蒙特卡洛方法基本思想116页PPT
合集下载
第六讲 蒙特卡洛方法ppt课件
蒙特卡罗方法的特点
优点 能够比较逼真地描述具有随机 性质的事物的特点及物理实验 过程。 受几何条件限制小。 收敛速度与问题的维数无关。 具有同时计算多个方案与多个 未知量的能力。 误差容易确定。 程序结构简单,易于实现。 缺点 收敛速度慢。 误差具有概率性。 在粒子输运问题中, 计算结果与系统大小 有关。
2 2 t / 2 P X E ( X ) e dt 1 N 0 N 2
f(X)是X的分布密度函数。则
0 ( x E ( X )) f ( x ) dx
2 2
平均值
当N充分大时,有如下的近似式
X N
MC方法随机理论的基础
MC方法的随机理论基础
g(u)均匀分布
N 1 x 2 t/ 2 P X E ( X ) x e dt N lim x N 2
MC方法随机理论的基础
• 大数法则
MC方法随机理论的基础
中心极限定理
该定理指出,如果随机变量序列 X1 ,X2,…, XN独立 同分布,且具有有限非零的方差σ2 ,即
MC方法概述
• 为了得到具有一定精确度的近似解,所需随机试 验的次数是很多的,通过人工方法作大量的试验 相当困难,甚至是不可能的。因此,蒙特卡罗方 法的基本思想虽然早已被人们提出,却很少被使 用。本世纪四十年代以来,由于电子计算机的出 现,使得人们可以通过电子计算机来模拟随机试 验过程,把巨大数目的随机试验交由计算机完成, 使得蒙特卡罗方法得以广泛地应用,在现代化的 科学技术中发挥应有的作用。
• 目前,已经广泛的应用于社会科学,材料, 物理,系统工程,科学管理,生物遗传等 领域。可以说,有随机工程事件的领域, 就可以应用Monte Carlo模拟。
《蒙特卡罗方法》PPT课件
1.引言
MC的基础 – 随机过程
1 定义,X=X (x,t) 随时间变化的随机变量,或时间随机变量序列
2 按分布函数,分类 a) 平稳随机过程 b) Markov 过程 c) 独立增量随机过程 d) 独立随机过程
14 完整版ppt
1.引言
MC的基础 - 平稳随机过程
1 定义:X(t) , 如果它的n维(n个状态)概率密度与初始分布无关,即对任何 n 和 t’满足fx(x1,x2,…,xn; t1,t2,..,tn)=fx(x1,..,tn +t’) 含义:平稳随机过程的统计特性与所选择的时间起点无关,不随时间的 推移而变化,即是“时间平稳的”。
Monte Carlo名字的由来: • 是由Metropolis在二次世界大战期间提出的:Manhattan 计划,研究与原子弹有关的中子输运过程;
• Monte Carlo是摩纳哥(monaco)的首都,该城以赌博闻名
Nicholas Metropolis (1915-1999)
完整版ppt
Monte-Carlo, Monaco
2 统计特性 1)一维概率密度与时间无关 2)二维概率密度,只与两个状态对应的时间间隔Δt有关,其时间自相关 仅是Δt的函数
3 应用: 电阻的热噪声,电子信号,…
15 完整版ppt
1.引言
MC的基础 - Markov 链
1 定义:在可列个离散状态x1,x2,..xN 和离散时间t1,t2,..tn, 若随 机过程在tm+k时刻变成任一状态xi的概率,只与tm时刻的 状态有关(无后效),而与此前状态无关,称离散随机序列
(2) 确定性模拟方法。它是通过数值求解一个个的粒子运动方程 来模拟整个系统的行为。在统计物理中称为分子动力学 (Molecular Dynamics)方法。此外, 近年来还发展了神经元 网络方法和原胞自动机方法。
计算材料学概述之蒙特卡洛方法详解课件
组合优化方法
针对组合优化问题,通过随机搜索和迭代优 化求解。
分子动力学模拟中的蒙特卡洛方法
01
分子动力学模拟是一种基于物理 模型的模拟方法,通过蒙特卡洛 方法可以模拟分子间的相互作用 和运动轨迹。
02
蒙特卡洛方法在分子动力学模拟 中主要用于求解势能面和分子运 动轨迹,通过随机抽样和迭代优 化实现分子运动状态的模拟。
重要性
随着科技的发展,计算材料学已成为 材料科学研究中不可或缺的工具,有 助于加速新材料的发现和优化现有材 料的性能。
计算材料学的主要研究方法
分子动力学模拟
01
基于原子或分子的动力学行为,模拟材料的微观结构和动态性
