圆柱与圆锥的复习与整理

合集下载

完整版)圆柱体和圆锥体知识点复习整理

完整版)圆柱体和圆锥体知识点复习整理

完整版)圆柱体和圆锥体知识点复习整理圆柱体和圆锥体知识点复整理
本文档旨在提供关于圆柱体和圆锥体的知识点复整理。

以下是相关的知识点介绍:
圆柱体(Cylinder)
圆柱体是一个由两个平行的圆面和一个定位于两圆面之间的侧面所组成的几何体。

以下是一些圆柱体的重要特征:
底面积:圆柱体底面的面积可以通过圆的面积公式计算。

圆的面积公式为:A = πr²,其中 r 是圆的半径。

侧面积:圆柱体的侧面积可以通过将圆的周长乘以圆柱体的高度来计算。

侧面积公式为:A = 2πrh,其中 h 是圆柱体的高度,r 是圆的半径。

总表面积:圆柱体的总表面积可通过将底面积和侧面积相加来计算。

总表面积公式为:A = 2πr² + 2πrh。

圆锥体(Cone)
圆锥体是一个由一个圆形底面和一个定位于底面圆心的侧面所组成的几何体。

以下是一些圆锥体的重要特征:
底面积:圆锥体底面的面积可以通过圆的面积公式计算。

圆的面积公式为:A = πr²,其中 r 是底面圆的半径。

侧面积:圆锥体的侧面积可以通过将圆的周长乘以圆锥体的斜高来计算。

侧面积公式为:A = πrl,其中 l 是圆锥体的斜高,r 是底面圆的半径。

总表面积:圆锥体的总表面积可通过将底面积和侧面积相加来计算。

总表面积公式为:A = πr² + πrl。

以上是关于圆柱体和圆锥体的知识点复习整理。

希望对您有所帮助!。

人教版六年级下册数学 圆柱与圆锥整理和复习

人教版六年级下册数学 圆柱与圆锥整理和复习

40
(单位:厘米)
增加两个长方形的面, 长等于圆柱的高,宽等 于底面直径。
滚、刷、切、削、熔……
切割前后的表面积 增加了,体积不变

滚、刷、切、削、熔……
把圆柱削成最大的圆锥,需要削去多少?
50
问题1:怎么削才算是最大的圆锥?
问题2:削成的圆锥与圆柱有什么关系?
2
3.14×(40÷2)2×50×
选择 一个有盖的圆柱形铁桶。 1、求这个铁桶的占地面积,是求( A. 容积 B. 底面积 C. 表面积
B) D. 体积
2、做这样一个铁桶用多少铁皮,是求( C ) A. 容积 B. 底面积 C. 表面积 D. 体积
3、这个铁桶能装多少水,是求( A ) A. 容积 B. 底面积 C. 表面积 D. 体积
0.5m 1m 4.5m ——
314dm3 2.198m3 6280cm3 10.048dm3 1.1775m3
3.妈妈给小雨的塑料壶做了一个布套(如图)小雨每天上学带一壶水。 (1)至少用了多少布料? (2)小雨在学校一天喝1.5L的水,这壶水够喝吗?(水壶的厚度忽略不 计。)
分析:求所用布料就是求水壶的表面积,求能装多少水 即求水壶的体积。
答:旋转一周后围成的立体图形的体积是301.44cm3。
3.一个圆柱形鱼缸,底面直径是40cm,高是25cm,里面盛了一 些水,把一个底面半径为10cm的圆锥放入鱼缸中(圆锥全部浸 入水中),鱼缸中的水面升高了2cm。这个圆锥的高是多少?
水面升高的那部分圆柱的体积就是
放入水中的圆锥的体积。
2cm
V 锥 = V 柱=3.14×(40÷2)2×2 =3.14×800 =2512(cm3)
3.一个圆柱形鱼缸,底面直径是40cm,高是25cm,里面盛了一 些水,把一个底面半径为10cm的圆锥放入鱼缸中(圆锥全部浸 入水中),鱼缸中的水面升高了2cm。这个圆锥的高是多少?

《圆柱与圆锥整理和复习》评课稿

《圆柱与圆锥整理和复习》评课稿

《圆柱与圆锥整理和复习》评课稿《圆柱与圆锥整理和复习》评课稿听了叶主任执教的《圆柱与圆锥整理和复习》一课。

课堂上叶主任亲切的教态、严谨的语言、扎实的基本功、紧凑的课堂结构,深受到了我们听课老师的一致好评。

我把自己听课后的体会总结如下:一、这节课的教学设计听后整理如下:1、明确学习任务,自主归纳整理:让学生自己去收集、整理、交流,通过这样的学习方式,充分发挥学生学习的自主性,体现把课堂还给学生;同时还可培养学生自主学习和发展创新的意识,以及提高学生自行设计的能力与自主获取知识的能力。

