坐标转换三参数计算器使用说明
RTK求解参数(三参、四参、七参)讲解复习过程
站参数,使基准站发射差分信号。 • 3、连接移动站,设置移动站,使得移动站接收到基准站的差分数据,并达到
窄带固定解。 • 4、移动站到测区已知点上测量出窄带固定解状态下的已知点原始坐标。 • 5、根据已知点的原始坐标和当地坐标求解出两个坐标系之间的转换参数。 • 6、打开坐标转换参数,则RTK测出的原始坐标会自动转换成当地坐标。 • 7、到另外你至少一个已知点检查所得到的当地坐标是否正确。 • 8、在当地坐标系下进行测量,放样等操作,得到当地坐标系下的坐标数据。 • 9、将坐标数据在手簿中进行坐标格式转换,得到想要的坐标数据格式。 • 10、将数据经过ActiveSync软件传输到电脑中,进行后续成图操作。
• 平面坐标转换
– 多应用于 – 北京54,国家80 – 与当地自定义 – 坐标系之间的转换
– 四个参数 – X0平移 – Y0平移 – θ 坐标轴旋转 – K 尺度
不同(椭球)坐标系的转换流程
空间直角坐标(X,Y,Z)
椭球转换
大地坐标(B,L,H) 投影反算 平面直角坐标(x,y,h) 平面转换 当地平面坐标(x,y)
• 参数计算是RTK作业中很重要的一个环节,下面就RTK在使用不同的 转换方法时的作业步骤做详细说明。
一:平面四参数+高程拟合(用户常用方法)
• 1、架设基准站 • 基准站可架设在已知点或未知点上(注:如果需要使用求解好的转换
参数,则基准站位置最好和上次位置要一致,打开上次新建好的项目, 在设置基准站,只需要修改基准站的天线高,确定基准站发射差分信 号,则移动站可直接进行工作,不用重新求解转换参数) • 基准站架设点必须满足以下要求: • a、高度角在15度以上开阔,无大型遮挡物; • b、无电磁波干扰(200米内没有微波站、雷达站、手机信号站等, 50米内无高压线); • c、在用电台作业时,位置比较高,基准站到移动站之间最好无大型 遮挡物,否则差分传播距离迅速缩短; • d、至少两个已知坐标点 (已知点可以是任意坐标系下的坐标,最好 为三个或三个以上,可以检校已知点的正确性); • e、不管基站架设在未知点上还是已知点上,坐标系统也不管是国家 坐标还是地方施工坐标,此方法都适用。
三坐标使用教程ppt课件
• 1、元素数据区 • 2、坐标数据区 • 3、探头数据区 • 4、公差数据区 • 5、变量数据区 • 6、DMIS程序数据区 • 7、自定义视图数据区 • 8、测量方法
机器状态窗口
• 机器状态窗口包含5个面板: 机器位置窗口;数字 显示窗口(DRO1);数字显示窗口(DRO2);探头 设置窗口,信息和错误信息显示窗口。
测头校验-角度校验
测针校验一般在双数据区进行,在双数据区选择探头数据区, 然后把需要校验的角度选中,然后一起拖放到定义好的校验 规上,然后机器就会自动对测头角度进行打点校验。
注意:手动测头,如MH20I,必须根据提示, 旋转测头角度;标准球位置移动的情况下, 必须手动打点,确认标准球位置。
测量
• 三坐标测量主要分为3部分:手动测量、编 程测量和CAD导入测量
点此处切换
编程测量
打开软件右上角的“自学习状态”,打开后,测量、 公差、构造,DMIS编辑区都会有语言程序生成。
DMIS编辑区
自学习 状态
编程测量
语言程序执行过程中,机器走的是最短路径,元素 与元素之间需要插入“空间点”,避免碰撞。
编程工具栏
打开 保存 开始 停止
程序编好后,可以通过编程工具栏的保 存,把程序保存起来,下次测同一工件, 可以打开,然后点开始去执行。
信息
三坐标测量机的基本操作
一般三坐标测量工件,大致可以分为4个部分: 1.根据工件和要测量的尺寸要求,选择合适的测针 和角度,并进行校验;
2.测量需要参与计算和辅助计算的元素; 3.通过公差,求出需要的结果; 4.整理并保存报告。
测头校验
测量
公差
2.RTK求解参数(三参、四参、七参)
一:平面四参数+高程拟合(用户常用方法)
• 1、架设基准站 • 基准站可架设在已知点或未知点上(注:如果需要使用求解好的转换 参数,则基准站位置最好和上次位置要一致,打开上次新建好的项目, 在设置基准站,只需要修改基准站的天线高,确定基准站发射差分信 号,则移动站可直接进行工作,不用重新求解转换参数) • 基准站架设点必须满足以下要求: • a、高度角在15度以上开阔,无大型遮挡物; • b、无电磁波干扰(200米内没有微波站、雷达站、手机信号站等, 50米内无高压线); • c、在用电台作业时,位置比较高,基准站到移动站之间最好无大型 遮挡物,否则差分传播距离迅速缩短; • d、至少两个已知坐标点 (已知点可以是任意坐标系下的坐标,最好 为三个或三个以上,可以检校已知点的正确性); • e、不管基站架设在未知点上还是已知点上,坐标系统也不管是国家 坐标还是地方施工坐标,此方法都适用。