质。
蒙特卡洛方法
02
通过随机抽样和概率统计方法研究材料的宏观性质和相变行为
。
密度泛函理论
蒙特卡洛方法可以与分子动力学模拟结合,实现更精确的原子尺 度模拟。
元胞自动机
蒙特卡洛方法可以与元胞自动机结合,模拟复杂系统的演化过程。
有限元分析
蒙特卡洛方法可以与有限元分析结合,实现更高效的数值计算。
蒙特卡洛方法在材料设计中的应用前景
新材料发现
蒙特卡洛方法可用于预测新材料性能,加速新材料发现和开发进 程。
总结词
通过蒙特卡洛方法模拟复合材料的界面行为,包括界面润湿性、粘附力和传质过程等。
详细描述
利用蒙特卡洛方法模拟复合材料的界面行为,分析不同组分间的相互作用和界面结构, 预测材料的界面润湿性、粘附力和传质过程等性能,为复合材料的制备和应用提供理论
依据和技术支持。
蒙特卡洛方法的发
05
展趋势与展望
蒙特卡洛方法的未来发展方向
计算统计量
根据模型和抽样结 果,计算所需的统 计量或系统参数。
蒙特卡罗方法简介.ppt
Ω={(x,y):aaxb,0yM},并设(X,Y)是在Ω上均匀分
布的二维随机向量,其联合密度函数为
p
x, y
M
1 b a 1axb,0 yM
b
则易见, f xd是x Ω中曲线f(x)下方面积。
a
假设我们向Ω中投点,若点落在y=f(x)下方称为中的,
则点中的概率为
p
M
1
b
a
b
a
f
例2.1 设X的密度函数为
n
n
p x i pi x 其中,i 0, i 1
i 1
i 1
由合成法,X的随机数可如下抽取: i1
i
1)取u~U(0,1);
2)取0
0,确定i,使
j
j0
u j j0
3) 由pi(x)抽取x.
2.3 筛选抽样 当p(x)难以直接抽样时,如果可以将p(x) 表示成
jj
c
2 jl
l 1
至此,我们可以给出k维正态分布的抽样步骤:
1)迭代计算 cij ,i 1,..., k, j 1,..., i;
2)由N(0,1)分布独立抽取k个随机数 z z1,L , zk ;
3)计算 x Cz
2.5 随机模拟计算 2.5.1 随机投点法
b
考虑积分 f xdx ,设a,b有限,0f(x)M,令
b
n
a
n i 1
f
X
i
1 n
b
a
b a
f
2
x
dx
2
Var
ˆ1
2.5.3 降低方差的技术
Monte Carlo 方法中一类重要的研究课题是考虑一 些降低估计方差的技术。常用的方法有:重要抽样 法,分层抽样法,关联抽样法等。
布的二维随机向量,其联合密度函数为
p
x, y
M
1 b a 1axb,0 yM
b
则易见, f xd是x Ω中曲线f(x)下方面积。
a
假设我们向Ω中投点,若点落在y=f(x)下方称为中的,
则点中的概率为
p
M
1
b
a
b
a
f
例2.1 设X的密度函数为
n
n
p x i pi x 其中,i 0, i 1
i 1
i 1
由合成法,X的随机数可如下抽取: i1
i
1)取u~U(0,1);
2)取0
0,确定i,使
j
j0
u j j0
3) 由pi(x)抽取x.
2.3 筛选抽样 当p(x)难以直接抽样时,如果可以将p(x) 表示成
jj
c
2 jl
l 1
至此,我们可以给出k维正态分布的抽样步骤:
1)迭代计算 cij ,i 1,..., k, j 1,..., i;
2)由N(0,1)分布独立抽取k个随机数 z z1,L , zk ;
3)计算 x Cz
2.5 随机模拟计算 2.5.1 随机投点法
b
考虑积分 f xdx ,设a,b有限,0f(x)M,令
b
n
a
n i 1
f
X
i
1 n
b
a
b a
f
2
x
dx
2
Var
ˆ1
2.5.3 降低方差的技术
Monte Carlo 方法中一类重要的研究课题是考虑一 些降低估计方差的技术。常用的方法有:重要抽样 法,分层抽样法,关联抽样法等。
蒙特卡罗方法PPT课件
第1页/共83页
蒙特卡 罗方法
直接方法
可以分解为各个独立 过程的随机性事件
统计方法 数值求解多维定积分
第2页/共83页
5.1 基本思想和一般过程
• Buffon投针实验
• 1768年,法国数学家Comte de Buffon利用投针实验估计 值
L
d
p 2L
d
第3页/共83页
• 长度为 l的针随机地落在相距为d>l 的一组水平线之间, 求针与线相交的概率?