2、课上应用提高:课上采用“小老师”提问题的方式,培养学生的问题意识,让学生综合应用圆柱圆锥的计算公式。

培养学生的综合应用能力以及拓展学生的思维能力3、课中实践拓展:让学生联系生活实际寻找生活中需要解决有关圆柱圆锥的知识。

让学生感到生活中有数学,生活中处需要数学,提高学生应用数学的意识。

同时也激发学生的学习兴趣。

4、课后小结反思:鼓励学生大胆发表自己的意见,增强学生的自信心。

一方面培养学生的评价的能力;另一方面在培养学生评价别人的发言的同时,也培养了学生倾听能力。

二、本节课亮点如下:1、在教学的过程中,我感觉学生对知识的分类、整合,构建知识网络,形成知识体系这一环节,能完全放开。

2、整节课的设计让人觉得做得细致又全面,把相关联的重点题型都复习的比较到位,足可以看出叶主任的经验丰富,又善于积累,特别值得我们学习。

3、教师的语言严谨、规范,知识点把握十分精准。

如:将圆柱的侧面展开要强调沿高展开,而后又让学生判断“圆柱的侧面展开一定是长方形或正方形吗”所用语言清楚到位。

而且,我们从大多数学生的语言也可以感受到老师对学生的训练很有效果。

4、在本节课上教师不但让学生自己复习巩固掌握了知识,更重要的'是让学生掌握了复习课的方法策略。

5、教师对教材把握的到位,课上对学生点播到位。

课中对学生的评价更到位。

尤其注重解题思路的讲解,培养学生的数学思维。

人教版六年级数学下册第三单元第11课《整理和复习》课件

人教版六年级数学下册第三单元第11课《整理和复习》课件

×2
S表= 2πrh+2πr2
V=πr2h
图形 圆柱
底面半径 底面直径
5dm
10dm
1m
2m
20cm
40cm
高 4dm 0.7m 5cm
表面积 282.6dm2 10.676m2
3140cm2
体积 314dm3 2.198m3 6280cm3
想一想:圆柱的侧面积、表面积怎样计算?圆柱、圆锥 的体积公式是怎样导出的?再填写下表。
? 出米率 = 磨出大米的质量÷稻谷的质量
磨出大米的质量 = 稻谷的质量×出米率
27.76×70% = 19.432(千克) 答:一漏斗稻谷能磨出19.432千克大米。
如图,将一个圆柱切成4份,增加了多少表面积?
增加了4个长方 形的面积
12×16×4 = 192×4 = 768(平方厘米) 答:增加了768平方厘米。
圆锥只有一条高
圆锥的底面是一个圆, 侧面是一个扇形。
圆锥可看成由三角形旋转形成的。
6.圆锥的体积
圆锥的体积是与它等底等高的圆柱体积的
1 3

底面积×高
圆锥体积=13×底面积×高 V圆锥=13×πr2×h
7.解决问题
切割问题:切割前后的表面积增加了,体积不变。
新增两个一组邻边分别 为圆柱的底面直径和高 的长方形或正方形。
C.缩小到原来的21
(7)用一块长25.12厘米,宽18.84厘米的长方形铁皮,配 上两个直径为( C )厘米的圆形铁皮正好可以做成 圆柱形容器。 A.3 B.8 C.6或8
3.计算圆柱的表面积。(单位: cm)(8分) 3.14×8×20+3.14×(8÷2)2×2=602.88(cm2)

人教版数学六年级下册《圆柱圆锥整理和复习》教案教案

人教版数学六年级下册《圆柱圆锥整理和复习》教案教案

人教版数学六年级下册《圆柱圆锥整理和复习》教案教案一. 教材分析《圆柱圆锥整理和复习》是人教版数学六年级下册的一章内容。

本章主要让学生掌握圆柱和圆锥的基本概念、特性、计算方法及其应用。

通过本章的学习,学生能够进一步理解和掌握圆柱和圆锥的相关知识,提高解决问题的能力。

二. 学情分析六年级的学生已经具备了一定的空间想象能力和逻辑思维能力,对圆柱和圆锥有一定的了解。

但部分学生可能对一些概念和计算方法的理解不够深入,需要在教学中加以引导和巩固。

三. 教学目标1.知识与技能:理解和掌握圆柱和圆锥的基本概念、特性、计算方法及其应用。

2.过程与方法:通过观察、操作、思考、交流等数学活动,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和克服困难的勇气。

