≅△BDF(AAS);∵△ABC≅△BDF,∴DF=BC=5,BF=AC=9,∴FC=BF+BC=9+5=14.如图,连接DN,∵BE是正方形顶点A与顶点D的对称轴,∴AN=DN.如使得AN+PN最小,只需D、N、P在一条直线上,由于点P、N分别是AC和BE上的动点,作DP1⊥AC,交BE于点N1,垂足为P1,所以,AN+PN的最小值等于DP1=FC=14.21.【答案】=bsinB=【考点】圆的综合题【解析】探究活动:由锐角三角函数可得asinA =bsinB=csinC=2R,可求解;初步应用:将数值代入解析式可求解;综合应用:由三角形的外角性质可求∠ACB=30∘,利用(1)的结论可得ABsin∠ACB =BCsinA,即可求解.【解答】探究活动:asinA =bsinB=csinC,理由如下:如图2,过点C作直径CD交⊙O于点D,连接BD,∴∠A=∠D,∠DBC=90∘,∴sinA=sinD,sinD=a2R,∴asinA =a a2R=2R,同理可证:bsinB =2R,csinC=2R,∴asinA =bsinB=csinC=2R;22.【答案】在0≤x≤3范围内,当x=1时,y最大值=4;当x=3时,y最小值=0;①当函数y在t≤x≤t+1内的抛物线完全在对称轴的左侧,当x=t时取得最小值q=−t2+2t+3,最大值p=−(t+1)2+2(t+1)+3,令p−q=−(t+1)2+2(t+1)+3−(−t2+2t+3)=3,即−2t+1=3,解得t=−1.②当t+1=1时,此时p=4,q=3,不合题意,舍去;③当函数y在t≤x≤t+1内的抛物线分别在对称轴的两侧,此时p=4,令p−q=4−(−t2+2t+3)=3,即t2−2t−2=0解得:t1=1+√3(舍),t2=1−√3;或者p−q=4−[−(t+1)2+2(t+1)+3]=3,即t=±√3(不合题意,舍去);④当t=1时,此时p=4,q=3,不合题意,舍去;⑤当函数y在t≤x≤t+1内的抛物线完全在对称轴的右侧,当x=t时取得最大值p=−t2+2t+3,最小值q=−(t+1)2+2(t+1)+3,令p−q=−t2+2t+3−[−(t+1)2+2(t+1)+3]=3,解得t=2.综上,t=−1或t=1−√3或t=2.【考点】二次函数综合题【解析】(I)首先解方程求得A、B两点的坐标,然后利用待定系数法确定二次函数的解析式即可;(II)根据解方程直接写出点C的坐标,然后确定顶点D的坐标,根据两点的距离公式可得△BDC三边的长,根据勾股定理的逆定理可得∠DBC=90∘,根据边长可得△AOB和△DBC两直角边的比相等,则两直角三角形相似;(III)(1)确定抛物线的对称轴是x=1,根据增减性可知:x=1时,y有最大值,当x=3时,y有最小值;(2)分5种情况:①当函数y在t≤x≤t+1内的抛物线完全在对称轴的左侧;②当t+1=1时;③当函数y在t≤x≤t+1内的抛物线分别在对称轴的两侧;④当t=1时,⑤函数y在t≤x≤t+1内的抛物线完全在对称轴的右侧;分别根据增减性可解答.【解答】在0≤x≤3范围内,当x=1时,y最大值=4;当x=3时,y最小值=0;①当函数y在t≤x≤t+1内的抛物线完全在对称轴的左侧,当x=t时取得最小值q=−t2+2t+3,最大值p=−(t+1)2+2(t+1)+3,令p−q=−(t+1)2+2(t+1)+3−(−t2+2t+3)=3,即−2t+1=3,解得t=−1.②当t+1=1时,此时p=4,q=3,不合题意,舍去;③当函数y在t≤x≤t+1内的抛物线分别在对称轴的两侧,此时p=4,令p−q=4−(−t2+2t+3)=3,即t2−2t−2=0解得:t1=1+√3(舍),t2=1−√3;或者p−q=4−[−(t+1)2+2(t+1)+3]=3,即t=±√3(不合题意,舍去);④当t=1时,此时p=4,q=3,不合题意,舍去;⑤当函数y在t≤x≤t+1内的抛物线完全在对称轴的右侧,当x=t时取得最大值p=−t2+2t+3,最小值q=−(t+1)2+2(t+1)+3,令p−q=−t2+2t+3−[−(t+1)2+2(t+1)+3]=3,解得t=2.综上,t=−1或t=1−√3或t=2.。