分布的随机数的抽样,进行大量的计算随机模拟实验,从中获得随机变量 的大量试验值。各种概率模型具有不同的概率分布,因此产生已知概率分 布的随机变量,是实现Monte Carlo方法的关键步骤。最简单、最基本、 最重要的一个概率分布是(0,1)上的均匀分布 (或称矩形分布)。随机数就 是具有这种均匀分布的随机变量。对于其他复杂概率模型的概率分布可以 用数学方法在此基础上产生。因此,随机数是Monte Carlo模拟的基本工 具。
方法就叫做简单抽样法或非权重随机抽样法。
• 随机抽样法的真正优势表现在对较高维积分的近似求解,诸如在多体动力
学和统计力学中所遇到的问题。蒙待卡罗方法对较高维体系的积分误差仍
是
,而这时梯形定则给出的误差变为1/m2/D,这里D为维数。
1m
第21页/共83页
5.3.1 简单抽样 • 将其推广到多维的情况
模拟这个概率过程。对于本来不是随机性质的确定性问题,比如计算定积 分、解线性方程组及偏微分方程边值问题等,要用蒙特卡罗方法求解,就 必须事先构造一个人为的概率过程,它的某些参量正好是所要求的问题的 解。
第10页/共83页
5.1 基本思想和一般过程 • (2) 实现从已知概率分布的抽样 • 有了明确的概率过程后,为了实现过程的数字模拟,必须实现从已知概率
《蒙特卡罗方法》课件
蒙特卡罗方法的优缺点
REPORTING
优点
高效性
蒙特卡罗方法在处理大规模、复杂问 题时,相对于解析方法,具有更高的 计算效率。
适用性强
该方法适用于各种类型的问题,无论 是数学、物理还是工程领域。
灵活性高
蒙特卡罗方法允许使用各种随机抽样 技术,可以根据问题的特性灵活调整 。
易于实现
蒙特卡罗方法的算法相对简单,容易 编程实现。
估计精度
统计估计的精度与样本数量和估计方法的选 择有关。
误差分析
误差来源
蒙特卡罗方法的误差主要来源于概率模型的近似和随机抽样的不 确定性。
误差控制
通过增加样本数量、改进概率模型等方法来减小误差。
误差评估
通过方差、置信区间等统计方法对误差进行评估和检验。
PART 03
蒙特卡罗方法的实现步骤
REPORTING
《蒙特卡罗方法》 PPT课件
REPORTING
• 蒙特卡罗方法简介 • 蒙特卡罗方法的原理 • 蒙特卡罗方法的实现步骤 • 蒙特卡罗方法的应用实例 • 蒙特卡罗方法的优缺点 • 蒙特卡罗方法的未来发展与展望
目录
PART 01
蒙特卡罗方法简介
REPORTING
定义与特点
定义
蒙特卡罗方法是一种基于概率统计的 数值计算方法,通过随机抽样和统计 模拟来求解数学、物理、工程等领域 的问题。
代。
PART 04
蒙特卡罗方法的应用实例
REPORTING
金融衍生品定价
总结词
蒙特卡罗方法在金融衍生品定价中应用广泛 ,通过模拟标的资产价格变化,计算衍生品 价格和风险。
详细描述
蒙特卡罗方法通过随机抽样和概率统计,模 拟标的资产(如股票、外汇或商品等)的价 格变化,从而计算出衍生品(如期权、期货 或掉期等)的预期收益或风险。这种方法能 够处理复杂的衍生品定价问题,并给出较为 精确的估计。
REPORTING
优点
高效性
蒙特卡罗方法在处理大规模、复杂问 题时,相对于解析方法,具有更高的 计算效率。
适用性强
该方法适用于各种类型的问题,无论 是数学、物理还是工程领域。
灵活性高
蒙特卡罗方法允许使用各种随机抽样 技术,可以根据问题的特性灵活调整 。
易于实现
蒙特卡罗方法的算法相对简单,容易 编程实现。
估计精度
统计估计的精度与样本数量和估计方法的选 择有关。
误差分析
误差来源
蒙特卡罗方法的误差主要来源于概率模型的近似和随机抽样的不 确定性。
误差控制
通过增加样本数量、改进概率模型等方法来减小误差。
误差评估
通过方差、置信区间等统计方法对误差进行评估和检验。
PART 03
蒙特卡罗方法的实现步骤
REPORTING
《蒙特卡罗方法》 PPT课件
REPORTING
• 蒙特卡罗方法简介 • 蒙特卡罗方法的原理 • 蒙特卡罗方法的实现步骤 • 蒙特卡罗方法的应用实例 • 蒙特卡罗方法的优缺点 • 蒙特卡罗方法的未来发展与展望
目录
PART 01
蒙特卡罗方法简介
REPORTING