四. 教学重难点1.重点:圆柱和圆锥的基本概念、特性、计算方法及其应用。

2.难点:对一些概念和计算方法的理解和运用。

五. 教学方法采用问题驱动法、合作学习法、案例分析法等教学方法,引导学生主动探究、合作交流,提高学生的数学素养。

六. 教学准备1.教具准备:圆柱和圆锥模型、多媒体课件等。

2.学具准备:学生自带圆柱和圆锥模型、练习本等。

七. 教学过程导入(5分钟)教师通过提问方式引导学生回顾圆柱和圆锥的基本概念、特性、计算方法,为新课的学习做好铺垫。

呈现(10分钟)1.教师通过展示圆柱和圆锥的模型,引导学生观察和描述其特征。

2.教师利用多媒体课件,展示圆柱和圆锥的计算方法及其应用。

操练(10分钟)1.教师给出几个有关圆柱和圆锥的问题,让学生独立解答。

2.学生互相交流解题过程,教师进行点评和指导。

巩固(10分钟)1.教师学生进行小组讨论,探讨如何运用圆柱和圆锥的知识解决实际问题。

2.学生代表分享讨论成果,教师进行点评和指导。

拓展(10分钟)1.教师提出一些有关圆柱和圆锥的拓展问题,引导学生进行思考和探究。

2.学生互相交流解题过程,教师进行点评和指导。

六年级下册数学教案《 第3单元 圆柱与圆锥 整理和复习 》 人教版

六年级下册数学教案《 第3单元 圆柱与圆锥 整理和复习 》 人教版

六年级下册数学教案《第3单元圆柱与圆锥整理和复习》人教版一. 教材分析本节课为人教版六年级下册数学第3单元“圆柱与圆锥”的整理和复习。

本单元的主要内容是圆柱和圆锥的特征、体积计算以及应用。

教材通过复习和整理,使学生对圆柱和圆锥的概念、性质、计算方法等有一个清晰、系统的认识,提高学生的空间想象能力和解决问题的能力。

二. 学情分析六年级的学生已经学习了圆柱和圆锥的基本知识,对圆柱和圆锥的特征、体积计算有一定的了解。

但部分学生对一些概念和公式的理解不够深入,应用能力有待提高。

此外,学生的空间想象能力和解决问题的能力参差不齐,需要在教学中加以关注和培养。

三. 教学目标1.知识与技能:通过对圆柱和圆锥的复习,使学生掌握圆柱和圆锥的基本概念、性质和体积计算方法,提高空间想象能力和解决问题的能力。

2.过程与方法:通过自主学习、合作交流、探究发现等方法,培养学生的动手操作能力和思维能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的创新意识和团队协作精神,使学生感受到数学与生活的密切联系。

四. 教学重难点1.重点:圆柱和圆锥的基本概念、性质和体积计算方法的掌握。

2.难点:对圆柱和圆锥体积公式的理解与应用,以及空间想象能力的培养。

五. 教学方法1.自主学习:引导学生独立思考,自主探究,发现和总结圆柱和圆锥的特点和规律。

2.合作交流:鼓励学生与他人分享学习心得,互相讨论,共同解决问题。

3.探究发现:引导学生动手操作,观察分析,发现圆柱和圆锥的体积计算方法。

4.启发引导:教师通过提问、设疑,引导学生思考,激发学生的学习兴趣。

六. 教学准备1.教具:圆柱和圆锥模型、图片、课件等。

2.学具:学生每人准备一个圆柱和圆锥模型,以及相关计算工具。

七. 教学过程1.导入(5分钟)利用课件展示生活中的圆柱和圆锥物体,引导学生回顾已学的知识,为新课的复习打下基础。

2.呈现(10分钟)教师通过讲解和示范,呈现圆柱和圆锥的基本概念、性质和体积计算方法。

小学六年级数学下册《圆柱和圆锥的整理与复习》教学设计

小学六年级数学下册《圆柱和圆锥的整理与复习》教学设计

《圆柱和圆锥的整理与复习》教学设计教学内容:六年级下册圆柱和圆锥的整理与复习教学目标:1、回顾本单元的知识内容,进一步认识圆柱、圆锥的特征,巩固圆柱的侧面积、表面积及圆柱和圆锥的体积计算的一般方法,进一步理解直柱体的表面积可以用“两个底面积+侧面积”来计算,直柱体的体积可以用“底面积×高”来计算。

2、能运用有关知识,灵活地解决一些实际问题。

3、让学生体验掌握数学知识的成功喜悦,激发学习的兴趣,培养善于归纳总结、自我激励的良好学习习惯。

教学重点:归纳整理有关圆柱和圆锥的知识,形成知识体系。

教学难点:理解圆柱体与长方体、正方体等表面积及体积之间的联系,理解圆柱和圆锥之间的联系和区别,提高运用知识解决问题的能力。

教学过程:一、梳理知识点1、导入同学们,这节课我们要一起来复习圆柱和圆锥的有关知识。

2、检查课前整理知识情况3、展示交流,复习知识点师:《圆柱与圆锥》这一单元,你学会了哪些知识?谁来汇报一下。

指名学生上台投影交流展示并说出整理过程4、本单元易错点(指名说)二、练习与思考你能计算下面各图形的表面积与体积吗?各个图形之间的特征有什么联系?1、表面积:(1)它们的表面积是多少?(先让学生独立完成后全班交流)师:长方体和三棱柱的表面积还有其他不同的算法吗?(2)你们有什么发现?它们的表面积都可以用侧面积+两个底面积来计算(3)课件演示立体图形的平面展开图:课件展示:侧面积+两个底面积2、体积(1)它们的体积是多少?(先让学生独立完成后全班交流)(2)你有什么发现?它们的体积都可以用底面积×高来计算。

3.议一议:有一位同学说:“圆锥的体积是圆柱体积的1/3。

”你们认为他说得对吗?4、圆柱和圆锥的体积相等,高也相等,它们的底面积之间有什么关系?三、综合应用1、一个酒瓶里面深30厘米,底面直径是8厘米,瓶里有酒深10厘米,把酒瓶塞紧后倒置(瓶口向下),这时酒深20厘米。

酒瓶的容积是多少毫升?(先让学生独立完成,后全班交流)2、用一底面边长为2分米,高为5分米长方体木料做一个最大的圆柱,木料的利用率是多少?四、拓展延伸有一张长为12厘米,宽为6厘米的长方形卡纸,如果要把它折成高是6厘米的长方体或者圆柱体,它们的体积是多少立方厘米?先让学生独立思考并计算出结果,然后全班交流汇总你有什么发现?小组讨论后全班交流五、课后思考如果把它折成高是12厘米的长方体或者圆柱体,它们的体积是多少?六、总结收获这节课你有什么收获?。

