hypermesh运用实例
hypermesh与abaqus接口连接经典实例
模型中考虑了材料、几何的非线性、接触和Tie连接,所有设置都在HM中完成,输出inp 文件后可以直接在Abaqus中计算。
尤其注意在HM6.0中利用宏菜单中的Abaqus Contact Manager来定义接触、Tie连接等问题。
欢迎大家批评指正。
同时该算例仅仅是一个step的,如果哪位能将其扩展到多个step,还会给以积分奖励。
再加一些步骤说明:问题描述:如下图所示模型,模型整体分为三部分,黄色的tube、深蓝色的holder和浅蓝色的welded_part。
其中tube和holder部分属于接触,而holder和welded_part两部分的连接属于焊接,这里采用Abaqus中的Tie连接方式。
最后固定welded_part的一端,而在tube的一端施加一个扭矩,为了保证不发生刚体位移,在tube的另一端施加一个止推的约束。
定义ABAQUS模板:在Geom页面上选择user prof…,从弹出菜单中选择ABAQUS,然后选择Standard 3D。
为保证问题具有一般性,对上述模型划分的网格在连接的部分均保证网格不对齐,在宽度和圆周上均采用了不同的网格密度。
单元类型的设置:因为涉及接触问题,所以模型中的实体单元均采用Abaqus中的C3D8R减缩积分单元,单元类型的选择请参考Abaqus使用手册。
在HyperMesh中改变单元类型的步骤如下:1. 在1D、2D和3D的任何一个页面中点击elem types。
2. 选择2d&3d子面板,根据单元的结构选择单元类型,在这个例子中点击hex8,从弹出菜单中选择C3D8R。
3. 选中要更新单元类型的单元,这里选择by collector(选择所有三个comps)。
4. 点击update。
5. 如果需要察看现有任意一个单元的类型,在永久菜单上点击card,将操作对象设为elem,选择单元后点击edit。
hypermesh运用实例
运用HyperMesh软件对拉杆进行有限元分析1.1 问题的描述拉杆结构如图1-1所示,其中各个参数为:D1=5mm、D2=15mm,长度L0=50mm、L1=60mm、L2=110mm,圆角半径R=mm,拉力P=4500N。
求载荷下的应力和变形。
图1-1 拉杆结构图1.2 有限元分析单元单元采用三维实体单元。
边界条件为在拉杆的纵向对称中心平面上施加轴向对称约束。
1.3 模型创建过程1.3.1 CAD模型的创建拉杆的CAD模型使用ProE软件进行创建,如图1-2所示,将其输出为IGES格式文件即可。
图1-2 拉杆三维模型1.3.2 CAE模型的创建CAE模型的创建工程为:将三维CAD创建的模型保存为lagan.igs文件。
(1)启动HyperWorks中的hypermesh:选择optistuct模版,进入hypermesh程序窗口。
主界面如图1-3所示。
(2)程序运行后,在下拉菜单“File”的下拉菜单中选择“Import”,在标签区选择导入类型为“Import Goemetry”,同时在标签区点击“select files”对应的图形按钮,选择“lagan01.igs”文件,点击“import”按钮,将几何模型导入进来,导入及导入后的界面如图1-4所示。
图1-3 hypermesh程序主页面图1-4 导入的几何模型(4)几何模型的编辑。
根据模型的特点,在划分网格时可取1/8,然后进行镜像操作,画出全部网格。
因此,首先对其进行几何切分。
1)曲面形体实体化。
点击页面菜单“Geom”,在对应面板处点击“Solid”按钮,选择“surfs”,点击“all”则所有表面被选择,点击“creat”,然后点击“return”,如图1-5~图1-7所示。
图1-5 Geom页面菜单及其对应的面板图1-6 solids按钮命令对应的弹出子面板图1-7 实体化操作界面2)临时节点的创建。
点击页面菜单“Geom”,在对应面板中点击“nodes”按钮,在弹出的子面板中选择“on line”,选择如图1-8所示的五根线,点击“creat”,然后return,这样就创建了临时节点。
螺栓预紧结构用Hypermesh做接触实例
在很多场合,要将若干个零件组装起来进行有限元分析,如将连杆与连杆盖用连杆螺栓连接起来,机体与气缸盖用螺栓连接起来,机体与主轴承盖连接起来。
如何模拟螺栓预紧结构更符合实际情况,是提高有限元计算精度的关键。
螺栓+螺母的连接与螺钉的连接有所不同,螺栓+螺母的连接方式比较简单,可以假设螺母与螺栓刚性连接,由作用在螺母上的拧紧力矩折算出作用在螺栓上的拉伸力F ,将螺杆中间截断,在断面各单元的节点上施加预紧单元PRETS179,模拟螺栓的连接情况。
对于螺钉(双头螺栓)连接有些不一样,螺钉头部对连接件1施加压应力,接触面是一个圆环面,但栽丝的一端,连接件2受拉应力。
一种方法是在螺纹圆周上施加拉力,相当于螺纹牙齿接触部分,而且主要在前几牙上存在拉力,如第一牙承担60~65%的载荷,第二牙承担20~25%的载荷,其余作用在后几牙,但因螺纹的螺距较小,一般为1.5~2mm ,而单元的尺寸为3~4mm ,因此可以假定在连接件2的表面的螺纹圆周节点上施加拉力。
另一种方法是在连接件2的表面的整个螺纹截面的所有节点上施加拉力,这样可能防止圆周上各节点上应力过大,与实际情况差别较大,应为实际表面圆周各节点只承受60~65%的载荷。
比较好的处理办法是在连接件的表面单元的圆周节点上施加70%的载荷,在第二层单元的圆周节点上施加30%的载荷,但操作比较麻烦。
随着连接件1、2的内部结构和刚度不同,以及连接螺钉的个数和分布的不均匀性,连接件1、2表面的变形不一致,产生翘曲,使表面的节点有的接触,有的分离,而导致接触面的应力分布和应变分布不均匀,因此需用非线性的接触理论来讨论合件的应力问题。
若不考察螺栓头部与连接件1表面的变形,可用将螺栓与连接件1用一个公共面连接,作为由两种不同材料的构件组成一个整体。
螺钉(双头螺栓)与连接件2也用这种方法处理。
图1是一个简单的螺钉连接实体模型。
图2是用hypermesh 划分网格后的模型。
图1 实体模型 图2 网格模型该模型由三个零件组成,连接件1(蓝色)、连接件2(橙色),螺钉(紫红)。
Hypermesh学习教程
1.1 实例:创建、编辑实体并划分3D网格本实例描述使用HyperMesh分割实体,并利用Solid Map功能创建六面体网格的过程。
模型如图5-1所示。
图5-1 模型结构本实例包括以下内容。