山东省日照市2019-2020学年中考数学第四次调研试卷含解析
山东省日照市2019-2020学年中考数学第四次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知二次函数2y ax bx c =++的图象与x 轴交于点()2,0-、()1,0x ,且112x <<,与y 轴的正半轴的交点在()0,2的下方.下列结论:①420a b c -+=;②0a b c -+<;③20a c +>;④210a b -+>.其中正确结论的个数是( )个. A .4个B .3个C .2个D .1个2.16=( ) A .±4B .4C .±2D .23.下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是( ) A .y=(x ﹣2)2+1 B .y=(x+2)2+1 C .y=(x ﹣2)2﹣3 D .y=(x+2)2﹣34.小明在九年级进行的六次数学测验成绩如下(单位:分):76、82、91、85、84、85,则这次数学测验成绩的众数和中位数分别为( ) A .91,88B .85,88C .85,85D .85,84.55.两个一次函数1y ax b =+,2y bx a =+,它们在同一直角坐标系中的图象大致是( )A .B .C .D .6.如图,正方形ABCD 的边长为4,点M 是CD 的中点,动点E 从点B 出发,沿BC 运动,到点C 时停止运动,速度为每秒1个长度单位;动点F 从点M 出发,沿M→D→A 远动,速度也为每秒1个长度单位:动点G 从点D 出发,沿DA 运动,速度为每秒2个长度单位,到点A 后沿AD 返回,返回时速度为每秒1个长度单位,三个点的运动同时开始,同时结束.设点E 的运动时间为x ,△EFG 的面积为y ,下列能表示y 与x 的函数关系的图象是( )A .B .C .D .7.如图是一个由5个相同的正方体组成的立体图形,它的主视图是( )A .B .C .D .8.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年山东省日照市中考数学试卷一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合要求的,请把符合要求的的选项选出来.1. 2020的相反数是()A.−12020B.12020C.−2020D.20202. 单项式−3ab的系数是()A.3B.−3C.3aD.−3a3. “扶贫”是新时期党和国家的重点工作之一,为落实习近平总书记提出的“精准扶贫”战略构想,某省预计三年内脱贫1020000人,数字1020000用科学记数法可表示为()A.1.02×106B.1.02×105C.10.2×105D.102×1044. 下列调查中,适宜采用全面调查的是()A.调查全国初中学生视力情况B.了解某班同学“三级跳远”的成绩情况C.调查某品牌汽车的抗撞击情况D.调查2019年央视“主持人大赛”节目的收视率5. 将函数y=2x的图象向上平移3个单位,则平移后的函数解析式是()A.y=2x+3B.y=2x−3C.y=2(x+3)D.y=2(x−3)6. 下列各式中,运算正确的是()A.x3+x3=x6B.x2⋅x3=x5C.(x+3)2=x2+9D.√5−√3=√27. 已知菱形的周长为8,两邻角的度数比为1:2,则菱形的面积为()A.8√3B.8C.4√3D.2√38. 不等式组{x+1≥23(x−5)<−9的解集在数轴上表示为()A. B. C. D.9. 