• 2、假设已建好一个项目,参数计算完以后, 正常工作了一段时间,由于客观原因,第 二次作业不想把基准站架设在和第一次同 样的位置,此时,可以用到点校正功能, 只需要将基准站任意架设,打开第一次使 用的项目,到一个已知点上校正坐标即可。 校正方法和第一种情况相同。
• 一般的:
• • • • 三参数:要求已知一个国家坐标点,精度随传输距离增加而减少 四参数:要求两个任意坐标点,精度在小范围内可靠 七参数:三个国家坐标点,精度高,对已知点要求严格 一步法:三个任意坐标点,在残差不大的情况下,精度可靠
五、校正参数
• 用于计算两坐标系统之间的平面、高程平移参数。通常 在以下两种情况,可以使用校正参数
– – – –
– – – – –
多应用于 北京54,国家80 与当地自定义 坐标系之间的转换
Handhold
坐标转换三参数计算器使用说明一、软件功能该软件可实现在北京54坐标系、西安80坐标系、WGS84坐标系(GPS通常采用WGS84坐标系)之间进行三参数条件下的高精度相互转换,求取手持GPS的北京54(或西安80)DA、DF、DX、DY、DZ坐标转换的参数。
二、使用说明软件分成上下二部分,上半部为在两个不同椭球体间求坐标转换的三参数DX、DY、DZ,下半部为在两个不同椭球体间的坐标转换(如下图)。
在两个不同椭球体间进行坐标转换首要条件是必需知道坐标转换参数,通常有三参数和七参数转换二种方式,本程序提供三参数转换方式。
实例1:我要求手持GPS的北京54(或西安80)坐标转换参数。
向有关部门收集所在工作区内已知点(只要一个控制点)的WGS84坐标系经纬度坐标,以及同点的北京54(或西安80)坐标系中的直角坐标,即可进行本软件操作了。
如某一个控制点的WGS84经度、纬度、高程为: 109度34分28.94343秒, 31度02分25.65526秒, 104.967米,该控制点北京54坐标为:x=3436391.566m,y=37363926.964m(37为带号),h=108.717m ,将上述数据输入在软件上半部相应栏中,注意勾选前后坐标系正确(坐标系A,坐标系B),输入中央经线(37带,输111),点击参数计算,计算结果为DA=-108,DF=0.00000048,dx=32.284979,dy=-90.792978,dz=-57.993043, 此参数即为手持GPS北京54坐标参数。
此三参数为不同椭球体间进行坐标转换奠定了基础。
以上计算是精确算法,不存在漏洞。
如果收集控制点确实很困难,在不严谨的情况下,用手持GPS在工作区内某点上设置在WGS84状态下长时间观察读数,取平均值,获取WGS84经度、纬度、高程。
北京54(或西安80)坐标你再想办法得到(因为你那已经有测量成果了就好说,如果还没开展测量的话,你就得在大比例尺图上读坐标,越精确越好),也能解决问题,但这个办法不推荐使用,你把求得的参数在其它地貌特征点上检验一下是否提高了定点精度,没提高的话,请重复几次,直到符合定点精度要求。
坐标转换参数求取及坐标转换程序设计
坐标转换参数求取及坐标转换程序设计坐标转换是指将一个坐标系中的坐标点转换到另一个坐标系中的过程。
在实际应用中,常常需要将不同的坐标系之间进行转换,用于地图显示、位置定位等领域。
坐标转换参数是用来描述不同坐标系之间的变换关系的参数,一旦确定了转换参数,就可以通过程序进行坐标转换。
常见的坐标转换包括经纬度坐标与平面坐标之间的转换、不同坐标系统之间的转换等。
要确定坐标转换参数,一般需要进行以下几个步骤:1.收集待转换的坐标数据:收集需要转换的坐标点数据,包括原始坐标系和目标坐标系的坐标点。
2.确定转换方法:根据待转换的坐标数据,确定合适的转换方法。
常见的转换方法包括三参数转换、七参数转换等。
3.选择控制点:根据待转换的坐标数据,在原始坐标系和目标坐标系中选择一些已知的控制点,用于计算转换参数。
控制点一般应分布在地图上各个区域,并且坐标点的准确性要得到保证。
4.计算转换参数:利用所选控制点的坐标数据,根据转换方法进行计算,得到转换参数。
坐标转换程序设计主要包括以下几个步骤:1.定义数据结构:定义表示坐标点的数据结构,包括坐标系类型、坐标点的经纬度或平面坐标、转换参数等。
2.实现坐标转换函数:根据已知的转换方法,实现相应的坐标转换函数。
函数输入包括待转换的坐标点和转换参数,输出为转换后的坐标点。
3.实现转换参数计算函数:根据已知的控制点坐标数据,实现转换参数计算函数。
函数输入包括原始坐标系和目标坐标系中的控制点坐标,输出为计算得到的转换参数。
4.编写测试程序:编写测试程序,包括输入待转换的坐标点数据、转换参数等,调用坐标转换函数进行转换,并输出转换结果。
此外,还可以考虑使用现有的坐标转换库或API,如Proj4、GDAL等,以简化开发过程。
总之,坐标转换参数的求取和坐标转换程序设计是一个比较复杂的过程,需要针对具体应用场景进行细致的分析和设计。
通过合理选择转换方法和控制点,结合编写程序进行坐标转换,可以实现不同坐标系之间的精确转换。
手持GPS三参数计算及各地坐标转换经验参数