●导入模型。
●通过面生成实体。
●分割实体成若干个简单、可映射的部分。
●使用Solid Map功能创建六面体网格。
打开模型文件。
(1)启动HyperMesh。
(2)在User Profiles对话框中选择Default(HyperMesh)并单击OK按钮。
(3)单击工具栏()按钮,在弹出的Open file… 对话框中选择solid_geom.hm 文件。
(4)单击Open按钮,solid_geom.hm文件将被载入到当前HyperMesh进程中,取代进程中已有数据。
使用闭合曲面(bounding surfaces)功能创建实体。
(1)在主面板中选择Geom页,进入solids面板。
(2)单击()按钮,进入bounding surfs子面板。
(3)勾选auto select solid surfaces复选框。
(4)选择图形区任意一个曲面。
此时模型所有面均被选中。
(5)单击Create按钮创建实体。
状态栏提示已经创建一个实体。
注意:实体与闭合曲面的区别是实体边线线型比曲面边线粗。
(6)单击return按钮返回主面板。
使用边界线(bounding lines)分割实体。
(1)进入solid edit面板。
(2)选择trim with lines子面板。
(3)在with bounding lines栏下激活solids选择器。
单击模型任意位置,此时整个模型被选中。
(4)激活lines选择器,在图形区选择如图5-2所示线。
(5)单击trim按钮产生一个分割面,模型被分割成两个部分,如图5-3所示。
图5-2 选择边线图5-3 分割实体使用切割线(cut line)分割实体。
(1)在with cut line栏下激活solids选择器,选择STEP 3创建的较小的四面体,如图5-4所示。
hypermesh梁壳单元混合建模实例(1)
HyperMesh梁单元和壳单元的混合建模本文根据工程实例,应用有限元软件HyperMesh 进行梁单元和壳单元的混合建模,并在其中详细论述,梁单元在与壳单元混合建模的过程中如何对梁单元进行偏置处理,保证梁单元与壳单元的所有节点完全耦合。
在焊接工艺中,梁单元与壳单元的使用可以大大提高整体焊接结构的抵抗变形能力,避免单独使用壳单元时强度和刚度的不足。
HyperMesh软件中提供了大量标准梁的截面,也可以通过实际应用需求单独创建梁截面。
在1D面板中点选HyperBeam选项,如图1所示。
图1 1D面板中的HyperBeam选项HyperBeam中提供了大量的梁截面,如图2所示。
图2 HyperBeam下的各种梁截面图2中红色箭头所指的是各种标准梁截面的属性,包括H型梁,L 型梁,工型梁等等。
可以根据实际需求进行选择,而且可以自己独立进行尺寸编辑。
图2中的shell section可以建立独立的壳截面,solid section可以建立独立的实体截面。
在建立完成各种梁的截面属性之后,可以通过edit section 进行梁截面属性的修改。
以上主要介绍了1D梁单元的使用情况,下面将根据工程实例对壳单元和梁单元的混合建模进行详细的介绍。
图3是梁单元和壳单元焊接之后的三维图,图4是图3中梁单元以1D显示的情况。
二者之间的切换功能键如图5所示。
图3 梁单元和壳单元焊接之后梁单元以3D显示图4 梁单元和壳单元焊接之后梁单元以1D显示图5 梁单元1D与3D之间的切换功能键下面介绍梁单元的具体创建方法,不再讲述壳单元的建立方法。
首先建立Beam Section,在软件左侧右键create--Beam Section,在出现的对话框窗口中对Bean进行命名。
具体的过程如图6所示。
图6 Beam的建立过程之后进入1D--HyperBeam面板,选择Standard section选择Standard Channel面板,打开面板后对各个参数进行修改,如图7所示。
hypermesh运用实例(1)
运用HyperMesh软件对拉杆进行有限元分析问题的描述拉杆结构如图1-1所示,其中各个参数为:D1=5mm、D2=15mm,长度L0=50mm、L1=60mm、L2=110mm,圆角半径R=mm,拉力P=4500N。
求载荷下的应力和变形。
图1-1 拉杆结构图有限元分析单元单元采用三维实体单元。
边界条件为在拉杆的纵向对称中心平面上施加轴向对称约束。
模型创建过程CAD模型的创建拉杆的CAD模型使用ProE软件进行创建,如图1-2所示,将其输出为IGES格式文件即可。
图1-2 拉杆三维模型CAE模型的创建CAE模型的创建工程为:将三维CAD创建的模型保存为文件。
(1)启动HyperWorks中的hypermesh:选择optistuct模版,进入hypermesh 程序窗口。
主界面如图1-3所示。
(2)程序运行后,在下拉菜单“File”的下拉菜单中选择“Import”,在标签区选择导入类型为“Import Goemetry”,同时在标签区点击“select files”对应的图形按钮,选择“”文件,点击“import”按钮,将几何模型导入进来,导入及导入后的界面如图1-4所示。
图1-3 hypermesh程序主页面图1-4 导入的几何模型(4)几何模型的编辑。
根据模型的特点,在划分网格时可取1/8,然后进行镜像操作,画出全部网格。
因此,首先对其进行几何切分。
1)曲面形体实体化。
点击页面菜单“Geom”,在对应面板处点击“Solid”按钮,选择“surfs”,点击“all”则所有表面被选择,点击“creat”,然后点击“return”,如图1-5~图1-7所示。
图1-5 Geom页面菜单及其对应的面板图1-6 solids按钮命令对应的弹出子面板图1-7 实体化操作界面2)临时节点的创建。
点击页面菜单“Geom”,在对应面板中点击“nodes”按钮,在弹出的子面板中选择“on line”,选择如图1-8所示的五根线,点击“creat”,然后return,这样就创建了临时节点。
hypermesh-hyperview应用技巧与高级实例
hypermesh-hyperview应用技巧与高级实例目录1. 引言1.1 背景和意义1.2 结构概述1.3 目的2. HyperMesh基础应用技巧2.1 网格建模2.2 材料定义和属性设置2.3 边界条件设置3. HyperView结果后处理技巧3.1 数据导入与预处理3.2 结果展示与分析3.3 动画与报告生成4. HyperMesh高级实例讲解4.1 汇合区域的创建和优化4.2 拓扑优化与形状优化方法比较分析4.3 多物理场耦合仿真案例研究5 结论和总结1. 引言1.1 背景和意义在工程设计与分析领域中,有着众多的设计软件和仿真工具。