如图,几何体由5个相同的小正方体构成,该几何体三视图中为轴对称图形的是()A.主视图B.左视图C.俯视图D.主视图和俯视图10. 如图,AB是⊙O的直径,CD为⊙O的弦,AB⊥CD于点E,若CD=6√3,AE=9,则阴影部分的面积为()A.6π−92√3 B.12π−9√3 C.3π−94√3 D.9√311. 用大小相同的圆点摆成如图所示的图案,按照这样的规律摆放,则第10个图案中共有圆点的个数是()A.59B.65C.70D.7112. 如图,二次函数y=ax2+bx+c(a≠0)图象的对称轴为直线x=−1,下列结论:①abc<0;②3a<−c;③若m为任意实数,则有a−bm≤am2+b;④若图象经过点(−3, −2),方程ax2+bx+c+2=0的两根为x1,x2(|x1|<|x2|),则2x1−x2=5.其中正确的结论的个数是()A.4个B.3个C.2个D.1个二、填空题:本大题共4小题,每小题4分,共16分.不需写解答过程,只要求填写最后结果.13.分解因式:mn+4n=________.14. 如图,有一个含有30∘角的直角三角板,一顶点放在直尺的一条边上,若∠2=65∘,则∠1的度数是________.15.《孙子算经》记载:今有3人共车,二车空;二人共车,九人步,问人与车各几何?译文:今有若干人乘车,若每三人共乘一辆车,最终剩余2辆车;若每2人共乘一辆车,最终剩余9人无车可乘.问共有多少人?多少辆车?若设有x人,则可列方程组为________.16.如图,在平面直角坐标系中,▱ABCD的顶点B位于y轴的正半轴上,顶点C,D位于x轴的负半轴上,双曲线y=kx(k< 0, x<0)与▱ABCD的边AB,AD交于点E、F,点A的纵坐标为10,F(−12, 5),把△BOC沿着BC所在直线翻折,使原点O落在点G 处,连接EG ,若EG // y 轴,则△BOC 的面积是________.三、解答题:本大题共6小题,共68分.解答要写出必要的文字说明、证明过程或演算步骤.17. (1)计算:√−83+(23)−1−√3×cos30∘;(2)解方程:x−3x−2+1=32−x .18.如图,某小区有一块靠墙(墙的长度不限)的矩形空地ABCD ,为美化环境,用总长为100m 的篱笆围成四块矩形花圃(靠墙一侧不用篱笆,篱笆的厚度不计).(1)若四块矩形花圃的面积相等,求证:AE =3BE ;(2)在(1)的条件下,设BC 的长度为xm ,矩形区域ABCD 的面积为ym 2,求y 与x 之间的函数关系式,并写出自变量x 的取值范围.19. 为落实我市关于开展中小学课后服务工作的要求,某学校开设了四门校本课程供学生选择:A .趣味数学;B .博乐阅读;C .快乐英语;D .硬笔书法.某年级共有100名学生选择了A 课程,为了解本年级选择A 课程学生的学习情况,从这100名学生中随机抽取了30名学生进行测试,将他们的成绩(百分制)分成六组,绘制成频数分布直方图.(1)已知70≤x <80这组的数据为:72,73,74,75,76,76,79.则这组数据的中位数是________;众数是________;(2)根据题中信息,估计该年级选择A 课程学生成绩在80≤x <90的总人数;(3)该年级学生小乔随机选取了一门课程,则小乔选中课程D 的概率是________;(4)该年级每名学生选两门不同的课程,小张和小王在选课程的过程中,若第一次都选了课程C ,那么他俩第二次同时选择课程A 或课程B 的概率是多少?请用列表法或树状图的方法加以说明.20. 如图,Rt △ABC 中,∠C =90∘,以AB 为边在AB 上方作正方形ABDE ,过点D 作DF ⊥CB ,交CB 的延长线于点F ,连接BE .(1)求证:△ABC ≅△BDF ;(2)P ,N 分别为AC ,BE 上的动点,连接AN ,PN ,若DF =5,AC =9,求AN +PN 的最小值.21.