⼿持GPS三参数计算及各地坐标转换经验参数如何设置⼿持GPS相关参数及全国各地坐标转换参数⼀、如何设置⼿持GPS相关参数(⼀)⼿持GPS的主要功能⼿持GPS,指全球移动定位系统,是以移动互联⽹为⽀撑、以GPS智能⼿机为终端的GIS系统,是继桌⾯Gis、WebGis之后⼜⼀新的技术热点。
⽬前功能最强的⼿持GPS,其集成GPRS通讯、蓝⽛技术、数码相机、麦克风、海量数据存储、USB/RS232端⼝于⼀⾝,能全⾯满⾜您的使⽤需求。
主要功能:移动GIS数据采集、野外制图、航点存储坐标、计算长度、⾯积⾓度(测量经纬度,海拔⾼度)等各种野外数据测量;有些具有双坐标系⼀键转换功能;有些内置全国交通详图,配各地区地理详图,详细⾄乡镇村落,可升级细化。
(⼆)⼿持GPS的技术参数因为GPS卫星星历是以WGS84⼤地坐标系为根据建⽴的,⼿持GPS单点定位的坐标属于WGS84⼤地坐标系。
WGS84坐标系所采⽤的椭球基本常数为:地球长半轴a=6378137m;扁率F=1/298.257223563。
常⽤的北京54、西安80及国家2000公⾥⽹坐标系,属于平⾯⾼斯投影坐标系统。
北京54坐标系,采⽤的参考椭球是克拉索夫斯基椭球,该椭球的参数为:地球长半轴a=6378245m;扁率F=1/298.2。
西安80坐标系,其椭球的参数为:地球长半轴a=6378140m;扁率F=1/298.257。
国家2000坐标系,其椭球的参数为:地球长半轴a=6378137m;扁率F=1/298.298.257222101。
(三)⼿持GPS的参数设置要想测量点位的北京54、西安80及国家2000公⾥⽹⾼精度坐标数据,必须学习坐标转换的基础知识,并分别科学设置⼿持GPS的各项参数。
⾸先,在⼿持式GPS接收机应⽤的区域内(该区域不宜过⼤),从当地测绘部门收集1⾄两个已知点的北京54、西安80或国家2000坐标系统的坐标值;然后在对应的点位上读取WGS84坐标系的坐标值;之后采⽤《万能坐标转换》软件,可计算出DX、DY、DZ的值。
RTK求解参数(三参、四参、七参)
• 一般的:
• • • • 三参数:要求已知一个国家坐标点,精度随传输距离增加而减少 四参数:要求两个任意坐标点,精度在小范围内可靠 七参数:三个国家坐标点,精度高,对已知点要求严格 一步法:三个任意坐标点,在残差不大的情况下,精度可靠
• 投影讲解 一步法转换
五、校正参数
• 用于计算两坐标系统之间的平面、高程平移参数。通常 在以下两种情况,可以使用校正参数
空间直角坐标(X,Y,Z)
大地坐标(B,L,H) 投影正算 平面直角坐标(x,y,h) 平面转换 当地平面坐标(x,y)
RTK简易操作流程
• 以下只是软件的简易操作流程,详细使用步骤请参照接下来的详细说明。此 流程只是我们提供给的一种解决方案,在熟练使用本软件后,可以不依照此 步骤操作。在作业过程中,通常的使用方法为:
RTK求解参数
罗禹
参数的概念
1、由于GPS所采用的坐标系为WGS-84坐标系,而 在我们国家,实际的工作中所使用的都是BJ-54,国 家-80、或地方坐标系, 因此存在WGS-84和当地坐标系统之间的转换问题。 2、参数转换一般分两种形式: 平面坐标系之间的转换:四参数、校正参数 椭球体之间的转换: 三参数,七参数
谢谢
• 1、只有一个BJ-54、国家-80坐标或只有一个和WGS-84 坐标系旋转很小的坐标系下的坐标,基准站架设好后, 移动站可以直接到一个已知点,点击【点校验】--【计 算】,采集当前点的WGS-84坐标,输入已知点的当地 坐标,点击【计算】,得出已知坐标和当前坐标的改正 量dx、dy、dz,点击【应用】可应用校验参数,应用后 所采点的坐标将自动通过校验参数改正为和已知点同一 坐标系统的坐标。
不同(椭球)坐标系的转换流程
几种椭球转换模型的特点: 1.三参数法: 七参数方法的简化,只取X平移,Y平移,Z平移。 运用于信标,SBAS,固定差改正以及精度要求不高的地方, 用于RTK模式下,作用距离在5km范围较平坦的地方(基站开机模式) 2.布尔莎七参数法: 标准的七参数方法,使用X,Y,Z平移,X,Y,Z旋转,K尺度 作用范围较大和距离较远,通常用于RTK模式或者RTD模式的 WGS84到北京54和国家80的转换,已知点要三个以上,要求较高。 3.四参数+高程拟合: 使用X,Y平移,a旋转,k尺度还有高程拟合参数 也是RTK常用的一种作业模式,通过四参数完成WGS84平面到当地平面 的转换,利用高程拟合完成WGS84椭球高到当地水准的拟合。 4.一步法 参数形式和标准七参数一样, X,Y,Z平移,X,Y,Z旋转,K尺度 可以一步完成WGS84到当地地方坐标系统的转换工作。也许要三个以上 WGS84点和当地地方坐标。 5、校正参数 使用X,Y平移,小范围使用
坐标反算计算器在线使用
坐标反算计算器在线使用1. 简介坐标反算计算器是一款方便实用的工具,用于将已知的坐标信息转换为具体的位置或地址。