其中,Hypermesh与HyperView作为Altair HyperWorks软件套件中的两大核心模块,提供了强大而全面的功能,被广泛应用于结构、材料、流体等领域的建模、优化以及后处理等任务。
Hypermesh作为一款先进的有限元前处理软件,在结构建模方面具备丰富的功能和强大的求解能力。
通过其快速且高效的网格划分算法,用户可以轻松地将复杂几何图形转换成可用于数值计算的网格模型。
此外,在材料定义和属性设置、边界条件设置等方面,Hypermesh提供了灵活性强、易于操作的工具,使得用户能够更加精确地描述系统,并满足各种特定需求。
与此同时,HyperView则是一款专业级别的有限元后处理工具。
它不仅支持各类有限元结果数据文件的导入,并能够对结果进行处理、展示和分析,而且还提供了丰富多样的可视化功能。
用户可通过HyperView直观地查看、评估仿真结果,并生成动画和报告,以便更好地理解和传达仿真结果。
本文将重点介绍Hypermesh与HyperView的应用技巧与高级实例,帮助读者更好地掌握这两款工具的使用方法,提高工程设计与分析的效率和准确性。
1.2 结构概述本文共分为5个部分。
首先,在引言部分(第1节)中,我们将介绍本文的背景、意义和结构概述。
其次,第2节将详细讲解Hypermesh的基础应用技巧,包括网格建模、材料定义和属性设置、边界条件设置等方面。
Hypermeshmacro应用实例教程-HM8050
Hypermeshmacro应用实例教程-HM8050Hypermesh macro 应用实例教程-HM8050通过此次练习你将:学会创建节点力的命令在Utility菜单的User页面创建运行宏的新按钮为了执行命令文件的命令或HyperMesh Utility菜单页面按钮上的TCL脚本,必须先定义Utility菜单宏。
一个Utility菜单宏包括执行相应操作的有效命令文件或templex命令。
宏可以通过变量$1,$2等的使用来实现数据的传递。
每个变量应说明变量值被替换的位置。
这些宏在.mac文件里定义,其中.mac文件包括了userpage.mac文件。
练习:使用命令文件的命令创建一个T cl脚本,创建一个运行T cl脚本的Utility 菜单宏,在User页面上添加一个运行宏的按钮。
1.准备工作。
2.删除存在的command.cmf文件。
这个文件在开始目录或当前的工作目录里。
3.在HyperMesh中执行操作,运行脚本。
4.从command.cmf文件抽取命令。
5.把命令转换成Tcl格式,进行必要的修改,创建Tcl脚本。
6.使用*createbutton添加一个宏按钮,同时给第5步创建的宏定义一个T cl脚本文件名。
7.重新导入当前的.mac文件到HyperMesh中,导入修改的userpage.mac。
8.调试宏。
第1步:准备工作。
创建宏的第一步是定义通过自动组织单个任务以达到期望目标的整个流程。
在这里,你需要创建一个能在某些节点上自动施加力的按钮宏。
完成这个任务需要以下步骤:进入load collectors面板创建一个力的载荷集进入forces面板在需要的节点上施加力第2步:删除存在的command.cmf文件command.cmf文件在当前的工作目录里。
第一次打开HyperMesh时,该文件被创建在HyperMesh的安装目录下。
一旦你开始在HyperMesh操作,所有的执行命令都被写入到command.cmf 文件。
HyperMesh傻瓜教程【范本模板】
强度分析以A380铝支架分析为例:1.Start license services双击, 进入界面,再点击Start Server,取得软件应用许可,进入Hyper mesh工作界面;2.选择模块Nastran双击,弹出对话框,选择Nastran点击OK。
点击斜向下的绿色箭头,进入界面,将已建好的模型导入HyperMesh;3.选择模型,去实体选择要分析的模型,点击图标变灰色,隐藏其它模型。
点击F2,框选模型(如未选中,模型为壳层),将实体(solid)去掉,只留下壳层(1111)。
;4.数模几何清理(auto cleanup 和F11),避免两条轮廓线过于接近或夹角太小(小于30度),再进行人工修清理模型曲线,点击F11,进入界面,一般使用下图1、2、5创建点和点之间的线、点垂直于线的线、删除特征线(鼠标左键去掉曲线,右键添加)去倒角,geom,defeature,surf fillets,find,选中要去掉的倒角面,remove。
5.切法兰面为了确定零件上与加载点相关联的节点位置,我们在约束(螺栓位置)和加载处切法兰面。
(5。
1)找到圆心Geom-circle—find center;常按鼠标左键,在白线上选择三点,点击“find”,出现圆心(5。
2)画圆center&radius 点找到的圆心,输入radius尺寸,点N1,在面上点三个点,点“create"按住左键选中曲线找到节点, M6的螺栓,法兰半径6.5;M8/8。
5,M10/10。
5,M12/12.5;(5。
3)Surface edit -trim with lines—with lines;选面、点鼠标中键,选线, 点鼠标中键,选择N1、N2、N3点。
6.生成表面三角形壳单元在component中建shell,右键make current,使生成的壳单元在该层中,若生成的网格没有在shell中,可以通过tool-organize-elems—retrieve来转移点击F12—surface/trias(选择三角形单元)选中-mesh,接下来再修理网格(左键增加节点,右键去掉节点),例如,倒角、加强筋位置至少两层单元,应力集中、加载处细分网格;7.检查壳单元,并局部优化.(7.1) 检查网格质量,点击F10/2—d,在界面内点击min。
2024新版hypermesh入门基础教程
设置接触条件等方法实现非线性分析。
求解策略
03
采用增量迭代法或牛顿-拉夫逊法进行求解,考虑收敛性和计算
效率。
实例:悬臂梁线性静态分析
问题描述
对一悬臂梁进行线性静态分析,计算 其在给定载荷下的位移和应力分布。
分析步骤
建立悬臂梁模型,定义材料属性和边界 条件;对模型进行网格划分;施加集中 力载荷;设置求解选项并提交求解;查 看和评估结果。
