高中数学巩固练习数列的全章复习与巩固基础

合集下载

2025版高考数学全程一轮复习第六章数列高考大题研究课五数列的综合课件

2025版高考数学全程一轮复习第六章数列高考大题研究课五数列的综合课件
((12))求记数数列列{{an−}的12 通an }项的公前式n;项和为Tn,若s≤Tn-T1n≤t恒成立,求t-s 的最小值.
50项和S50.
题型三 数列与不等式的综合 例 3 (12 分 )[2023·新 课 标 Ⅱ 卷 ] 已 知 {an} 为 等 差 数 列 , bn = ൝an2a−n,6,n为n为偶奇数数.记Sn,Tn分别为数列{an},{bn}的前n项和,S4=32, T3=16. (1)求{an}的通项公式; (2)证明:当n>5时,Tn>Sn.
巩固训练1
[2024·安徽马鞍山模拟]已知数列{an},a1=3,a2=5,数列{bn}为等 比数列,满足bn+1=an+1bn-anbn,且b2,2a4,b5成等差数列.
(1)求数列{an}和{bn}的通项公式;
(2)记数列{cn}满足:cn=൝bann,,
n为奇数 n为偶数
,中的新定义数列问题的一般步骤
巩固训练2 [2024·河 南 郑 州 模 拟 ] 已 知 数 列 {an} 的 前 n 项 之 积 为 Tn =
n n−1
2 2 (n∈N*). (1)求数列{an}的通项公式; (2)记bm为{an}在区间(0,m](m∈N*)中的项的个数,求数列{bm}的前
题型二 数列中的新定义数列问题 例 2 [2024·河 北 石 家 庄 模 拟 ] 已 知 等 差 数 列 {an} 的 前 n 项 和 记 为 Sn(n∈N*),满足3a2+2a3=S5+6. (1)若数列{Sn}为单调递减数列,求a1的取值范围; (2)若a1=1,在数列{an}的第n项与第n+1项之间插入首项为1,公比 为2的等比数列的前n项,形成新数列{bn},记数列{bn}的前n项和为Tn, 求T95.

高考数学总复习 6-1数列的概念课件 新人教B版

高考数学总复习 6-1数列的概念课件 新人教B版

点评:根据数列的前几项写通项时,所求的通项公式不是 唯一的.其中常用方法是观察法.观察 an 与 n 之间的联系, 用归纳法写出一个通项公式,体现了由特殊到一般的思维规 律.联想与转换是有效的思维方法,它是由已知认识未知、将 未知转化为已知的重要思维方法.
(文)写出下列数列的一个通项公式: (1)1,85,175,294,…,an=________. (2)-1,32,-13,34,-15,12,…,an=________.
3 . 已 知 {an} 的 前 n 项 和 Sn 求 an 时 , 用 an =
S1
n=1,
Sn-Sn-1 n≥2.
求解应注意分类讨论.an=Sn-Sn-1 是在
n≥2 条件下求出的,应检验 a1 是否适合.如果适合,则合写
在一块,如果不适合,则分段表示.
思想方法技巧
一、求数列的通项公式常见的有以下三种类型 1.已知数列的前几项,写出一个通项公式. 依据数列前几项的特点归纳出通项公式:方法是依据数 列的排列规律,求出项与项数的关系.一般步骤是:①定符 号,②定分子、分母,③观察前后项的数值特征找规律,④ 综合写出项与项数的关系.
●命题趋势 主要命题热点: 1.an 与 Sn 的关系 2.等差、等比数列的定义、通项公式以及等差、等比数列 的性质、求和公式. 3.简单的递推数列及归纳、猜想、证明问题.
4.数列与函数、方程、不等式、三角、解析几何综合问题. 5.数列应用题. 6.探究性问题.
●备考指南 1.数列是一种特殊的函数,要善于利用函数的思想来解决 数列问题. 2.运用方程的思想解等差(比)数列是常见题型,解决此类 问题需要抓住基本量 a1、d(或 q),常通过“设而不求,整体代入” 来简化运算.
(5)将数列统一为32,55,170,197,…,分子 3,5,7,9,…, 是等差数列,通项公式为 bn=2n+1,对于分母 2,5,10,17,… 联想到数列 1,4,9,16…即数列{n2},可得分母的通项公式为 cn =n2+1,

2021高考数学一轮复习第五章数列第2节等差数列及其前n项和练习

2021高考数学一轮复习第五章数列第2节等差数列及其前n项和练习

第2节 等差数列及其前n 项和[A 级 基础巩固]1.(一题多解)(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8解析:法一 设等差数列{a n }的公差为d ,依题意⎩⎪⎨⎪⎧a 1+3d +a 1+4d =24,6a 1+6×52d =48,解得d =4. 法二 等差数列{a n }中,S 6=(a 1+a 6)×62=48,则a 1+a 6=16=a 2+a 5,又a 4+a 5=24,所以a 4-a 2=2d =24-16=8, 所以d =4,故选C. 答案:C2.(2020·安阳联考)在等差数列{a n }中,若a 2+a 8=8,则(a 3+a 7)2-a 5=( ) A .60 B .56 C .12D .4解析:因为在等差数列{a n }中,a 2+a 8=8,所以a 2+a 8=2a 5=8,解得a 5=4,(a 3+a 7)2-a 5=(2a 5)2-a 5=64-4=60.答案:A3.已知等差数列{a n }的前n 项和为S n ,S 2=3,S 3=6,则S 2n +1=( ) A .(2n +1)(n +1) B .(2n +1)(n -1) C .(2n -1)(n +1)D .(2n +1)(n +2)解析:设等差数列{a n }的公差为d , 则2a 1+d =3,3a 1+3d =6,所以a 1=d =1,则a n =1+(n -1)×1=n .因此S 2n +1=(2n +1)(1+2n +1)2=(2n +1)(n +1).答案:A4.(2020·宜昌一模)等差数列{a n }的前n 项和为S n ,若公差d >0,(S 8-S 5)(S 9-S 5)<0,则( )A .a 7=0B .|a 7|=|a 8|C .|a 7|>|a 8|D .|a 7|<|a 8|解析:因为公差d >0,(S 8-S 5)(S 9-S 5)<0, 所以S 9>S 8,所以S 8<S 5<S 9,所以a 6+a 7+a 8<0,a 6+a 7+a 8+a 9>0, 所以a 7<0,a 7+a 8>0,|a 7|<|a 8|. 答案:D5.中国古诗词中,有一道“八子分棉”的数学名题:“九百九十六斤棉,赠分八子作盘缠,次第每人多十七,要将第八数来言”.题意是:把996斤棉分给8个儿子作盘缠,按照年龄从大到小的顺序依次分棉,年龄小的比年龄大的多17斤棉,那么第8个儿子分到的棉是( )A .174斤B .184斤C .191斤D .201斤解析:用a 1,a 2,…,a 8表示8个儿子按照年龄从大到小得到的棉数, 由题意得数列a 1,a 2,…,a 8是公差为17的等差数列,且这8项的和为996, 所以8a 1+8×72×17=996,解得a 1=65.所以a 8=65+7×17=184,即第8个儿子分到的棉是184斤. 答案:B6.(2019·江苏卷)已知数列{a n }(n ∈N *)是等差数列,S n 是其前n 项和.若a 2a 5+a 8=0,S 9=27,则S 8的值是________.解析:设数列{a n }的公差为d , 则⎩⎪⎨⎪⎧(a 1+d )(a 1+4d )+a 1+7d =0,9a 1+9×82d =27, 解得a 1=-5,d =2,所以S 8=8×(-5)+8×72×2=16.答案:167.设S n 是等差数列{a n }的前n 项和,S 10=16,S 100-S 90=24,则S 100=________. 解析:依题意,S 10,S 20-S 10,S 30-S 20,…,S 100-S 90依次成等差数列,设该等差数列的公差为d .又S 10=16,S 100-S 90=24,因此S 100-S 90=24=16+(10-1)d =16+9d ,解得d =89,因此S 100=10S 10+10×92d =10×16+10×92×89=200.答案:2008.在等差数列{a n }中,若a 7=π2,则sin 2a 1+cos a 1+sin 2a 13+cos a 13=________.解析:根据题意可得a 1+a 13=2a 7=π, 2a 1+2a 13=4a 7=2π,所以有sin 2a 1+cos a 1+sin 2a 13+cos a 13= sin 2a 1+sin(2π-2a 1)+cos a 1+cos(π-a 1)=0. 答案:09.各项均不为0的数列{a n }满足a n +1(a n +a n +2)2=a n +2a n ,且a 3=2a 8=15.(1)证明:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,并求数列{a n }的通项公式;(2)若数列{b n }的通项公式为b n =a n2n +6,求数列{b n }的前n 项和S n .(1)证明:依题意得,a n +1a n +a n +2a n +1=2a n +2a n ,两边同时除以a n a n +1a n +2,可得1a n +2+1a n=2a n +1,故数列⎩⎨⎧⎭⎬⎫1a n 是等差数列.设数列⎩⎨⎧⎭⎬⎫1a n 的公差为d .因为a 3=2a 8=15,所以1a 3=5,1a 8=10,所以1a 8-1a 3=5=5d ,即d =1,故1a n =1a 3+(n -3)d =5+(n -3)×1=n +2,故a n =1n +2. (2)解:由(1)可知b n =a n 2n +6=12·1(n +2)(n +3)=12⎝ ⎛⎭⎪⎫1n +2-1n +3,故S n =12⎝ ⎛⎭⎪⎫13-14+14-15+…+1n +2-1n +3=n 6(n +3). 10.已知等差数列的前三项依次为a ,4,3a ,前n 项和为S n ,且S k =110. (1)求a 及k 的值;(2)设数列{b n }的通项公式b n =S n n,证明:数列{b n }是等差数列,并求其前n 项和T n . (1)解:设该等差数列为{a n },则a 1=a ,a 2=4,a 3=3a , 由已知有a +3a =8,得a 1=a =2,公差d =4-2=2,所以S k =ka 1+k (k -1)2·d =2k +k (k -1)2×2=k 2+k .由S k =110,得k 2+k -110=0,解得k =10或k =-11(舍去),故a =2,k =10. (2)证明:由(1)得S n =n (2+2n )2=n (n +1),则b n =S n n=n +1,故b n +1-b n =(n +2)-(n +1)=1,即数列{b n }是首项为2,公差为1的等差数列, 所以T n =n (2+n +1)2=n (n +3)2.[B 级 能力提升]11.(2020·珠海联考)已知数列{a n }中,a 1=1,S n +1S n =n +1n,则数列{a n }( ) A .既非等差数列,又非等比数列 B .既是等差数列,又是等比数列 C .仅为等差数列 D .仅为等比数列 解析:数列{a n }中,S n +1S n =n +1n ,则S n S n -1=nn -1(n ≥2), 则S n =S n S n -1×S n -1S n -2×…×S 2S 1×S 1=n n -1×n -1n -2×…×21×1=n (n ≥2),当n =1时,S 1=a 1=1符合,则当n ≥2时,a n =S n -S n -1=n -(n -1)=1,当n =1时,a 1=1符合,故a n =1(n ∈N *),则数列{a n }为非零的常数列,它既是等差数列,又是等比数列. 答案:B12.(2019·北京卷)设等差数列{a n }的前n 项和为S n .若a 2=-3,S 5=-10,则a 5=________,S n 的最小值为________.解析:设等差数列{a n }的公差为d ,因为a 2=-3,S 5=-10,所以⎩⎪⎨⎪⎧a 1+d =-3,5a 1+5×42d =-10, 即⎩⎪⎨⎪⎧a 1+d =-3,a 1+2d =-2,得⎩⎪⎨⎪⎧a 1=-4,d =1,所以a 5=a 1+4d =0,S n =na 1+n (n -1)2d =-4n +n 2-n 2=12(n 2-9n )=12⎝ ⎛⎭⎪⎫n -922-818,因为n ∈N *,所以n =4或n =5时,S n 取最小值,最小值为-10. 答案:0 -1013.已知{a n }是各项均为正数的等差数列,公差为d .对任意的n ∈N *,b n 是a n 和a n +1的等比中项.(1)设c n =b 2n +1-b 2n ,n ∈N *,求证:数列{c n }是等差数列; (2)设a 1=d ,T n =∑k =02n(-1)k b 2k,n ∈N *,求证:∑k =0n1T k <12d 2.证明:(1)由题意得b 2n =a n a n +1,有c n =b 2n +1-b 2n =a n +1·a n +2-a n a n +1=2da n +1,因此c n +1-c n =2d (a n +2-a n +1)=2d 2,所以{c n }是等差数列.(2)T n =(-b 21+b 22)+(-b 23+b 24)+…+(-b 22n -1+b 22n ) =2d (a 2+a 4+…+a 2n ) =2d ·n (a 2+a 2n )2=2d 2n (n +1).所以∑k =0n1T k =12d 2∑k =0n 1k (k +1)=12d 2∑k =0n ⎝ ⎛⎭⎪⎫1k -1k +1=12d 2·⎝ ⎛⎭⎪⎫1-1n +1<12d2. [C 级 素养升华]14.(多选题)已知正项等差数列{a n }的前n 项和为S n ,若S 12=24,则( ) A .a 6+a 7=4 B .a 6+a 7=12 C .a 6a 7≥4D .a 6a 7≤4解析:在等差数列{a n }中,因为S 12=6(a 6+a 7)=24, 所以a 6+a 7=4.又a 6>0,a 7>0,所以a 6a 7≤⎝ ⎛⎭⎪⎫a 6+a 722=4,当且仅当a 6=a 7=2时,“=”成立.故选AD. 答案:AD。

《数列》一轮复习教学设计(理科)

《数列》一轮复习教学设计(理科)

sn
三、专题知识体系构建的方法与总体构思
1.知识结构
黄冈市 2019 届高三年级第一轮复习备考 《数列》专题复习设计
数列的概念 数列的概念与 简单表示法 数列的分类 数列的简单表示 等差数列的概念 等差数列 数 列 通项公式 前 n 项和公式 等差数列的应用 等比数列的概念 通项公式 前 n 项和公式 等比数列的应用 公式求和 分组求和 特殊数列求和 倒序相加 并项求和 裂项相消求和 错位相减求和 通项公式 列表法 图像法 递推公式
数列作为高中数学中一个独立的学习单元,其重地 位不言而喻。根据最近几年的高考命题方向来看,一直是 高考考查的重点和热点。
一、高考透视
2018 考试说明及要求 知识要求 内容 了解( A) 理解 (B) 掌握( C) 数列的概念和几种简单的表示 √ 方法(列表、图像、通项公式) 数列的概念和简单表示法 数列是自变量为正整数的一类 √ 特殊函数 等差数列、等比数列的概念 等差数列、等比数列的通项公 √ 式与前 n 项和公式 在具体的问题情境中识别数列 √ 等差数列、等比数列 的等差关系或等比关系 用等差数列、等比数列有关知 √ 识解决相应的问题 等差数列与一次函数、等比数 √ 列与指数函数的关系 √
• 读纲研题,把握主干 • 通法为主,变法为辅 回归课本,夯实基础 适度训练,巩固提高
四. 重难点知识强化
五、训练题设计与落实 具体措施
• 组题要求
• 具体措施
第二部分 微专题设计《数列求和(第二课时)》
一.教材分析
二.学情分析 三.教学目标 四.教学重难点 五.教法和学法 六.教学过程 七.教学反思
sn
近三年考试特点与命题规律
1.考查题型:一般为 2 道小题,分值为 10 分,从近几 年的考查来看,除 2017 年的第 12 题, 其它均属于中档难度