小学数学六年级下册《圆柱与圆锥》整理与复习教案

小学数学六年级下册《圆柱与圆锥》整理与复习教案

第三单元圆柱与圆锥第9课时整理与复习【学习目标】1.能够系统清晰地梳理本单元所学知识,正确理解知识间的联系与区别。

2.正确灵活地运用所学知识解决简单实际问题。

【学习过程】一、知识梳理在本单元我们都学习了哪些知识?用你喜欢的方法整理出来吧!我的问题:。

二、专项训练1.计算下面个图形的体积。

2.解决问题。

三、课堂达标1.填空。

你可以采用画图,列表格等不同方法哦!整理过程中你有什么问题吗?记录下来吧!计算中用到了哪些知识?说说你的思路!(1)一个圆柱和一个圆锥等底等高,圆锥的体积是24立方米,圆柱的体积是(),如果圆柱的体积比圆锥的体积大18立方米,圆柱的体积是(),圆锥的体积是()。

(2)用一张长15厘米,宽12厘米的长方形纸围成一个圆柱,这个圆柱的侧面积是()平方厘米。

(3)一个圆柱体削成一个与它等底等高的圆锥体, 削去的部分是圆锥体的( )%.2.同学们用彩纸制作了20个圆柱形灯罩,每个灯罩高35cm,底面圆的周长是47.1cm 。

至少需要用多少彩纸?想一想是要求圆柱的什么呀?3.一个圆锥形沙堆,底面积是28.26㎡,高是2.5m。

用这堆沙在10m宽的公路上铺2cm厚的路面,能铺多少米?计算时要注意单位哦!4.一块蜂窝煤大约需要用煤多少立方分米?(得数保留整数)四、课外拓展压路机的前轮是圆柱形,轮宽1.5米,直径1.2米,前轮每分钟转动10周,每分钟前进多少米?每分钟压路多少平方米?为什么要规定“先乘除后加减”?对于这个问题,我们分两层来谈。

第一层先谈谈规定运算顺序的必要性,第二层再谈谈为什么要规定“先乘除后加减”。

(1)规定运算顺序的必要性。

先举两个例子予以说明。

例1 小勇买了一块橡皮,价18分,又买了3支铅笔,每支12分,一共多少钱?综合算式18+12×3=18+36=54(分)=5角4分根据题意,这道题先算乘法后算加法是合情合理的。

例2 小春有18分钱,小敏有12分钱,小冬的钱数是他们俩人钱数之和的3倍,问小冬有多少钱?解答这道题的时候应该先求出小春与小敏两人钱数之和,即求出(18+12=)30分,然后再求出30分的3倍,即(30×3=)90分。

圆柱和圆锥整理复习总结

圆柱和圆锥整理复习总结
谢谢
THANK FOR YOU WATCHING
演讲人姓名
演讲时间
把一堆高5米,底面直径是6米的圆锥形小麦堆放入底面积是12.56平方米的圆柱粮仓内,至少要装多高?
将一个底面半径是4分米,高是6分米的圆柱木料削成一个最大的圆锥,至少要削去多少立方分米的木料?
一、求圆柱的表面积。(单位:厘米)
(1)侧面积:3.14×10×2=62.8(平方厘米) (2)底面积: 3.14 ×(10÷2)2=78.5 (平方厘米) (3)表面积;62.8+78.5×2=219.8(平方厘米)
二、计算下列图形的体积:单位(厘米)
5
2
3.14×2 ×5 =12.56 ×5 =62.8(立方厘米)
整 理 复 习
圆柱和圆锥
圆柱体 圆锥体 两个完全相同的圆形底面 ;一个曲形侧面,打开是个长方形;有无数条高。 尖顶;底面是个圆;侧面是一个曲面;只有一条高。
图形
名称
特征
底面周长×高
侧面积+底面积×2
侧面积=
表面积=
体积=
底面积×高
V=sh
V= sh
体积=底面积×高×
10
2
2
S=50.24厘米2
12
.
50.24×12× =50.24×4 = 200.96(立方厘米)
三、我会判断。
圆柱的体积是圆锥体积的3倍。( ) (2)一个圆柱的体积是60立方厘米,和它等 底等高的圆锥体积是20立方厘米。( ) (3)把一段圆柱形的木料削成一个最大的圆 锥,削去的部分是原体积的 。( ) 一个圆柱和一个圆锥底面积相等,体积也相等,已知圆柱的高是15厘米,圆锥的高是5厘米。( )
c
c
A