它可以帮助用户在地理位置相关的应用场景中,通过输入坐标信息来获取相关位置的具体描述,如位置名称、地址等。
本文将介绍如何在线使用坐标反算计算器,帮助您快速进行坐标反算。
2. 计算器使用步骤2.1 打开坐标反算计算器首先,打开您的浏览器,并在地址栏中输入坐标反算计算器的网址,点击回车键访问该网页。
坐标反算计算器通常是基于Web开发的,因此可以在各种浏览器上进行访问,无需安装任何额外的软件。
2.2 输入坐标信息一旦打开了坐标反算计算器网页,您将看到一个用户界面,其中包含用于输入坐标信息的文本框和相关的操作按钮。
接下来,您需要根据您所拥有的坐标信息,将其输入到相应的文本框中。
2.3 选择坐标类型在输入坐标信息之后,需要选择正确的坐标类型,以确保计算器能够正确地解析您输入的坐标。
常见的坐标类型包括经纬度坐标、UTM坐标等。
根据您所拥有的坐标信息,更改坐标类型选择框,以选择正确的坐标类型。
2.4 执行坐标反算在完成上述步骤后,您只需点击“计算”或“反算”按钮就可以执行坐标反算。
计算器会将您输入的坐标信息进行处理,并输出相关位置的描述结果。
2.5 查看结果坐标反算计算器会将结果显示在用户界面的指定区域内。
您可以在计算器的输出框中看到反算后的结果。
反算的结果通常包括位置的名称、地址、附近地标或其他相关描述信息。
根据计算器的不同,输出结果的格式和内容可能有所不同。
3. 使用技巧为了更好地使用坐标反算计算器,您可以考虑以下一些技巧:•确保输入的坐标信息正确无误,以避免计算器输出错误的位置描述。
•默认情况下,计算器使用的是标准的坐标类型,如果您的坐标类型与标准类型不同,需要在进行计算之前选择正确的坐标类型。
•如果计算器提供了更多选项和参数,您可以根据自己的需求进行配置,以获取更准确的结果。
4. 结论通过在线使用坐标反算计算器,您可以方便地将已知的坐标信息转换为具体的位置或地址。
坐标转换三参数计算器使用说明
坐标转换三参数计算器使用说明一、软件功能该软件可实现在北京54坐标系、西安80坐标系、WGS84坐标系(GPS通常采用WGS84坐标系)之间进行三参数条件下的高精度相互转换,求取手持GPS 的北京54(或西安80)DA、DF、DX、DY、DZ坐标转换的参数。
二、使用说明软件分成上下二部分,上半部为在两个不同椭球体间求坐标转换的三参数DX、DY、DZ,下半部为在两个不同椭球体间的坐标转换(如下图)。
在两个不同椭球体间进行坐标转换首要条件是必需知道坐标转换参数,通常有三参数和七参数转换二种方式,本程序提供三参数转换方式。
实例1:我要求手持GPS的北京54(或西安80)坐标转换参数。
向有关部门收集所在工作区内已知点(只要一个控制点)的WGS84坐标系经纬度坐标,以及同点的北京54(或西安80)坐标系中的直角坐标,即可进行本软件操作了。
如某一个控制点的WGS84经度、纬度、高程为: 109度34分28.94343秒, 31度02分25.65526秒, 104.967米,该控制点北京54坐标为:x=3436391.566m,y=.964m(37为带号),h=108.717m ,将上述数据输入在软件上半部相应栏中,注意勾选前后坐标系正确(坐标系A,坐标系B),输入中央经线(37带,输111),点击参数计算,计算结果为DA=-108,DF=0.00000048,dx=32.284979,dy=-90.792978,dz=-57.993043, 此参数即为手持GPS北京54坐标参数。
此三参数为不同椭球体间进行坐标转换奠定了基础。
以上计算是精确算法,不存在漏洞。
如果收集控制点确实很困难,在不严谨的情况下,用手持GPS在工作区内某点上设置在WGS84状态下长时间观察读数,取平均值,获取WGS84经度、纬度、高程。
北京54(或西安80)坐标你再想办法得到(因为你那已经有测量成果了就好说,如果还没开展测量的话,你就得在大比例尺图上读坐标,越精确越好),也能解决问题,但这个办法不推荐使用,你把求得的参数在其它地貌特征点上检验一下是否提高了定点精度,没提高的话,请重复几次,直到符合定点精度要求。
手持GPS三参数计算方法
手持GPS三参数计算方法南方测绘石家庄工程项目部靳超新机拿到手之后,设计方都给提供一个投影参数,这对于要求不高的一般用户来说基本可以满足工作需要,而对于一些专业用户来说,就要自己来测算参数。
一般型号的导航型手持GPS自定义坐标系统(User)投影参数设置界面都提供了五个变量(△X、△Y、△Z、△A、△F)需要设置,而实际工作中,后两个参数(△A、△F)针对某一坐标系统来说为固定参数(北京54坐标系△A=-108、△F=0.0000005西安80△A=-3、△F=0),无需改动,需要自己测算的参数主要为前三个(△X、△Y、△Z),一般称为三参数。
测算三参数的基本方法是,首先在已知控制点上测量一个稳定的WGS-84大地坐标(BLH)值,然后,运用专用测量程序既可算出一个三参数来。
