扫描电子显微镜分析测试及应用
扫描电镜技术原理及应用
![扫描电镜技术原理及应用](https://img.taocdn.com/s3/m/47a1780a02020740be1e9b8b.png)
扫描电镜技术原理及应用摘要: 扫描电镜一种新型的多功能的,用途最为广泛的电子光学仪器。
数十年来,扫描电镜已广泛地应用在生物学、医学、冶金学等学科的领域中,促进了各有关学科的发展。
关键词:扫描电镜;应用1938 年德国的阿登纳制成了第一台扫描电子显微镜,1965 年英国制造出第一台作为商品用的扫描电镜,使扫描电镜进入实用阶段。
近 20 年来,扫描电镜发展迅速,多功能的分析扫描电镜(即扫描电镜带上能谱仪、波谱仪、荧光仪等)既能做超微结构研究,又能做超微结构分析,既能做定性、定量分析、又能做定位分析,具有景深大,图像富有立体感,分辨率高,图像放大倍数高,显像直观,样品制备过程相对简单,可连接EDAX(X-射线能谱分析仪)进行微区成分分析等特点,被广泛应用于生物学、医学、古生物学、地质学、化学、物理、电子学及林业等学科和领域[1-2]。
1扫描电镜的工作原理与技术特点1.1 扫描电镜的工作原理扫描电镜( SEM) 的工作原理是由电子枪发射出来直径为50μm(微米)的电子束,在加速电压的作用下经过磁透镜系统会聚,形成直径为5nm(纳米)的电子束,聚焦在样品表面上,在第二聚光镜和物镜之间偏转线圈的作用下,电子束在样品上做光栅状扫描,同时同步探测入射电子和研究对象相互作用后从样品表面散射出来的电子和光子,获得相应材料的表面形貌和成分分析[3]。
从材料表面散射出来的二次电子的能量一般低于50 eV,其大多数的能量约在2 ~ 3 eV。
因为二次电子的能量较低,只有样品表面产生的二次电子才能跑出表面,逃逸深度只有几个纳米,这些信号电子经探测器收集并转换为光子,再通过电信号放大器加以放大处理,最终成像在显示系统上。
扫描电镜工作原理的特殊之处在于把来自二次电子的图像信号作为时像信号,将一点一点的画面“动态”地形成三维的图像。
1.2 扫描电镜的技术特点[4]扫描电子显微镜测试技术特点主要有:( 1) 聚焦景深大。
扫描电子显微镜的聚焦景深是实体显微镜聚焦景深的50倍,比偏反光显微镜则大500 倍,且不受样品大小与厚度的影响,观察样品时立体感强。
扫描电子显微镜的结构原理和功能用途
![扫描电子显微镜的结构原理和功能用途](https://img.taocdn.com/s3/m/d791c8daa0c7aa00b52acfc789eb172dec639955.png)
扫描电子显微镜的结构原理和功能用途扫描电镜简介电子源发射的电子束经过电磁透镜的电子光学通路聚焦,电子源的直径被缩小到纳米尺度的电子束斑,与显示器扫描同步的电子光学镜筒中的扫描线圈控制电子束,在样品表面一定微小区域内,逐点逐行扫描。
电子束与样品相互作用,从样品中发射的具有成像反差的信号,由一个适当的图像探测器逐点收集,并将信号经过前置放大器和视频放大器,用调制解调电路调制显示器上相对应显示像素的亮度,形成我们人类观察习惯的,反映样品二维形貌的图像或者其他可以理解的反差机制图像。
由于图像显示器的像素尺寸远远大于电子束斑尺寸,(0.1mm/1nm=100,000倍)而且显示器的像素尺寸小于等于人类肉眼通常的分辨率,这样显示器上的图像相当于把样品上相应的微小区域进行了放大。
通过调节扫描线圈偏转磁场,可以控制电子束在样品表面扫描区域的大小,理论上扫描区域可以无限小,但可以显示的图像有效放大倍数的限度是扫描电镜分辨率的限度。
模拟图像扫描系统:样品上每个像素模拟信号直接调制阴极射线管对应显示像素的亮度,由于生成一幅高质量图像一般需要数秒或者数十秒/帧,所以模拟电镜使用慢余辉显像管终端显示一幅活图像,为了便于在显像管上观察图像,需要暗室,操作者可按照一定规程调整仪器参数,如图像聚焦,移动样品台搜索感兴趣区域,调节放大倍数,亮度对比度,消象散等从而获得最佳的图像质量。