圆柱与圆锥的整理复习

圆柱与圆锥的整理复习
立方米?如果每立方米稻谷重500千克,这个粮 囤能装稻谷多少吨?
圆柱的底面半径为:62.8÷3.14÷2=10(m) 3.14×10²×2+3.14×10²×1.2÷3=628+125.6=753.6(m³)
圆柱体积
圆锥体积
753.6×500=376800(千克)=376.8(吨)
答:————————————。
=314(cm²) 铁块的高为:6280 x3÷314= 60(cm)
答:————————。
7、一个圆锥形的沙堆,底面周长是31.4m, 高是7.2m,每立方米沙重1.5吨,如果用 一辆载重6吨的汽车来运,几次可以运完?
底面半径r=31.4÷3.14÷2=5(m) 沙堆的体积:
V=1/3 × 3.14 × 5²× 7.2=188.4(m³) 188.4 × 1.5÷6≈48(次)
答:——————————。
• 1 圆柱与圆锥各有哪些特征? • 2 怎样求圆柱的侧面积.表面积.体积? 计算公式各是什么?
• 3怎样求圆锥的体积?计算公式是什么? • 4圆柱与圆锥的体积之间有什么系?
圆柱的特征:
1.两个底面是半径相等的两个圆 2.圆柱有一个曲面叫做侧面,展 开后是一个长方形。 3.圆柱有无数条高,且高的 长度都相等
V=sh÷3
圆柱与圆锥的体积之间有什么关系?
等底等高圆锥体积是圆柱体积的 三分之一 等底等高圆柱体积是圆锥体积的3倍
请回答下面的问题,并列出算式。
一个圆柱形水桶,底面半径10分米,
高是20分米。 ①给这个水桶加个桶的外面涂上油漆,是求哪个
部分? ④这个水桶能装多少水,是求哪个部分?
1.甲乙两人分别利用一张长20厘米, 宽15厘米的纸用两种不同的方法围成 一个圆柱体(接头处不重叠),那么 围成的圆柱( B )。

《圆柱与圆锥》整理复习(教案)

《圆柱与圆锥》整理复习(教案)
1.讨论主题:学生将围绕“圆柱与圆锥在生活中的应用”进行讨论,鼓励他们提出自己的见解。
2.引导与启发:我将作为引导者,提出问题帮助学生思考,如“圆柱与圆锥的设计有哪些优点?”
3.成果分享:每个小组将分享他们的讨论成果,以便全班同学共同学习。
(五)总结回顾(用时5分钟)
今天我们复习了圆柱与圆锥的表面积和体积的计算,并通过实践活动和小组讨论加深了对这些几何形状的理解。希望大家能够将这些知识应用到实际生活中。如果对今天的课程有任何疑问,欢迎随时提问。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要回顾圆柱与圆锥的基本概念,包括它们的表面积和体积的计算方法。这些几何形状在工程、建筑等领域有着广泛的应用。
2.案例分析:接下来,我们通过一个案例来了解圆柱与圆锥在实际中的应用,比如如何计算一个圆柱形水桶的容量。
3.重点难点解析:我会特别强调圆柱与圆锥表面积、体积公式的记忆和运用,以及如何将实际问题转化为数学模型。对于难点,如圆锥体积的1/3系数,我会通过实物演示或动画来帮助学生理解。
在教学过程中,教师需针对重点内容进行反复讲解和练习,确保学生熟练掌握。针对难点内容,教师应采用直观教学、实际操作等方法,帮助学生形象理解,并逐步突破难点。通过举例分析,让学生在实际问题中运用所学知识,提高解决问题的能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要复习的是《圆柱与圆锥》这一章节。在开始之前,我想先问大家一个问题:“你们在生活中是否注意过哪些物品是圆柱形或圆锥形的?”(如饮料罐、沙堆等)这个问题与我们将要复习的知识点密切相关。通过这个问题,我希望能够激发大家的兴趣,让我们一起探索圆柱与圆锥的奥秘。
-圆柱的表面积公式:S=2πrh+2πr²,体积公式:V=πr²h;

六年级下册数学教案-2.3《“圆柱和圆锥”整理与复习》︳西师大版

六年级下册数学教案-2.3《“圆柱和圆锥”整理与复习》︳西师大版

《“圆柱和圆锥”整理与复习》教学设计教学内容:西南师大版小学数学六年级下册“圆柱与圆锥整理与复习”内容分析:《“圆柱和圆锥”整理与复习》是西南师大版小学数学六年级下册第二单元的教学内容,本节课是在学生已经掌握了圆柱和圆锥的有关知识的基础上进行知识巩固与应用的。

备课中,思考如何处理既能达到巩固与应用,又能调动学生练习的热情?我做了深入的思考,首先思考知识的整理,如何引导学生通过自主回顾梳理,交流互补,使学生将零散的知识在头脑中串成线,联成片,结成网,加深各个图形之间的内在联系,使之形成一个较完整的知识体系,并进一步深入理解每一个概念、计算公式和算理的本质,以达到综合运用有关知识灵活解决实际问题,其次思考如何让学生更有效的、有兴趣的进行巩固练习。