新高考2023版高考数学一轮总复习练案36第六章第三讲等比数列及其前n项和

新高考2023版高考数学一轮总复习练案36第六章第三讲等比数列及其前n项和

第三讲 等比数列及其前n 项和A 组基础巩固一、单选题1.在等比数列{a n }中,a 1=12,q =12,a n =132,则项数n 为( C )A .3B .4C .5D .6[解析] a n =132=a 1q n -1=12×⎝ ⎛⎭⎪⎫12n -1=⎝ ⎛⎭⎪⎫12n ,∴n =5,故选C.2.(2021·陕西西安中学六模)已知数列{a n }是各项均为正数的等比数列,S n 是它的前n 项和.若a 2a 6=4,且a 4+2a 7=52,则S 5=( C )A .29B .30C .31D .32[解析] 本题考查等比数列性质及基本量的运算.∵a 2a 6=a 24=4,且a n >0,∴a 4=2.又a 4+2a 7=52,∴a 7=14.设{a n }的公比为q ,则a 7a 4=q 3=18,q =12,∴a n =a 4⎝ ⎛⎭⎪⎫12n -4=25-n ,∴S 5=16+8+4+2+1=31.3.设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5=( B ) A .152B .314C .334D .172[解析] 设数列{a n }的公比为q ,则显然q ≠1,由题意得⎩⎪⎨⎪⎧a 1q ·a 1q 3=1,a 11-q 31-q =7,解得⎩⎪⎨⎪⎧a 1=4,q =12或⎩⎪⎨⎪⎧a 1=9,q =-13(舍去),∴S 5=a 11-q 51-q=4×⎝ ⎛⎭⎪⎫1-1251-12=314.4.(2021·全国甲理)等比数列{a n }的公比为q ,前n 项和为S n .设甲:q >0,乙:{S n }是递增数列,则( B )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件[解析] 当q =1,a 1<0时,等比数列{a n }的前n 项和S n =na 1<0,可知{S n }是单调递减数列,因此甲不是乙的充分条件;若{S n }是递增数列,则当n ≥2时,a n =S n -S n -1>0,即a 1qn -1>0恒成立,而只有当a 1>0,q >0时,a 1q n -1>0恒成立,所以可得q >0,因此甲是乙的必要条件.综上,甲是乙的必要条件但不是充分条件.故选B.5.(2021·深圳一模)已知等比数列{a n }的前n 项和S n =a ·3n -1+b ,则a b=( A )A .-3B .-1C .1D .3[解析] 解法一:a 1=a +b ,当n ≥2时,a n =S n -S n -1=2a ·3n -2,又∵{a n }是等比数列,∴a +b =2a ·31-2,∴a b=-3.故选A.解法二:a 1=a +b ,a 2=2a ,a 3=6a . 又∵{a n }是等比数列, ∴a 2a 1=a 3a 2,∴2a a +b =6a 2a, ∴a =-3b ,∴a b=-3,故选A.6.(2022·广东惠州一中月考)已知数列{a n }是等比数列,且a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1=( C )A .16(1-4-n) B .16(1-2-n) C .323(1-4-n)D .323(1-2-n )[解析] 因为等比数列{a n }中,a 2=2,a 5=14,所以a 5a 2=q 3=18,所以q =12.由等比数列的性质,易知数列{a n a n +1}为等比数列,其首项为a 1a 2=8,公比为q 2=14,所以要求的a 1a 2+a 2a 3+…+a n a n +1为数列{a n a n +1}的前n 项和.由等比数列的前n 项和公式得a 1a 2+a 2a 3+…+a n a n +1=8⎝ ⎛⎭⎪⎫1-14n 1-14=323(1-4-n).故选C.二、多选题7.(2021·辽宁大连八中模拟改编)记等比数列{a n }的前n 项和为S n ,若a 1=2,S 3=6,则S 4=( AC )A .-10B .-8C .8D .10[解析] 设等比数列的公比为q ,因为a 1=2,S 3=6,所以S 3=2+2q +2q 2=6,则q 2+q -2=0,所以q =1或q =-2.当q =1时,S 4=S 3+2=8;当q =-2时,S 4=S 3+a 1q 3=6+2×(-2)3=-10,故选A 、C.8.(2021·山西大同期中改编)中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗.苗主责之粟五斗.羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟,羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半,”打算按此比例偿还,他们各应偿还多少?已知牛、马、羊的主人应分别偿还a 升,b 升,c 升,1斗为10升,则下列判断正确的是( BD )A .a =507B .c =507C .a ,b ,c 依次成公比为2的等比数列D .a ,b ,c 依次成公比为12的等比数列[解析] 由题意得a ,b ,c 依次成公比为12的等比数列,且c +2c +4c =50,即c =507,故选B 、D.三、填空题9.(2021·四川南充一诊)数列{a n }满足:log 2a n +1=1+log 2a n ,若a 3=10,则a 8= 320 . [解析] 由题意知log 2a n +1=log 2(2a n ),∴a n +1=2a n ,∴{a n }是公比为2的等比数列,又a 3=10,∴a 8=a 3·25=320.10.(2021·北京东城区期末)已知{a n }是各项均为正数的等比数列,S n 为其前n 项和.若a 1=6,a 2+2a 3=6,则公比q = 12 ,S 4=454. [解析] 本题考查等比数列的通项公式、前n 项和公式.由题意,数列{a n }是各项均为正数的等比数列,由a 1=6,a 2+2a 3=6,可得a 1q +2a 1q 2=6q +12q 2=6,即2q 2+q -1=0,解得q =12或q =-1(舍去).由等比数列的前n 项和公式,可得S 4=6×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1241-12=454.11.等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8= 32 .[解析] 由题意知S 3=a 1+a 2+a 3=74,a 4+a 5+a 6=S 6-S 3=634-74=14=74·q 3,∴q =2.又a 1+2a 1+4a 1=74,∴a 1=14,∴a 8=14×27=32.12.(2021·长春市高三一检)等比数列{a n }的首项为a 1=-1,前n 项和为S n ,若S 10S 5=3132,则公比q = -12.[解析] 由S 10S 5=3132,a 1=-1,知公比q ≠1,S 10-S 5S 5=-132.由等比数列前n 项和的性质知S 5,S 10-S 5,S 15-S 10成等比数列,且公比为q 5,故q 5=-132,所以q =-12.四、解答题13.(2021·陕西榆林一模)已知数列{a n }满足a 1=1,na n +1=2(n +1)a n .设b n =a n n. (1)求b 1,b 2,b 3;(2)判断数列{b n }是否为等比数列,并说明理由; (3)求{a n }的通项公式. [解析] (1)由条件可得a n +1=2n +1na n , 将n =1代入得,a 2=4a 1,而a 1=1,所以a 2=4. 将n =2代入得,a 3=3a 2,所以a 3=12. 从而b 1=1,b 2=2,b 3=4.(2){b n }是首项为1,公比为2的等比数列.理由如下: 由条件可得a n +1n +1=2a nn,即b n +1=2b n , 又b 1=1,所以{b n }是首项为1,公比为2的等比数列. (3)由(2)可得a n n=2n -1,所以a n =n ·2n -1.14.(2021·安徽联考)已知S n 是数列{a n }的前n 项和,且满足S n -2a n =n -4.(1)证明:{S n -n +2}为等比数列; (2)求数列{S n }的前n 项和T n .[解析] (1)证明:由题意知S n -2(S n -S n -1)=n -4(n ≥2), 即S n =2S n -1-n +4,所以S n -n +2=2[S n -1-(n -1)+2], 又易知a 1=3,所以S 1-1+2=4,所以{S n -n +2}是首项为4,公比为2的等比数列. (2)由(1)知S n -n +2=2n +1,所以S n =2n +1+n -2,于是T n =(22+23+…+2n +1)+(1+2+…+n )-2n =41-2n1-2+n n +12-2n =2n +3+n 2-3n -82.B 组能力提升1.(2021·安徽六安一中调研)已知1,a 1,a 2,4成等差数列,1,b 1,b 2,b 3,4成等比数列,则a 1+a 2b 2的值是( C ) A .52或-52 B .-52C .52D .12[解析] 由题意得a 1+a 2=5,b 22=4,又b 2与第一项的符号相同,所以b 2=2.所以a 1+a 2b 2=52.故选C. 2.(多选题)(2021·海南海口模拟)已知正项等比数列{a n }满足a 1=2,a 4=2a 2+a 3.若设其公比为q ,前n 项和为S n ,则下面结论不正确的是( C 、D )A .q =2B .a n =2nC .S 10=2 047D .a n +a n +1>a n +2[解析] 本题考查等比数列基本量的计算.因为a 1=2,a 4=2a 2+a 3,公比为q ,所以2q 3=4q +2q 2,得q 2-q -2=0,解得q =2(负值舍去),故A 正确;a n =2×2n -1=2n,故B 正确;S n =2×2n -12-1=2n +1-2,所以S 10=2 046,故C 错误;a n +a n +1=2n +2×2n=3a n ,而a n +2=4a n >3a n ,故D 错误.故选C 、D.3.《张丘建算经》中“今有马行转迟,次日减半,疾七日,行七百里.问日行几何?”意思是:“现有一匹马行走的速度逐渐变慢,每天走的里数是前一天的一半,连续行走7天,共走了700里路,问每天走的里数为多少?”则该匹马第一天走的里数为( B )A .128127B .44 800127C .700127D .17532[解析] 由题意知每日所走的路程成等比数列{a n },且公比q =12,S 7=700,由等比数列的求和公式得a 1⎝⎛⎭⎪⎫1-1271-12=700,解得a 1=44 800127.故选B. 4.(2022·南昌模拟)在等比数列{a n }中,a 1+a n =66,a 2a n -1+a 3a n -2=256,且前n 项和S n =126,则n =( C )A .2B .4C .6D .8[解析] 因为数列{a n }是等比数列,所以a 2a n -1=a 3a n -2=a 1a n ,又因为a 2a n -1+a 3a n -2=256,所以a 1a n =128,又因为a 1+a n =66.所以a 1=2,a n =64或a 1=64,a n =2.因为S n =a 1-a n q1-q,且S n =126,所以若a 1=2,a n =64,则2-64q 1-q =126,得q =2.此时a n =2×2n -1=2n=64,n=6;若a 1=64,a n =2,则64-2q 1-q =126,得q =12,此时a n =64×⎝ ⎛⎭⎪⎫12n -1=2,得n =6.综上知,n =6.5.设等比数列{a n }满足a 1+a 2=4,a 3-a 1=8. (1)求{a n }的通项公式;(2)记S n 为数列{log 3a n }的前n 项和.若S m +S m +1=S m +3,求m . [解析] (1)设{a n }的公比为q ,则a n =a 1qn -1.由已知得⎩⎪⎨⎪⎧a 1+a 1q =4,a 1q 2-a 1=8,解得a 1=1,q =3.所以{a n }的通项公式为a n =3n -1.(2)由(1)知log 3a n =n -1. 故S n =n n -12.由S m +S m +1=S m +3得m (m -1)+(m +1)m =(m +3)(m +2),即m 2-5m -6=0.解得m =-1(舍去)或m =6.。