三参数计算出来后,将其输入GPS中再到已知控制点上观测比对,最好再到另一已知控制点上观测检校,如比对检校差值在规定允许误差范围之内,既可运用于实际工程测量工作。
一般来说,只要到一新工区或工程点间距较远(数十至上百公里以外)都要到已知控制点上重新进行观测比对检校,没有问题才能进行实际工作。
三参数的求取步骤如下:一、获取已知点的经纬度利用手持GPS到一个已知控制点上测量一个稳定(即精度比较高)的WGS84大地坐标(即B,L,H),也就是在手持GPS中将坐标系设置为:WGS84坐标系,显示格式为:经纬度格式。
每种手持机设置的位置有所不同,请参阅说明书进行操作。
二、计算转换参数一般手持机参数为:△X、△Y、△Z、△A、△F。
△A、△F在北京54和西安80为固定值,我们主要计算:△X、△Y、△Z,即三参数。
我们使用COORD4.1(在此,感谢软件的作者:Jerry , 注意网上有其它版本的软件,某些功能可能有错误,如4.2版本)软件来自己求三参数。
打开软件如图1.设置投影参数坐标转换->投影参数输入当地的中央子午线,不确定或不知如何判断时可咨询南方测绘当地技术人员,其它可根据忽略。
三参数、四参数、七参数等坐标系转换参数求解
一、引言在地图制图、地理信息系统、导航定位等领域,常常需要进行不同坐标系之间的转换,以实现不同数据之间的对接和整合。
而在坐标系转换中,三参数、四参数、七参数等方法是常用的参数化转换模型。
本文将从理论和实践两个层面,对这些坐标系转换参数的求解进行探讨。
二、三参数坐标系转换参数求解三参数坐标系转换是指通过平移、旋转和尺度变换来实现两个坐标系之间的转换。
求解三参数的过程可以分为以下几个步骤:1. 收集数据:首先需要获取两个坐标系之间的对应点对,这些点对可以是地面控制点、地理标志物等。
2. 建立转换模型:利用对应点对,建立三参数转换模型,通常表示为:ΔX = ΔX0 + aΔX1 - bΔY1ΔY = ΔY0 + bΔX1 + aΔY1ΔZ = ΔZ0 + c(ΔX + ΔY)3. 求解参数:通过最小二乘法等数学方法,求解出a、b、c三个参数的值,从而得到三参数转换模型。
4. 参数验证:对求解出的参数进行验证和调整,以确保转换模型的精度和稳定性。
三、四参数坐标系转换参数求解四参数坐标系转换相比于三参数,增加了一个尺度参数,其求解过程类似于三参数,不同之处在于模型的建立和参数的求解方式:1. 模型建立:四参数转换模型可以表示为:ΔX = ΔX0 + aΔX1 - bΔY1 + mΔZ1ΔY = ΔY0 + bΔX1 + aΔY1 + nΔZ1ΔZ = ΔZ0 + c(ΔX + ΔY)2. 参数求解:通过对应点对,利用最小二乘法等数学方法,求解出a、b、c和m、n四个参数的值。
3. 参数验证:同样需要对求解出的四个参数进行验证和调整,保证转换模型的准确性和可靠性。
四、七参数坐标系转换参数求解七参数坐标系转换是在四参数的基础上,增加了三个旋转参数,其求解过程相对复杂,主要包括以下步骤:1. 建立转换模型:七参数转换模型可以表示为:ΔX = ΔX0 + (1 + l)ΔX1 - mΔY1 + nΔZ1 + TxΔY = ΔY0 + mΔX1 + (1 + l)ΔY1 - nΔZ1 + TyΔZ = ΔZ0 - nΔX1 + mΔY1 + (1 + l)ΔZ1 + Tz2. 参数求解:通过对应点对,运用复杂的数学方法,求解出l、m、n和Tx、Ty、Tz六个参数的值。
手持GPS坐标系统转换参数求解方法
手持GPS 坐标系统转换参数求解方法手持GPS 主要利用的卫星星历是以WGS-84坐标系为根据建立的,使用的坐标系统是WGS-84坐标系统,而我们日常使用的地图资料大部分都属于1954年北京坐标系或1980年国家大地坐标系。
由于不同的坐标系统地球椭球参数都不一样,它们之间存在着平移和旋转的关系,因此,我们在工作中必须将WGS-84坐标系转换成1954年北京坐标系或1980年国家大地坐标系,求解出坐标系之间的转换参数。
手持GPS 一般内部设置五个转换参数,只要计算出五个参数(DX ,DY ,DZ ,DA ,DF ),并在仪器中输入这五个参数即可完成了坐标转换工作。
1 参数求解方法1.1 收集测区高等级控制点资料并测定其WGS-84坐标在测区内寻找三个以上的高等级控制点,精度越高越好,要求视野开阔,卫星信号强,周围无电磁波干扰,无多路径效应或者较弱。
在当场测定其在WGS-84坐标系统下大地坐标(B ,L )和大地高H ,并收集控制点的坐标信息,包括1954年北京坐标系或1980年国家大地坐标系下的平面直角坐标(x ,y ),大地坐标(B ,L ),高程h ,和高程异常值ξ。
1.2 计算三维直角坐标对于对于同一空间点,大地坐标系与空间直角坐标系有下列转换关系:()[]⎪⎩⎪⎨⎧B H +E +N =+=+=sin 1cosBcosL H) (N Y cosBcosLH) (N X 2Z (1) 式(1)中:N = A/ (1 – E 2sinB 2) 1/ 2 ,1954年北京坐标系与1980年国家大地坐标系的大地高H= h +ξ,X 、Y 、Z 为大地坐标系中的三维直角坐标,A 为大地坐标系对应椭球之长半轴,为大地坐标系对应第一偏心率,F 为大地坐标系对应之扁率,N 为该点的圆曲率半径。