深思之后,决定抛开书中的练习,换一种新的方式来教学。

整理知识这块,课下先让学生自主整理,课堂上交流补充,这样既培养学生自主获取知识的能力和整理、分析、综合概括的能力,又能使整理成为知识的唤醒、积累和升华的过程。

练习中,为了更好的调动学生学习的热情,借助一根圆柱形的木头,让学生发挥想象,提出用本单元知识解决的问题,并分析再解答,从而巩固本单元的知识。

总之,学生学好这部分的内容,不仅扩大了对形体的范围的认识,增加了形体的知识,更有利于进一步发展空间观念。

学情分析:学生经过六年的学习,已经积累了丰富的知识和一定的学习方法,为他们进行自主学习拓宽了路径。

他们的思维正在由形象思维向抽象思维转变,本单元立体图形的学习利于发展学生的空间观念。

我校孩子见多识广、个性张扬,具有较强的思维能力和自我表现能力,他们喜欢探索,敢想敢做。

在教学中,孩子们会的不教,孩子们能学会的不讲,让他们通过回忆、整理、交流、拓展等实践活动等拓宽他们的探索空间,让其将所学知识应用到生活实际之中。

教学目标:1.知识与技能:引导学生通过回忆、整理、拓展等实践活动,掌握圆柱与圆锥的相关特点与特征,并能熟练地运用公式进行圆柱、圆锥表面积或体积的计算。

小学数学六年级圆柱圆锥知识点总结复习

小学数学六年级圆柱圆锥知识点总结复习

小学数学六年级圆柱、圆锥十大知识点总结复习知识点1、点线面的关系,以及常见的立体图形的认识点的运动形成线,线的运动形成面,面的旋转形成立体图形,常见的立体图形有长方体正方体圆柱圆锥棱柱球等1.用纸片和小棒做成下面的小旗,快速旋转小棒,想象纸片旋转所形成的图形,再连一连。

1.【解析】半圆旋转形成球,长方体(正方体)旋转形成圆柱,直角三角形旋转形成圆锥,三角形和长方形组合图形旋转形成的是圆柱与圆锥的组合立体图形。

知识点2、圆柱圆锥的行程,展开图以及各部分的名称圆柱是由长方形(或正方形)旋转而成(可以由长正方形绕一条边或者一条高旋转而成)圆锥是由直角三角形绕它的一条直角边旋转而成(还可以由等腰三角形绕它底边上的高旋转而成,)圆柱的展开图:侧面可能是长方形或正方形(沿着一条高线展开),也有可能是平行四边形(不是沿着高线展开)底面是两个完全一样的圆(要求会求圆柱的侧面积和表面积)圆锥的展开图:侧面是一个扇形,底面是一个圆(不要求会求圆锥的侧面积和表面积)2.下面()图形是圆柱的展开图。

(单位:cm)2.A【解析】圆柱的展开图,侧面是长方形(或正方形)底面是两个圆,并且底面圆的周长等于长方形的长,高是长方形的宽。

三个选项中底面圆的直径是3,底面周长是3.14×3=9.42,三个选项的高都是2,所以选择A。

3.一个圆柱体的侧面是一个正方形,直径是5dm,正方形面积是_________。

3.246.49平方分米【解析】圆柱体的侧面是一个正方形,说明圆柱的底面圆的周长与圆柱的高相等。

底面圆的周长等于 3.14×5=15.7(分米),即正方形的边长是15.7分米,所以面积是15.7×15.7=146.49(平方分米)。

4.用一张长4.5分米, 宽2分米的长方形纸, 围成一个圆柱形纸筒, 它的侧面积是。

4.9平方分米【解析】圆柱形纸筒的侧面积就是长方形的面积:4.5×2=9(平方分米)。

圆柱和圆锥的整理与复习课件

圆柱和圆锥的整理与复习课件

圆柱的性质
上下底面平行且相等,轴截面是长方 形,侧面展开是长方形。
圆锥的定义、性质和面积
01
02
03
圆锥的定义
一个直角三角形以一直角 边为轴旋转一周形成的立 体图形。
圆锥的性质
顶点到底面圆心的连线垂 直于底面,轴截面是等腰 三角形,侧面展开是扇形。
圆锥的面积
底面积 + 侧面积 = π × r^2 + π × r × l。
圆柱的展开图
圆柱的侧面展开后是一个 矩形,矩形的长等于圆柱 的高,矩形的宽等于圆柱 底面的周长。
圆锥的展开图
圆锥的侧面展开后是一个 扇形,扇形的半径等于圆 锥的斜边长,弧长等于圆 锥底面的周长。
应用场景
展开图在解决实际问题中 非常有用,例如在计算表 面积、体积和解决几何问 题时。
圆柱和圆锥的旋转体
圆柱的体积是底面积乘以高,即πr²h。
圆锥的表面积计算
圆锥的体积计算
圆锥的表面积由一个底面和一个侧面组成, 底面面积是πr²,侧面积是πrl,所以圆锥的 表面积是πr² + πrl。
圆锥的体积是三分之一的底面积乘以高,即 1/3πr²h。
如何应用圆柱和圆锥的公式解决实际问题?
计算容积
当需要计算容器(如水桶、油罐等)能装多少液体时,可以使用 圆柱或圆锥的体积公式进行计算。
圆柱的数学建模
在数学建模中,圆柱体通常被视为一 个三维的几何图形。通过建立数学方 程,可以描述圆柱体的形状、大小和 位置。
圆锥的数学建模
与圆柱类似,圆锥体在数学建模中也 被视为一个三维的几何图形。通过建 立数学方程,可以描述圆锥体的形状、 大小和位置。
04 圆柱和圆锥的拓展知识
圆柱和圆锥的展开图

圆柱和圆锥整理与复习课件

圆柱和圆锥整理与复习课件

1、一根圆柱形木材长20分米,把它 截成4个相等的圆柱体. 表面积增加 了18.84平方分米.截后每段圆柱体 积是多少立方分米?
横截面积:18.84÷6=3.14(平方分米)
每段长度:20÷4=5(分米)
每段体积:3.14×5=15.7(立方分米)
2.你能求出下面这个直角三角 形沿AB边旋转一周形成的图 形的体积吗?
二、判断,对的打√ ,错的打×
1.圆柱的侧面展开一定是长方形 。(
×