2021届高考数学一轮复习第六章数列第1节数列的概念与简单表示法教学案含解析新人教A版

2021届高考数学一轮复习第六章数列第1节数列的概念与简单表示法教学案含解析新人教A版

第1节数列的概念与简单表示法考试要求 1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式);2.了解数列是自变量为正整数的一类特殊函数.知识梳理1.数列的定义按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.2.数列的分类3.数列的表示法数列有三种表示法,它们分别是列表法、图象法和解析法.4.数列的通项公式(1)通项公式:如果数列{a n}的第n项a n与序号n之间的关系可以用一个式子a n=f(n)来表示,那么这个公式叫做这个数列的通项公式.(2)递推公式:如果已知数列{a n }的第1项(或前几项),且从第二项(或某一项)开始的任一项a n 与它的前一项a n -1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式. [常用结论与微点提醒]1.数列的最大(小)项,可以用⎩⎪⎨⎪⎧a n ≥a n -1,a n ≥a n +1(n ≥2,n ∈N *)⎝ ⎛⎭⎪⎫⎩⎪⎨⎪⎧a n ≤a n -1,a n ≤a n +1(n ≥2,n ∈N *)求,也可以转化为函数的最值问题或利用数形结合求解.2.数列是按一定“次序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关.3.易混项与项数的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号.诊 断 自 测1.判断下列结论正误(在括号内打“√”或“×”)(1)相同的一组数按不同顺序排列时都表示同一个数列.( ) (2)1,1,1,1,…,不能构成一个数列.( ) (3)任何一个数列不是递增数列,就是递减数列.( )(4)如果数列{a n }的前n 项和为S n ,则对任意n ∈N *,都有a n +1=S n +1-S n .( ) 解析 (1)数列:1,2,3和数列:3,2,1是不同的数列. (2)数列中的数是可以重复的,可以构成数列.(3)数列可以是常数列或摆动数列. 答案 (1)× (2)× (3)× (4)√2.(老教材必修5P33T4改编)在数列{a n }中,a 1=1,a n =1+(-1)na n -1(n ≥2),则a 5等于( )A.32B.53C.85D.23解析 a 2=1+(-1)2a 1=2,a 3=1+(-1)3a 2=12,a 4=1+(-1)4a 3=3,a 5=1+(-1)5a 4=23.答案 D3.(老教材必修5P33T5改编)根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式a n =________.…解析 由a 1=1=5×1-4,a 2=6=5×2-4,a 3=11=5×3-4,…,归纳a n =5n -4. 答案 5n -44.(2020·北京朝阳区月考)数列0,1,0,-1,0,1,0,-1,…的一个通项公式a n 等于( ) A.(-1)n+12B.cos n π2 C.cosn +12πD.cosn +22π解析 令n =1,2,3,…,逐一验证四个选项,易得D 正确. 答案 D5.(2019·郑州一模)设数列{a n }的前n 项和为S n ,且S n =a 1(4n -1)3,若a 4=32,则a 1=________.解析 由题意,得a 4=S 4-S 3=32. 即255a 13-63a 13=32,解得a 1=12. 答案 126.(2020·成都诊断)数列{a n }中,a n =-n 2+11n (n ∈N *),则此数列最大项的值是________.解析 a n =-n 2+11n =-⎝⎛⎭⎪⎫n -1122+1214,∵n ∈N *,∴当n =5或n =6时,a n 取最大值30. 答案 30考点一 由a n 与S n 的关系求通项【例1】 (1)(2019·广州质检)已知数列{a n }的前n 项和S n =2n 2-3n ,则a n =________. (2)(2020·西安模拟)已知数列{a n }的前n 项和为S n ,且a 1=1,S n =13a n +1-1,则数列{a n }的通项公式为________.解析 (1)a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5, 由于a 1也适合此等式,∴a n =4n -5.(2)由a 1=1,S n =13a n +1-1可得a 1=13a 2-1=1,解得a 2=6,当n ≥2时,S n -1=13a n -1,又S n=13a n +1-1,两式相减可得a n =S n -S n -1=13a n +1-13a n ,即a n +1=4a n (n ≥2),则a n =6·4n -2,又a 1=1不符合上式,所以a n =⎩⎪⎨⎪⎧1,n =1,6·4n -2,n ≥2. 答案 (1)4n -5 (2)a n =⎩⎪⎨⎪⎧1,n =1,6·4n -2,n ≥2 规律方法 数列的通项a n 与前n 项和S n 的关系是a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.①当n =1时,a 1若适合S n -S n -1,则n =1的情况可并入n ≥2时的通项a n ;②当n =1时,a 1若不适合S n -S n -1,则用分段函数的形式表示.【训练1】 (1)设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n ,则a n =________.(2)(2018·全国Ⅰ卷)记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6=________. 解析 (1)因为a 1+3a 2+…+(2n -1)a n =2n , 故当n ≥2时,a 1+3a 2+…+(2n -3)a n -1=2(n -1). 两式相减得(2n -1)a n =2, 所以a n =22n -1(n ≥2).又由题设可得a 1=2,满足上式, 从而{a n }的通项公式为a n =22n -1(n ∈N *). (2)由S n =2a n +1,得a 1=2a 1+1,所以a 1=-1. 当n ≥2时,a n =S n -S n -1=2a n +1-(2a n -1+1), 得a n =2a n -1.∴数列{a n }是首项为-1,公比为2的等比数列.∴S 6=a 1(1-q 6)1-q =-(1-26)1-2=-63.答案 (1)22n -1(n ∈N *) (2)-63考点二 由数列的递推关系求通项 多维探究角度1 累加法——形如a n +1-a n =f (n ),求a n【例2-1】 在数列{a n }中,a 1=2,a n +1=a n +ln ⎝⎛⎭⎪⎫1+1n ,则a n 等于( )A.2+ln nB.2+(n -1)ln nC.2+n ln nD.1+n +ln n解析 因为a n +1-a n =lnn +1n=ln(n +1)-ln n , 所以a 2-a 1=ln 2-ln 1,a 3-a 2=ln 3-ln 2,a 4-a 3=ln 4-ln 3,……a n -a n -1=ln n -ln(n -1)(n ≥2).把以上各式分别相加得a n -a 1=ln n -ln 1, 则a n =2+ln n (n ≥2),且a 1=2也适合, 因此a n =2+ln n (n ∈N *). 答案 A角度2 累乘法——形如a n +1a n=f (n ),求a n 【例2-2】 若a 1=1,na n -1=(n +1)a n (n ≥2),则数列{a n }的通项公式a n =________. 解析 由na n -1=(n +1)a n (n ≥2),得a n a n -1=n n +1(n ≥2). 所以a n =a n a n -1·a n -1a n -2·a n -2a n -3·…·a 3a 2·a 2a 1·a 1 =nn +1·n -1n ·n -2n -1·…·34·23·1=2n +1(n ≥2), 又a 1也满足上式,所以a n =2n +1. 答案2n +1角度3 构造法——形如a n +1=Aa n +B (A ≠0且A ≠1,B ≠0),求a n【例2-3】 (2020·青岛模拟)已知数列{a n }满足a 1=1,a n +1=3a n +2(n ∈N *),则数列{a n }的通项公式为________.解析 由a n +1=3a n +2,得a n +1+1=3(a n +1), ∴数列{a n +1}是首项为2,公比为3的等比数列, ∴a n +1=2·3n -1,∴a n =2·3n -1-1.答案 a n =2·3n -1-1角度4 取倒数法——形如a n +1=Aa nBa n +C(A ,B ,C 为常数),求a n 【例2-4】 已知数列{a n }中,a 1=1,a n +1=2a n a n +2(n ∈N *),则数列{a n }的通项公式为________. 解析 因为a n +1=2a n a n +2,a 1=1,所以a n ≠0,所以1a n +1=1a n +12,即1a n +1-1a n =12.又a 1=1,则1a 1=1,所以⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公差的等差数列.所以1a n =1a 1+(n -1)×12=n 2+12.所以a n =2n +1.答案 a n =2n +1规律方法 由数列的递推关系求通项公式的常用方法 (1)已知a 1,且a n -a n -1=f (n ),可用“累加法”求a n . (2)已知a 1(a 1≠0),且a na n -1=f (n ),可用“累乘法”求a n . (3)已知a 1,且a n +1=qa n +b ,则a n +1+k =q (a n +k )(其中k 可用待定系数法确定),可转化为{a n +k }为等比数列. (4)形如a n +1=Aa n Ba n +C (A ,B ,C 为常数)的数列,将其变形为1a n +1=C A ·1a n +BA ,①若A =C ,则⎩⎨⎧⎭⎬⎫1a n 是等差数列,且公差为BA,②若A ≠C ,则采用待定系数法构造新数列求解. 【训练2】 (1)(角度1)在数列{a n }中,若a 1=3,a n +1=a n +1n (n +1),则通项公式a n =________.(2)(角度2)已知a 1=2,a n +1=2na n ,则数列{a n }的通项公式a n =________.(3)(角度3)已知数列{a n }中,a 1=3,且点P n (a n ,a n +1)(n ∈N *)在直线4x -y +1=0上,则数列{a n }的通项公式a n =________.(4)(角度4)已知数列{a n }满足a 1=1,a n +1=a n a n +2(n ∈N *),则数列{a n }的通项公式a n =________.解析 (1)原递推公式可化为a n +1=a n +1n -1n +1,则a 2=a 1+1-12,a 3=a 2+12-13,a 4=a 3+13-14,…,a n -1=a n -2+1n -2-1n -1,a n =a n -1+1n -1-1n ,累计相加得,a n =a 1+1-1n, 又n =1时也适合,故a n =4-1n.(2)∵a n +1=2na n ,∴a n +1a n =2n ,当n ≥2时,a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=2n -1·2n -2·…·2·2=2n 2-n +22.又a 1=2也符合上式,∴a n =2n 2-n +22.(3)因为点P n (a n ,a n +1)(n ∈N *)在直线4x -y +1=0上,所以4a n -a n +1+1=0. 所以a n +1+13=4⎝ ⎛⎭⎪⎫a n +13.因为a 1=3,所以a 1+13=103.故数列⎩⎨⎧⎭⎬⎫a n +13是首项为103,公比为4的等比数列.所以a n +13=103×4n -1,故数列{a n }的通项公式为a n =103×4n -1-13.(4)由a n +1=a na n +2,得1a n +1=1+2a n ,所以1a n +1+1=2⎝ ⎛⎭⎪⎫1a n +1,故⎩⎨⎧⎭⎬⎫1a n +1是首项为1a 1+1=2,公比为2的等比数列,则1a n +1=2n,则a n =12n -1.答案 (1)4-1n (2)2n 2-n +22 (3)103×4n -1-13(4)12n -1考点三 数列的性质【例3】 (1)(2019·宜春期末)已知函数f (x )=⎩⎪⎨⎪⎧x +12,x ≤12,2x -1,12<x <1,x -1,x ≥1,若数列{a n}满足a 1=73,an+1=f (a n )(n ∈N *),则a 2 019=( )A.73B.43C.56D.13(2)(2020·衡水中学一调)已知数列{a n }的前n项和S n =⎩⎪⎨⎪⎧2n-1,n ≤4,-n 2+(m -1)n ,n ≥5.若a 5是{a n }中的最大值,则实数m 的取值范围是________.解析 (1)由题意,知a 2=f ⎝ ⎛⎭⎪⎫73=43,a 3=f ⎝ ⎛⎭⎪⎫43=13,a 4=f ⎝ ⎛⎭⎪⎫13=56,a 5=f ⎝ ⎛⎭⎪⎫56=23,a 6=f ⎝ ⎛⎭⎪⎫23=13,a 7=f ⎝ ⎛⎭⎪⎫13=56,……,故数列{a n }从第三项起构成周期数列,且周期为3,故a 2 019=a 3=13.故选D.(2)因为S n =⎩⎪⎨⎪⎧2n-1,n ≤4,-n 2+(m -1)n ,n ≥5,所以当2≤n ≤4时,a n =S n -S n -1=2n -1;当n =1时,a 1=S 1=1也满足上式; 当n ≥6时,a n =S n -S n -1=-2n +m , 当n =5时,a 5=S 5-S 4=5m -45, 综上,a n =⎩⎪⎨⎪⎧2n -1,n ≤4,5m -45,n =5,-2n +m ,n ≥6,因为a 5是{a n }中的最大值,所以有5m -45≥8且5m -45≥-12+m ,解得m ≥535.答案 (1)D (2)⎣⎢⎡⎭⎪⎫535,+∞ 规律方法 1.在数学命题中,以数列为载体,常考查周期性、单调性.2.(1)研究数列的周期性,常由条件求出数列的前几项,确定周期性,进而利用周期性求值.(2)数列的单调性只需判定a n 与a n +1的大小,常用比差或比商法进行判断. 【训练3】 (1)已知数列{a n }满足a n +1=11-a n ,若a 1=12,则a 2 021=( )A.-1B.12C.1D.2(2)已知等差数列{a n }的公差d <0,且a 21=a 211,则数列{a n }的前n 项和S n 项取得最大值时,项数n 的值为( )A.5B.6C.5或6D.6或7解析 (1)由a 1=12,a n +1=11-a n 得a 2=2,a 3=-1,a 4=12,a 5=2,…,可知数列{a n }是以3为周期的数列,因此a 2 021=a 3×673+2=a 2=2. (2)由a 21=a 211,可得(a 1+a 11)(a 1-a 11)=0, 因为d <0,所以a 1-a 11≠0,所以a 1+a 11=0, 又2a 6=a 1+a 11,所以a 6=0. 因为d <0,所以{a n }是递减数列,所以a 1>a 2>…>a 5>a 6=0>a 7>a 8>…,显然前5项和或前6项和最大,故选C. 答案 (1)D (2)CA 级 基础巩固一、选择题1.已知数列的前4项为2,0,2,0,则依此归纳该数列的通项不可能是( ) A.a n =(-1)n -1+1B.a n =⎩⎪⎨⎪⎧2,n 为奇数,0,n 为偶数C.a n =2sinn π2D.a n =cos(n -1)π+1解析 对n =1,2,3,4进行验证,a n =2sin n π2不合题意.答案 C2.已知数列{a n }满足:任意m ,n ∈N *,都有a n ·a m =a n +m ,且a 1=12,那么a 5=( )A.132B.116C.14D.12解析 由题意,得a 2=a 1a 1=14,a 3=a 1·a 2=18,则a 5=a 3·a 2=132.答案 A3.(2020·江西重点中学盟校联考)在数列{a n }中,a 1=-14,a n =1-1a n -1(n ≥2,n ∈N *),则a 2 019的值为( ) A.-14B.5C.45D.54解析 在数列{a n }中,a 1=-14,a n =1-1a n -1(n ≥2,n ∈N *),所以a 2=1-1-14=5,a 3=1-15=45,a 4=1-145=-14,所以{a n }是以3为周期的周期数列,所以a 2 019=a 673×3=a 3=45.答案 C4.已知数列{a n }的前n 项和为S n ,且a 1=2,a n +1=S n +1(n ∈N *),则S 5=( ) A.31B.42C.37D.47解析 由题意,得S n +1-S n =S n +1(n ∈N *),∴S n +1+1=2(S n +1)(n ∈N *),故数列{S n +1}为等比数列,其首项为3,公比为2,则S 5+1=3×24,所以S 5=47. 答案 D5.(2020·兰州重点高中联考)已知数列{a n }的首项a 1=35,且满足a n -a n -1=2n -1(n ∈N *,n ≥2),则a nn的最小值为( )A.234B.595C.353D.12解析 数列{a n }的首项a 1=35,且满足a n -a n -1=2n -1(n ∈N *,n ≥2),可得a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=34+(1+3+5+…+2n -1)=34+12n (1+2n -1)=34+n 2(n ≥2),当n =1时,a 1=35符合上式,故a n =34+n 2(n ∈N *),则a n n =n +34n≥234,等号成立时n =34n ,解得n =34,n 不为正整数,由于n 为正整数,所以n =5时,5+345=595;n =6时,6+346=353<595.则a n n 的最小值为353,故选C.答案 C 二、填空题6.已知S n =3n+2n +1,则a n =________________. 解析 因为当n =1时,a 1=S 1=6; 当n ≥2时,a n =S n -S n -1=(3n +2n +1)-[3n -1+2(n -1)+1]=2·3n -1+2,由于a 1不适合此式,所以a n =⎩⎪⎨⎪⎧6,n =1,2·3n -1+2,n ≥2. 答案 ⎩⎪⎨⎪⎧6,n =1,2·3n -1+2,n ≥2 7.(2019·汕头一模)已知数列{a n }的前n 项和为S n ,已知a 1=1,a 2=2,且a n +2=3S n -S n +1+3(n ∈N *),则S 10=________________. 解析 因为a n +2=3S n -S n +1+3, 所以S n +2-S n +1=3S n -S n +1+3,整理得S n +2=3S n +3,即S n +2+32=3⎝ ⎛⎭⎪⎫S n +32,又S 2=a 1+a 2=3,所以S 10+32=S 10+32S 8+32·S 8+32S 6+32·S 6+32S 4+32·S 4+32S 2+32·⎝⎛⎭⎪⎫S 2+32,即S 10=S 10+32S 8+32·S 8+32S 6+32·S 6+32S 4+32·S 4+32S 2+32·⎝⎛⎭⎪⎫S 2+32-32=363.答案 3638.(2020·河北省级示范性高中联考)数列{a n }满足a 1=3,且对于任意的n ∈N *都有a n +1-a n =n +2,则a 39=________. 解析 因为a n +1-a n =n +2,所以a 2-a 1=3,a 3-a 2=4,a 4-a 3=5,……,a n -a n -1=n +1(n ≥2),上面(n -1)个式子左右两边分别相加 得a n -a 1=(n +4)(n -1)2(n ≥2),即a n =(n +1)(n +2)2(n ≥2),当n =1时,a 1=3适合上式,所以a n =(n +1)(n +2)2,n ∈N *,所以a 39=820.答案 820 三、解答题9.已知各项都为正数的数列{a n }满足a 1=1,a 2n -(2a n +1-1)·a n -2a n +1=0. (1)求a 2,a 3; (2)求{a n }的通项公式.解 (1)由题意得a 2=12,a 3=14.(2)由a 2n -(2a n +1-1)a n -2a n +1=0得2a n +1(a n +1)=a n (a n +1). 因为{a n }的各项都为正数,所以a n +1a n =12. 故{a n }是首项为1,公比为12的等比数列,因此a n =12n -1.10.设数列{a n }的前n 项和为S n .已知a 1=a (a ≠3),a n +1=S n +3n ,n ∈N *,设b n =S n -3n. (1)求数列{b n }的通项公式;(2)若a n +1≥a n ,n ∈N *,求a 的取值范围. 解 (1)依题意,S n +1-S n =a n +1=S n +3n, 即S n +1=2S n +3n,由此得S n +1-3n +1=2(S n -3n),即b n +1=2b n ,又b 1=S 1-3=a -3, 所以数列{b n }的通项公式为b n =(a -3)2n -1,n ∈N *.(2)由(1)知S n =3n+(a -3)2n -1,n ∈N *,于是,当n ≥2时,a n =S n -S n -1=3n +(a -3)2n -1-3n -1-(a -3)2n -2=2×3n -1+(a -3)2n -2,a n +1-a n =4×3n -1+(a -3)2n -2=2n -2⎣⎢⎡⎦⎥⎤12⎝ ⎛⎭⎪⎫32n -2+a -3, 当n ≥2时,a n +1≥a n ⇒12⎝ ⎛⎭⎪⎫32n -2+a -3≥0⇒a ≥-9.又a 2=a 1+3>a 1.综上,a 的取值范围是[-9,3)∪(3,+∞).B 级 能力提升11.(2019·晋中高考适应性调研)“中国剩余定理”又称“孙子定理”.1852年,英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得到的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1至2 020这2 020个数中,能被3除余1且被7除余1的数按从小到大的顺序排成一列,构成数列{a n },则此数列共有( ) A.98项B.97项C.96项D.95项解析 能被3除余1且被7除余1的数就只能是被21除余1的数,故a n =21n -20,由1≤a n ≤2020得1≤n ≤97321,又n ∈N *,故此数列共有97项.答案 B12.(2020·邵东月考)已知数列{a n }的通项为a n =2n +3(n ∈N *),数列{b n }的前n 项和为S n =3n 2+7n 2(n ∈N *),若这两个数列的公共项顺次构成一个新数列{c n },则满足c n <2 020的n 的最大整数值为( ) A.338B.337C.336D.335解析 对于{b n },当n =1时,b 1=S 1=5,当n ≥2时,b n =S n -S n -1=3n 2+7n2-3(n -1)2+7(n -1)2=3n +2,它和数列{a n }的公共项构成的新数列{c n }是首项为5,公差为6的等差数列,则c n =6n -1,令c n <2 020,可得n <33656,因为n ∈N *,所以n 的最大值为336. 答案 C13.(2020·合肥联考)已知数列{a n },a 1=2,S n 为数列{a n }的前n 项和,且对任意n ≥2,都有2a na n S n -S 2n =1,则{a n }的通项公式为________________.解析 n ≥2时,由2a n a n S n -S 2n =1⇒2(S n -S n -1)(S n -S n -1)S n -S 2n =2(S n -S n -1)-S n -1S n =1⇒1S n -1S n -1=12.又1S 1=1a 1=12, ∴⎩⎨⎧⎭⎬⎫1S n 是以12为首项,12为公差的等差数列.∴1S n =n 2,∴S n =2n ,当n ≥2时,a n =S n -S n -1=2n -2n -1=-2n (n -1),当n =1时,a 1=2,所以a n =⎩⎪⎨⎪⎧2,n =1,-2n (n -1),n ≥2. 答案 a n =⎩⎪⎨⎪⎧2,n =1,-2n (n -1),n ≥2 14.已知数列{a n }中,a n =1+1a +2(n -1)(n ∈N *,a ∈R 且a ≠0).(1)若a =-7,求数列{a n }中的最大项和最小项的值; (2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围. 解 (1)∵a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0),又a =-7,∴a n =1+12n -9(n ∈N *).结合函数f (x )=1+12x -9的单调性,可知1>a 1>a 2>a 3>a 4,a 5>a 6>a 7>…>a n >1(n ∈N *). ∴数列{a n }中的最大项为a 5=2,最小项为a 4=0. (2)a n =1+1a +2(n -1)=1+12n -2-a2,已知对任意的n ∈N *,都有a n ≤a 6成立, 结合函数f (x )=1+12x -2-a 2的单调性,可知5<2-a2<6,即-10<a <-8.即a 的取值范围是(-10,-8).C 级 创新猜想15.(新背景题)(2019·福州二模)一元线性同余方程组问题最早可见于中国南北朝时期(公元5世纪)的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”问题,原文如下:有物不知数,三三数之剩二,五五数之剩三,问物几何?即一个整数除以三余二,除以五余三,求这个整数.设这个整数为a ,当a ∈[2,2 019]时,符合条件的a 共有________个. 解析 法一 由题设a =3m +2=5n +3,m ,n ∈N , 则3m =5n +1,m ,n ∈N ,当m =5k 时,n 不存在;当m =5k +1时,n 不存在; 当m =5k +2时,n =3k +1,满足题意; 当m =5k +3时,n 不存在;当m =5k +4时,n 不存在.其中k ∈N .故2≤a =15k +8≤2 019,解得-615≤k ≤2 01115,则k =0,1,2,…,134,共135个. 即符合条件的a 共有135个,故答案为135.法二 一个整数除以三余二,这个整数可以为2,5,8,11,14,17,20,23,26,29,32,35,38,…,一个整数除以五余三,这个整数可以为3,8,13,18,23,28,33,38,…,则同时除以三余二、除以五余三的整数为8,23,38,…,构成首项为8,公差为15的等差数列,通项公式为a n=8+15(n-1)=15n-7,由15n-7≤2 019得15n≤2 026,n≤135 115,因为n∈N*,所以n=1,2,3,…,135,共有135个. 答案135。

