精选-机械振动公式

合集下载

振动分析中常用的计算公式

振动分析中常用的计算公式

振动台在使用中经常运用的公式1、 求推力(F )的公式F=(m 0+m 1+m 2+ ……)A …………………………公式(1) 式中:F —推力(激振力)(N )m 0—振动台运动部分有效质量(kg ) m 1—辅助台面质量(kg )m 2—试件(包括夹具、安装螺钉)质量(kg )A — 试验加速度(m/s 2)2、 加速度(A )、速度(V )、位移(D )三个振动参数的互换运算公式 2.1 A=ωv ……………………………………………………公式(2) 式中:A —试验加速度(m/s 2)V —试验速度(m/s ) ω=2πf (角速度) 其中f 为试验频率(Hz )2.2 V=ωD ×10-3………………………………………………公式(3) 式中:V 和ω与“2.1”中同义D —位移(mm 0-p )单峰值2.3 A=ω2D ×10-3 ………………………………………………公式(4) 式中:A 、D 和ω与“2.1”,“2.2”中同义 公式(4)亦可简化为:A=D f ⨯2502式中:A 和D 与“2.3”中同义,但A 的单位为g1g=9.8m/s 2所以: A ≈D f ⨯252,这时A 的单位为m/s 2 定振级扫频试验平滑交越点频率的计算公式 3.1 加速度与速度平滑交越点频率的计算公式f A-V =VA28.6 ………………………………………公式(5)式中:f A-V —加速度与速度平滑交越点频率(Hz )(A 和V 与前面同义)。

3.2 速度与位移平滑交越点频率的计算公式DV f DV 28.6103⨯=- …………………………………公式(6) 式中:D V f -—加速度与速度平滑交越点频率(Hz )(V 和D 与前面同义)。

3.3 加速度与位移平滑交越点频率的计算公式f A-D =DA ⨯⨯23)2(10π ……………………………………公式(7) 式中:f A-D — 加速度与位移平滑交越点频率(Hz ),(A 和D 与前面同义)。

五、机械振动

五、机械振动

第一节、 第一节、简谐振动
一、简谐振动(simple harmonic vibration )的基本特征 简谐振动 的基本特征 以弹簧振子为例讨论, 以弹簧振子为例讨论, 弹簧振子是典型的简谐 振动 弹簧的弹力
O
x
M x
F = -kx
根据牛顿第二定律有 所以 其解
医学物理学
x = Acos(ωt +ϕ)
二、同一直线上两个频率相近的简谐振动的合成 两简谐振动分别为
x1 = A1 cos( ω 1t + ϕ 1 )
x 2 = A2 cos( ω 2 t + ϕ 2 )
y
ω1
合振动 x = x1 + x2 = A1 cos(ω1t + ϕ1 ) + A2 cos(ω 2t + ϕ 2 ) 合振动不再是简谐振动, 合振动不再是简谐振动, 而是一种复杂振动 如图] 矢量图解法 [如图 如图 由矢量图得合振动的振幅为
一、同一直线上两个同频率简谐振动的合成 设有两个同频率的简谐振动 x1 = A1 cos(ωt + ϕ1 ) x2 = A2 cos(ωt + ϕ 2 ) 合振动 x = x1 + x2 = A1 cos(ωt + ϕ1 ) + A2 cos(ωt + ϕ 2 ) 由矢量图得 而
仍为同频率谐振动) x = A cos( ω t + ϕ ) (仍为同频率谐振动)
医学物理学
v A2 v A1
v A
• 推广:多个同方向同频率简谐振动的合成 推广: 合振动仍是简谐振动。
x = Acos(ω⋅t +ϕ)
tgϕ =
∑ A sinϕ
i =1 n i i =1 i

高中物理振动和波公式总结

高中物理振动和波公式总结

高中物理振动和波公式总结高中物理振动和波公式1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}3.受迫振动频率特点:f=f驱动力4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用5.机械波、横波、纵波:波就是振动的传播,通过介质传播。