2.圆锥的体积是圆柱体积的⅓。(
×
3.一个圆柱的高扩大2倍,底面积缩小2倍,它的体积不 变。( √ )
4.长方体、正方体、圆柱体的体积都可以用底面积乘高 来计算。( √ ) 5. 用两张完全相同的长方形纸围成两个不同的圆柱体 (接头处不重叠),那么围成的圆柱侧面积和高都相等。 (× )
义务教育课程标准实验教科书六年级下册
我们把圆柱沿底面直径平均切成若干等份,拼 成一个近似长方体,分的份数越多,拼成的图 形越接近长方体。 长方体的底面积等于圆柱的( 底面积 )
高等于圆柱的( 高
长方体的体积=底面积×高

圆柱的体积=( 底面积×高 )
一、你会求下面图形的表面积 或体积吗?只列式,不计算。 1.一个圆柱底面半径是6厘米,高是5厘 米,求它的表面积和体积。 2.一个圆锥底面积是25平方分米,高是 9分米,求它的体积。
AHale Waihona Puke 5 厘 米 B C3厘米
2.你能求出下面这个直角三角 形沿AB边旋转一周形成的图 形的体积吗?
A
5 厘 米
C
B 3厘米
现在你知道了吗?
1、妈妈给小明的水壶做 了一个布套(有盖), 至少用了多少布料?这 个水壶大约能装多少升 水?(水壶的厚度忽略 不计)

人教版六年级下册数学圆柱与圆锥 整理和复习课件

人教版六年级下册数学圆柱与圆锥 整理和复习课件

米?
稻谷的质量×出米率
27.7576×70%=19.43032(kg) 答:一漏斗稻谷能磨19.43032kg大米。
二知识点4:体积知识与日常生活相结合。
4.一支120mL的牙膏管口的直径为5mm,李叔叔每 天刷2次牙,每次挤出的牙膏长度是2cm。这支牙 膏大约能用多少天?(得数保留整数)
5mm=0.5cm 120÷[3.14×(0.5÷2)2×2×2]≈153(天) 答:这支牙膏大约能用153天。
知识点5:用体积知识解决实际问题时,要根据 具体情况而定。 5.一个圆柱形木桶(如图,木桶平置),底面 内直径为4dm,桶口距底面最小高度为5dm,最 大高度为7dm。该桶最多能装多少升水?
3.14×(4÷2)2×5=62.8(dm3) =62.8(L)
答:该桶最多能装62.8L水。
►雨水打在窗户上,发出嘀嗒,嘀嗒的声响。这天空好似一个大筛子, 正永不疲倦地把银币似的雨点洒向大地。远处,被笼罩在雨山之中的 大楼,如海市蜃楼般忽隐忽现,让人捉摸不透,还不时亮起一丝红灯, 给人片丝暖意。 ►七月盛夏,夏婆婆又开始炫耀她的手下——太阳公公的厉害。太阳 公公接到夏婆婆的命令,以最高的温度炙烤着大地,天热得发了狂, 地烤得发烫、直冒烟,像着了火似的,马上要和巧克力一样融化掉。 公路上的人寥寥无几,只有汽车在来回穿梭奔跑着。瓦蓝瓦蓝的天空 没有一丝云彩,一些似云非云、似雾非雾的灰气,低低地浮在空中, 使人觉得憋气不舒服。外面的花草树木被热得打不起精神来,耷拉着 脑袋。
3 (17.584+25.12)× 0.65 =27.7576(kg) 答:这个漏斗最多能装27.7576kg稻谷。
知识点3:组合图形体积的计算方法。
3.一种水稻磨米机的漏斗是由圆柱和圆锥两部分组成。

圆锥和圆柱整理与复习课教学反思

圆锥和圆柱整理与复习课教学反思

圆锥和圆柱整理与复习课教学反思引言本文档是对圆锥和圆柱整理与复课教学的反思和总结。

通过对课堂教学的观察和学生的反馈,我们评估了教学策略的有效性,并讨论了改进的可能性。

教学目标本课程的教学目标是:1. 理解圆锥和圆柱的基本概念和性质;2. 掌握圆锥和圆柱的相关公式和计算方法;3. 能够应用所学知识解决实际问题。

教学内容本课程的教学内容主要包括以下方面:1. 圆锥和圆柱的定义和特征;2. 圆锥和圆柱的表面积和体积计算公式;3. 圆锥和圆柱的应用案例。

教学方法为了达到预期的教学目标,我们采用了以下教学方法:1. 授课:通过讲解圆锥和圆柱的概念和性质,帮助学生建立基本的认知框架;2. 示例演练:通过解决一些典型的例题,让学生掌握计算圆锥和圆柱表面积和体积的方法;3. 小组讨论:组织学生进行小组讨论,分享彼此的思考和解题方法,促进合作研究;4. 实例应用:引入实际问题,让学生应用所学知识解决实际问题,增强实际应用能力。