阅读理解:如图1,Rt △ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,∠C =90∘,其外接圆半径为R .根据锐角三角函数的定义:sinA =a c ,sinB =b c ,可得a sinA =b sinB =c =2R ,即:asinA =bsinB =csinC =2R ,(规定sin90∘=1).探究活动:如图2,在锐角△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,其外接圆半径为R ,那么:a sinA ________c sinC (用>、=或<连接),并说明理由.事实上,以上结论适用于任意三角形.初步应用:在△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,∠A =60∘,∠B =45∘,a =8,求b .综合应用:如图3,在某次数学活动中,小凤同学测量一古塔CD 的高度,在A 处用测角仪测得塔顶C 的仰角为15∘,又沿古塔的方向前行了100m 到达B 处,此时A ,B ,D 三点在一条直线上,在B 处测得塔顶C 的仰角为45∘,求古塔CD 的高度(结果保留小数点后一位).(√3≈1.732, sin15∘=√6−√24) 22. 如图,函数y =−x 2+bx +c 的图象经过点A(m, 0),B(0, n)两点,m ,n 分别是方程x 2−2x −3=0的两个实数根,且m <n .(Ⅰ)求m ,n 的值以及函数的解析式;(Ⅱ)设抛物线y =−x 2+bx +c 与x 轴的另一个交点为C ,抛物线的顶点为D ,连接AB ,BC ,BD ,CD .求证:△BCD ∽△OBA ;(Ⅲ)对于(Ⅰ)中所求的函数y=−x2+bx+c,(1)当0≤x≤3时,求函数y的最大值和最小值;(2)设函数y在t≤x≤t+1内的最大值为p,最小值为q,若p−q=3,求t的值.参考答案与试题解析2020年山东省日照市中考数学试卷一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合要求的,请把符合要求的的选项选出来.1.【答案】C【考点】相反数【解析】直接利用相反数的定义得出答案.【解答】2020的相反数是:−2020.2.【答案】B【考点】单项式【解析】根据单项式系数的定义即可求解.【解答】单项式−3ab的系数是−3.3.【答案】A【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n 是负数.【解答】1020000=1.02×106.4.【答案】B【考点】全面调查与抽样调查【解析】根据全面调查和抽样调查的适用条件即可求解.【解答】对于调查方式,适宜于全面调查的常见存在形式有:范围小或准确性要求高的调查,A.调查全国初中学生视力情况没必要用全面调查,只需抽样调查即可,B.了解某班同学“三级跳远”的成绩情况,因调查范围小且需要具体到某个人,适宜全面调查,C.调查某品牌汽车的抗撞击情况,此调查兼破坏性,显然不能适宜全面调查,D.调查2019年央视“主持人大赛”节目的收视率,因调查受众广范围大,故不适宜全面调查,5.【答案】A【考点】一次函数图象与几何变换【解析】直接利用一次函数“上加下减”的平移规律即可得出答案.【解答】∵将函数y=2x的图象向上平移3个单位,∴所得图象的函数表达式为:y=2x+3.6.【答案】B【考点】二次根式的加减混合运算同底数幂的乘法完全平方公式合并同类项【解析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂的乘法法则,底数不变,指数相加;完全平方公式:(a±b)2=a2±2ab+b2;以及二次根式的减法运算法则逐项分析即可.