HyperMesh实现方法 利用OptiStruct求解器进行结构优化,包括拓扑 优化、形状优化和尺寸优化等。
3
案例分析
以某车型车架为例,介绍如何在HyperMesh中 进行拓扑优化和形状优化,提高车架刚度并降低 质量。
疲劳寿命预测技术探讨
01
疲劳寿命预测原理
基于材料疲劳性能、载荷历程等, 采用疲劳累积损伤理论进行寿命 预测。
HyperMesh实现方法
利用多物理场分析模块,定义各物理场的属性、边界 条件等,进行耦合分析。
案例分析
以某电子设备散热问题为例,介绍如何在 HyperMesh中进行结构-热耦合分析,评估设 备的散热性能。
实例:汽车车身结构优化
问题描述
针对某车型车身结构,进行刚度、模态及碰撞性能等多目 标优化。
01
02
HyperMesh实现方 法
利用疲劳分析模块,定义材料疲 劳属性、载荷历程等,进行疲劳 寿命计算。
03
案例分析
以某车型悬挂系统为例,介绍如 何在HyperMesh中进行疲劳寿 命预测,评估悬挂系统的耐久性。
多物理场耦合分析简介
多物理场耦合分析原理
考虑多个物理场(如结构、热、流体等)之间 的相互作用,进行综合分析。
hypermesh实例教学
2. 抽取中性面(钣金件的分析)
• 对于钣金件,为减小计算工作量,常将3D 分析转为2D分析。
3.几何局部简化处理(曲面)
• 为提高网格质量,减少计算时间。常将一些对 零部件功能性影响不大的小孔、边与边之间的 小倒角,面与面之间的小倒角去掉。 • F12: automesh,网格编辑 • F10:网格质量检查 • Defeature模糊处理。如下: • Pinholes(小孔),找到小于diameter < field的孔, 并删除。 • surf fillets(面倒角), edge fillets(边倒角), 找到小于min radius <field的倒角,并删除。
Hyperworks实例
1. 几何清理(实体)
• Non-manifold :两个以上的面共用一条边。黄色。处理 措施为删除其中多余的面。 • Keep tangency :使由封闭曲线构成的面与封闭曲线相 切。 • Auto create (free edges):选择封闭曲线的1条边后,其
它边自动选择。 • F2:删除命令。快捷键。
4.提高曲面的拓扑结构
减少短边,使各个分块更加均匀。 • 通过移除硬点, point edit_replace point edit_replace • 移除内部无用的硬点interior fixed points , point edit_suppress • 重新划分曲面。F11 • F4。测量节点(NODE)或硬点(POINT)之间的距离。 • 使用Surface Edges > (Un)Suppress 或toggle去掉能引起小 网格的小边。 • SHITT+F2.删除多余的node. • 注意:对称体。如园、圆柱体,要从中心或中心面对称 剖开。
基于hypermesh与Nastran的分析实例大全
实例1.模态分析模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。
模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。
这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。
利用hypermesh和nastran做模态分析简约流程如下:1.打开hypermesh进入nastran模块2.定义材料注意:对于不同材料E,NU,RHO取值不同3.定义属性4.定义component5.定义力注意:设置所需模态的阶数,注意前六阶为刚体模态。
6.定义load step设置SPC和METHOD,类型选择模态7.定义control card选择AUTOSPC,BAILOUT为0,DORMM为0,PARAM为-1 8.保存文件,在nastran中进行计算。
1、 2、实例2. 基于hypermesh 及nastran 的动刚度分析打开 hypermesh 选择 nastran 入口。
打开或导入响应模型(只是网格不带实体)。
3、点击material 创建材料。
a) Type 选择 ISOTROPIC (各向同性)b) card image 选择 MAT1(Defines the material properties for linearisotropic materials.)nastran help 文档。
c) 点击 creat/edit ,编辑材料属性输入 E (弹性模量)、NU (泊松比)、RHO (密度)。
由于各物理量之间都是相互关联的因此要 注意单位的选择(详情见附件一)。
这里选择通用的 E=2.07e5,NU=0.3,RHO=7.83e-9。
4、 点击properties 创建属性。
a) 由于是二维模型 type 选择 2D 。
Card image 选择 PSHELL (壳单 元)。
Material 选择刚才新建的材料。
b) 点击 creat/edit 。
HyperMesh划分网格加载计算FEMFA查看结果实例
HyperMesh划分网格加载计算FEMFA查看结果实例目录第一部分HyperMesh软件简介 (3)1.1hypermesh简介 (3)1.1.1 启动Hypermesh软件 (3)1.1.2 界面简介 (4)1.1.3 快捷键 (4)第二部分网格划分 (9)2.1 几何清理 (9)2.1.1 打开模型 (9)2.1.2 调整视图 (9)2.1.3 几何清理 (8)2.2 2D网格划分.. ............................................................................................................................ .102.2.1导入模型 (10)2.2.2几何修补 (11)2.2.3网格划分 (12)2.3 3D 网格划分........................................................................................................... . (14)2.3.1导入几何 (14)2.3.2去实体 (15)2.3.3 2D网格划分 (15)2.3.4 3D 网格划分 (16)2.3.5 删除2D网格 (16)第三部分工况的建立 (20)3.1 componment的创建 (20)3.2 材料的创建 (238)3.3 属性的创建 (18)3.4 载荷的创建 (18)第四部分分析计算 (20)4.1静强度分析 (20)4.1.1划分网格 (20)4.1.2设定工况载荷 (20)4.1.3静强度分析 (20)4.2疲劳分析 (21)4.2.1划分网格 (21)4.2.2疲劳分析 (21)第一部分HyperMesh软件的简介1.1HyperMesh简介1.1.1 启动Hypermesh软件点击开始>所有程序>Altair Hypermesh14.0>Hypermesh14.0,如下图所示,图1-1-1-1打开Hypermesh14.0软件图1-1-1-2optistruct选择Hypermesh打开以后界面如下图所示。