教学反思通过观察和评估,我们得出以下教学反思和总结:1. 教学策略有效:授课和示例演练的教学策略被学生普遍认可。

学生通过讲解和实例演练,加深了对圆锥和圆柱的理解,并掌握了相关的计算方法。

2. 小组讨论作用明显:小组讨论活动有助于学生之间的相互交流和合作研究。

学生通过讨论分享彼此的思考和解题方法,增强了研究效果。

3. 实际应用需加强:学生在实际应用方面的能力表现不够突出。

下一步需要更多引入实际问题,并引导学生运用所学知识解决实际问题,提升实际应用能力。

改进措施基于教学反思,我们提出以下改进措施:1. 增加实例应用:增加实际问题的数量和复杂度,引导学生运用所学知识解决实际问题,提升实际应用能力。

2. 强化小组讨论:进一步引导学生在小组内进行深入讨论和合作研究,分享彼此的思考和解题方法,促进互动和思维碰撞。

3. 反馈机制改进:建立有效的反馈机制,及时收集学生的反馈意见,并根据反馈进行相应调整和改进。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学数学学科教学设计模板
第___三_单元
课题
圆柱与圆锥
备课人
王梓丞
前期分析




解读学段目标
探索圆柱与圆锥的形状、大小和位置关系,说出基本特征;体验简单图形的运动过程,知道平面图形旋转后形成的立体图形,掌握测量、识图和画图的基本方法。
解读编者意图
本单元是在认识了圆,掌握了长方体、正方体的特征以及表面积与体积计算方法的基础上编排的,是小学阶段学习几何知识的最后一部分内容。圆柱与圆锥都是基本的几何形体,也是生产、生活中经常遇到的几何形体。教学圆柱和圆锥扩大了学生认识形体的范围,增加了形体的知识,有利于进一步发展空间观念。
应用拓展
板书设计
圆柱和圆锥
基本公式
圆柱 侧面积=底面周长×高
表面积=侧面×高÷3
(3)情感目标:通过整理、交流、合作、探究、体验探究的乐趣,感受数学的价值,培养学生“学数学、用数学”的意识和创新的精神。
教学重点
重点:掌握圆柱与圆锥的相关特点与特征,并能熟练地运用公式进行圆柱、圆锥表面积或体积的计算。
教学难点
难点:通过对知识进行整理,提高学生自主获取知识与概括知识的能力
教学过程
基案




学生已有知识
学生已经学过第三单元圆柱与圆锥的表面积和
学习障碍点
在总结思维导图时还有遗漏的知识点。
目标制定
教学目标
(1)知识目标:引导学生通过回忆、整理、拓展等实践活动,说出整理圆柱与圆锥的相关特点与特征,并能熟练地运用公式进行圆柱、圆锥表面积或体积的计算。
(2)能力目标:通过让学生对知道的整理提高学生的自主获取知识与概括知识能力。在练习、讨论、合作中发展学生的空间观念,并进一步提高运用知识解决实际问题的能力。
辅案
新课引入
(一)梳理知识,构建体系。
1.让同学们自主整理本章知识。
2.展示交流,补充完善。
3.小组展示,讨论、完善,形成基本的知识网络。
新知探究
(二)创设问题情境,在解决实际问题中复习应用所学知识。圆柱形。
一、知识树的树干为什么?学生回答
1.“切”
〔教师引导:〕把一根圆柱体木材锯成相等的4份,
需要锯几次可以?
(单位换算、转化的数学思想)
3、“削”
圆柱容球计算球体积。
〔教师引导:〕除了对圆木“涂”“切”以外,有同学说还可以“削”成一个最大的圆锥。那怎样“削”才算是最大呢?你能用四句话说出它们之间的关系吗?
〔预设回答:〕等底等高的圆柱和圆锥:圆柱体积是圆锥体积的3倍,圆锥体积是圆柱体积的三分之一,圆柱体积比圆锥体积多2倍,圆锥体积比圆柱体积少三分之二。
2、“刷”
〔教师引导:〕针对这一圆木组合,刷油漆要刷多少?
〔预设回答:〕给圆木涂油漆求涂漆面积的时候需要用表面积的知识。
〔教师追问:〕直接算出,还是想一下有什么简便的计算。
〔预设回答:〕①如果是柱子时,只刷侧面。
②如果是个木桩,只涂一个侧面和一个上面。
③如果是个圆木料,可涂整个表面。
〔设计意图:〕一个“刷”,刷出了与表面积有关的符合实际的有价值的问题,培养了学生灵活运用所学知识解决实际问题的能力。
〔预设回答:〕
①可以横切,分两段切一刀,增加两个底面大小的面,分三段切两刀,增加4个底面大小的面,以此类推。
②还可以沿直径纵切,增加两个长方形的面,长和圆柱的高相等,宽和直径相等。
〔课件演示:〕横切和纵切
〔设计意图:〕横切、纵切两种不同的切法探究,加上课件的演示,能进一步发展学生的空间观念。
(数形结合思想。)
〔教师引导:〕如果圆柱和圆锥等底等积,那你能说出它们之间的关系吗?
〔预设回答:〕圆柱和圆锥等底等积:圆柱高是圆锥高的三分之一,圆锥高是圆柱高的3倍。
〔教师引导:〕如果圆柱和圆锥等高等积,那你能说出它们之间的关系吗?
〔预设回答:〕圆柱和圆锥等高等积:圆柱底是圆锥底的三分之一,圆锥底是圆柱底的3倍。
〔设计意图:〕将圆柱削成一个最大圆锥,让同学们讨论分析两者之间的关系,便于进一步理解两者的内在联系,从而进一步发展学生的空间观念。
相关文档
最新文档