【解答】B、x2⋅x3=x5计算正确,故选项B符合题意(1)C、(x+3)2=x2+6x+9,故选项C不符合题意(2)D、二次根式√5与√3不是同类二次根式故不能合并,故选项D不符合题意.故选:B.7.【答案】D【考点】菱形的性质【解析】根据菱形的性质和菱形面积公式即可求出结果.【解答】如图,∵两邻角度数之比为1:2,两邻角和为180∘,∴∠ABC=60∘,∠BAD=120∘,∵菱形的周长为8,∴边长AB=2,∴菱形的对角线AC=2,BD=2×2sin60∘=2√3,∴菱形的面积=12AC⋅BD=12×2×2√3=2√3.8.【答案】D【考点】解一元一次不等式组在数轴上表示不等式的解集【解析】首先解出不等式的解集,然后再根据不等式组解集的规律:大小小大中间找,确定不等式组的解集,再在数轴上表示即可.【解答】不等式组{x+1≥23(x−5)<−9,由①得:x≥1,由②得:x<2,∴不等式组的解集为1≤x<2.数轴上表示如图:,9.【答案】B【考点】简单组合体的三视图轴对称图形【解析】先得到该几何体的三视图,再根据轴对称图形的定义即可求解.【解答】由如图所示的几何体可知:该几何体的主视图、左视图和俯视图分别是,其中左视图是轴对称图形.10.【答案】A【考点】扇形面积的计算垂径定理勾股定理【解析】根据垂径定理得出CE=DE=12CD=3√3,再利用勾股定理求得半径,根据锐角三角函数关系得出∠EOD=60∘,进而结合扇形面积求出答案.【解答】∵AB是⊙O的直径,CD为⊙O的弦,AB⊥CD于点E,∴CE=DE=12CD=3√3.设⊙O的半径为r,在直角△OED中,OD2=OE2+DE2,即r2=(9−r)2+(3√3)2,解得,r=6,∴OE=3,∴cos∠BOD=OEOD =36=12,∴∠EOD=60∘,∴S BOD=16π×36=6π,S Rt△OED=12×3×3√3=92√3,∴S=6π−92√3,11.【答案】C【考点】规律型:图形的变化类规律型:点的坐标规律型:数字的变化类【解析】观察图形可知,第1个图形共有三角形5+2个;第2个图形共有三角形5+2+3个;第3个图形共有三角形5+2+ 3+4个;第4个图形共有三角形5+2+3+4+5个;…;则第n个图形共有三角形5+2+3+4+...+n+(n+1)个;由此代入n=10求得答案即可.【解答】根据图中圆点排列,当n=1时,圆点个数5+2;当n=2时,圆点个数5+2+3;当n=3时,圆点个数5+2+3+4;当n=4时,圆点个数5+2+3+4+5,…∴当n=10时,圆点个数5+2+3+4+5+6+7+8+9+10+11=4+(1+2+3+4+5+6+7+8+9+10+11)=4+12×11×(11+1)=70.12.【答案】C【考点】二次函数图象上点的坐标特征抛物线与x轴的交点根与系数的关系二次函数图象与系数的关系【解析】由图象可知a<0,c>0,由对称轴得b=2a<0,则abc>0,故①错误;当x=1时,y=a+b+c=a+2a+c =3a+c<0,得②正确;由x=−1时,y有最大值,得a−b+c≥am2+bm+c,得③错误;由题意得二次函数y=ax2+ bx+c与直线y=−2的一个交点为(−3, −2),另一个交点为(1, −2),即x1=1,x2=−3,进而得出④正确,即可得出结论.【解答】由图象可知:a <0,c >0,−b 2a =−1,∴ b =2a <0,∴ abc >0,故①abc <0错误;当x =1时,y =a +b +c =a +2a +c =3a +c <0,∴ 3a <−c ,故②3a <−c 正确;∵ x =−1时,y 有最大值,∴ a −b +c ≥am 2+bm +c (m 为任意实数),即a −b ≥am 2+bm ,即a −bm ≥am 2+b ,故③错误;∵ 二次函数y =ax 2+bx +c(a ≠0)图象经过点(−3, −2),方程ax 2+bx +c +2=0的两根为x 1,x 2(|x 1|<|x 2|), ∴ 二次函数y =ax 2+bx +c 与直线y =−2的一个交点为(−3, −2),∵ 抛物线的对称轴为直线x =−1,∴ 二次函数y =ax 2+bx +c 与直线y =−2的另一个交点为(1, −2),即x 1=1,x 2=−3,∴ 2x 1−x 2=2−(−3)=5,故④正确.