根据实地测量得到的WGS-84坐标系下的(B ,L ,H )和收集到的1954年北京坐标系或1980年国家大地坐标系下的大地坐标(B ,L ,H )代入(1)式分别计算出两个坐标系统下的三维直角坐标X 1,Y 1,Z 1和X 2,Y 2,Z 2。
在ArcGIS Desktop中进行三参数或七参数精确投影转换
ArcGIS中定义的投影转换方法,在对数据的空间信息要求较高的工程中往往不能适用,有比较明显的偏差。
在项目的前期数据准备工作中,需要进行更加精确的三参数或七参数投影转换。
下面介绍两种办法来在ArcGIS Desktop中进行这种转换。
方法1:在ArcMap中进行动态转换(On the fly)假设原投影坐标系统为Xian80坐标系统,本例选择为系统预设的Projected Coordinate Systems\Gauss Kruger\Xian 1980\Xian 1980 GK Zone 20投影,中央经线为117度,要转换成Beijing 1954\Beijing 1954 GK Zone 20N。
在ArcMap中加载了图层之后,打开View-Data Frame Properties对话框,显示当前的投影坐标系统为Xian 1980 GK Zone 20,在下面的选择坐标系统框中选择Beijing 1954 GK Zone 20N,在右边有一个按钮为Transformations...点击打开一个投影转换对话框,可以在对话框中看到Convert from和Into表明了我们想从什么坐标系统转换到什么坐标系统。
在下方的using下拉框右边,点击New...,新建一个投影转换公式,在Method 下拉框中可以选择一系列转换方法,其中有一些是三参数的,有一些是七参数的,然后在参数表中输入各个转换参数。
输入完毕以后,点击OK,回到之前的投影转换对话框,再点击OK,就完成了对当前地图的动态投影转换。
这时还没有对图层文件本身的投影进行转换,要转换图层文件本身的投影,再使用数据导出,导出时选择投影为当前地图的投影即可。
方法2:对于有大量图层需要进行投影转换时,这种手工操作的办法显得比较繁琐,每次都需要设置参数。
可以只定义一次投影转换公式,而在此后的转换中引用此投影转换公式即可。
这种方法需要在ArcTools中进行操作。
RTK求解参数(三参、四参、七参)
不同(椭球)坐标系的转换流程
几种椭球转换模型的特点: 1.三参数法: 七参数方法的简化,只取X平移,Y平移,Z平移。 运用于信标,SBAS,固定差改正以及精度要求不高的地方, 用于RTK模式下,作用距离在5km范围较平坦的地方(基站开机模式) 2.布尔莎七参数法: 标准的七参数方法,使用X,Y,Z平移,X,Y,Z旋转,K尺度 作用范围较大和距离较远,通常用于RTK模式或者RTD模式的 WGS84到北京54和国家80的转换,已知点要三个以上,要求较高。 3.四参数+高程拟合: 使用X,Y平移,a旋转,k尺度还有高程拟合参数 也是RTK常用的一种作业模式,通过四参数完成WGS84平面到当地平面 的转换,利用高程拟合完成WGS84椭球高到当地水准的拟合。 4.一步法 参数形式和标准七参数一样, X,Y,Z平移,X,Y,Z旋转,K尺度 可以一步完成WGS84到当地地方坐标系统的转换工作。也许要三个以上 WGS84点和当地地方坐标。 5、校正参数 使用X,Y平移,小范围使用
科学计算器坐标正反算怎么按键
科学计算器坐标正反算怎么按键科学计算器是一种功能强大的工具,可以进行各种数学运算和计算。
其中,坐标正反算是科学计算器上一项重要的功能。
本文将介绍科学计算器如何进行坐标正反算,并详细解释按键操作步骤。
坐标正算坐标正算是根据给定的角度和长度计算出某一点的坐标。
在科学计算器中,进行坐标正算的操作步骤如下:1.打开科学计算器,保证它处于正常工作状态。
2.在科学计算器的键盘上找到“输入角度”的键,通常用符号“θ”表示。
按下该键进入角度输入模式。
3.输入给定的角度数值。
角度可以是以度、弧度或其他单位表示的数值。
科学计算器通常支持多种角度单位,可以根据需要选择合适的单位输入。
4.定位“输入长度”的键,通常用符号“L”表示。
按下该键进入长度输入模式。
5.输入给定的长度数值。
长度可以是以米、厘米、英寸等单位表示的数值。
科学计算器通常支持多种长度单位,可以根据需要选择合适的单位输入。
6.定位“计算”或“=”键,按下该键进行计算。
7.科学计算器将根据给定的角度和长度计算出相应的坐标,并在显示屏上展示结果。
值得注意的是,在进行坐标正算时,如果科学计算器支持极坐标输入模式,可以直接在极坐标模式下输入角度和长度,无需按照上述步骤进行角度和长度的分别输入。
坐标反算坐标反算是根据给定的坐标计算出相应的角度和长度。