在同种均匀介质中,振动的传播是匀速直线运动,这种运动,用波速V表征。

对于匀速直线运动,波速V不变(大小不变,方向不变),所以波速V是一个不变的量。

介质分子并没有随着波的传播而迁移,介质分子的永不停息的无规则的运动,是热运动,其平均速度为零。

6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}7.声波的波速(在空气中)0℃332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大9.波的干涉条件:两列波频率相同(相差恒定、振幅相页 1 第近、振动方向相同)10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小}高中物理振动和波知识点1.简谐运动(1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动.(2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置.简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大.(3)描述简谐运动的物理量①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅.②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱.③周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f.(4)简谐运动的图像①意义:表示振动物体位移随时间变化的规律,注意振页2 第动图像不是质点的运动轨迹.②特点:简谐运动的图像是正弦(或余弦)曲线.③应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况.2.弹簧振子:周期和频率只取决于弹簧的劲度系数和振子的质量,与其放置的环境和放置的方式无任何关系.如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星中;是水平放置、倾斜放置还是竖直放置;振幅是大还是小,它的周期就都是T.3.单摆:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点.单摆是一种理想化模型.(1)单摆的振动可看作简谐运动的条件是:最大摆角α<5°.(2)单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力.(3)作简谐运动的单摆的周期公式为:①在振幅很小的条件下,单摆的振动周期跟振幅无关.②单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g有关.③摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L应理解为等效摆长,重力加速度应理解为等效页3 第重力加速度(一般情况下,等效重力加速度g'等于摆球静止在平衡位置时摆线的张力与摆球质量的比值).4.受迫振动(1)受迫振动:振动系统在周期性驱动力作用下的振动叫受迫振动.(2)受迫振动的特点:受迫振动稳定时,系统振动的频率等于驱动力的频率,跟系统的固有频率无关.(3)共振:当驱动力的频率等于振动系统的固有频率时,振动物体的振幅最大,这种现象叫做共振.共振的条件:驱动力的频率等于振动系统的固有频率. .5.机械波:机械振动在介质中的传播形成机械波.(1)机械波产生的条件:①波源;②介质(2)机械波的分类①横波:质点振动方向与波的传播方向垂直的波叫横波.横波有凸部(波峰)和凹部(波谷).②纵波:质点振动方向与波的传播方向在同一直线上的波叫纵波.纵波有密部和疏部.[注意]气体、液体、固体都能传播纵波,但气体、液体不能传播横波.(3)机械波的特点①机械波传播的是振动形式和能量.质点只在各自的平衡位置附近振动,并不随波迁移.页 4 第②介质中各质点的振动周期和频率都与波源的振动周期和频率相同.③离波源近的质点带动离波源远的质点依次振动.6.波长、波速和频率及其关系(1)波长:两个相邻的且在振动过程中对平衡位置的位移总是相等的质点间的距离叫波长.振动在一个周期里在介质中传播的距离等于一个波长.(2)波速:波的传播速率.机械波的传播速率由介质决定,与波源无关.(3)频率:波的频率始终等于波源的振动频率,与介质无关.(4)三者关系:v=λf7. ★波动图像:表示波的传播方向上,介质中的各个质点在同一时刻相对平衡位置的位移.当波源作简谐运动时,它在介质中形成简谐波,其波动图像为正弦或余弦曲线.由波的图像可获取的信息①从图像可以直接读出振幅(注意单位)②从图像可以直接读出波长(注意单位).③可求任一点在该时刻相对平衡位置的位移(包括大小和方向)④在波速方向已知(或已知波源方位)时可确定各质点在该时刻的振动方向.页 5 第⑤可以确定各质点振动的加速度方向(加速度总是指向平衡位置)高中物理学习方法听得懂高中生要积极主动地去听讲,把老师所说的每一句话都用心来听,熟记高中物理概念定义,这是“知其然”,老师讲解的过程就是“知其所以然”,听懂,才会运用。

振动计算力学公式

振动计算力学公式

振动计算力学公式一、简谐振动(Simple Harmonic Motion)简谐振动指的是一个物体在一个平衡位置附近做低幅度的周期性振动。

简谐振动的一些重要的力学公式如下:1. 位移(Displacement):x = A * cos(ωt + φ)其中,x表示位移,A表示振幅,ω表示角频率,t表示时间,φ表示相位。

2. 速度(Velocity):v = -A * ω * sin(ωt + φ)其中,v表示速度。

3. 加速度(Acceleration):a = -A * ω^2 * cos(ωt + φ)其中,a表示加速度。

4. 动能(Kinetic Energy):K = 0.5 * m * v^2其中,K表示动能,m表示质量。

5. 势能(Potential Energy):P = 0.5 * k * x^2其中,P表示势能,k表示弹性系数。

6. 总机械能(Total Mechanical Energy):E = K + P其中,E表示总机械能。

7. 振动周期(Vibration Period):T = 2π/ω其中,T表示振动周期。

二、阻尼振动(Damped Vibration)阻尼振动指的是振动过程中受到了阻尼力的影响,导致振幅逐渐减小。

阻尼振动的一些重要的力学公式如下:1. 位移(Displacement):x = A * e^(-βt) * cos(ωdt + φ)其中,x表示位移,A表示振幅,β表示阻尼系数,ωd表示阻尼角频率,t表示时间,φ表示相位。

2. 速度(Velocity):v = -A * β * e^(-βt) * cos(ωdt + φ) - A * ωd * e^(-βt) * sin(ωdt + φ)其中,v表示速度。

3. 加速度(Acceleration):a = A * (β^2 * e^(-βt) *cos(ωdt + φ) + 2β * ωd * e^(-βt) * sin(ωdt + φ)) - A *ωd^2 * e^(-βt) * cos(ωdt + φ)其中,a表示加速度。

高中物理振动和波公式总结

高中物理振动和波公式总结

高中物理振动和波公式总结高中物理振动和波公式1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}3.受迫振动频率特点:f=f驱动力4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用5.机械波、横波、纵波:波就是振动的传播,通过介质传播。