所以正确的是②④;二、填空题:本大题共4小题,每小题4分,共16分.不需写解答过程,只要求填写最后结果.13.【答案】n(m +4)【考点】因式分解-提公因式法【解析】直接提取公因式n 分解因式即可求解.【解答】mn +4n =n(m +4).14.【答案】25∘【考点】平行线的性质【解析】延长EF 交BC 于点G ,根据平行线的性质可得∠2=∠3=65∘,再根据直角三角形的两个锐角互余即可求解.【解答】如图,延长EF 交BC 于点G ,∵ 直尺,∴ AD // BC ,∴ ∠2=∠3=65∘,又∵ 30∘角的直角三角板,∴ ∠1=90∘−65∘=25∘.15.【答案】{3(x −2)=y 2x +9=y【考点】由实际问题抽象出二元一次方程组【解析】根据“每3人乘一车,最终剩余2辆空车;若每2人同乘一车,最终剩下9人因无车可乘而步行”,即可得出关于x ,y 的二元一次方程组,此题得解.【解答】依题意,得:{3(x −2)=y 2x +9=y. 16.【答案】503 【考点】反比例函数系数k 的几何意义 坐标与图形变化-对称 反比例函数的性质 平行四边形的性质 反比例函数图象上点的坐标特征【解析】将点F 坐标代入解析式,可求双曲线解析式为y =−60x ,由平行四边形的性质可得OB =10,BE =6,由勾股定理可求EG 的长,由勾股定理可求CO 的长,即可求解.【解答】∵ 双曲线y =k x (k <0,x <0)经过点F(−12, 5),∴ k =−60,∴ 双曲线解析式为y =−60x . ∵ ▱ABCD 的顶点A 的纵坐标为10,∴ BO =10,点E 的纵坐标为10,且在双曲线y =−60x 上, ∴ 点E 的横坐标为−6,即BE =6.∵ △BOC 和△BGC 关于BC 对称,∴ BG =BO =10,GC =OC .∵ EG // y 轴,在Rt △BEG 中,BE =6,BG =10,∴ EG =√102−62=8.延长EG 交x 轴于点H ,∵ EG // y 轴,∴ ∠GHC 是直角,在Rt △GHC 中,设GC =m ,则有CH =OH −OC =BE −GC =6−m ,GH =EH −EG =10−8=2, 则有m 2=22+(6−m)2,∴ m =103,∴ GC =103=OC ,∴ S △BOC =12×103×10=503,三、解答题:本大题共6小题,共68分.解答要写出必要的文字说明、证明过程或演算步骤.17.【答案】 原式=−2+32−√3×√32=−2+32−32=−2.x−3 x−2+1=32−x,两边同乘以(x−2)得,x−3+(x−2)=−3,解得,x=1.经检验x=1是原分式方程的解.【考点】特殊角的三角函数值实数的运算负整数指数幂解分式方程【解析】(1)原式利用立方根的定义,负整数指数幂的意义以及特殊角的三角形函数进行计算即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】原式=−2+32−√3×√32=−2+32−32=−2.x−3 x−2+1=32−x,两边同乘以(x−2)得,x−3+(x−2)=−3,解得,x=1.经检验x=1是原分式方程的解.18.【答案】证明:∵矩形MEFN与矩形EBCF面积相等,∴ME=BE,AM=GH.∵四块矩形花圃的面积相等,即S矩形AMDND =2S矩形MEFN,∴AM=2ME,∴AE=3BE;∵篱笆总长为100m,∴2AB+GH+3BC=100,即2AB+12AB+3BC=100,∴AB=40−65BC.