高考数学一轮复习第六章数列课时规范练30等比数列

高考数学一轮复习第六章数列课时规范练30等比数列

课时规范练30等比数列基础巩固组1.(2020河南开封定位考试)等比数列{a n}的前n项和为S n,若a3+4S2=0,则公比q=()A.-1B.1C.-2D.22.(2020东北师大附中、重庆一中、吉大附中、长春十一中等高三联合考试)等比数列{a n}各项均为正数,若a1=1,a n+2+2a n+1=8a n,则{a n}的前6项和为()A.1365B.63C.6332D.136510243.(多选)设等比数列{a n}的前n项和为S n,且满足a6=8a3,则()A.数列{a n}的公比为2B.数列{a n}的公比为8C.63=8D.63=94.(2020全国2,理6)数列{a n}中,a1=2,a m+n=a m a n.若a k+1+a k+2+…+a k+10=215-25,则k=()A.2B.3C.4D.55.(2020福建龙岩高三教学质量检查)由实数构成的等比数列{a n}的前n项和为S n,a1=2,且a2-4,a3,a4成等差数列,则S6=()A.62B.124C.126D.1546.(多选)设等比数列{a n}的公比为q,则下列结论正确的是()A.数列{a n a n+1}是公比为q2的等比数列B.数列{a n+a n+1}是公比为q的等比数列C.数列{a n-a n+1}是公比为q的等比数列D.数列1是公比为1的等比数列7.(2020浙大附中模拟)已知数列{a n}的前n项和为S n,且+1=pS n+q(n∈N*,p≠-1),则“a1=q”是“{a n}为等比数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.设等比数列{a n}的前n项和为S n,若63=3,则96=.9.已知{a n}是递减的等比数列,且a2=2,a1+a3=5,则{a n}的通项公式为;a1a2+a2a3+…+a n+1(n∈N*)=.10.(2018全国3,理17)等比数列{a n}中,a1=1,a5=4a3.(1)求{a n}的通项公式;(2)记S n为{a n}的前n项和,若S m=63,求m.公众号:一枚试卷君11.在①数列{a n}的前n项和S n=12n2+52n;②函数f(x)=sinπx-23cos2π2x+3的正零点从小到大构成数列{x n},a n=x n+83;③2-a n--12−-1=0(n≥2,n∈N*),a n>0,且a1=b2这三个条件中任选一个,补充在下面的问题中,若问题中的M存在,求出M的最小值;若M不存在,说明理由.问题:数列{b n}是首项为1的等比数列,b n>0,b2+b3=12,且,设数列1log3r1的前n项和为T n,是否存在M∈N*,使得对任意的n∈N*,T n<M?综合提升组12.(多选)(2020山东威海模考)设等比数列{a n}的公比为q,其前n项和为S n.前n项积为T n,并且满足条件a1>1,a7·a8>1,7-18-1<0.则下列结论正确的是()A.0<q<1B.a7·a9>1C.S n的最大值为S9D.T n的最大值为T713.(2020辽宁大连第二十四中学模拟)《九章算术》中的“两鼠穿墙题”是我国数学的古典名题:“今有垣厚若干尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,问何日相逢,各穿几何?”题意是:“有两只老鼠从墙的两边打洞穿墙,大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半.”如果墙足够厚,S n为前n天两只老鼠打洞长度之和,则S n=尺.14.设数列{a n}的前n项和为S n,已知a1=1,a2=2,且a n+2=2S n-S n+1+3,记b n=log2a2n-1+log2a2n,则b n=.创新应用组15.(多选)(2020山东青岛高三模拟)在悠久灿烂的中国古代文化中,数学文化是其中的一朵绚丽的奇葩.《张丘建算经》是我国古代有标志性的内容丰富的众多数学名著之一,大约创作于公元五世纪.书中有如下问题:“今有女善织,日益功疾,初日织五尺,今一月织九匹三丈,问日益几何?”.其大意为:“有一女子擅长织布,织布的速度一天比一天快,从第二天起,每天比前一天多织相同数量的布,第一天织5尺,一个月共织了九匹三丈,问从第二天起,每天比前一天多织多少尺布?”.已知1匹=4丈,1丈=10尺,若这一个月有30天,记该女子这一个月中的第n天所织布的尺数为a n,b n=2,对于数列{a n},{b n},下列选项中正确的为()A.b10=8b5B.{b n}是等比数列C.a1b30=105D.3+5+72+4+6=20919316.(2020浙江十校联考)已知数列{a n}满足a1=35,a n+1=32+1,n∈N*.(1)求证:数列1-1为等比数列.(2)是否存在互不相等的正整数m,s,t,使m,s,t成等差数列,且a m-1,a s-1,a t-1成等比数列?如果存在,求出所有符合条件的m,s,t;如果不存在,请说明理由.参考答案课时规范练30等比数列1.C因为a3+4S2=0,所以a1q2+4a1+4a1q=0.因为a1≠0,所以q2+4q+4=0,所以q=-2.故选C.2.B∵等比数列{a n}各项均为正数,且a n+2+2a n+1=8a n,∴a n q2+2a n q=8a n,即q2+2q=8,可得q=2或q=-4(舍去),∴S6=1(1-6)1-=63.故选B.3.AD因为等比数列{a n}的前n项和为S n,且满足a6=8a3,所以63=q3=8,解得q=2,所以63=1-61-3=1+q3=9.故选AD.4.B设该女子第一天织布x尺,则(1-25)1-2=5,得x=531,所以前n天所织布的总尺数为531(2n-1).由531(2n-1)≥30,得2n≥187,则n的最小值为8.故选B.5.C由题意知2a3=a2-4+a4,设{a n}的公比为q,则212=1-4+13,1=2,解得q=2,则S6=2(1-26)1-2=126.故选C.6.AD对于A,由r1-1=q2(n≥2)知,数列{a n a n+1}是公比为q2的等比数列,故A正确;对于B,当q=-1时,数列{a n+a n+1}的项中有0,不是等比数列,故B错误;对于C,当q=1时,数列{a n-a n+1}的项中有0,不是等比数列,故C错误;对于D,1r11=r1=1,所以数列1是公比为1的等比数列,故D正确.故选AD.7.C因为a n+1=pS n +q ,所以当n ≥2时,a n =pS n-1+q ,两式相减得a n+1-a n =pa n ,即当n ≥2时,r1=1+p.当n=1时,a 2=pa 1+q.所以当a 1=q 时,21=1+p ,满足上式,故数列{a n }为等比数列,所以满足充分性;当{a n }为等比数列时,有a 2=pa 1+q=(1+p )a 1,解得a 1=q ,所以满足必要性.故选C .8.73(方法1)由等比数列的性质可知S 3,S 6-S 3,S 9-S 6仍成等比数列,由已知得S 6=3S 3,∴6-33=9-66-3,即S 9-S 6=4S 3,S 9=7S 3,∴96=73.(方法2)因为{a n }为等比数列,由63=3,设S 6=3k ,S 3=k (k ≠0),所以S 3,S 6-S 3,S 9-S 6为等比数列,即k ,2k ,S 9-S 6成等比数列,所以S 9-S 6=4k ,解得S 9=7k ,所以96=73=73.9.a n =4×12n-1323×1-14n由a 2=2,a 1+a 3=5,{a n }是递减的等比数列,得a 1=4,a 3=1,所以q=12,a n =4×12n-1,则a 1a 2+a 2a 3+…+a n +1是首项为8,公比为14的等比数列的前n 项和.故a 1a 2+a 2a 3+…+a n +1=8+2+12+…+8×14n-1=8×[1-(14)]1-14=323×1-14n .10.解(1)设{a n }的公比为q ,由题设得a n =q n-1.由已知得q 4=4q 2,解得q=0(舍去),q=-2或q=2.故a n =(-2)n-1或a n =2n-1.(2)若a n =(-2)n-1,则S n =1-(-2)3.由S m =63得(-2)m =-188,此方程没有正整数解.若a n =2n-1,则S n =2n -1.由S m =63得2m =64,解得m=6.综上,m=6.11.解设数列{b n }的公比为q (q>0),因为数列{b n }是首项为1的等比数列,且b n >0,b 2+b 3=12,所以q 2+q-12=0,解得q=3(q=-4不合题意,舍去),所以b n =3-1.若选①,由S n =12n 2+52n ,可得-1=12(n-1)2+52(n-1)(n ≥2),两式相减可得a n =n+2(n ≥2),又因为a 1=S 1=3也符合上式,所以a n =n+2,所以1log 3r1=1(r2)=121−1r2,则T n =121-13+12−14+13−15+…+1−1r2=34−121r1+1r2.因为1r1+1r2>0,所以T n <34,由题意可得M≥34,又因为M∈N*,所以存在M满足题意,并且M的最小值为1.若选②,f(x)=sinπx-23cos2π2x+3=sinπx-3cosπx=2sinπx-π3,令f(x)=0,可得πx-π3=kπ,k∈Z,解得x=k+13,k∈Z,即x n=n-1+13=n-23,故a n=x n+83=n+2,同上①,则存在M满足题意,并且M的最小值为1.若选③,则由2-a n--12−-1=0,得(a n--1-1)(a n+-1)=0.又因为a n>0,所以a n--1-1=0,即a n-=1,所以数列{a n}是公差为1的等差数列.又因为a1=b2,则a1=3,所以a n=n+2.-1同上①,则存在M满足题意,并且M的最小值为1.12.AD∵a1>1,a7·a8>1,可知q>0,又7-18-1<0,∴a7>1,a8<1,∴0<q<1,故A正确;a7a9=82<1,故B错误;∵a1>1,0<q<1,∴数列{a n}为各项均为正数的递减数列,∴S n无最大值,故C错误;又a7>1,a8<1,∴T7是数列{T n}中的最大项,故D正确.故选AD.13.2n-12-1+1由题意可知,大老鼠每天打洞的距离是以1为首项,2为公比的等比数列,前n天打洞的距离之和为1-21-2=2n-1.小老鼠每天打洞的距离是以1为首项,12为公比的等比数列,前n天打洞的距离之和为1-(12)1-12=2-12-1.所以S n=2n-1+2-12-1=2n-12-1+1.14.2n-1∵a1=1,a2=2,且a n+2=2S n-S n+1+3,∴当n=1时,a3=2-3+3=2.∵a n+2=2S n-S n+1+3,∴当n≥2时,a n+1=2S n-1-S n+3.两式相减可得,a n+2-a n+1=2(S n-S n-1)-(S n+1-S n)(n≥2),即当n≥2时,a n+2-a n+1=2a n-a n+1,即a n+2=2a n.∵a3=2a1,∴数列{a n}的奇数项和偶数项分别成等比数列,公比均为2,∴a2n=2×2n-1=2n,a2n-1=1×2n-1=2n-1,∴b n=log2a2n-1+log2a2n=n-1+n=2n-1.15.BD由题意可知,数列{a n}为等差数列,设数列{a n}的公差为d,a1=5,由题意可得30a1+30×292=390,解得d=1629,∴a n=a1+(n-1)d=16r12929.∵b n=2,∴r1=2r12=2r1-=2d(非零常数),则数列{b n}是等比数列,故B正确;∵5d=5×1629=8029≠3,∴105=(2)5=25d≠23,∴b10≠8b5,故A错误;a30=a1+29d=5+16=21,∴a1b30=5×221>105,故C错误;∵a4=a1+3d=5+3×1629=19329,a5=a1+4d=5+4×1629=20929,∴3+5+72+4+6=3534=54=209193,故D正确.故选BD.16.(1)证明因为a n+1=32+1,所以1r1=13+23,所以1r1-1=131-1.因为a1=35,则11-1=23.所以数列1-1是首项为23,公比为13的等比数列.(2)解不存在.理由如下,由(1)知,1-1=23×13n-1=23,所以a n=33+2.假设存在互不相等的正整数m,s,t满足条件,则有+=2,(-1)2=(-1)(-1).由a n=33+2与(a s-1)2=(a m-1)(a t-1),得33+2-12=33+2-133+2-1.即3m+t+2×3m+2×3t=32s+4×3s.因为m+t=2s,所以3m+3t=2×3s.因为3m+3t≥23r=2×3s,当且仅当m=t时等号成立,这与m,s,t互不相等矛盾.所以不存在互不相等的正整数m,s,t满足条件.。