在同种均匀介质中,振动的传播是匀速直线运动,这种运动,用波速V表征。

对于匀速直线运动,波速V不变(大小不变,方向不变),所以波速V是一个不变的量。

介质分子并没有随着波的传播而迁移,介质分子的永不停息的无规则的运动,是热运动,其平均速度为零。

6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}7.声波的波速(在空气中)0℃332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小}高中物理振动和波知识点1.简谐运动(1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动.(2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置.简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大.(3)描述简谐运动的物理量①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅.②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱.③周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f.(4)简谐运动的图像①意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹.②特点:简谐运动的图像是正弦(或余弦)曲线.③应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况.2.弹簧振子:周期和频率只取决于弹簧的劲度系数和振子的质量,与其放置的环境和放置的方式无任何关系.如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星中;是水平放置、倾斜放置还是竖直放置;振幅是大还是小,它的周期就都是T.3.单摆:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点.单摆是一种理想化模型.(1)单摆的振动可看作简谐运动的条件是:最大摆角α<5°.(2)单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力.(3)作简谐运动的单摆的周期公式为:①在振幅很小的条件下,单摆的振动周期跟振幅无关.②单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g有关.③摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L应理解为等效摆长,重力加速度应理解为等效重力加速度(一般情况下,等效重力加速度g'等于摆球静止在平衡位置时摆线的张力与摆球质量的比值).4.受迫振动(1)受迫振动:振动系统在周期性驱动力作用下的振动叫受迫振动.(2)受迫振动的特点:受迫振动稳定时,系统振动的频率等于驱动力的频率,跟系统的固有频率无关.(3)共振:当驱动力的频率等于振动系统的固有频率时,振动物体的振幅最大,这种现象叫做共振.共振的条件:驱动力的频率等于振动系统的固有频率. .5.机械波:机械振动在介质中的传播形成机械波.(1)机械波产生的条件:①波源;②介质(2)机械波的分类①横波:质点振动方向与波的传播方向垂直的波叫横波.横波有凸部(波峰)和凹部(波谷).②纵波:质点振动方向与波的传播方向在同一直线上的波叫纵波.纵波有密部和疏部.[注意]气体、液体、固体都能传播纵波,但气体、液体不能传播横波.(3)机械波的特点①机械波传播的是振动形式和能量.质点只在各自的平衡位置附近振动,并不随波迁移.②介质中各质点的振动周期和频率都与波源的振动周期和频率相同.③离波源近的质点带动离波源远的质点依次振动.6.波长、波速和频率及其关系(1)波长:两个相邻的且在振动过程中对平衡位置的位移总是相等的质点间的距离叫波长.振动在一个周期里在介质中传播的距离等于一个波长.(2)波速:波的传播速率.机械波的传播速率由介质决定,与波源无关.(3)频率:波的频率始终等于波源的振动频率,与介质无关.(4)三者关系:v=λf7. ★波动图像:表示波的传播方向上,介质中的各个质点在同一时刻相对平衡位置的位移.当波源作简谐运动时,它在介质中形成简谐波,其波动图像为正弦或余弦曲线.由波的图像可获取的信息①从图像可以直接读出振幅(注意单位)②从图像可以直接读出波长(注意单位).③可求任一点在该时刻相对平衡位置的位移(包括大小和方向)④在波速方向已知(或已知波源方位)时可确定各质点在该时刻的振动方向.⑤可以确定各质点振动的加速度方向(加速度总是指向平衡位置)高中物理学习方法听得懂高中生要积极主动地去听讲,把老师所说的每一句话都用心来听,熟记高中物理概念定义,这是“知其然”,老师讲解的过程就是“知其所以然”,听懂,才会运用。