Hypermesh大全
Hypermesh大全1.Geom1.1Node节点(1)某yz坐标创建节点,可以选择坐标系,anode在节点上(2)OnGeometry在几何上创建节点,可以在硬点、线、表面、平面上创建节点(3)ArcCenter在圆弧圆心创建节点,可以在节点、线与硬点组成的圆弧中心创建节点,可以设定容差(默认忽略容差)(4)E某tractParametric在线、面上以输入参数阵列节点,定义阵列区域大小(百分比)与阵列节点数目E某tractonLine在线上阵列节点,可以输入阵列节点数目,间隔算法有线性、指数与曲率控制(中间稀疏两边密或者中间密两边稀疏),可以输入间隔密度(5)InterpolateNode插值节点,输入在节点之间插值节点的数目以及算法,算法有线性、指数与曲率控制可以输入间隔密度InterpolateonLine在线上插值节点InterploateonSurface在面上的节点之间插值节点(6)Interect交叉,在交叉处创建节点,可以创建【向量、线】与【线、实体、表面、平面】交叉处生成节点1.2Nodeedit编辑节点(1)aociate关联节点,作用是把节点关联到【面、点、线、实体】,可以设置容差(2)movenode移动节点,但是节点必须在面上(3)placenode重置节点,将节点移动到选择目标面上,应对个别节点在平面外(4)remap在线上重新排布节点(5)alignnode对齐节点,选中两个节点后,将其他节点移动到选中的两个节点的连线上(直线,无线延伸)1.3tempnode临时节点1.4ditance测距(1)twonode两节点测距(2)threenode三节点测距(3)twopoint 两硬点测距(4)threepoint三硬点测距1.5Point创建硬点(1)某YZ坐标创建硬点(2)ArcCenter圆心创建硬点,可以在节点、线与硬点组成的圆弧中心创建节点,可以设定容差(默认忽略容差)(3)E某tractParametric在线、面上以输入参数阵列硬点,定义阵列区域大小(百分比)与阵列硬点数目(4)Interect交叉,在交叉处创建节点,可以创建【向量、线】与【线、实体、表面、平面】交叉处生成硬点1.6Line创建线(1)某YZ两点创建直线(2)LinearNode以节点创建折线,可以选择封闭StandardNode以标准节点创建Smoothnode创建光滑曲线ControlledNode创建可控曲线(3)DragalongVector向量拉伸直线(4)ArcCenterandRadiu圆心半径创建圆弧ArcNodeandVector圆弧节点与向量AcrThreeNode三点圆弧(5)CircleCenterandRadiu圆形半径创建圆CircleNodeandVector圆心节点与向量创建远CircleThreeNode三点创建圆(6)Conic创建圆锥曲线(7)E某tractEdge以面的边线或者边创建等距曲线(8)Interect创建交线,可以创建平面与线、表面、单元、平面的交线,也可以创建两个曲面的交线(9)Mainifold在面上创建线,线过节点,可以用创建的线分割平面(10)Offet偏置,可以创建等距偏移与非等距偏移(11)Midline中间线,距离两边等距(12)Fillet创建、删除倒角(13)Tangent创建切线,可以创建点、线与线的切线(14)NormaltoGeometry外一点(节点、硬点)做线、表面或者实体的垂线NormalfromGeometry从几何(线、表面或者实体)上一点做几何的垂线Normal2DtoPlane通过平面上一点创建垂直于2D几何线的垂线(15)Feature由网格反求几何特征1.7LineEdit编辑线(5)Splitatplane在与面相交处断开线,其中面可以以多种方式创建(6)Smoothline光滑曲线,两种方式:a设定容差;b设定接近与一条线,其中接近方式有两种算法,一种为水平抛物线法(flatparabola),一种为B样条简化算法(bezerimplify)(7)E某tendline延长线1.8Length长度确定选中线段的长度1.9Surface创建平面(1)Square三点创建平面(2)CylinderFull创建完整圆柱面,定义底部圆面的中心与高度法向节点,定义半径与高度,注意:底部圆心与法向节点之间距离不是圆柱高度,仅代表方向CylinderPartial创建部分圆柱面,与创建完整圆柱类似,其中majorvector确定半圆柱的起始0°位置,顶点、法向点与majorvector点右手法则决定向量,A某iratio为直径比,该数值大于0小于1,创建椭圆柱面(3)Conefull创建完整圆台面,与圆柱面类似ConePartial创建部分圆台面,与部分圆柱面类似(4)SphereCenterandRadiu球心半径创建圆球SphereFourNode四点创建球SpherePartial创建部分球面,输入球心点,R向点和Phi点或者theta点,分两个方向以角度来创建球面,轴线为球心中点与R点、球心与Phi点或者theta点形成的轴线(5)ToruCenterandRadiu创建圆环,指定轴线方向为法向量点与中心连线,Majorradiu为主直径,为圆环中心直径,Minorradiu为圆环小直径ToruThreeNode三点创建圆环,majorcenter圆环主中心,minorcenter圆环小环中心,minorradiu圆环小环半径ToruPartial创建部分圆环,定义圆环中心(center),主轴法向(normal)和主轴(6)Spin旋转曲面,用点或者线旋转创建平面(7)DragalongVector/Line/Normal沿着向量/线/法向拉伸直线创建平面(8)Spline/Filler填充平面,可以用线、节点与硬点来创建封闭平面(9)Ruled两条(或两组点)线扫描(10)Skin创建蒙皮(11)Fillet创建圆角(12)FromFE用网格创建平面(13)Mehline以网格节点生成线然后创建面,与用FE创建不同的是Mehline可以选择单元中间节点,该命令主要用来重建面,便于加载1.10SurfaceEdit编辑面..........