模拟图像输出采用高分辨照相管,用单反相机直接逐点记录在胶片上,然后冲洗相片。
自1985年以来,模拟图像电镜已经被数字电镜取代。
数字图像扫描系统:样品上每个像素发出的成像信号,被图像探测器探测器后,经过前置放大器,和视频放大器放大,直接进行信号数字化,然后存储在图像采集卡的帧存器,形成数字图像数据,图像数据可被电镜操作软件读取,操作者在图形交互界面(GUI)上对图像进行调整控制,并把调整好的数字图像存储在计算机中硬盘中。
模拟控制是控制信号不经过计算机软件,直接由操作台按键旋钮等对执行机构进行控制,属于人工手动控制,控制精度由操作者观察仪表盘的变化决定.例如高压电源,扫描线圈,探测器电源,电子枪控制,磁透镜控制,样品台的运动控制等等。
表面分析和扫描电子显微镜
![表面分析和扫描电子显微镜](https://img.taocdn.com/s3/m/d1217c7a30126edb6f1aff00bed5b9f3f90f7220.png)
表面分析和扫描电子显微镜表面分析是材料科学领域中的一项重要技术,它通过对材料表面进行观察和分析,可以提供关于材料性质和结构的有价值的信息。
扫描电子显微镜(SEM)是表面分析中最常用的工具之一,其高分辨率和强大的显微成像功能使其成为研究表面形貌、微观结构以及材料成分的重要手段。
一、SEM的工作原理扫描电子显微镜(SEM)通过向样品表面发射高能电子束,并对从样品表面散射回来的电子进行收集和分析,实现对样品表面的成像观察。
SEM的电子枪会产生高能电子束,在样品表面扫描时,电子束与样品相互作用,产生的不同信号被接收器捕捉并转化为图像。
二、SEM的应用领域1. 材料科学:SEM可以观察和分析材料的表面形貌、纹理、晶粒结构等,从而了解材料的性能和变形机制,有助于改善材料的制备和应用。
2. 纳米科学:SEM适用于观察纳米材料的形貌、结构以及纳米尺寸的相关特征,是纳米材料研究的重要工具。
3. 生物学:SEM可以用于观察生物细胞、组织和微生物等的形貌和结构,有助于研究生物学过程和疾病发生机制。
4. 环境科学:SEM可以分析不同环境条件下的大气颗粒物、水质样品等,帮助研究环境污染和生态系统变化。
三、SEM的优势和局限性1. 优势:a. 高分辨率:SEM的分辨率能够达到纳米级别,能够显示出材料的微观结构和纳米级特征。
b. 大视野:SEM的观察范围相对较大,可以覆盖较大的样品表面区域。
c. 扩展功能:SEM可以结合其他技术,如能谱分析、电子衍射等,进一步了解材料的化学成分和晶体结构。
2. 局限性:a. 不能观察非导电样品:由于SEM需要样品具有导电性,不具备导电性的样品需要进行表面涂层处理。
b. 无法观察材料内部结构:SEM只能观察材料表面的形貌和结构,无法了解材料的内部构造。
c. 对样品要求较高:SEM需要样品表面平整、干燥,对样品制备过程要求较高。
四、SEM的操作步骤1. 样品准备:将待观察的样品进行固定、切割或研磨处理,制备成适合SEM观测的形状和尺寸。
材料测试方法-扫描电镜SEM详解
![材料测试方法-扫描电镜SEM详解](https://img.taocdn.com/s3/m/eadf55c2b14e852458fb5726.png)
衬度:电子像的明暗程度取决于电子束的强弱,当两 个区域中的电子强度不同时将出现图像的明暗差异, 这种差异就是衬度。 形貌衬度:由于试样表面形貌差别而形成的衬度。 成分衬度:由于试样表面不同部位原子序数不同而形 成的衬度。
2.4 SEM的成像衬度
2.4.1 二次电子像衬度
2.3 SEM的主要性能
★影响分辨率的因素:
①扫描电子束的束斑直径 ; ②检测信号的类型; ③检测部位的原子序数;
2.3 SEM的主要性能
(2)放大倍数
As—电子束在样品表面扫描的幅度; Ac—荧光屏阴极射线同步扫描的幅度; ∵Ac是固定不变的,∴As越小,M就越大.