振动计算公式

振动计算公式

振动计算公式好的,以下是为您生成的关于“振动计算公式”的文章:在我们学习物理的过程中,振动计算公式就像是一把神奇的钥匙,能帮我们打开理解物体振动奥秘的大门。

先来说说简谐振动,这可是振动里的“常客”。

对于一个做简谐振动的物体,它的位移随时间的变化可以用公式x = A sin(ωt + φ) 来表示。

这里的 A 呢,代表振幅,也就是振动的最大偏离程度;ω 是角频率,它和振动的周期 T 以及频率 f 有着密切的关系,ω = 2πf = 2π/T 。

记得有一次,我在课堂上给学生们讲解这个公式。

有个调皮的小家伙举起手问我:“老师,这公式有啥用啊?感觉好复杂!”我笑了笑,从讲台上拿起一个小弹簧,一端固定在桌子上,另一端挂了一个小砝码。

我轻轻地拉动砝码,让它开始上下振动。

然后我问同学们:“你们看,砝码的运动是不是有规律的呀?”大家都点头。

我接着说:“那我们就可以用这个公式来描述它的运动呢。

”我指着砝码告诉他们,“这个砝码振动的最大距离就是振幅 A ,而它来回振动一次所用的时间就是周期 T 。

”再来说说受迫振动。

当一个振动系统受到周期性外力作用时,就会发生受迫振动。

受迫振动的频率等于驱动力的频率,其振幅大小则与驱动力的频率以及系统的固有频率有关。

给大家讲个有意思的事儿。

有一回,我带着学生们去工厂参观,正好看到一台大型机器在运转。

机器运转时发出的“嗡嗡”声引起了同学们的注意。

有个同学好奇地问:“老师,这机器的振动也是有公式能算的吗?”我回答说:“当然啦,虽然这台机器的振动比较复杂,但原理还是和我们学的振动公式相关的。

”还有阻尼振动,由于阻力的存在,振动的能量会逐渐减少,振幅也会逐渐减小。

在日常生活中,振动无处不在。

比如我们坐的汽车在行驶过程中的颠簸,手机的振动模式,甚至我们说话时声带的振动。

回到振动计算公式,掌握这些公式,不仅能让我们在考试中取得好成绩,更重要的是,能让我们更深入地理解这个世界的运行规律。

就像通过弹簧和砝码的小实验,我们能真切地感受到振动的存在和规律。

机械振动总结要点

机械振动总结要点

基本概念:1.机械振动:物体(或物体的某部分)在某位置附近沿直线或圆弧作往复运动。

2.产生机械振动的条件:(1)当物体离开平衡位置就受到回复力作用;(2)物体在振动过程中所受到的阻力足够小。

3.简谐运动:物体在受到大小与位移成正比,方向总跟位移的方向相反的力的作用下,物体就作简谐运动。

F=-kx.4.振幅(A):振动物体离形平衡位置的最大距离。

5.周期(T):物体完成一次全振动所需的时间。

6.频率(f):振动物体在单位时间内完成全振动的次数,单位:赫兹(1/秒)7.单摆是简谐振动,其周期T=2πl。

g知识详解:1.简谐振动的图象:表示了做简谐运动的质点的位移随时间变化的规律。

简谐运动的图象是一条正弦(或余弦)曲线,从该图象上可看出,质点在振动过程中各个时刻的离平衡位置的位移。

在图象中还可看出振幅和周期。

2.简谐运动的能量:某时刻做简谐运动的系统总能量等于该时刻的动能与势能的和。

简谐运动的总能量是一个恒量,不随时间而改变,它等于最大位移处的势能,或在平衡位置时的动能。

单摆的总能量可用E = mgl(1-cosα)来计算。

一)机械振动物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。

回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。

产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。

b、阻力足够小。

一、关于回复力的问题。

1、回复力应满足: F=-kX (判断简谐振动的条件)2、回复力可能由某个力提供、可能由合力提供、可能由某个力的分力提供。

例如:弹簧振子的回复力由弹力提供;单摆的回复力由重力的切向分力提供;竖直方向振动的:弹簧振子的回复力由弹力和重力的合力来提供。

(二)简谐振动1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。

简谐振动是最简单,最基本的振动。

机械振动概念、知识点总结

机械振动概念、知识点总结

机械振动概念、知识点总结1、机械振动:物体在平衡位置附近的往复运动。

例1:乒乓球在地面上的来回运动属于往复运动,不属于机械振动。

因为:乒乓球没有在平衡位置附近做往复运动。

(1)平衡位置:①物体所受回复力为零的位置。

②振动方向上,合力为零的位置。

③物体原来静止时的位置。

(2)机械振动的平衡位置不一定是振动范围的中心。

(3)机械振动的位移:以平衡位置为起点,偏离平衡位置的位移。

(4)回复力:沿振动方向,指向平衡位置的合力。

①回复力是某些性质力充当了回复力,所以回复力是效果力,不是性质力。

②回复力与合外力的关系: 直线振动(如弹簧振子):回复力一定等于振子的合外力,也就是说,振子的合外力全部充当回复力。

曲线振动(如单摆):回复力不一定等于振子的合外力。

③平衡位置,回复力为零。

例2:判断:机械振动中,振子的平衡位置是合外力(加速度)为零的位置。

答:错误。

正例:弹簧振子的平衡位置是合外力为零的位置。

反例:单摆中,小球的最低点为平衡位置,回复力为零, 但合外力为:2mv F F T mg L==-=合向 最低点时,小球速度最大,0v ≠,所以0F ≠合2、简谐运动(简谐运动是变加速运动,不是匀变速运动) (1)简谐运动定义:①位移随时间做正弦变化②回复力与位移的关系: F 回=-kx ,即:回复力大小与位移大小成正比。

(2)F 回,x ,v 的关系①F 回与x 的大小成正比,方向总是相反。

(F 回总是指向平衡位置,x 总是背离平衡位置) ②v 的大小与F 回,x 反变化,但方向无联系。

振动范围的两端:F 回,x 最大,v=0,最小 平衡位置: F 回=0,x =0最小,v 最大例3:判断:简谐振动加速度大小与位移成正比 答:错误。

正例:弹簧振子的F 合=F 回=-kx ,a=F 合/m=-kx/m ,a 与位移大小成正比反例:单摆中,小球在平衡位置时,位移为零,但0F ≠合,0a ≠,a 与位移大小不成正比。

振动加速度计算公式

振动加速度计算公式

振动加速度计算公式在一维简谐振动中,振动加速度与位移和时间的关系可以由如下公式描述:a(t)=-ω²x(t)其中,a(t)表示物体在时刻t的振动加速度,x(t)表示物体在时刻t 的位移,ω表示振动的角频率。

这个公式的推导基于牛顿第二定律以及简谐振动的基本假设。

根据牛顿第二定律,物体受到的合力F与物体的质量m和加速度a的关系为:F = ma在简谐振动中,振动物体只受到恢复力F = -kx的作用,其中k是物体的弹性系数。

将恢复力代入牛顿第二定律中,得到:-mω²x = ma两边除以m,得到:ω²x=-a移项后得到振动加速度的计算公式:a=-ω²x其中,负号表示振动加速度的方向与位移方向相反。

由于振动加速度的数值与物体的位移成正比,所以振动加速度的大小与位移大小呈非线性关系。

当物体位移达到最大值时,振动加速度为零;当物体位移为零时,振动加速度达到最大值。

对于其他类型的振动,如二维和三维振动,振动加速度的计算公式也可以根据具体情况进行推导。

在这些情况下,振动加速度的计算公式通常包含物体的质量、位移、速度以及加速度的各个分量。

振动加速度计算公式的应用非常广泛。

例如,在工程领域中,振动加速度常用于分析和设计各种振动系统,如机械结构、传动系统和软件系统等。

通过计算和测量振动加速度,我们可以评估系统的稳定性、响应特性以及可能的故障和损坏情况。

此外,在物理学和材料科学中,振动加速度的计算公式也被用于研究材料的弹性特性、声学特性和磁学特性等。

总结起来,振动加速度计算公式是描述物体振动过程中加速度变化的数学公式。

它在物理学和工程领域中有着广泛的应用,对于分析振动系统并评估系统的性能和稳定性非常重要。

机械振动公式总结

机械振动公式总结

机械振动公式总结机械振动是指物体在作有规律的往复运动时所表现出的现象,它广泛应用于工程领域,例如机械工程、建筑工程、航空航天工程等。

机械振动公式是描述机械振动性质和特点的数学公式,可以用于计算、分析和预测机械振动的参数和行为。

下面是一些常见的机械振动公式的总结。

1.简谐振动公式简谐振动是指在没有外力或外力恒定时,物体的振动是以弹性势能和动能的相互转化为基础的。

简谐振动公式可以表示为:x = A sin(ωt + φ)其中,x表示位移,单位为米;A表示振幅,单位为米;ω表示角速度,单位为弧度/秒;t表示时间,单位为秒;φ表示初相位,单位为弧度。