(1)trimwithnodea.twonode两点切面,点必须在面上b.multiplenode多点切面,多点连线为曲线c.nodenarmaltoedge节点与直线垂线分割面(2)trimwithline用线切割面a.withcutline手动划线分割面b.withline用线划分面c.withoffetline用偏置线切割面,线必须已经是切割线,如果不是即有的自由边则需要先用withline切割(3)trimwithurface/plane用面切割面a.withplane用平面切割面,平面的定义可以沿着某、Y、Z轴和一个点定义,也可以向量或者三点向量定义b.withurf用面来切割面,可以选择两个面全部分别切割c.elf-interectingurf自相交面的分割(4)untrim不切割(5)offet偏置a.dijointoffet偏移选中面,其他不偏移b.continuouoffet连续偏移,偏移后偏移面与其他面还是相连的(6)e某tend延伸a.ma某e某tenion最大延伸量,byditance延伸距离,bythicknemultiplier以壳体厚度倍增b.entendoveredge延伸到边缘,tourface到面,byditance依据距离,byfillinggap依据间隙距离(7)hrink收缩面,相当于等距偏移,设定偏右距离1.11Defeature缺陷处理(重点).........(1)pinhole作用是填孔,设定容差小于多大的孔填死(2)urffillet面圆角(3)edgefillet边圆角(4)duplicate找到重复面并删除(5)ymmetry对称面设定1.12midurface暂时用不到1.13dimenioning尺寸标注,修改实体尺寸1.14olid(1)创建实体、圆柱、圆锥、球体、圆环与部分实体详见曲面生成功能(2)boundingurface曲面生成实体(3)pin面旋转生成实体(4)drag系列,面拉伸成体(5)ruled系列,类似于扫描1.15olidedit重点。
HyperMesh入门实例
8.保存文件如图14,
图表14
9.在BCs面板中OptiStruct运行分析,如图15;
图表15
10.在Post面板中用contour察看结果,如图16;
图16
图表3
3.在Geom面板点create nodes定义一个节点,如图4,
图表4
用circles画一个半径50mm的圆,如图5;
图表5
在2D面板点spline,以圆为边缘作一面,如图6
图表6
4.在collectors中定义一名plate的薄板,如图7;
图表7
编辑厚度为1mm,如图8
图表8
5.在2D面板中点automesh在面上画网格,在屏幕的数字上点左右键可以增加或减少格数,如图9;
HyperMesh入门实例
一个简单的例子,希望对初学者有用。
1.在屏幕右下global中,加载optistruct模版,如图1:
图表1
2.在collectors中定义一名为steel的材料,card image选择MAT1,如图2;
图表2
点creat/edit定义材料特性如图3,然后点return返回。
图表9
6.在BCs面板中选constraints定义圆周上的节点为固定点,如图10,
图表10
7.在collectors中定义名为force的加载,如图11;
图表11
在BCs中选forces定义一大小为10牛的力,如图12;
图表12
在BCs中用load steps定义载荷步force,如图13;loadcols选auto1和force.
HYPERMESH实例分析课件
5、几何清理
A 导入几何模型:通过FILE_IMPORT子面板(IGES:可 导入*.igs)文件
文件地址:
D:/altair/tutorials/hm/raw_iges_data .iges
精
精
点击
改变边显示模式
精
B 模型几何的拓扑显示: 自由边:自由边只属于一个曲面,默认颜色为红色。在 一个经过几何清理的模型中,自由边通常只存在于部件的 外周或者环绕在内部孔洞的周围。 共享边:共享边被两个相邻曲面所共有,默认颜色为绿色。 压缩边:压缩边为两个相邻曲面所共有,但在划分网格时 被忽略被压缩边,不会生成节点,默认颜色为蓝色 T型连接边:表示曲面的边界被三个或三个以上的曲面所 共享,默认颜色为黄色
精
面板菜单:显示每一页面上可用的功能,可通过点击与功 能相应的按钮来实现这些功能
标签域:位于图形区域的左侧,列出一些很有用的工具, 包含多个特征页面,如UTILITY菜单,MODEL浏览器, 和SOLVER浏览器等
命令窗口:可将HYPERMESH的命令直接键入文本框执行 的方式代替使用图形用户界面功能执行命令
精
导入文件(HM/CAD/FEM) 设置模
版
几何清理
建立材料卡片
建立几何,单元集
划分单元
单元检查与优化 建立载荷集 施加
载荷 建立载荷工况 设置计算参数
输出有限元文件 求解器求解 进行
后处理
精
3、HYPERMESH8.0窗口界面
主要包括以下几个窗口界面: 下拉菜单 图形区 工具栏 标题栏 页面菜单 面板菜单 标签域 命令窗口
有限元分析分为三大步:有限元前处理,有限元求解,有 限元后处理。
hypermesh六面体网格划分指导 含实例
1. 网格划分1.1 Hypermesh 中六面体网格划分的功能介绍•六面体网格划分的工具主要有:•Drag•Spin•Line drag•element offset•solid map•其中solid map集成了部分其它功能;1.1.1:drag 面板此面板的功能是在二维网格接触上沿着一个线性路径挤压拉伸而形成三维实体单元。
要求:1)有初始的二维网格;2)截面保持不变:相同尺寸,相同曲率和空间中的相同方向;3)线性路径。
1.1.2:spin 面板-1-此面板的功能是在二维网格基础上沿着一个旋转轴旋转一定角度形成三维实体单元。