设BC的长度为xm,矩形区域ABCD的面积为ym2,则y=BC⋅AB=x(40−65x)=−65x2+40x,∵AB=40−65BC,∴BE=403−25x>0,解得x<1003,∴y=−65x2+40x(0<x<1003).【考点】二次函数的应用【解析】(1)矩形MEFN与矩形EBCF面积相等,则ME=BE,AM=GH,而四块矩形花圃的面积相等,即S矩形AMDND=2S矩形MEFN,即可证明;(2)设BC的长度为xm,矩形区域ABCD的面积为ym2,则y=BC⋅AB=x(40−6x)=−6x2+40x,即可求解.19.【答案】75,76观察直方图,抽取的30名学生成绩在80≤x<90范围内选取A课程的有9人,所占比为930,那么估计该年级100名学生,学生成绩在80≤x<90范围内,选取A课程的总人数为100×930=30(人);14因该年级每名学生选两门不同的课程,第一次都选了课程C,列树状图如下:等可能结果共有9种,他俩第二次同时选择课程A或课程B的有2种,所以,他俩第二次同时选择课程A或课程B的概率是29.【考点】中位数用样本估计总体列表法与树状图法概率公式频数(率)分布直方图众数【解析】(1)根据中位数和众数的定义求解即可;(2)利用样本估计总体的方法即可估计该年级选择A课程学生成绩在80≤x<90的总人数;(3)直接利用概率公式计算;(4)画树状图展示所有16种等可能的结果数,找出他俩第二次选课相同的结果数,然后根据概率公式计算.【解答】在72,73,74,75,76,76,79这组已经按从小到大排列好的数据中,中位数为75,众数为76;故答案为:75,76;观察直方图,抽取的30名学生成绩在80≤x<90范围内选取A课程的有9人,所占比为930,那么估计该年级100名学生,学生成绩在80≤x<90范围内,选取A课程的总人数为100×930=30(人);因为学校开设了四门校本课程供学生选择,小乔随机选取一门课程,则他选中课程D的概率为14;故答案为:14;因该年级每名学生选两门不同的课程,第一次都选了课程C,列树状图如下:等可能结果共有9种,他俩第二次同时选择课程A或课程B的有2种,所以,他俩第二次同时选择课程A或课程B的概率是29.20.【答案】证明:∵Rt△ABC中,∠C=90∘,DF⊥CB,∴∠C=∠DFB=90∘.∵四边形ABDE是正方形,∴BD=AB,∠DBA=90∘,∵∠DBF+∠ABC=90∘,∠CAB+∠ABC=90∘,∴∠DBF=∠CAB,∴△ABC≅△BDF(AAS);∵△ABC≅△BDF,∴DF=BC=5,BF=AC=9,∴FC=BF+BC=9+5=14.如图,连接DN,∵BE是正方形顶点A与顶点D的对称轴,∴AN=DN.如使得AN+PN最小,只需D、N、P在一条直线上,由于点P、N分别是AC和BE上的动点,作DP1⊥AC,交BE于点N1,垂足为P1,所以,AN+PN的最小值等于DP1=FC=14.【考点】正方形的性质全等三角形的性质与判定轴对称——最短路线问题【解析】(1)根据正方形的性质得出BD=AB,∠DBA=90∘,进而得出∠DBF=∠CAB,因为∠C=∠DFB=90∘.根据AAS即可证得结论;(2)根据正方形的性质AN=DN,如使得AN+PN最小,只需D、N、P在一条直线上,根据垂线段最短,作DP1⊥AC,交BE于点N1,垂足为P1,则AN+PN的最小值等于DP1=FC=14.【解答】证明:∵Rt△ABC中,∠C=90∘,DF⊥CB,∴∠C=∠DFB=90∘.∵四边形ABDE是正方形,∴BD=AB,∠DBA=90∘,∵∠DBF+∠ABC=90∘,∠CAB+∠ABC=90∘,∴∠DBF=∠CAB,∴△ABC≅△BDF(AAS);∵△ABC≅△BDF,∴DF=BC=5,BF=AC=9,∴FC=BF+BC=9+5=14.如图,连接DN,∵BE是正方形顶点A与顶点D的对称轴,∴AN=DN.