在科学计算器中,进行坐标反算的操作步骤如下:1.打开科学计算器,保证它处于正常工作状态。
2.定位“输入坐标”的键,通常用符号“XY”表示。
按下该键进入坐标输入模式。
3.输入给定的坐标数值。
坐标一般由x和y两个值组成,可以是实数或者整数。
科学计算器通常支持正负数输入,可以根据需要输入相应的数值。
4.定位“计算”或“=”键,按下该键进行计算。
5.科学计算器将根据给定的坐标计算出相应的角度和长度,并在显示屏上展示结果。
与坐标正算类似,在进行坐标反算时,如果科学计算器支持极坐标输入模式,可以直接在极坐标模式下进行坐标输入,无需按照上述步骤进行分别输入x和y坐标。
坐标转换器使用说明书
大地坐标(BLH)平面直角坐标(XYZ)四参数:X 平移、Y 平移、旋转角和比例七参数:X平移,Y平移,Z 平移,X 轴旋转,Y 轴旋转,Z 轴旋转,缩放比例(尺度比)GPS控制网是由相对定位所求的的基线向量而构成的空间基线基线向量网,在GPS控制网的平差中,是以基线向量及协方差为基本观测量。
图3-1表示为HDS2003数据处理软件进行网平差的基本步骤,从图中可以看到,网平差实际上可以分为三个过程:l、前期的准备工作,这部分是用户进行的。
即在网平差之前,需要进行坐标系的设置、并输入已知点的经纬度、平面坐标、高程等。
2、网平差的实际进行,这部分是软件自动完成的;3、对处理结果的质量分析与控制,这部分也是需要用户分析处理的过程。
图3-1 平差过程3.1 坐标系选择针对不同的平差,要相应选择不同的坐标系,是否输入相应信息。
在笔者接触过的项目中,平差时先通过三维无约束平差后,再进行二维约束平差。
由于先进行的时三维无约束平差,是在WGS84坐标系统下进行的。
首先更改项目的坐标系统。
在菜单“项目”->“坐标系统”或在工具栏“坐标系统”,则弹出“坐标系统”对话框,选择WGS-84坐标。
图3-2 坐标系统这里注意的是,在“投影”下见图,中央子午线是114°。
很多情况下这里需要进行修改。
图3-3 WGS84投影软件中自带的“中国-WGS 84”是允许修改的,我们换种方法:就是新建一个坐标文件,其他参数都和“中国-WGS84”一致,仅仅将中央子午线修改下。
在上图中,点击“新建”,得到“COORD GM”对话框,在“文件”->“新建”,如图图3-4 新建坐标系统然后在“设置”->“地图投影”,直接修改中央子午线,这里以81°为例,点击确定后,返回“COORD GM”对话框。
图3-5 投影设置将输入源坐标和输入目标坐标的椭球,均改为WGS84。
在“文件”->“保存”,输入名称和国家(中国),退出操作。
三坐标转换参数
Gps坐标系统设置:开机→切换到主菜单→进入设置→在设置菜单选择单位→在单位设置中:位置格式选择度分秒,坐标系统选择user进行自定义地图基准:温州地区(中央经线E123)北京五四坐标参数如下:Dx:+5.2m Dy:-161.9m Dz:-72.4m Da:-108.0m Df:+0.00000056 以上是奇遇系列gps设置,根据不同gps可能需要设置参数不同,常用设置为:中央经线:E123.00.000投影:+0.1000东西偏差(假东):+500000m南北偏差:0.0m以上是五参gps,北京五四坐标设置,如果是三参或七参坐标(我局蓝色的新集思宝gps),其他,缺省项设为0.0m北京1954年坐标与温州独立坐标换算X温=0.999852911xX(1954)-5.43323986x10-3xY(1954)+3348.1580 Y温=0.999852911xY(1954)+5.43323986x10-3xX(1954)-82327.453 X(1954)=(1.1757838x10-4+1)X温+5.434678073x10-3Y温-2901.1285 Y(1954)=(1.1757838x10-4+1)Y温-5.434678073x10-3X温+82355.3291给定北京1954年坐标,换算温州独立坐标序号X温值Y温值X(北京1954年)Y(北京1954年)G8 3080837.009 550160.0813 *******.063 615836.74G10 3081451.661 549761.7846 3081900.623 615435.056G11 3080945.914 550799.467 3081400.456 616475.609给定温州独立坐标,换算北京1954年坐标序号X温值Y温值X(北京1954年)Y(北京1954年)G8 3080837.009 550160.0813 *******.063 615836.74G10 3081451.661 549761.7846 3081900.623 615435.056G11 3080945.914 550799.467 3081400.456 616475.609北京54坐标与西安80坐标换算:X(1954)=X(1980)+47.574;Y(1954)=Y(1980)+40.444北京54坐标转西安80坐标参数(北转西-,西转北+)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