要求:1)有初始的二维网格;2)界面保持不变;3)圆形路径;4)不能使用在没有中心孔的实体部件上。
1.1.3:line drag 面板此面板的功能上在二维网格的基础上沿着一条线拉伸成三维实体单元。
要求:1)初始的二维网格;2)截面保持不变;3)有一条定义的曲线或直线路径。
1.1.4:element offset 面板此面板的功能是在二维网格的基础上沿着法线方向偏置挤压形成三维实体单元。
要求:1)初始的二维网格;2)截面可以是非平面的;-2--3-3) 常厚度或者近似常厚度。
1.1.5:soild map 面板此面板的功能是在二维网格基础上,首先挤压网格,然后将挤压的网格映射到一个由几何要素定义的实体中,从而形成三维实体单元。
1.2 drag 面板网格划分指导导入几何,drag 实体之前必须先生成2D 网格,如下图拉伸的距离定义方向需要拉伸的层数Drag后的几何模型,如下图1.3 spin 网格划分指导导入几何,spin实体之前必须先生成2D网格,如下图旋转角度旋转拉伸的层数-4-N1、N2、N3来定义旋转方向,B点是旋转中心Spin拉伸后的网格,见下图1.4 line drag 网格划分指导导入几何,line drag实体之前必须先生成2D网格,如下图-5-line drag的方法和drag、spin类似,画出了网格只会沿着line的路径,和几何没关系,见下图-6--7-1.5 element offset 网格划分指导element offset 后的网格见下图本体2D 网格偏置的层数偏置的厚度此处的surf 几乎不用1.6 soild map 网格划分指导基于体进行六面体网格划分,需要先进行体的分割,然后使用solid map/one volume命令进行划分,同时需要布置面网格。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运用HyperMesh软件对拉杆进行有限元分析1.1 问题的描述拉杆结构如图1-1所示,其中各个参数为:D1=5mm、D2=15mm,长度L0=50mm、L1=60mm、L2=110mm,圆角半径R=mm,拉力P=4500N。
求载荷下的应力和变形。
图1-1 拉杆结构图1.2 有限元分析单元单元采用三维实体单元。
边界条件为在拉杆的纵向对称中心平面上施加轴向对称约束。
1.3 模型创建过程1.3.1 CAD模型的创建拉杆的CAD模型使用ProE软件进行创建,如图1-2所示,将其输出为IGES格式文件即可。
图1-2 拉杆三维模型1.3.2 CAE模型的创建CAE模型的创建工程为:将三维CAD创建的模型保存为lagan.igs文件。
(1)启动HyperWorks中的hypermesh:选择optistuct模版,进入hypermesh程序窗口。
主界面如图1-3所示。
(2)程序运行后,在下拉菜单“File”的下拉菜单中选择“Import”,在标签区选择导入类型为“Import Goemetry”,同时在标签区点击“select files”对应的图形按钮,选择“lagan01.igs”文件,点击“import”按钮,将几何模型导入进来,导入及导入后的界面如图1-4所示。
图1-3 hypermesh程序主页面图1-4 导入的几何模型(4)几何模型的编辑。
根据模型的特点,在划分网格时可取1/8,然后进行镜像操作,画出全部网格。
因此,首先对其进行几何切分。
1)曲面形体实体化。
点击页面菜单“Geom”,在对应面板处点击“Solid”按钮,选择“surfs”,点击“all”则所有表面被选择,点击“creat”,然后点击“return”,如图1-5~图1-7所示。
图1-5 Geom页面菜单及其对应的面板图1-6 solids按钮命令对应的弹出子面板图1-7 实体化操作界面2)临时节点的创建。
点击页面菜单“Geom”,在对应面板中点击“nodes”按钮,在弹出的子面板中选择“on line”,选择如图1-8所示的五根线,点击“creat”,然后return,这样就创建了临时节点。
3)节点编号显示。
点击页面菜单“tool”,在对应的面板中点击“number”,在弹出的子面板中勾选“display”,点击“nodes”,在弹出的列表中选择“all”,点击“on”按钮,将节点编号显示出来,然后return,“Tool”页面菜单对应的面板如图1-9所示,显示节点编号的界面如图1-10所示。
图1-8 临时节点创建操作界面图1-9 “Tool”页面菜单及其对应的面板图1-10 节点编号显示操作界面图1-11实体第一次切割操作界面4)几何模型切割。
点击页面菜单“Goem”,在其对应的面板中点击“solid edit”按钮,在弹出的子面板中选择“trim with plane/surf”选项,点击“with plane”下的“solids”,在弹出的选项里选择“all”,点击下面的“N1”,然后依次选择如图1-10所示13,14,15,2号节点,点击“trim”完成实体第一次切割,分成如图1-11所示的左右两个部分。
继续在上述界面操作,选择“trim with plane/surf”选项,点击“with plane”下的“solids”,在弹出的选项里选择“all”,点击下面的“N1”,然后依次选择7、8、13、15号节点,点击“trim”完成第二次切割。
该操作主要完成利用模型的前后对称面对实体进行第二次分割,分为四个部分如图1-12所示。
图1-12 实体第二次切割操作界面继续在上图所示界面中操作,选择“trim with plane/surf”选项,点击“with plane”下的“solids”,在弹出的选项里选择“all”,点击下面的“N1”,然后依次选择14、11、8、14号节点,点击“trim”,完成实体第三次切割,该操作主要完成利用模型的上下对称面对实体进行第三次分割,经过第二次和第三次分割后的模型为如图1-13所示的8个部分。
图1-13 实体第三次切割操作界面继续在图1-13所示界面中选择“trim with plane/surf”选项,点击“with plane”下的“solids”,在弹出的选项里选择“all”,点击下面的“N1”,然后选择7、8、9、5号节点,点击“trim”,完成实体第四次切割;单击“return”按钮,退出“solid edit”命令。
该操作主要完成对下部模型弧形段实体沿垂直轴线方向在弧形段中点处进行切割,分割成如图1-14所示的12个组成部分。
图1-14 实体第四次切割操作界面5)临时节点的清除。