如使得AN+PN最小,只需D、N、P在一条直线上,由于点P、N分别是AC和BE上的动点,作DP1⊥AC,交BE于点N1,垂足为P1,所以,AN+PN的最小值等于DP1=FC=14.21.【答案】=bsinB=【考点】圆的综合题【解析】探究活动:由锐角三角函数可得asinA =bsinB=csinC=2R,可求解;初步应用:将数值代入解析式可求解;综合应用:由三角形的外角性质可求∠ACB=30∘,利用(1)的结论可得ABsin∠ACB =BCsinA,即可求解.【解答】探究活动:asinA =bsinB=csinC,理由如下:如图2,过点C作直径CD交⊙O于点D,连接BD,∴∠A=∠D,∠DBC=90∘,∴sinA=sinD,sinD=a2R,∴asinA =a a2R=2R,同理可证:bsinB =2R,csinC=2R,∴asinA =bsinB=csinC=2R;22.【答案】在0≤x≤3范围内,当x=1时,y最大值=4;当x=3时,y最小值=0;①当函数y在t≤x≤t+1内的抛物线完全在对称轴的左侧,当x=t时取得最小值q=−t2+2t+3,最大值p=−(t+1)2+2(t+1)+3,令p−q=−(t+1)2+2(t+1)+3−(−t2+2t+3)=3,即−2t+1=3,解得t=−1.②当t+1=1时,此时p=4,q=3,不合题意,舍去;③当函数y在t≤x≤t+1内的抛物线分别在对称轴的两侧,此时p=4,令p−q=4−(−t2+2t+3)=3,即t2−2t−2=0解得:t1=1+√3(舍),t2=1−√3;或者p−q=4−[−(t+1)2+2(t+1)+3]=3,即t=±√3(不合题意,舍去);④当t=1时,此时p=4,q=3,不合题意,舍去;⑤当函数y在t≤x≤t+1内的抛物线完全在对称轴的右侧,当x=t时取得最大值p=−t2+2t+3,最小值q=−(t+1)2+2(t+1)+3,令p−q=−t2+2t+3−[−(t+1)2+2(t+1)+3]=3,解得t=2.综上,t=−1或t=1−√3或t=2.【考点】二次函数综合题【解析】(I)首先解方程求得A、B两点的坐标,然后利用待定系数法确定二次函数的解析式即可;(II)根据解方程直接写出点C的坐标,然后确定顶点D的坐标,根据两点的距离公式可得△BDC三边的长,根据勾股定理的逆定理可得∠DBC=90∘,根据边长可得△AOB和△DBC两直角边的比相等,则两直角三角形相似;(III)(1)确定抛物线的对称轴是x=1,根据增减性可知:x=1时,y有最大值,当x=3时,y有最小值;(2)分5种情况:①当函数y在t≤x≤t+1内的抛物线完全在对称轴的左侧;②当t+1=1时;③当函数y在t≤x≤t+1内的抛物线分别在对称轴的两侧;④当t=1时,⑤函数y在t≤x≤t+1内的抛物线完全在对称轴的右侧;分别根据增减性可解答.【解答】在0≤x≤3范围内,当x=1时,y最大值=4;当x=3时,y最小值=0;①当函数y在t≤x≤t+1内的抛物线完全在对称轴的左侧,当x=t时取得最小值q=−t2+2t+3,最大值p=−(t+1)2+2(t+1)+3,令p−q=−(t+1)2+2(t+1)+3−(−t2+2t+3)=3,即−2t+1=3,解得t=−1.②当t+1=1时,此时p=4,q=3,不合题意,舍去;③当函数y在t≤x≤t+1内的抛物线分别在对称轴的两侧,此时p=4,令p−q=4−(−t2+2t+3)=3,即t2−2t−2=0解得:t1=1+√3(舍),t2=1−√3;或者p−q=4−[−(t+1)2+2(t+1)+3]=3,即t=±√3(不合题意,舍去);④当t=1时,此时p=4,q=3,不合题意,舍去;⑤当函数y在t≤x≤t+1内的抛物线完全在对称轴的右侧,当x=t时取得最大值p=−t2+2t+3,最小值q=−(t+1)2+2(t+1)+3,令p−q=−t2+2t+3−[−(t+1)2+2(t+1)+3]=3,解得t=2.综上,t=−1或t=1−√3或t=2.。