2.弹性力系数公式弹性力系数是描述弹性材料力学性质的一个参数,也是机械振动中重要的参数之一、弹性力系数公式可以表示为:F = kx其中,F表示受力,单位为牛顿;k表示弹性力系数,单位为牛顿/米;x表示位移,单位为米。

3.自然频率公式自然频率是指物体在没有外力作用时,在固有的弹性约束条件下产生的振动频率。

自然频率公式可以表示为:f=1/(2π)*√(k/m)其中,f表示自然频率,单位为赫兹;k表示弹性力系数,单位为牛顿/米;m表示质量,单位为千克。

4.阻尼振动公式阻尼振动是指在振动过程中存在能量损失的振动,由于摩擦、空气阻力等因素的存在。

阻尼振动公式可以表示为:x = e^(-βt) * (Acos(ωdt + φ1) + Bsin(ωdt + φ2))其中,x表示位移,单位为米;β表示阻尼系数,单位为弧度/秒;ωd表示阻尼角频率,单位为弧度/秒;t表示时间,单位为秒;A、B、φ1、φ2表示振动的参数。

5.多自由度振动公式多自由度振动是指多个物体同时进行复杂的振动过程,可以通过多自由度振动公式来描述。

多自由度振动公式可以表示为:M¨+KX=0其中,M表示质量矩阵,K表示刚度矩阵,X表示位移矩阵。

通过这些机械振动公式,我们可以计算出机械系统的振幅、频率、质量、弹性力系数等参数,进而进行分析和预测。

高中物理公式:振动和波(机械振动与机械振动的传播)

高中物理公式:振动和波(机械振动与机械振动的传播)

高中物理公式:振动和波(机械振动与机械振动的传播)发生共振条件:f驱动力=f固,A=max,共振的防止和应用机械波、横波、纵波注:(1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;温度是分子平均动能的标志;分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小;气体膨胀,外界对气体做负功W<0;温度升高,内能增大ΔU >0;吸收热量,Q>0物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;r0为分子处于平衡状态时,分子间的距离;其它相关内容:能的转化和定恒定律能源的开发与利用.环保物体的内能.分子的动能.分子势能。

质点的运动(1)——直线运动理解口诀:1.物体模型用质点,忽略形状和大小;地球公转当质点,地球自转要大小。

物体位置的变化,准确描述用位移,运动快慢S比t,a用Δv与t比。

2.运用一般公式法,平均速度是简法,中间时刻速度法,初速为零比例法,再加几何图像法,求解运动好方法。

自由落体是实例,初速为零a等g.竖直上抛知初速,上升最高心有数,飞行时间上下回,整个过程匀减速。

匀变速直线运动平均速度V平=s/t(定义式)2.有用推论Vt2-V02=2as3.中间时刻速度Vt/2=V平=(Vt+V0)/2(分析纸带常用)末速度Vt=V0+at;5.中间位置速度Vs/2=[(V02+Vt2)/2]1/26.位移s=V平t=V0t+at2/2加速度a=(Vt-V0)/t{以V0为正方向,a与V0同向(加速)a>0;反向则a<0}实验用推论Δs=aT2{Δs为连续相邻相等时间(T)内位移之差}(分析纸带常用逐差法求加速度)主要物理量及单位:初速度(V0):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。

振动计算力学公式

振动计算力学公式

振动台力学公式1、 求推力(F )的公式F=(m 0+m 1+m 2+ ……)A …………………………公式(1)式中:F —推力(激振力)(N )m 0—振动台运动部分有效质量(kg )m 1—辅助台面质量(kg )m 2—试件(包括夹具、安装螺钉)质量(kg )A — 试验加速度(m/s 2)2、 加速度(A )、速度(V )、位移(D )三个振动参数的互换运算公式2.1 A=ωv ……………………………………………………公式(2)式中:A —试验加速度(m/s 2)V —试验速度(m/s )ω=2πf (角速度)其中f 为试验频率(Hz )2.2 V=ωD ×10-3………………………………………………公式(3)式中:V 和ω与“2.1”中同义D —位移(mm 0-p )单峰值2.3 A=ω2D ×10-3 ………………………………………………公式(4)式中:A 、D 和ω与“2.1”,“2.2”中同义公式(4)亦可简化为: A=D f ⨯2502式中:A 和D 与“2.3”中同义,但A 的单位为g1g=9.8m/s 2所以: A ≈D f ⨯252,这时A 的单位为m/s 2 定振级扫频试验平滑交越点频率的计算公式3.1 加速度与速度平滑交越点频率的计算公式f A-V =VA 28.6 ………………………………………公式(5) 式中:f A-V —加速度与速度平滑交越点频率(Hz )(A 和V 与前面同义)。

3.2 速度与位移平滑交越点频率的计算公式DV f D V 28.6103⨯=- …………………………………公式(6) 式中:D V f -—加速度与速度平滑交越点频率(Hz )(V 和D 与前面同义)。

3.3 加速度与位移平滑交越点频率的计算公式f A-D =DA ⨯⨯23)2(10π ……………………………………公式(7) 式中:f A-D — 加速度与位移平滑交越点频率(Hz ),(A 和D 与前面同义)。