2025版高考数学全程一轮复习第六章数列专题培优课构造法求数列的通项公式课件

2025版高考数学全程一轮复习第六章数列专题培优课构造法求数列的通项公式课件

3×5n,则数列{an}的通项an=( )
A.-3×2n-1
B.3×2n-1
C.5nபைடு நூலகம்3×2n-1
D.5n-3×2n-1
答案:D
解析:在递推


an+
1
=2an

3×5n



同时除以
5n
+1


an+1 5n+1
=25
×
an 5n
+
3 5
①,令bn=5ann,则①式变为bn+1=25bn+35,即bn+1-1=25(bn-1),所以数列{bn-1}
则a2 023=(
)
A.-42 023+2
B.-42 023-2
C.-42 022+2
D.-42 022-2
答案:C 解析:由an+1=4an-6,得an+1-2=4(an-2),而a1-2=-1,因此数列{an-2} 是首项为-1,公比为4的等比数列,则an-2=-1×4n-1,即an=-4n-1+2,所 以a2 023=-42 022+2.故选C.
题型二 形如an+1=pan+qan-1(a≥2,n∈N*) 例4 已知数列{an}满足a1=1,a2=2,且an+1=2an+3an-1(n≥2, n∈N*),求数列{an}的通项公式.
题后师说
形如an+1=pan+qan-1求an的一般步骤
巩固训练2
已知数列{an}满足:a1=a2=2,an=3an-1+4an-2(n≥3),则a9+a10 =( )
2(n≥3),则S10=( )
A.4105−1
B.4115−1
C.410-1 D.411-1
答案:A 解析:因为an=3an-1+4an-2(n≥3),所以an+an-1=4(an-1+an-2),又a1+a2= 3≠0,所以aann−+1+aann−−12=4(n≥3),所以{an+an+1}是等比数列,公比为4,首项为3, 则数列{a2n-1+a2n}也是等比数列,公比为42=16,首项为3.所以S10=3×11−−11665 = 4105−1.故选A.

2021届高考数学一轮复习第六章数列课时跟踪训练32等比数列及其前n项和文

2021届高考数学一轮复习第六章数列课时跟踪训练32等比数列及其前n项和文

2021届高考数学一轮复习第六章数列课时跟踪训练32等比数列及其前n 项和文[基础巩固]一、选择题1.(2021·河南百校联考)在等差数列{a n }中,a 1=2,公差为d ,则“d =4”是“a 1,a 2,a 3成等比数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[解析] 由a 1,a 2,a 3成等比数列得a 22=a 1a 3,即(2+d )2=2(2+2d ),解得d =0,因此“d =4”是“a 1,a 2,a 3成等比数列”的既不充分也不必要条件,故选D.[答案] D2.(2021·四川成都南充高中模拟)已知等比数列的前3项为x,3x +3,6x +6,则其第4项的值为( )A .-24B .-24或0C .12或0D .24[解析] 由x,3x +3,6x +6成等比数列,得(3x +3)2=x (6x +6).解得x 1=-3或x 2=-1(现在a 2=a 3=0,不合题意,舍去).故那个等比数列的首项为-3,公比为2,因此a n =-3·2n -1,因此数列的第4项为a 4=-24.故选A.[答案] A3.已知等比数列{a n }中,a 3=2,a 4a 6=16,则a 10-a 12a 6-a 8的值为( ) A .2 B .4 C .8D .16[解析] 因为a 3=2,a 4a 6=16,因此a 4a 6=a 23q 4=16,即q 4=4,则a 10-a 12a 6-a 8=q 4a 6-a 8a 6-a 8=q 4=4,故选B.[答案] B4.已知单调递增的等比数列{a n }中,a 2·a 6=16,a 3+a 5=10,则数列{a n }的前n 项和S n =( )A .2n -2-14B .2n -1-12C .2n-1D .2n +1-2[解析] ∵a 2·a 6=16,∴a 3·a 5=16,又a 3+a 5=10,等比数列{a n }单调递增,∴a 3=2,a 5=8,∴公比q =2,a 1=12,∴S n =121-2n1-2=2n -1-12,故选B. [答案] B5.已知{a n }为等比数列,若a 4+a 6=10,则a 1a 7+2a 3a 7+a 3a 9=( ) A .10 B .20 C .60D .100[解析] a 1a 7+2a 3a 7+a 3a 9=a 24+2a 4a 6+a 26=(a 4+a 6)2=100. [答案] D6.(2021·全国卷Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏[解析] 每层塔所挂的灯数从上到下构成等比数列,记为{a n },则前7项的和S 7=381,公比q =2,依题意,得a 11-271-2=381,解得a 1=3,选择B.[答案] B 二、填空题7.(2021·北京卷)若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2=________.[解析] 设等差数列{a n }的公差为d ,等比数列{b n }的公比为q ,则a 4=-1+3d =8,解得d =3;b 4=-1·q 3=8,解得q =-2.因此a 2=-1+3=2,b 2=-1×(-2)=2,因此a 2b 2=1.[答案] 18.(2021·郑州质量推测)已知等比数列{a n }的前n 项和为S n ,若a 1+a 2=34,a 4+a 5=6,则S 6=________.[解析] 记等比数列{a n }的公比为q ,则有q 3=a 4+a 5a 1+a 2=8,q =2,则S 6=(a 1+a 2)+q 2(a 1+a 2)+q 4(a 1+a 2)=21(a 1+a 2)=634.[答案]6349.(2021·湖南师范大学附属中学月考)已知数列{a n }的首项a 1=2,数列{b n }为等比数列,且b n =a n +1a n.若b 10b 11=2,则a 21=________. [解析] 由已知,得b 1b 2…b 20=a 2a 1·a 3a 2·…·a 21a 20=a 21a 1=a 212.因为{b n }为等比数列,因此b 1b 2…b 20=(b 10b 11)10=210,因此a 21=2b 1b 2…b 20=211=2048.[答案] 2048 三、解答题10.(2021·北京卷)已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5.(1)求{a n }的通项公式; (2)求和:b 1+b 3+b 5+…+b 2n -1. [解] (1)设等差数列{a n }的公差为d . 因为a 2+a 4=10,因此2a 1+4d =10. 解得d =2.因此a n =2n -1. (2)设等比数列{b n }的公比为q . 因为b 2b 4=a 5,因此b 1qb 1q 3=9. 解得q 2=3. 因此b 2n -1=b 1q2n -2=3n -1.从而b 1+b 3+b 5+…+b 2n -1=1+3+32+…+3n -1=3n-12.[能力提升]11.数列{a n }的通项公式为a n =aq n,则{a n }为递增数列的一个充分不必要条件是( ) A .a <0,q <1 B .a <0,q <0 C .a >0,q >0 D .a <0,0<q <12[解析] a n +1-a n =aqn +1-aq n =aq n (q -1),当a <0,0<q <12时,q n>0,q -1<0,∴a n +1-a n >0,即a n +1>a n ,该数列是递增数列;当数列是递增数列,有可能a >0,q >1,故数列为递增数列的一个充分不必要条件是a <0,0<q <12,故选D.[答案] D12.已知数列{a n }满足log 2a n -1=log 2a n +1(n ∈N *),若a 1+a 3+a 5+…+a 2n -1=2n,则log 2(a 2+a 4+a 6+…+a 2n )的值是( )A .2n +1B .2n -1C .n +1D .n -1[解析] 由log 2a n -1=log 2a n +1得a n +1a n =12,因此数列{a n }是等比数列,公比为12,因此a 2+a 4+a 6+…+a 2n =12(a 1+a 3+a 5+…+a 2n -1)=2n -1,因此log 2(a 2+a 4+a 6+…+a 2n )=n -1.故选D.[答案] D13.(2021·全国卷Ⅰ)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.[解析] 由题意知,a 2+a 4=(a 1+a 3)q ,即5=10q ,解得q =12,将q =12代入a 1+a 3=10,解得a 1=8.∴a 1a 2…a n =a n1·qn n -12=8n×⎝ ⎛⎭⎪⎫12n n -12=2-n 22+7n2.∵-n 22+7n2=-12⎝ ⎛⎭⎪⎫n -722+498≤6,且n ∈N *.当n =3或4时有最大值.∴a 1a 2…a n =2-n 22+7n2 ≤26=64,即最大值为64. [答案] 6414.(2021·广西南宁三中联考)已知{a n }是公比为q 的等比数列,令b n =a n +1(n =1,2,3,…),若数列{b n }有连续4项在集合{-53,-23,19,37,82}中,则6q =________.[解析] 因为数列{b n }有连续4项在集合{-53,-23,19,37,82}中,而b n =a n +1,因此数列{a n }有连续4项在集合{-54,-24,18,36,81}中.因为{a n }是公比为q 的等比数列,因此当q =-32时,-24,36,-54,81是{a n }的连续4项;当q =-23时,81,-54,36,-24是{a n }的连续4项.因此6q =-9或-4.[答案] -9或-415.(2021·全国卷Ⅲ)已知各项都为正数的数列{a n }满足a 1=1,a 2n -(2a n +1-1)a n -2a n+1=0.(1)求a 2,a 3; (2)求{a n }的通项公式.[解] (1)∵a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0,∴令n =1,有a 21-(2a 2-1)a 1-2a 2=0,即 1-(2a 2-1)-2a 2=0,得a 2=12.同理可得a 22-(2a 3-1)a 2-2a 3=0,解得a 3=14.(2)由a 2n -(2a n +1-1)a n -2a n +1=0,得2a n +1(a n +1)=a n (a n +1). 因为{a n }的各项都为正数,因此a n +1a n =12. 故{a n }是首项为1,公比为12的等比数列,因此a n =12n -1.16.设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +2. (1)设b n =a n +1-2a n ,证明:数列{b n }是等比数列; (2)求数列{a n }的通项公式.[解] (1)证明:由a 1=1及S n +1=4a n +2, 有a 1+a 2=S 2=4a 1+2.∴a 2=5,∴b 1=a 2-2a 1=3.又⎩⎪⎨⎪⎧ S n +1=4a n +2,S n =4a n -1+2n ≥2,①②①-②,得a n +1=4a n -4a n -1,∴a n +1-2a n =2(a n -2a n -1). ∵b n =a n +1-2a n ,∴b n =2b n -1(n ≥2), 故{b n }是以3为首项,2为公比的等比数列. (2)由(1)知b n =a n +1-2a n =3·2n -1,∴a n +12n +1-a n 2n =34,故⎩⎨⎧⎭⎬⎫a n 2n 是以12为首项,34为公差的等差数列.∴a n 2n =12+(n -1)·34=3n -14,得a n =(3n -1)·2n -2. [延伸拓展](2021·江西南昌摸底考试)设等比数列{a n }的公比为q ,其前n 项之积为T n ,同时满足条件:a 1>1,a 2021·a 2021>1,a 2021-1a 2021-1<0.给出下列结论:(1)0<q <1;(2)a 2017a 2020-1>0;(3)T 2021是数列{T n }中的最大项;(4)使T n >1成立的最大自然数n 等于4031,其中正确的结论为( )A .(2)(3)B .(1)(3)C .(1)(4)D .(2)(4)[解析] 因为a 2021-1a 2021-1<0,因此⎩⎪⎨⎪⎧a 2021<1,a 2021>1,或⎩⎪⎨⎪⎧a 2021>1,a 2021<1,若⎩⎪⎨⎪⎧a 2021<1,a 2021>1成立,又a 2016a 2021>1,因此⎩⎪⎨⎪⎧0<a 2021<1,a 2021>1,因此q =a 2021a 2021>1,因此a 2021=a 1q 2020,而a 1>1,因此a 2021>1,矛盾.从而⎩⎪⎨⎪⎧a 2021>1,0<a 2021<1,因此0<q <1,又因为a 1>1,因此易知数列{a n }的前2021项都大于1,而从第2021项起都小于1,因此T 2021是数列{T n }的最大项.从而(1)(3)正确,(2)错误,∵a 2021·a 2021>1,a 2021<1,∴使T n >1成立的最大自然数n 等于4032,(4)错误,故选B.[答案] B。