定义与特点
定义
蒙特卡罗方法是一种基于概率统计的 数值计算方法,通过随机抽样和统计 模拟来求解数学、物理、工程等领域 的问题。
代。
PART 04
蒙特卡罗方法的应用实例
REPORTING
金融衍生品定价
总结词
蒙特卡罗方法在金融衍生品定价中应用广泛 ,通过模拟标的资产价格变化,计算衍生品 价格和风险。
详细描述
蒙特卡罗方法通过随机抽样和概率统计,模 拟标的资产(如股票、外汇或商品等)的价 格变化,从而计算出衍生品(如期权、期货 或掉期等)的预期收益或风险。这种方法能 够处理复杂的衍生品定价问题,并给出较为 精确的估计。
蒙特卡罗方法课件
1, 0 x 1 f ( x) 0, 其他
0, F ( x ) x, 1, x0 0 x 1 x 1
分布函数为 :
§2 伪随机数的产生和检验---物理方法
如:掷筛子游戏,投掷硬币
在计算机上用物理方法产生随机数的基本原理是:利用某些物理现 象,在计算机上增加某些特殊设备,可以在计算机上直接产生随机 数。这些特殊设备称为随机数发生器。 用来作为随机数发生器的物理源主要有两种:一种是根据放射性 物质的放射性,另一种是利用计算机的固有噪声。 用物理方法产生的随机数序列无法重复实现,不能进行程序复算,给 验证结果带来很大困难。而且,需要增加随机数发生器和电路联系等 附加设备,费用昂贵。因此,该方法也不适合在计算机上使用。
例如对于屏蔽层为均匀介质的几何平板, 要计算若干种厚度的穿透概率时,只需 计算最厚的一种情况,其他厚度的穿透 概率在计算最厚一种情况时稍加处理便 可同时得到。 例如在模拟粒子过程中,可以同时得到不 同区域的通量、能谱、角分布等,而不像 常规方法那样,需要逐一计算所求量。
(5)误差容易确定 根据蒙特卡罗方法的误差公式,可以在计算所求量的同时计算出误差 (6)程序结构简单,易于实现 在计算机上进行蒙特卡罗方法计算时,程序结构简单,分块性强,易 于实现。
近似地以概率1-α成立,且误差收敛速度的阶为:O(N-1/2)
§1 蒙特卡洛方法概述---中心极限定理 通常,蒙特卡罗方法的误差ε定义为
N
上式中λα与臵信度α是一一对应的,根据问题的要求确定出臵信 水平后,查标准正态分布表,就可以确定出λα 。 给出几个常用的α与λα 的数值:
α 0.5
0.6745
0.05
1.96
0.003
计算物理 蒙特卡罗方法基础ppt课件
这种模拟是以所谓“马尔科夫”(Markov)链的 形式产生系统的分布序列。该方法可以使我们能够研究 经典和量子多粒子系统的问题。
5
一 基本思想
直接蒙特卡洛模拟法: 对求解问题本身就具有概率和统计性的情况。
如:中子在介质中的传播,核衰变过程等, 思想是按照实际问题所遵循的概率统计规律,用计算
机进行直接的抽样试验,然后计算其统计参数。 该方法也就是通常所说的“计算机实验”。
对1,000,000次投针为, 0.0024
可见,增加模拟的次数可以减小误差,但不可消除误差。
12
前人进行了实验,其结果列于下表 :
实验者
年份 投计次数 π的实验值
沃尔弗(Wolf) 1850
5000
3.1596
斯密思(Smith) 1855
3204
3.1553
福克斯(Fox) 1894
1120
3.1419
对100次投针为,
0.1642
对10,000次投针为, 0.0164
对1,000,000次投针为, 0.0016 15
投点法实验程序流程图
n n max
n n1
Yes
产生随机数 1 ,2
x L1 , y L2
r 2 x2 y2 L2
Yes
M M1
计1
if (mod(ncount,100) .eq. 0 ) then
write(10,"(I10,F15.6)")ncount,
4.0d0*dble(m)/dble(ncount)
end if
end do
end
17
结果和分析
(1) 总计投点1.0×105次 (2) 该算法收敛,
5
一 基本思想
直接蒙特卡洛模拟法: 对求解问题本身就具有概率和统计性的情况。
如:中子在介质中的传播,核衰变过程等, 思想是按照实际问题所遵循的概率统计规律,用计算
机进行直接的抽样试验,然后计算其统计参数。 该方法也就是通常所说的“计算机实验”。