高中物理公式大全(全集) 九、机械振动

高中物理公式大全(全集) 九、机械振动

九、机械振动1、机械振动 (1)平衡位置:物体振动时的中心位置,振动物体未开始振动时相对于参考系静止的位置,或沿振动方向所受合力等于零时所处的位置叫平衡位置。

(2)机械振动:物体在平衡位置附近所做的往复运动,叫做机械振动,通常简称为振动。

(3)振动特点:振动是一种往复运动,具有周期性和重复性 2、简谐运动(1)弹簧振子:一个轻质弹簧联接一个质点,弹簧的另一端固定,就构成了一个弹簧振子。

(2)振动形成的原因①回复力:振动物体受到的总能使振动物体回到平衡位置,且始终指向平衡位置的力,叫回复力。

振动物体的平衡位置也可说成是振动物体振动时受到的回复力为零的位置。

一、知识网络二、画龙点睛概念②形成原因:振子离开平衡位置后,回复力的作用使振了回到平衡位置,振子的惯性使振子离开平衡位置;系统的阻力足够小。

(4)简谐运动的力学特征①简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫做简谐运动。

②动力学特征:回复力F与位移x之间的关系为F=-kx式中F为回复力,x为偏离平衡位置的位移,k是常数。

简谐运动的动力学特征是判断物体是否为简谐运动的依据。

③简谐运动的运动学特征a=-k m x加速度的大小与振动物体相对平衡位置的位移成正比,方向始终与位移方向相反,总指向平衡位置。

简谐运动加速度的大小和方向都在变化,是一种变加速运动。

简谐运动的运动学特征也可用来判断物体是否为简谐运动。

例题:试证明在竖直方向的弹簧振子做的也是简谐振运动。

证明:设O为振子的平衡位置,向下方向为正方向,此时弹簧形变量为x0,根据胡克定律得x0=mg/k当振子向下偏离平衡位置x时,回复力为F=mg-k(x+x0)则F=-kx所以此振动为简谐运动。

3、振幅、周期和频率⑴振幅①物理意义:振幅是描述振动强弱的物理量。

②定义:振动物体离开平衡位置的最大距离,叫做振动的振幅。

③单位:在国际单位制中,振幅的单位是米(m)。

机械振动常用公式

机械振动常用公式

x A sin(n t ), A
2 2 2 n x0 v0 x , tan 1 n 0 n v0
1-DOF damped systems Equation of motion mx(t ) cx(t ) kx(t ) 0, x(0) x0 , x(0) v0 Damping ratio c ccr c ( 2 km ) If 1, the system is overdamped If 1, the system is critically damped
If C M K , damping is proportional. In such case, S T CS diag 2 ii . In the case of a 2-DOF system,
2 2 11 12 , 2 22 2
Stiffness, definition: linear spring: k F l , angular spring: k M
Logarithmic decrement x(t1 ) x(t1 ) 1 , ln ln x(t1 T ) n x(t1 nT ) damping ratio
X 1 (2 r ) 2 T .R. 2 2 2 Y (1 r ) (2 r )
Force transmissibility
1/ 2
, r
b n
1/ 2
Rotating Unbalance. mx cx kx F0 sin(r t ) m0 er2 sin(r t ) Magnitude of steady-state response,
x r10 1 10 r S x 20 20

简谐振动振幅公式

简谐振动振幅公式

简谐振动振幅公式
简谐运动振幅公式:x=Asin√k/m)t,简谐运动是最基本也最简单的机械振动,当某物体进行简谐运动时,物体所受的力跟位移成正比,并且总是指向平衡位置。