单元复习课教学中存在的问题与建议——以《数列》单元复习为例

单元复习课教学中存在的问题与建议——以《数列》单元复习为例

2019年第5期中学数学研究•:!•单元复习课教学中存在的问题与建议——以《数列》单元复习为例江苏省苏州实验中学最近,笔者参与了我区招师活动的课堂教学考核环节,教学内容为苏教版•必修5教材(下称教材)数列单元复习课,从参与应聘的30位教师的课堂展示情况来看,发现很多教师并没有准确认识单元复习课的教学功能•为什么要上单元复习课?学习论认为,经过一阶段的新课学习,学生获得的是一些简单概念和单一的解题技巧,对这些零散的点状知识容易产生遗忘和混淆.因此,需要对已学知识进行梳理与整合,单元复习是将本单元的相关知识进行梳理、归类、巩固,理清知识间的逻辑关联,构建出系统的知识网络,从单元的角度理解数学知识.一、单元复习课教学中的存在问题从应聘教师的课堂展示可以看出当前有些教师对单元复习课的课型功能认识并不准确,或上成知识罗列课,或上成解题教学课,或上成专题复习课,给人一种简单堆砌、偏离目标之感.主要存在以下问题:问题1教学达成目标的层次偏低一些教师在制定单元复习课的教学目标时,简单地将本单元各课时目标进行汇总,更多关注知识点的“全”,却不能整合知识点间的逻辑要素,导致单元复习成了一种“炒冷饭”式的知识点回顾,课堂教学始终在低位目标徘徊.很多教师在知识回顾时都采用“数列的定义—数列的通项公式T等差数列的通项与求和T等比数列的通项与求和”的复习线路,这样的过程就是单纯地按照知识顺序进行无意义的回顾,并不能帮助学生形成上位的整体认知,这样复习的效果自然不够理想.实际上,根据学生已有的认知,提炼出知识间的逻辑主线,将整章内容串联到这样的逻辑主线中去,从整体上形成知识的逻辑架构.问题2教学处理的深度不够有些教师在单元复习时中只关注识记性知识和程序性知识目标的落实,却对基本数学活动经验的构建、重现以及关键能力的培养不予重视,导致课堂教学的深度不够.(215011)丁益民如有些老师都选择教材P68第12题作为“错位相减法”的复习载体:题目已知等差数列仏計满足a2=Q,a6+a s =-10.(1)求数列仪”}的通项公式;(2)求数列{亍右!的前"项和S”.绝大部分老师是这样处理的:引导学生分析问题(2)中的处理方法(错位相减法)后口头强调该法容易出错,却鲜有老师将本题的完整过程重现出来.学生在没有切身体验下的认知是不深刻的,口头强调式的教学手段并不能强化学生认知结构中的活动经验.其实,我们还可以从运算规则的层面考察错位相减法与裂项相消法之间的关联,两种方法都是将不规则运算转化为简便运算.为此提出以下问题:能否将如拆成相邻两项之差?通过分析其结构,采用待定系数法将之分解为如=驾乜-心再结合a”的通项公式求出k,b的值,然后实施“累加”的运算操作即可.这样的过程不仅实现了两种方法之间的算法关联,也体现了以运算为逻辑主线进行深度认识目的.问题3组织方式比较低效单元复习课中常见的教学组织方式有两种:一是讲知识点为主,把本单元所有知识点罗列在一起,重新再讲一遍,这种直叙式的组织形式让学生觉得索然无趣,效果可想而知;二是讲题为主,根据本单元知识点选择一些习题让学生练习后再讲评,这种组织形式没有依据学生的实际认知,复习并没有针对性.师1的组织方式:习题1:……知识点拨1:……习题2:……知识点拨2:……师2的组织方式:•2•中学数学研究2019年第5期知识提要1:……习题1:……知识提要2:……习题2:……以上两位老师的教学组织都没有关注知识、能力与经验的内在关联,无助于学生构建单元的知识、思维能力和数学活动经验体系•其实,可以将上述教学组织中“知识点拨”、“知识提要”设计为“知识梳理”,再引导学生独立完成、交流完善,从中体现习题间的逻辑关联和层次性.二、单元复习课的教学建议1.准确认识“本章回顾”的设置意图为了减少单元复习的随意性和盲目性,教材在每章末都设置了“本章回顾”.主要包括:知识结构,学习要求(包括知识、技能、思想方法)以及内容提要.在知识结构的呈现方式上采用的是框图形式,直观形象地反映了知识的来龙去脉,并且框图可以进一步开发整合(比如常可拓展成思维导图).学习要求不同于课时要求,是对整个单元的宏观要求,内容提要则采用提纲形式将本章主要内容予以回顾,目的是抓住主干知识,舍末求本,其目的是防止扩张教学范围,杜绝深挖教学内容,这是单元复习的行动纲领.就“数列”一章而言,在复习时应引导学生从两个认知视角进行梳理,一是函数视角,数列是以“数”为研究对象的特殊函数,整个数列教学体系中,应始终以函数的视角来审视数列的性质,比如数列中的项是如何变化的(如单调性)?数列的项与项之间有怎样的关系(递推关系)?等等.另一个是运算视角,即建构合适的运算规则来研究数列中的运算,比如,通过“累加”的运算方式得到等差数列的通项公式,进一步地这样的运算规则还适用于形如递推关系-=/■(“)”的通项公式求解问题.以这两条线索可进行以下梳理:函数视角a=kn+bS=Ari+Bna=kcfS n=A-A(f(q^l)运算视角附镭期齣•關令聲/轴£7瞬,岷恥畴.裁救对为怒総鵝瞬帼如忍瞬啊.:彩棹轍麹總舷轍艶.…鎖癱釀駁通过从这两条认知视角来整合已学内容,形成新的认知块,加深知识的关系系理解,促进深度理解.2.实施有效的教学组织教学组织方式决定了单元复习的质量,单一罗列知识和逐一讲解例题的实际教学效果往往高耗低效,学生的数学理解水平淹没在题海之中•在复习时可以围绕核心概念展开,引导学生运用已有知识来论证核心概念;或者寻找支撑核心概念的一般概念与相关具体问题,试图对原有知识进行必要的拓展与深化,建立起知识间的逻辑联系,并确定知识的运用范围,实现知识的深度理解.导学模式是进行单元复习时十分有效的组织形式之一,将复习内容以问题的形式呈现出来,问题可由学生先行解决•问题设计时要关注问题的起点、层次与跨度,起点不宜太高,适当高于新授课要求,逐层推进,思维跨度不宜太大,要具有一定的启发性与针对性,通过问题链着力构建出完整的知识框架.要提高学生在解决问题时目标任务的达成度和效度•在“前置练习”中设置有关核心概念、重要性质的基础题,通过前置练习梳理出相关概念与性质,进而拓展出与之相关的外延知识.在此过程中那些无关紧要的知识坚决舍去(如等差数列的某些识记性的结论),抓住重点,按弃杂质,太多太空的结论性知识易将学生带入务虚空洞的知识梳理,这样就成了无意义的数学活动.梳理出的知识应与选择的例题相匹配,例题讲评的目的是加深核心知识的理解•最后再对整节课的进行小结.所以,整节课就是核心概念主线下进行的教学组织.3.精心选编适合学生的典型例题单元复习课离不开例题的选择与讲评,很多老师在单元复习时完全照搬高三复习资料中的成品例题,这就导致教学起点过高,教学难度过大,发生了教学重心偏移,起不到应有的复习效果.因此,在选题时要有一定的针对性、适度性和思考性.实际上,教材中有很多典型且适合学生认知特点的典型例题,可以借助这些例题进行复习提升.如教材P68第17题:在等差数列{a”}中,已知S”=q,Sg=p,(p M g),求Sp+g的值.很多老师在讲评此问题时仅仅将之定位成一个“结论”让学生记住,其实这道题的教学功能很多.本题基本的处理是运用基本量,这是通性通法,重视通性通法是训练学生基本功的重要举措.在基本量法中训练了方程思想,也着重训练了如何进行数学运算的素养•进一步地,从优化运算的角度看,2019年第5期中学数学研究• 3 •还可借助等差数列求和公式的函数形式(S ” = An 2+ Bn )进行处理,并可进一步地引导学生从优化运算的角度继续思考,即借助等差数列i —!的函数形nS式=kn+b 进一步优化运算(降低运算次数).这n样的设计是基于如何优化运算这一主线进行的,无 疑对学生素养的提升是有利的.从思维训练上看,可 以提升学生的思维品质.根据待求式的结构特征S ”q = 3 +%;)(p + g ),只需知道 5 +ap+9 的值即可,而如+ a p+q = a p + a g+1 ,如何找到a p + a g+1 ?就要分析已知条件与目标需求的结构差异,这是可以通过启发让学生得出只需将两式作差即可求出舛+由此可见,选择合适的例题并从整体性中寻找 问题解决的要素,对学生的思维训练与能力提升是有益的.单元复习课教学研究任重道远,针对不同的知 识类型,不同的学生群体,探索出适合的单元复习课 教学模式和教学策略,提高单元复习课的教学深度,促进学生思维水平的发展和知识的理解深度.参考文献[1 ]李柏青.复习课单元整体教学设计的实践与思考[J].数 学通报,2013(3):31 -36.[2]王华民.构建知识网络静心选编问题[J].中学数学教 学,2000(6) :29 -32.强化运算素养提升思维品质以椭圆中的运算为例江苏省南京市第二十九中学(210036)高新柠郭建华(指导教师)解析几何的运算给人们的感觉是繁琐,有的同学遇到解析几何问题就会感到畏惧,不敢去算,也不愿意去算,或者是没有掌握运算的技巧和方法,算不 下去,于是导致解析几何题得分较低,因此,很有必要在平时的训练中加强对解析几何题的各种题型进 行归类和反思.尤其对解析几何题要在运算上多下功夫,因为它是解决问题的基本手段•其实数学运算主要表现以下四个方面:理解运算对象,掌握运算法 则,探究运算思路,求得运算结果.通过椭圆中运算 的培养,进一步发展数学运算能力,不断促进数学思维的发展,提升规范化思考问题的品质.下面通过例题浅谈一下解析几何运算中思维品质的提升.1.理解运算对象,提升思维的敏捷性例1 如图1,在直角坐标系%Oy 中,。

2025届高考数学一轮总复习第六章数列第四节数列求和

2025届高考数学一轮总复习第六章数列第四节数列求和
4×3
41 + 2 ×
= 32,
1 = 5,
S4=32,T3=16,得
解得
所以
= 2.
(1 -6) + 2(1 + ) + (1 + 2-6) = 16,
an=a1+(n-1)d=2n+3.
(2)证明 由(1)可得
[5+(2+3)]
Sn=
=n2+4n.
2
当 n 为奇数时,Tn=a1-6+2a2+a3-6+2a4+a5-6+2a6+…+an-2-6+2an-1+an-6
×…× ×a2= × ×…× ×1=n-1.
-2
2
1
-2 -3
显然 a1=0 满足,∴an=n-1(n∈N*).
(2)由(1)可知 an=n-1(n∈N*),
+1
1
1 1
1 2
1 3
1
∴an+1=n,∴ =n· ,∴Tn=1×
+2×
+3×
+…+n· ,
2
2
2
2
2
2
1
1 2
1 3
1
2
2
+(
1
2
2