坐标转换三参数计算器使用说明
一、软件功能
该软件可实现在北京54坐标系、西安80坐标系、WGS84坐标系(GPS通常采用WGS84坐标系)之间进行三参数条件下的高精度相互转换,求取手持GPS 的北京54(或西安80)DA、DF、DX、DY、DZ坐标转换的参数。
二、使用说明
软件分成上下二部分,上半部为在两个不同椭球体间求坐标转换的三参数DX、DY、DZ,下半部为在两个不同椭球体间的坐标转换(如下图)。
在两个不同椭球体间进行坐标转换首要条件是必需知道坐标转换参数,通常有三参数和七参数转换二种方式,本程序提供三参数转换方式。
实例1:我要求手持GPS的北京54(或西安80)坐标转换参数。
向有关部门收集所在工作区内已知点(只要一个控制点)的WGS84坐标系经纬度坐标,以及同点的北京54(或西安80)坐标系中的直角坐标,即可进行本软件操作了。
如某一个控制点的WGS84经度、纬度、高程为: 109度34分28.94343秒, 31度02分25.65526秒, 104.967米,该控制点北京54坐标为:x=3436391.566m,y=37363926.964m(37为带号),h=108.717m ,将上述数据输入在软件上半部相应栏中,注意勾选前后坐标系正确(坐标系A,坐标系B),
输入中央经线(37带,输111),点击参数计算,计算结果为
DA=-108,DF=0.00000048,dx=32.284979,dy=-90.792978,dz=-57.993043, 此参数即为手持GPS北京54坐标参数。
此三参数为不同椭球体间进行坐标转换奠定了基础。
以上计算是精确算法,不存在漏洞。
如果收集控制点确实很困难,在不严谨的情况下,用手持GPS在工作区内某点上设置在WGS84状态下长时间观察读数,取平均值,获取WGS84经度、纬度、高程。
北京54(或西安80)坐标你再想办法得到(因为你那已经有测量成果了就好说,如果还没开展测量的话,你就得在大比例尺图上读坐标,越精确越好),也能解决问题,但这个办法不推荐使用,你把求得的参数在其它地貌特征点上检验一下是否提高了定点精度,没提高的话,请重复几次,直到符合定点精度要求。
以上方法求得的坐标转换参数为北京54坐标系、西安80坐标系、WGS84坐标系之间相互转换提供了基础,请注意不同地区参数是不一样的。
实例2:如何将WGS84坐标转换为北京54坐标
已知某点WGS84坐标经纬度、高程(GPS通常采用WGS84坐标系)为: 113度12分34.5678秒, 34度56分12.3456秒, 123.888米,已知WGS84坐标转换为北京54坐标三参数为dx=32.284979,dy=-90.792978,dz=-57.993043。
输入软件下半部相应栏中,中央经线111输入右上角相应栏中,点击单点转换,北京54坐标结果为X=3869865.711m, Y=19701880.461m(19带),H=127.052m
实例3:如何将北京54坐标转换为西安80坐标
收集某国家控制点北京54坐标: X=2222777.77 Y=19333933.33 及西安80坐标为:X=2222733.88 Y=19333833.44 H=1117.5 。
求出区内附近求另一点北京54坐标X=2223333.66 Y=19333444.55,
H=1111.1的西安80坐标。
答:第一步,求当地北京54坐标转换为西安80坐标的三参数:
按实例1方法求三参数,在程序上半部输入有关数据,注意勾选坐标系A、B正确,求得转换参数DX=-128.676765,DY=56.618394,DZ=43.687273,点保存参数方便下次调用,如下图:
第二步,求待求点北京54坐标的西安80坐标
将待求点坐标及三参数输入程序下半部,注意勾选坐标系1,坐标系2,求得待求点北京54坐标的西安80坐标为X=2223289.772, Y=19333244.766,
H=1111.1如下图:
注意:同一地区3度带和6度带三参数是一致的。
实例3:批量转换
批量转换前请在程序下半部设置好DX、DY、DZ三参数和右上角中央经线,勾选好坐标系1、2,点击批量转换,原始数据文件为文体文件,格式为“点号1,X坐标(或为纬度),Y坐标(或为经度),高程”,请严格控制为每行4个数据,如没有高程请用任意数字代替,以逗号或空格分开。
如下所示:
1,2570000,525000,135.1
2,2570000,524000,147.1
D1,1234567.89,555444.11,444
D2,45.12121212,111.2345,444
输出文件为文本文件,格式为:
点号1,转换前的X坐标(或为纬度),Y坐标(或为经度),高程 > 转换后的X坐标(或为纬度),Y坐标(或为经度),高程。