它是一种由自身系统性质决定的周期性运动,如单摆运动和弹簧振子运动,实际上简谐振动就是正弦振动。

根据该运动方程式,我们可以说位移是时间t的正弦或余弦函数的运动是简谐运动。

简谐运动的数学模型是一个线性常系数常微分方程,这样的振动系统称为线性系统。

线性系统是振动系统最简单最普遍的数学模型。

但一般情况下,线性系统只是振动系统在小振幅条件下的近似模型。

机械振动系统的自由振动频率计算

机械振动系统的自由振动频率计算

机械振动系统的自由振动频率计算机械振动是指物体由于受到外力作用或自身固有特性而产生的周期性运动。

在机械工程中,振动是一个重要的研究领域,涉及到很多工程应用,如汽车发动机、飞机结构、建筑物等。

为了研究机械振动系统的特性,我们需要计算系统的自由振动频率。

自由振动是指在没有外力作用下,机械系统按照其固有特性进行的振动。

为了计算机械振动系统的自由振动频率,我们需要了解系统的质量、刚度和阻尼等参数。

首先,我们需要计算系统的质量。

质量是指物体所具有的惯性,对振动系统而言,质量越大,振动频率越低。

在实际应用中,质量可以通过物体的质量密度和体积来计算。

假设我们有一个均匀的物体,其质量密度为ρ,体积为V,那么该物体的质量m可以通过以下公式计算:m = ρV。

接下来,我们需要计算系统的刚度。

刚度是指物体对外力的抵抗能力,对振动系统而言,刚度越大,振动频率越高。

在实际应用中,刚度可以通过物体的几何形状和材料特性来计算。

例如,对于弹簧系统,刚度可以通过钢丝的材料特性和长度来计算。

假设我们有一个钢丝,其材料特性为弹性模量E,截面积为A,长度为L,那么该钢丝的刚度k可以通过以下公式计算:k = (E × A) / L。

最后,我们需要考虑系统的阻尼。

阻尼是指振动系统受到的能量损失,对振动系统而言,阻尼越大,振动频率越低。

在实际应用中,阻尼可以分为两种类型:线性阻尼和非线性阻尼。

线性阻尼是指阻尼力与速度成正比,可以通过线性阻尼系数来计算。

非线性阻尼是指阻尼力与速度的平方成正比,可以通过非线性阻尼系数来计算。

在计算自由振动频率时,我们通常假设系统没有阻尼,即忽略阻尼的影响。

综上所述,机械振动系统的自由振动频率可以通过以下公式计算:f = 1 / (2π) × √(k / m),其中f表示振动频率,k表示刚度,m表示质量。

需要注意的是,以上计算方法适用于简谐振动系统,即系统的运动是按照正弦函数进行的。

对于非简谐振动系统,我们需要使用更复杂的方法进行计算。

机械振动的基本特征

机械振动的基本特征

机械振动的基本特征机械振动是物体固有频率下的周期性运动,广泛存在于工程与自然界中。

它的基本特征可以通过以下几个方面来描述。

一、频率(Frequency)频率是机械振动的基本特征之一。

它表示单位时间内振动的完整循环数,通常以赫兹(Hz)为单位。

频率与振动的周期(T)呈倒数关系,即频率等于周期的倒数,可用以下公式表示:f = 1 / T其中,f代表频率,T代表周期。

二、振幅(Amplitude)振幅是机械振动的另一个基本特征。

它表示振动物体在振动过程中离开平衡位置的最大距离。

振幅可以用于描述振动物体的强弱程度,通常以米(m)为单位。

三、周期(Period)周期是机械振动的基本特征之一。

它表示完成一次完整振动所需要的时间。

周期与频率的关系已在频率部分提到,周期可用以下公式表示:T = 1 / f其中,T代表周期,f代表频率。

四、相位(Phase)相位是机械振动的另一个重要特征。

它描述了振动物体在时间上与某一参考点的关系。

相位可以用来表示振动物体的位置、速度和加速度等信息,通常以角度或弧度为单位。

五、谐振(Resonance)谐振是机械振动的一种特殊现象。

当外界作用力的频率与振动物体的固有频率相等或非常接近时,物体会发生共振现象,振幅会达到最大值。

谐振现象在工程设计中需要特别注意,因为它可能导致物体受力过大,损坏甚至破坏。

六、阻尼(Damping)阻尼是机械振动中的一项重要影响因素。

它表征振动系统中消耗能量的程度。

在实际应用中,我们通常希望振动系统的阻尼足够小,以保持振动的稳定性和持久性。

不同类型的阻尼可以影响振动的衰减速度和振动形态。

总结:机械振动的基本特征包括频率、振幅、周期、相位、谐振和阻尼等。

这些特征与振动物体的固有性质密切相关,对于理解和控制机械振动具有重要意义。

在工程设计中,我们需要充分考虑这些特征,以避免振动带来的危害或振动不稳定性。

同时,机械振动也是一门独立的学科,通过研究和应用,我们可以更好地利用和控制振动的优点,为工程和科学领域开辟更广阔的发展空间。

秘籍20--机械振动机械波-光学-备战2021年高考物理抢分秘籍

秘籍20--机械振动机械波-光学-备战2021年高考物理抢分秘籍

秘籍20 机械振动 机械波 光学一、备考策略高考考查的内容主要有:机械波传播过程中波动和振动的关系;对波动图象和振动图象的理解与应用;对光的折射和全反射现象的理解;折射率的求解和光路作图;对光的波粒二象性的理解等。

二、基础知识一、机械振动和机械波 1.简谐运动的图象信息(1)由图象可以得出质点做简谐运动的振幅、周期。

(2)可以确定某时刻质点离开平衡位置的位移。

(3)可以根据图象确定某时刻质点回复力、加速度和速度的方向。

2.机械波的传播特点(1)波传到任意一点,该点的起振方向都和波源的起振方向相同。

(2)介质中每个质点都做受迫振动,因此,任一质点振动频率和周期都和波源的振动频率和周期相同。

(3)波从一种介质进入另一种介质,由于介质的情况不同,它的波长和波速可能改变,但频率和周期都不会改变。

(4)波经过一个周期T 完成一次全振动,波恰好向前传播一个波长的距离,所以v =λT=λf 。

二、光的折射和全反射 1.对折射率的理解 (1)公式:n =sin θ1sin θ2(2)折射率由介质本身性质决定,与入射角的大小无关。

(3)折射率与介质的密度没有关系,光密介质不是指密度大的介质,光疏介质不是指密度小的介质。

(4)折射率的大小不仅与介质本身有关,还与光的频率有关。

同一种介质中,频率越大的色光折射率越大,传播速度越小。

(5)同一种色光,在不同介质中虽然波速、波长不同,但频率相同。

(6)折射率大小不仅反映了介质对光的折射本领,也反映了光在介质中传播速度的大小v =c n。

2.解决全反射问题的一般方法 (1)确定光是从光密介质进入光疏介质。

(2)应用sin C =1n确定临界角。

(3)根据题设条件,判定光在传播时是否发生全反射。

(4)如发生全反射,画出入射角等于临界角时的临界光路图。

(5)运用几何关系或三角函数关系以及反射定律等进行分析、判断、运算,解决问题。

三、光的波动性1.证明光具有波动性的三种现象:光的干涉现象、光的衍射现象和光的偏振现象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