1
2 )+…+
3
1
1
1
2 - 2 =1-81
8 9
=
80
.
81
=
1
2

1
(+1)
2,
增素能 精准突破

新高考2023版高考数学一轮总复习练案35第六章第二讲等差数列及其前n项和

新高考2023版高考数学一轮总复习练案35第六章第二讲等差数列及其前n项和

第二讲 等差数列及其前n 项和A 组基础巩固一、单选题1.在等差数列{a n }中,a 2=2,a 3=4,则a 10=( D ) A .12 B .14 C .16D .18[解析] 由a 2=2,a 3=4知d =4-23-2=2.所以a 10=a 2+8d =2+8×2=18.故选D.2.(2021·贵州阶段性检测)在等差数列{a n }中,已知a 3+a 5+a 7=15,则该数列前9项和S 9=( D )A .18B .27C .36D .45[解析] 本题考查等差数列的性质,前n 项和公式.在等差数列{a n }中,a 3+a 5+a 7=3a 5=15,a 5=5,所以S 9=a 1+a 92×9=2a 52×9=9a 5=9×5=45.故选D.3.已知等差数列{a n }的前n 项和为S n ,若a 2=4,S 4=22,a n =28,则n =( D ) A .3 B .7 C .9D .10[解析] 因为S 4=a 1+a 2+a 3+a 4=4a 2+2d =22,所以d =22-4a 22=3,a 1=a 2-d =4-3=1,a n =a 1+(n -1)d =1+3(n -1)=3n -2,由3n -2=28,解得n =10.4.(2022·安徽合肥模拟)记等差数列{a n }的公差为d ,前n 项和为S n .若S 10=40,a 6=5,则( C )A .d =3B .a 10=12C .S 20=280D .a 1=-4[解析] 依题意,得S 10=a 1+a 10·102=5(a 5+a 6)=40,解得a 5=3,则d =a 6-a 5=2,则a 10=a 6+4d =5+8=13,a 1=a 5-4d =3-8=-5,S 20=20a 1+190d =-100+380=280,故选C.5.一个等差数列的首项为125,从第10项起开始比1大,则这个等差数列的公差d 的取值范围是( D )A .d >875B .d <325C .875<d <325D .875<d ≤325[解析] 由题意可得⎩⎪⎨⎪⎧a 10>1,a 9≤1,即⎩⎪⎨⎪⎧125+9d >1,125+8d ≤1,解得875<d ≤325.故选D.6.(2021·六校联盟第二次联考)设等差数列{a n }的前n 项和为S n ,若a 4+S 5=2,S 7=14,则a 10=( C )A .18B .16C .14D .12[解析] 设{a n }的公差为d ,由⎩⎪⎨⎪⎧a 1+3d +5a 1+5×42d =2,7a 1+7×62d =14,可得⎩⎪⎨⎪⎧6a 1+13d =2,a 1+3d =2,解得⎩⎪⎨⎪⎧a 1=-4,d =2,所以a 10=-4+9×2=14,选C. 二、多选题7.等差数列{a n }是递增数列,满足a 7=3a 5,前n 项和为S n ,下列选项正确的是( AD ) A .d >0 B .a 1>0C .当n =5时S n 最小D .S n >0时,n 最小值为8[解析] ∵a 7=3a 5,∴a 1+6d =3a 1+12d , ∴a 1=-3d ,由已知得d >0, ∴a 1<0,故A 正确,B 不正确.S n =d 2n 2+(a 1-d 2)n =d 2n 2-72dn =d2(n 2-7n ),当n =3或4时,S n 最小,故C 不正确.S n >0解得n >7或n <0,因此S n >0时n 最小为8,故D 正确,选A 、D.8.已知数列{a n }是公差不为0的等差数列,前n 项和为S n ,满足a 1+5a 3=S 8,下列选项正确的有( AC )A .a 10=0B .S 10最小C .S 7=S 12D .S 20=0[解析] 根据题意,数列{a n }是等差数列,若a 1+5a 3=S 8, 即a 1+5a 1+10d =8a 1+28d ,变形可得a 1=-9d , 又由a n =a 1+(n -1)d =(n -10)d , 则有a 10=0,故A 一定正确;不能确定a 1和d 的符号,不能确定S 10最小,故B 不正确; 又由S n =na 1+n n -1d2=-9nd +n n -1d 2=d2×(n 2-19n ), 则有S 7=S 12,故C 一定正确;则S 20=20a 1+20×192d =-180d +190d =10d ,∵d ≠0,∴S 20≠0,则D 不正确. 三、填空题9.已知数列{a n }中,a 1=1且1a n +1=1a n +13(n ∈N *),则a 10= 14 . [解析] 由已知得1a 10=1a 1+(10-1)×13=1+3=4,故a 10=14. 10.已知等差数列{a n }的前n 项为S n ,若S 4=3,S 5=4,则a 9= 75.[解析] 由题知:⎩⎪⎨⎪⎧S 4=4a 1+6d =3S 5=5a 1+10d =4,解得a 1=35,d =110.∴a 9=a 1+8d =35+8×110=75.11.若等差数列{a n }的前17项和S 17=51,则a 5-a 7+a 9-a 11+a 13= 3 . [解析] 因为S 17=a 1+a 172×17=17a 9=51,所以a 9=3.根据等差数列的性质知a 5+a 13=a 7+a 11,所以a 5-a 7+a 9-a 11+a 13=a 9=3.12.记S n 为正项等差数列{a n }的前n 项和,若a 1=1,a 3·a 4=S 7,则S n = 32n 2-12n .[解析] 设等差数列的公差为d ,由题意得a 3·a 4=S 7=a 1+a 72×7=7a 4,所以a 3=7,所以1+2d =7,∴d =3,所以S n =n +n n -12×3=32n 2-12n .故答案为:32n 2-12n .四、解答题13.(2019·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.已知S 9=-a 5. (1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围.[解析] (1)设{a n }的公差为d .由S 9=-a 5得a 1+4d =0.由a 3=4得a 1+2d =4. 于是a 1=8,d =-2.因此{a n }的通项公式为a n =10-2n .(2)由S 9=-a 5得a 1=-4d ,故a n =(n -5)d ,S n =n n -9d2.由a 1>0知d <0,故S n ≥a n 等价于n 2-11n +10≤0, 解得1≤n ≤10.所以n 的取值范围是{n |1≤n ≤10,n ∈N }.14.已知数列{a n }的各项均为正数,其前n 项和为S n ,且满足2S n =a 2n +n -4(n ∈N *). (1)求证:数列{a n }为等差数列; (2)求数列{a n }的通项公式.[解析] (1)证明:当n =1时,有2a 1=a 21+1-4,即a 21-2a 1-3=0, 所以a 1=3(a 1=-1舍去). 当n ≥2时,有2S n -1=a 2n -1+n -5, 又2S n =a 2n +n -4,所以两式相减得2a n =a 2n -a 2n -1+1,即a 2n -2a n +1=a 2n -1, 即(a n -1)2=a 2n -1,因此a n -1=a n -1或a n -1=-a n -1.若a n -1=-a n -1,则a n +a n -1=1.而a 1=3, 所以a 2=-2,这与数列{a n }的各项均为正数矛盾, 所以a n -1=a n -1,即a n -a n -1=1, 因此数列{a n }为等差数列.(2)由(1)知a 1=3,数列{a n }的公差d =1,所以数列{a n }的通项公式为a n =3+(n -1)×1=n +2.B 组能力提升1.(2021·湖北咸宁联考)等差数列{a n }的前n 项和为S n ,若S 2=3,S 5=10,则{a n }的公差为( C )A .23B .12C .13D .14[解析] 由题意知a 1+a 2=3①,S 5=5a 1+a 52=10,即a 1+a 5=4②,②-①得3d =1,∴d =13,故选C.2.设S n 是等差数列{a n }的前n 项和,若S 674=2,S 1 348=12,则S 2 022=( C ) A .22 B .26 C .30D .34[解析] 由等差数列的性质知,S 674,S 1 348-S 674,S 2 022-S 1 348成等差数列,则2(S 1 348-S 674)=S 674+S 2 022-S 1 348,即2×(12-2)=2+S 2 022-12,解得S 2 022=30.3.(2020·课标Ⅱ)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块.已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( C )A .3 699块B .3 474块C .3 402块D .3 339块[解析] 本题考查等差数列的性质及其前n 项和.设由内到外每环的扇面形石板的块数构成数列{a n },由题意知a 1=9.又因为向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,所以数列{a n }为公差为9的等差数列.解法一:设每层环数为n (n ∈N *),则上层由内向外每环的扇面形石板的块数依次为a 1,a 2,…,a n ,中层由内向外每环的扇面形石板的块数依次为a n +1,a n +2,…,a 2n ,下层由内向外每环的扇面形石板的块数依次为a 2n +1,a 2n +2,…,a 3n .由题意知(a 2n +1+a 2n +2+…+a 3n )-(a n+1+a n +2+…+a 2n )=729,由等差数列的性质知a 2n +1-a n +1=a 2n +2-a n +2=…=a 3n -a 2n =9n ,所以9n 2=729,得n =9.则数列{a n }共有9×3=27项,故三层共有扇面形石板(不含天心石)的块数即为数列{a n }的前27项和,即27×9+27×262×9=3 402,故选C.解法二:设每层环数为n (n ∈N *),设数列{a n }的前n 项和为S n ,由等差数列的性质知,S n ,S 2n -S n ,S 3n -S 2n 成等差数列,且(S 3n -S 2n )-(S 2n -S n )=9n 2,则9n 2=729,解得n =9.则数列{a n }共有9×3=27项,故三层共有扇面形石板(不含天心石)的块数即为数列{a n }的前27项和,即27×9+27×262×9=3 402,故选C.4.(多选题)(2021·商洛市高考模拟)我国天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气的晷长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度).二十四节气及晷长变化如图所示,相邻两个节气晷长减少或增加的量相同,周而复始,已知每年冬至的晷长为一丈三尺五寸,夏至的晷长为一尺五寸(一丈等于十尺,一尺等于十寸),则下列选项正确的有( ABC )A.相邻两个节气晷长减少或增加的量为一尺B.春分和秋分两个节气的晷长相同C.立冬的晷长为一丈五寸D.立春的晷长比立秋的晷长短[解析] 由题意可知夏至到冬至的晷长构成等差数列{a n},其中a1=15寸,a13=135寸,公差为d寸,则135=15+12d,解得d=10寸,同理可知由冬至到夏至的晷长构成等差数列{b n},首项b1=135,末项b13=15,公差d=-10(单位都为寸).故A正确;∵春分的晷长为b7,∴b7=b1+6d=135-60=75,∵秋分的晷长为a7,∴a7=a1+6d=15+60=75,故B正确;∵立冬的晷长为a10,∴a10=a1+9d=15+90=105,即立冬的晷长为一丈五寸,故C正确;∵立春的晷长,立秋的晷长分别为b4,a4,∴a4=a1+3d=15+30=45,b4=b1+3d=135-30=105,∴b4>a4,故D错误.故选A、B、C.。

高考总复习一轮数学精品课件 第6章 数列 第4节 第1课时 分组转化法、并项转化法和错位相减法

高考总复习一轮数学精品课件 第6章 数列 第4节 第1课时 分组转化法、并项转化法和错位相减法

例 3(12 分)(2023·全国甲,理 17)记 Sn 为数列{an}的前 n 项和,已知 a2=1,2Sn=nan.
(1)求{an}的通项公式;
突破口:已知 Sn 与 an 的关系,可利用 an=Sn-Sn-1(n≥2)解答.
(2)求数列
+1
2
的前 n 项和 Tn.
+1
1 n
关键点:化简数列得通项公式 2 =n·(2) ,可看作一个等差数列与一个等比数
GAO KAO ZONG FU XI YOU HUA SHE JI
第1课时
分组转化法、并项转化法和错位相减法
研考点
精准突破
考点一
分组转化法求和
例1(2024·辽宁锦州模拟)已知数列{an}和{bn}满足an+bn=2n-1,数列{an},{bn}
的前n项和分别记作An,Bn,且An-Bn=n.
(1)求An和Bn;
(1)求{an}的公比;
(2)若a1=1,求数列{nan}的前n项和.
解 (1)设{an}的公比为q,由题设得2a1=a2+a3,a1≠0,即2a1=a1q+a1q2,
所以q2+q-2=0,解得q=1(舍去)或q=-2.故{an}的公比为-2.
(2)记Sn为{nan}的前n项和.
由(1)及题设可得,an=(-2)n-1.
n 项和,求 T2n.
解 (1)设等差数列{an}的公差为 d,
1 + 2 = 10,
1 = 2,
因为 a3=10,a5-2a2=6,所以
解得
= 4,
(1 + 4)-2(1 + ) = 6,
所以 an=2+4(n-1)=4n-2.

9知识讲解_数列的全章复习与巩固_基础

9知识讲解_数列的全章复习与巩固_基础

数列的全章复习与巩固【学习目标】1.系统掌握数列的有关概念和公式;2.掌握等差数列与等比数列的概念、性质、通项公式与前n 项和公式,并运用这些知识解决问题; 3.了解数列的通项公式n a 与前n 项和公式n S 的关系,能通过前n 项和公式n S 求出数列的通项公式n a ;4.掌握常见的几种数列求和方法. 【知识网络】【要点梳理】要点一:数列的通项公式 数列的通项公式一个数列{}n a 的第n 项n a 与项数n 之间的函数关系,如果可以用一个公式()n a f n =来表示,我们就把这个公式叫做这个数列的通项公式。

要点诠释:①不是每个数列都能写出它的通项公式。

如数列1,2,3,―1,4,―2,就写不出通项公式; ②有的数列虽然有通项公式,但在形式上又不一定是唯一的。

如:数列―1,1,―1,1,…的通项公式可以写成(1)nn a =-,也可以写成cos n a n π=;③仅仅知道一个数列的前面的有限项,无其他说明,数列是不能确定的。

通项n a 与前n 项和n S 的关系:任意数列{}n a 的前n 项和12n n S a a a =+++;11(1)(2)n n n S n a S S n -=⎧⎪=⎨-≥⎪⎩要点诠释:由前n 项和n S 求数列通项时,要分三步进行: (1)求11a S =,(2)求出当n≥2时的n a ,(3)如果令n≥2时得出的n a 中的n=1时有11a S =成立,则最后的通项公式可以统一写成一个形式,否则就只能写成分段的形式。

数列的递推式:如果已知数列的第一项或前若干项,且任一项n a 与它的前一项1n a -或前若干项间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式,简称递推式。

要点诠释:利用递推关系表示数列时,需要有相应个数的初始值,可用凑配法、换元法等. 要点二:等差数列判定一个数列为等差数列的常用方法①定义法:1n n a a d +-=(常数)⇔{}n a 是等差数列; ②中项公式法:122(*){}n n n n a a a n N a ++=+∈⇔是等差数列; ③通项公式法:n a pn q =+(p ,q 为常数)⇔{}n a 是等差数列;④前n 项和公式法:2n S An Bn =+(A ,B 为常数)⇔{}n a 是等差数列。

2025年高考数学一轮复习计划与策略

2025年高考数学一轮复习计划与策略

2025年高考数学一轮复习计划与策略随着2025年高考的日益临近,数学作为高考中的重要科目,其复习计划的制定与执行对于考生而言至关重要。

以下是一份全面而细致的高考数学一轮复习计划与策略,旨在帮助考生高效备考,稳步提升数学成绩。

1. 巩固基础知识目标:确保对高中数学所有基本概念、公式、定理有清晰准确的理解。

策略:从教材出发,逐章逐节回顾,重点关注易混淆、易遗忘的知识点。

利用思维导图或笔记整理形式,构建知识体系框架。

执行:每日安排固定时间复习基础知识,通过例题演练加深理解,确保基础扎实无遗漏。

2. 核心章节突破目标:针对历年高考中的高频考点和难点章节进行深度剖析。

策略:分析历年真题,识别出函数与导数、三角函数、立体几何、解析几何、数列与不等式、概率与统计等核心章节。

针对每个章节,集中时间进行专项训练,理解并掌握其解题技巧和思路。

执行:设定阶段性目标,每个阶段攻克一到两个核心章节,确保每个知识点都能灵活应用。

3. 解题方法提升目标:提升解题速度和准确率,掌握多样化的解题方法。

策略:学习并总结不同类型的题目解法,如选择题的快速排除法、大题的步骤分解法等。

通过大量练习,熟悉各种题型的解题思路。

执行:定期进行解题方法训练,特别是对于时间控制和解题策略的训练,确保在考场上能迅速作出反应。

4. 模拟测试检验目标:通过模拟考试检验复习效果,查漏补缺。

策略:选择高质量的模拟试题或历年真题进行模拟考试,严格按照高考时间要求进行。

执行:每月至少进行一次全真模拟考试,认真分析试卷,找出薄弱环节,针对性加强。

5. 错题分析与强化目标:深入分析错题原因,避免重复犯错。

策略:建立错题本,记录每次模拟考试或练习中的错题,分析错误原因,总结解题规律和技巧。

执行:定期对错题进行回顾和重做,确保真正理解并掌握相关知识点和解题方法。

6. 数学思维培养目标:提升数学思维能力,培养解题的灵活性和创造性。

策略:多思考、多探究,不局限于标准答案,尝试从不同角度解决问题。

2023年高考数学(文科)一轮复习课件——等比数列及其前n项和

2023年高考数学(文科)一轮复习课件——等比数列及其前n项和
索引
(2)求a1a2-a2a3+…+(-1)n-1anan+1. 解 易知(-1)n-1anan+1=(-1)n-1·22n+1, 则数列{(-1)n-122n+1}公比为-4. 故a1a2-a2a3+…+(-1)n-1·anan+1 =23-25+27-29+…+(-1)n-1·22n+1 =23[1-1(+-4 4)n]=85[1-(-4)n] =85-(-1)n·225n+3.
索引
感悟提升
1.证明一个数列为等比数列常用定义法与等比中项法,其他方法只用于 选择题、填空题中的判定;若证明某数列不是等比数列,则只要证明存 在连续三项不成等比数列即可. 2.在利用递推关系判定等比数列时,要注意对n=1的情形进行验证.
索引
训练1 已知数列{an}的前n项和为Sn,且an+Sn=n. (1)设cn=an-1,求证:{cn}是等比数列; 证明 ∵an+Sn=n①, ∴an+1+Sn+1=n+1②. ②-①得an+1-an+an+1=1, 所以2an+1=an+1, ∴2(an+1-1)=an-1,又a1+a1=1, 因所为以aaan+1n=-1-1211,=∴12,a1-∴1c=cn+n1-=2112≠. 0, 故{cn}是以 c1=a1-1=-21为首项,12为公比的等比数列.
(2)等比中项:如果 a,G,b 成等比数列,那么 G 叫做 a 与 b 的等比中项.那么Ga =Gb ,
即 G2=__a_b_.
索引
2. 等比数列的通项公式及前n项和公式 (1)若等比数列{an}的首项为a1,公比是q,则其通项公式为an=__a_1q_n_-_1__; 通项公式的推广:an=amqn-m. a1(1-qn) (2)等比数列的前 n 项和公式:当 q=1 时,Sn=na1;当 q≠1 时,Sn=____1_-__q___ =a11--aqnq.