点击页面菜单“Goem”,在其对应的面板中点击“temp nodes”按钮,在弹出的子面板中点击“clear all”按钮,点击“return”,清除所有的临时节点。
6)多于实体的隐藏。
将多余的部分隐藏,按下快捷键F5,进入“Mask”面板,选择“mask”选项,点击向下三角,选择“solids”,在图形区选择多余的部分,点击“mask”按钮,点击“return”按钮,将实体多余部分隐藏,只保留图1-15所示模型的的1/8。
图1-15 实体隐藏操作界面(5)材料属性及单元属性的创建。
选择下拉菜单“materials”,选择“create”,在弹出的材料定义对话面板中单击“mat name=”,并输入“steel”,设置下面的颜色,选择红色。
点击“card image=”,选择“MAT1”,点击“create/edit”按钮,进入材料属性定义面板,输入材料参数,如图1-16和图1-17所示。
图1-16 材料创建操作界面选择下拉菜单“Properties”,选择“create”,在弹出的对话面板中单击“prop name=”并输入“1”,设置下面的“color”按钮,选择蓝色。
点击“card image=”选择“PSOLID”,点击“material=”,选择“steel”,输入图1-18所示的参数,然后点击“create”,完成单元属性的定义。
图1-17 材料属性定义操作界面(6)划分网格。
为了得到质量较好的有限元分析模型,采用对几何模型进行分段划分网格,拉杆中间界面为正六边形部分为一段,六边形和圆截面过度部分为一段,圆角部分可以分为两段,最后拉杆的最外部分为一段。
1)二维临时组的创建。
点击工具栏中的“components”工具按钮,选择“create”,在面板中单击“compname=”,并输入“2D-1”点击“color”按钮,选择黄色。
点击“property=”按钮,选择“1”,点击“create”按钮,然后return,如图1-19所示。
2)临时节点的创建。
点击页面菜单“Geom”,在其对应的面板中点击“nodes”按钮,在弹出的子面板中选择“on line”,选择如图1-20所示的线段,“number of nodes=”输入“3”,点击“create”按钮,然后点击“return”按钮。
图1-18 单元属性创建操作界面图1-19 临时2D-1组创建操作界面图1-20 临时节点创建操作界面3)节点编号显示。
点击页面菜单“Tool”,在其对应的面板中点击“numbers”按钮,在弹出的子面板中勾选“display”,点击“nodes”,在弹出的列表中选择“all”,点击“on”按钮,点击“return”,将节点编号显示出来,如图1-21所示。
图1-21 临时节点显示编号操作界面4)细轴的再切割。
点击页面菜单“Goem”,在其对应的面板中点击“solid edit”按钮,在弹出的子面板中选择“trim with plane/surf”选项,点击“with plane”下的“solids”,在弹出的选项里选择“displayed”,点击下面的“N1”,然后依次选择如图1-22所示19、21、24、19号节点,点击“trim”按钮,完成圆弧处局部切割。
重复上述操作,依次选择16、18、27、16号节点,点击“trim”按钮,完成过渡处的局部切割,点击“return”。
图1-22 细轴局部切割操作界面5)细轴二维辅助单元的创建。
点击状态栏中“set current component”,在弹出的子面板中选择刚刚创建的“2D-1”组,将其设为当前组。
点击页面菜单“2D”,在其对应的面板中点击“automesh”按钮,在弹出的子面板中设置“elemsize=0.5”,如图1-23所示,在图形区选择细杆的一端面,点击“mesh”按钮,进入如图1-24所示界面,调整上面所有边的数字,使网格较为规则。
点击“return”,再次点击“return”按钮,完成后的网格如图1-25所示。
图1-23 细轴端部二维网格划分操作界面6)二维辅助单元的投影复制。
点击页面菜单“Tool”,在其对应的面板中点击“project”按钮,在弹出的子面板中再选择“to plane”选项,点击向下三角,选择“elems”,选择刚画的“2D”网格,再点击“elems”按钮,在弹出的菜单中选择“duplicate”以及“original component”;点击“to plane”下面的N1,依次选择如图1-26所示的16、18、27、16号节点,点击“along vector”下的N1,依次选择27号节点和与之对应的端部网格的最下角节点,点击“project”按钮,然后点击“return”按钮,这样就将细轴端部的网格投影到16、18、27号节点所在的平面上,投影后的结果如图1-27所示。
图1-24 二维mesh设置子操作界面图1-25 生成的细轴端部二维辅助网格7)3D组的创建。
点击工具栏中的“components”工具按钮,选择“create”,在面板中单击“compname=”,并输入“3D-1”点击“color”按钮,选择蓝色。
点击“property=”按钮,选择“1”,点击“create”按钮,然后return,如图1-28所示。
8)细轴三维网格的划分。
点击页面菜单“3D”,在其对应的面板中点击“line drag”按钮,在弹出的子面板中再选择“drag elems”,点击“elems”,选择细轴左端部的二维网格,“line list”选择细轴下部的边界线,如图1-29所示,“on drag”输入框内输入20,点击“drag”,然后点击“return”按钮,创建后的网格如图1-30所示。
图1-26 二维网格投影操作界面图1-27 投影后的二维网格图1-28 3D组创建操作界面9)过渡部分网格的划分。
点击页面菜单“3D”,在其对应的面板中点击“solid map”按钮,在弹出的子面板中再选择“general”选项,“source geom”选择“surf”选择由16、18、27号节点所在的平面,“dest geom”选择“surf”,选择由19、21、24号节点所在的扇形面,“along geom”选择“lines”依次选择连接连个面的四条线,如图1-31所示,点击“elems to drag”,点击“elems”在图形区选择投影在16、18、27号节点所在平面上的所有2D单元,设置“elem size=0.5”,然后点击“mesh”,然后点击“return”,这样就完成了过渡部分的3D网格,如图1-32所示。