对1,000,000次投针为, 0.0024
可见,增加模拟的次数可以减小误差,但不可消除误差。
12
前人进行了实验,其结果列于下表 :
实验者
年份 投计次数 π的实验值
沃尔弗(Wolf) 1850
5000
3.1596
斯密思(Smith) 1855
3204
3.1553
福克斯(Fox) 1894
1120
3.1419
对100次投针为,
0.1642
对10,000次投针为, 0.0164
对1,000,000次投针为, 0.0016 15
投点法实验程序流程图
n n max
n n1
Yes
产生随机数 1 ,2
x L1 , y L2
r 2 x2 y2 L2
Yes
M M1
计1
if (mod(ncount,100) .eq. 0 ) then
write(10,"(I10,F15.6)")ncount,
4.0d0*dble(m)/dble(ncount)
end if
end do
end
17
结果和分析
(1) 总计投点1.0×105次 (2) 该算法收敛,
《MonteCarlo方法》PPT课件
"quantum" Monte Carlo: random walks are used to compute quantum-mechanical energies and wavefunctions, often to solve electronic structure problems, using Schrödinger’s equation as a formal starting point;
f (x)
Sum areas of shapes approximating shape of curve
b
Evaluating the general integral I f ( x ) d x
a
x
n uniformly separated points
Quadrature formula Ixi n1f(xi)b nai n1f(xi)
精选PPT
23
2. 频率检验
检验每组观测频数 ni与理论频数mi = N 1/k之间相差的显著性
3. 独立性 按先后顺序排列的 N 个伪随机数中 , 每个数的出现是否与 其前后各个数独立无关。 对于两组伪随机数来说 , 独立性 就是指它们不相关 。
4. 组合规律性 将 N 个伪随机数按一定的规律组合起来 , 则各种组合的出现具 有一定的概率。
提高精度一位数 , 抽样次数要增加100 倍 ; 减小随机变量的标准 差 , 可以减小误差 。
精选PPT
15
Monte Carlo 方法具有以下四个重要特征 :
① 由于 Monte Carlo 方法是通过大量简单的重复抽样来实现的 , 因 此 , 方法和程序的结构十分简单 。
② 收敛速度比较慢 , 因此 , 较适用于求解精度要求不高的问题。
f (x)
Sum areas of shapes approximating shape of curve
b
Evaluating the general integral I f ( x ) d x
a
x
n uniformly separated points
Quadrature formula Ixi n1f(xi)b nai n1f(xi)
精选PPT
23
2. 频率检验
检验每组观测频数 ni与理论频数mi = N 1/k之间相差的显著性
3. 独立性 按先后顺序排列的 N 个伪随机数中 , 每个数的出现是否与 其前后各个数独立无关。 对于两组伪随机数来说 , 独立性 就是指它们不相关 。
4. 组合规律性 将 N 个伪随机数按一定的规律组合起来 , 则各种组合的出现具 有一定的概率。
提高精度一位数 , 抽样次数要增加100 倍 ; 减小随机变量的标准 差 , 可以减小误差 。
精选PPT
15
Monte Carlo 方法具有以下四个重要特征 :
① 由于 Monte Carlo 方法是通过大量简单的重复抽样来实现的 , 因 此 , 方法和程序的结构十分简单 。
② 收敛速度比较慢 , 因此 , 较适用于求解精度要求不高的问题。