巩固练习 《数系的扩充与复数》全章复习与巩固

巩固练习 《数系的扩充与复数》全章复习与巩固

【巩固练习】一、选择题1.a =0是复数z =a+bi (a ,b ∈R )为纯虚数的( )A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分也不必要条件2.复数2(1)1i i+-等于( ) A .1-i B .1+i C .-1+i D .-1-i3.复数13z i =-,21z i =+则12z z z =在复平面内的对应点位于( )A .第一象限B .第二象限C .第三象限D .第四象限4.已知复数z 与(z+2)2-8i 均是纯虚数,则z 等于( )A .2iB .-2iC .iD .-i5.已知11m ni i=-+,其中m ,n 是实数,i 是虚数单位,则m+ni = ( ) A .1+2i B .1-2i C .2+i D .2-i 6.复数32322323i i i i +--=-+( ) A .0 B .2 C .-2i D .2i7.如图所示,在复平面上,一个正方形的三个顶点对应的复数分别是1+2i ,-2+i ,0,那么这个正方形的第四个顶点对应的复数为( )A .3+iB .3-iC .1-3iD .-l+3i二、填空题8.在复平面内,已知复数13z x i =-所对应的点都在单位圆内,则实数x 的取值范围是________.9.关于x 的不等式20mx nx p -+>(m ,n ,p ∈R )的解集为(-l ,2),则复数m+pi 所对应的点位于复平面内的第_______象限.10.设x ,y 为实数,且511213x y i i i +=---,则x+y =________. 11.设11()()11n n i i f n n i i ++-⎛⎫⎛⎫=+∈ ⎪ ⎪-+⎝⎭⎝⎭N ,则集合{|()}x x f n =中的元素是________. 三、解答题12.设复数22(2)(76)z a a a a i =+-+-+,其中a ∈R ,当a 取何值时,(1)z ∈R ;(2)z 是纯虚数;(3)z 是零?13.设复数2(1)3(1)2i i z i++-=+,若21z az b i ++=+,求实数a 、b 的值.14320422+⎝⎭【答案与解析】1.【答案】B【解析】 复数z a bi =+(a ,b ∈R )为纯虚数的充要条件是a =0且b ≠0,故选B .2.【答案】C 【解析】复数2(1)2(1)111i i i i i i i+==+=-+--,故选C . 3.【答案】A【解析】12(3)(1)42z z i i i =-+=+,所以12z z 在复平面内的对应点位于第一象限.4.【答案】B【解析】设z bi =(b ∈R 且b ≠0),则2222(2)8(2)8448z i bi i b i bi i +-=+-=++-2(4)(48)b b i =-+-.∴ 240480b b ⎧-=⎨-≠⎩,. 解得b =-2. ∴ z =-2i .5.【答案】C 【解析】(1)11222m m i m m i ni i -==-=-+, 所以122m m n ⎧=⎪⎪⎨⎪-=-⎪⎩,, 解得21m n =⎧⎨=⎩,. 6.【答案】D【解析】∵ 232322323i i i i i ++=---321(32)i i i i i+==-=-+, 23232(23)232323i i i i i i i i i ----+===-+++, ∴ 3232()22323i i i i i i i +--=--=-+. 7.【答案】D【解析】12213OC OA OB i i i =+=+-+=-+,所以C 对应的复数为13i -+.8.【答案】33x -<<【解析】∵ z 对应的点13Z x ⎛⎫- ⎪⎝⎭,都在单位圆内,∴ ||1OZ <,1. ∴ 2119x +<. ∴ 289x <. ∴x << 9.【答案】二【解析】∵ 20m x n x p -+>(m 、n 、p ∈R )的解集为(-1,2),∴ 0(1)2(1)2m n m p m ⎧⎪<⎪⎪-+=⎨⎪⎪-⨯=⎪⎩,,, 即m <0,p >0.故复数m+pi 所对应的点位于复平面内的第二象限.10.【答案】4【解析】5(1)(12)11213(1)(1)(12)(12)x y x i y i i i i i i i i +++=⇒+=----++-5(13)11(1)(12)(13)(13)25i x i y i i i +⇒+++-+ 1111252(13)1232252x y i y x ⎧+=⎪⎪=+⇒⎨⎪+=⎪⎩,, 解得15x y =-⎧⎨=⎩,, 所以4x y +=. 11.【答案】-2,2,0【解析】()()n nf n i i =+-,n =4k 时,()112f n =+=;n =4k+1时,()0f n i i =-=;n =4k+2时,()112f n =--=-;n =4k+3时,()0f n i i =-+=.12.【解析】(1)z ∈R ,只需2760a a -+=,∴ 1a =或6a =.(2)z 是纯虚数,只需2220760a a a a ⎧+-=⎪⎨-+≠⎪⎩,,∴ 2a =-. (3)∵ z =0,∴ 2220760a a a a ⎧+-=⎪⎨-+=⎪⎩,,∴ 1a =. 13.【解析】2(1)3(1)2i i z i++-=+23(1)322i i i i i +--===++(3)(2)1(2)(2)i i i i i --=-+-. 将z =1-i 代入21z az b i ++=+,得 2(1)(1)1i a i b i -+-+=+,()(2)1a b a i i +-+=+,所以1(2)1a b a +=⎧⎨-+=⎩,, 解得34a b =-⎧⎨=⎩,. 14.= 11231123ii i ii +=-=-=+, 160232042⎛⎫ ⎪= ⎪⎝⎭⎝⎭⎝⎭160211i⎛⎫==- ⎪⎝⎭,22222==,32042211i i ⎛⎫+=- ⎪ ⎪+⎝⎭.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【巩固练习】 一、选择题1.已知数列{}n a 的通项公式为cos 2n n a π=,则该数列的首项1a 和第四项4a 分别为 A.0,0 B.0,1 C.-1,0 D.-1,12.一个正整数数表如下(表中下一行中数的个数是上一行中数的个数的2倍)则第9行中的第4个数是( A .132 B .255 C .259D .2603.已知等差数列共有10项,其中奇数项之和为15,偶数项之和为30,则其公差是( ) A .5 B .4 C .3D .24.在等差数列{a n }中,a m =n ,a n =m(m ,n ∈N *),则a m+n = ( ) A .mn B.m -n C.m+n D.05.在等比数列{a n }中,a n >0,且a 2=1-a 1,a 4=9-a 3,则a 4+a 5的值为( ) A .16 B .81 C .36 D .27二、填空题6.在数列{a n }中,a 1=2,且对任意自然数n,3a n +1-a n =0,则a n =________.7.若数列{a n }是公差为d 的等差数列,则数列{a n +2a n +2}是公差为________的等差数列. 8.在等差数列{a n }中,若S 4=1,S 8=4,则a 17+a 18+a 19+a 20的值为________.9.在等比数列{a n }中,已知a 1+a 2+a 3=1,a 4+a 5+a 6=-2,则该数列的前15项和S 15=________. 10.(2015 浙江)已知{a n }是等差数列,公差d 不为零.若a 2,a 3,a 7成等比数列,且2a 1+a 2=1,则a 1= ,d= .三、解答题11.在等比数列{a n }中,已知514215,6a a a a -=-=,求3a .12.求等差数列5,8,11,……,302与等差数列3,7,11,…299中所有公共项的项数. 13.对数列{n}加括号如下:(1),(2,3),(4,5,6),…….判断:100是第几个括号中的第几项?14.已知数列{a n }满足24(1)n n S a =+,求a n 和S n .15. (2015 山东)已知数列{a n }是首项为正数的等差数列,数列11n n a a +⎧⎫⎨⎬•⎩⎭的前n 项和为21nn +. (I )求数列{a n }的通项公式;(II )设()12n an n b a =+⋅,求数列{b n }的前n 项和T n .16. (2014 山东)在等差数列{a n }中,已知公差d =2,a 2是a 1与a 4的等比中项.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设()21+=n n n a b ,记T n =-b 1+b 2-b 3+b 4-……+(-1)n b n ,求T n .【答案与解析】 1.【答案】B【解析】()cos 2n n a f n π==,14(1)cos 0,(4)cos21,2a f a f ππ∴======2.【答案】C【解析】由数表知表中各行数的个数构成一个以1为首项,公比为2的等比数列.前8行数的个数共有81212--=255(个),故第9行中的第4个数是259.3.【答案】 C【解析】 ∵S 偶-S 奇=5d , ∴5d =15,∴d =3.4.【答案】D .【解析】由a m =n ,a n =m ,得1n ma a d n m-==--,a m+n =a m +nd=n -n=0.5.【答案】 D【解析】 11321119a q a a q a q =-⎧⎨=-⎩ 即1143a q ⎧=⎪⎨⎪=⎩ ∴344511332744a a +=⨯+⨯=.6.【答案】 1123n -⎛⎫⋅ ⎪⎝⎭【解析】 由3a n +1-a n =0得113n n a a +=,∴1123n n a -⎛⎫=⋅ ⎪⎝⎭7.【答案】 3d【解析】 (a n +1+2a n +3)-(a n +2a n +2)=(a n +1-a n )+2(a n +3-a n +2)=d +2d =3d .8.【答案】 9【解析】 S 4=1,S 8-S 4=3,而S 4,S 8-S 4,S 12-S 8,S 16-S 12,S 20-S 16成等差数列. 即1,3,5,7,9成等差数列. ∴a 17+a 18+a 19+a 20 =S 20-S 16=9.9.【答案】 11【解析】 设数列{a n }的公比为q ,则由已知,得q 3=-2. 又11233(1)11a a a a q q++=-=-, ∴1113a q =-, ∴3551115151(1)[1()][1(2)]11113a a S q q q q =-=-=⨯--=--.故填11.10.【答案】2,13-【解析】 由题可得,(a 1+2d)2=(a 1+d)(a 1+6d),故有3a 1+2d=0,又因为2a 1+a 2=1,即3a 1+d=1,所以121,3d a =-=.11.【答案】34a =± 【解析】方法一:由已知得:4221113211115(1)(1)156(1)6a q a a q q a q a q a q q ⎧⎧-=+-=⎪⎪⇒⎨⎨-=-=⎪⎪⎩⎩当211q q ≠⇒≠±时,221151252062q q q q q +=⇒-+=⇒=或q=2, 1311642q a a ∴=⇒=-⇒=-; 13214q a a =⇒=⇒=.当q=±1时不合题意,舍去。

方法二:由5115a a -=,426a a -=22332323333115154166a a q a q q q a a a q a q q q ⎧⎛⎫⎧-=-=⎪ ⎪⎪⎪⎪⎝⎭⇒⇒⇒=±⎨⎨⎛⎫⎪⎪-=-= ⎪⎪⎪⎩⎝⎭⎩12.【解析】{a n }中,a 1=5,d=3,a n =5+(n-1)×3=3n+2,a 100=302, 数列{b n }中,b 1=3,d=4,b m =3+(m-1)×4=4m-1,b 75=299. ∴4324113mn m n +=-⇒=-,则m 为3的整倍数, 且所有公共项构成一个新的等差数列{c n },其中c 1 =11,公差为12, ∴1112(1)121n n c n c n =+-⇒=-,299为最后一项, 则有:299=12n-1,∴共有n=25项.13.【解析】2(1)12310010020002n n n n n ++++⋅⋅⋅+≤⇒≤⇒+-≤, 1415,n ∴≤<又n=14,14(141)1051002+=>,n=13共91项.所以100是第14个括号中的第9项.类似问题:1111111111,,,,,,,,,223334444……的第100项是多少?14.【解析】当n=1时,221111114(1)(1)01a S a a a a =⇒=+⇒-=⇒=,当2n ≥时,2211114(1),4(1)4(2)(),n n n n n n n n n S a S a a a a a a ----=+=+⇒=++- 22221111()2()40()2()0n n n n n n n n n a a a a a a a a a ----⇒-+--=⇒--+=1111()(2)02n n n n n n n n a a a a a a a a ----⇒+--=⇒=--=或,11(1)0,1,n n n n n a a a n S n --⎧=-⎪∴=-⇒⎧⎨=⎨⎪⎩⎩偶奇或 12212n n n n a n a a S n -=-⎧-=⇒⎨=⎩. 15. 【解析】(I )设数列{a n }的公差为d , 令n=1,得12113a a =,所以a 1a 2=3. 令n=2,得12231125a a a a +=,所以a 2a 3=15. 解得a 1=1,d=2,所以a n =2n -1.(II )由(I )知24224,n n n b n n -=⋅=⋅所以121424......4,n n T n =⋅+⋅++⋅ 所以23141424......(1)44,n n n T n n +=⋅+⋅++-⋅+⋅两式相减,得12111344444(14)134 44,1433n n n n n n T n n n +++-=+++-⋅--=-⋅=⨯-- 所以113144(31)44.999n n n n n T ++-+-⋅=⨯+= 16.【解析】(Ⅰ)∵a 2是a 1与a 4的等比中项, ∴a 22=a 1a 4,∵在等差数列{a n }中,公差d =2,∴(a 1+d)2=a 1(a 1+3d),即(a 1+2)2=a 1(a 1+3×2), 化为,解得a 1=2.∴a n =a 1+(n -1)d =2+(n -1)×2=2n . (Ⅱ)∵()()121+==+n n a b n n n ,∴T n =-b 1+b 2-b 3+b 4-……+(-1)n b n =-1×(1+1)+2×(2+1)-……+(-1)n n •(n +1). 当n =2k(k ∈N *)时,b 2k -b 2k -1=2k(2k +1)-(2k -1)(2k -1+1)=4k T n =(b 2-b 1)+(b 4-b 3)+……+(b 2k -b 2k -1) =4(1+2+……+k)()()()2212214+++⨯n n k k k k === 当n =2k -1(k ∈N *)时,T n =(b 2-b 1)+(b 4-b 3)+……+(b 2k -2-b 2k -3)-b 2k -1()()()1211+-+-=n n n n()212+-=n故()()()()⎪⎪⎩⎪⎪⎨⎧∈-=+-∈=+=*2*1221222T N k k n n N k k n n n n , ,.。

相关文档
最新文档