弹簧串并联
单自由度无阻尼自由振动
单自由度有阻尼自由振动
单自由度有阻尼强迫振动 简谐力直接激励
2
1212
121,111k k k k k k
k k k k k +=+=+=并联
串联),(,)3(;,1,2)2(;
0)()1()(,)(),sin(,
sin cos ,,0,0002012
020
0022x x A g
T f T m k dt E E d x
x tg x x A t A x t x t x x m k x x kx x m st
n n n p k n n n n n n n n &&&&&&&&θδωωπωωθωθωωωωωω求响应:静变形法,求固有频率:定义法能量法求微分方程:定理法,=====+=+=+=+===+=+-2
0012002
020
00212ln 1)
(,)(),sin(,1,sin cos )1(,2,2,02,0ζπζζωδζωωθωζωθωωζωωωζωωζωωζωζωζω-=
==+=++=+=-=++=====++=+++--d n j i i n d d n d t n d d d
n d n cr cr n n n T A A j x x x tg x x x A t Ae x t x x t x x m c c c m c x x x kx x c x m n &&&π&&&&&&λβζλλβλωω
λλζλαζλλαωω-=+-==-=
=-=+-=-==++-,,)
2()1(11,,12,)2()1(),sin(,sin 2
22221222k
F x x x k F B tg k F B t B x t F kx x c x m st st
n 无阻尼时,&&&
单自由度有阻尼强迫振动
偏心激励
单自由度有阻尼强迫振动
支承运动激励
单自由度有阻尼强迫振动
周期激励
单自由度有阻尼强迫振动任意激励
λ
βζλλλβζλλλζλλωαωωω-+-==+-=
+-=
-==++,)
2()1(,
)
2()1()
2()1(),sin(,sin 222202
2
22
02
2
22
020e m mx m e m k e m B t B x t e m kx x c x m &&&隔振要有适当阻尼
,1,2,)
2()1()2(1,
)
2()1()2(1)
2()1()()12(
),sin(),2(),
sin()(22222
2
222
2
2222
112
2πφ
&&&&βλζλλζλβζλλζλζλλωλ
ζλ
ααθωζλθθωω+-+==+-+=
+-+=
-=-+==++=+=++--g g g g g g X B
X k c k X B tg t B x tg t c k X kx x c kx x c x m 1212
()()mx cx kx f t f t x x x ++=+=+&&&叠加原理傅立叶级数展开
()0
2211
()sin ()21
()()()(),()
1
(),(),()
31
()()(),(),n t
t d d
x F e t d m X F H F Z Z k m jc H Z X s G s F s G s ms cs k
ζωττωττ
ωωωωωωωωωωω--=
-=
==-+===
++⎰
()时域求解:杜哈美积分()频域求解:傅立叶变换机械阻抗,机械导纳,频响函数,()拉氏域求解:拉普拉斯变换传递函数。

两个自由度振动 系统微分方程建立
两个自由度无阻尼自由振动
为自由度数;
为广义激振力;位移;分别为广义速度,广义散逸函数和系统势能;分别为系统动能,能量式中:
拉格郎日法
n Q q q E E E n i Q q E q E q E q E dt d i i i u d k i i u i d i k i k
&&&),...,2,1()(==∂∂+∂∂+∂∂-∂∂再改写。

程组拉格朗日法导出微分方一般矩阵方程可以先用激振力向量;加速度、速度、位移和分别为为刚度矩阵;为阻尼矩阵;为质量矩阵;式中:矩阵法

⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧=⎥⎦
⎤⎢⎣⎡+--+=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+--+=⎥⎦⎤⎢⎣⎡=⎥⎦⎤
⎢⎣
⎡=⎥⎦⎤⎢⎣⎡==++)()()(,,,,,,,,,,,,00,,,)
(2121212132222122211211322221222112112122211211t f t f t f x x x x x x x x x k k k k k k k k k k K c c c c c c c c c c C m m m m m m M t f Kx x C x M &&&&&&&&&&&&
[]
振型中有一个节点。


画振型图,在第两个固有振型,两个固有频率,的一元两次方程),
,特征方程(关于有要次代数方程),
状态方程(两元一次齐代入得为振幅向量,
设,2,,,);
(,,,,,240,0,0),sin(02112
11
2112,1112222112
12121121212
2
222212,12
1r r k m k r k m k m b k k k K c m m M a a
ac b b M K A A M K A A A t A x x
K x M n n n n n n n n --=
+-=-====--==-≠=-⎭
⎬⎫
⎩⎨⎧=+==+ωωωωωωωθωμ&&&
4
32124212124123211312010201024232121112242312111432120100201002)2(11)1(122)2(1211)1(11)2(2)1(2222)2(111)1(1)2(1)1(11,,0,0,0,,0),sin cos ()sin cos (,sin cos sin cos ,),
sin()sin(),
sin()sin(D D D D v D r D r D D D r D r D D v x x x x t D t D r t D t D r x t D t D t D t D x D D D D x
x x x x x A A t A r t A r x x x t A t A x x x n n n n n n n n n n n n n n n n 易求则如件时:
零初始条比较方便,特别有较多一般用下式求,初速度向量初位移向量可由初始条件求出;,,,四个未知量主振动的迭加,
求响应,响应应为两个=+=+=+=+====+++=+++=⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧=+++=+=+++=+=ωωωωωωωωωωωωθθθωθωθωθω&&&&&
两个自由度无阻尼强迫振动
多自由度系统振动
坐标,模态分析法振型矩阵,解耦,模态刚度矩阵的正交性;振型向量对质量矩阵和法标准特征值问题的迭代;
1
,,0;,,0212
1
i n
i i n
i i
i A DA M K D Kx x M A DA K M D Kx x M A DA ω
ωλ=
==+===+=--&&&&
(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。

可复制、编制,期待你的好评与关注)
[][]时有两个共振点;
或当即
程,两元一次非齐次代数方代入得:
设为力幅向量;
21212112
11211222222211
2
2
21,,,,,,sin ,sin n n F F M K m k k k m k A A F M K A F A M K t A x F F F t F Kx x M ωωωωωωωωωωω==⎭
⎬⎫⎩⎨⎧-⎥⎥⎦⎤⎢⎢⎣⎡----=⎭⎬⎫⎩⎨⎧-==-=⎭
⎬⎫
⎩⎨⎧==+-&&。

相关文档
最新文档