2.3 SEM的主要性能
引言
扫描电子显微镜 (scanning electron microscope) 简称扫描电镜或SEM,它是以类似电视摄影显 像的方式利用细聚焦电子束在样品表面扫描时激 发出来的各种物理信号来调制成像的。
新式SEM的二次电子像的分辨率已达到3~4nm, 放大倍数可以从数倍放大到20万倍左右。 由于扫描电镜的景深远比光学显微镜大,可 以用它进行显微断口分析。
2.4 SEM的成像衬度
凸起的尖棱、小粒子及比较陡的斜面处在荧光屏上 这些部位亮度较大;平面处,二次电子产额较小,亮度 较低;深的凹槽,虽有较多的二次电子,但二次电子不 易被检测到所以较暗。
2.4 SEM的成像衬度
2.4 SEM的成像衬度
(2)二次电子形貌衬度的应用 它的最大用途是观察断口形貌,也可用作抛光腐蚀后 的金相表面及烧结样品的自然表面分析。 a.断口分析: (a) 沿晶断口:呈冰糖块状或呈石块状。
放大倍数与扫描面积的关系:
(若荧光屏画面面积为10×10cm2)
扫描透射电子显微镜技术及其在中药研究中的应用
![扫描透射电子显微镜技术及其在中药研究中的应用](https://img.taocdn.com/s3/m/c57fe715a22d7375a417866fb84ae45c3b35c2d0.png)
扫描透射电子显微镜技术及其在中药研究中的应用摘要:近年来,激光聚焦技术已成为现代科学的重要技术工具,在等离子体物理学、分子生物学、发展生物学、神经科学、药学、遗传学和环境科学等领域得到广泛应用。
本文阐述并分析了STEM技术的原理及其在广西药物研究领域的应用。
关键词:扫描透射电子显微镜技术;中药研究;应用引言随着现代科学技术的发展,电子显微镜技术已成为研究纳米微观领域必不可少的有力工具.尤其是电子成像技术的跟进,使得原子领域的研究越来越成为可能.扫描透射电子显微镜(STEM)是目前最为流行及应用广泛的显微表征方式和测试手段之一,其兼具扫描电子显微镜(SEM)和透射电子显微镜(TEM)的优点,结合辅助配件的优势,在高分辨成像及生物大分子分析方面的应用广泛.1938年,西门子公司成功研制了世界上第一台扫描结合透射功能的电子显微镜.1988年,借助100kV加速电压,利用VGHB501STEM,首次连续观测到了包含YBa2Cu3O7-x和ErBa2Cu3O7-x低分辨指数晶带轴的高分辨STEM图像.以此,STEM的成像在原子分辨率水平上达到了一定高度.近年来,随着球差校正技术的出现及发展,STEM成像的分辨率和探测敏感度都有了极大提高,接近并达到亚埃水平,使得单原子的成像成为了可能,为解决许多材料科学中的疑难问题(如中药研发等)提供新的视野.1原理该系统由一组观测、分析和输出系统组成,由显微镜光学、激光光源、扫描仪和系统元件组成,这些元件利用一个良好配合的激光作为光源,采用传统光学显微镜概念和具有共同轭聚焦的装置,并利用计算机对象进行加工。
激光扫描仪通过栅格孔形成点光源,将光线反射到对象的镜像上,聚焦实例并进行扫描。
触发图案后,荧光灯会再次聚集到探针孔中,并通过无线电倍增管转换成电报,在计算机上显示为聚焦平面图像。
光强通过栅格孔集中在图案上,荧光通过对象反射镜集中在笔孔上,从而产生两个聚焦,称为激光显微镜。
XRDSEMTEMVSMXPSICP等测试方式介绍
![XRDSEMTEMVSMXPSICP等测试方式介绍](https://img.taocdn.com/s3/m/7949f741b42acfc789eb172ded630b1c59ee9b81.png)
XRDSEMTEMVSMXPSICP等测试方式介绍XRD(X射线衍射)X射线衍射(XRD)是一种常见的测试方法,用于分析晶体结构和晶体衍射图样。
它利用物质对入射X射线的衍射产生的衍射信号来确定晶体的结构和晶格参数。
这种方法广泛应用于材料科学、地球科学和生物科学等领域。
XRD测试通常使用粉末或单晶样品,通过测量样品对入射X射线的衍射角度和强度来分析晶体结构。
SEM(扫描电子显微镜)扫描电子显微镜(SEM)是一种高分辨率显微镜,可以生成高质量的表面形貌图像。
SEM利用电子束与样品表面相互作用产生的不同信号来生成图像。
这些信号可以包括二次电子图像(SEI)和反射电子图像(BEI)。
SEM广泛应用于材料科学、生命科学、制造业等领域。
它可以用于检测材料的表面形貌、微观结构和成分分析。
TEM(透射电子显微镜)透射电子显微镜(TEM)是一种高分辨率显微镜,可以观察样品的内部结构和原子排列。
TEM的工作原理是将电子束通过样品,然后使用投影透射电子显微镜来生成图像。
TEM广泛应用于材料科学、生命科学、纳米科学等领域。
它可以用于观察材料的微观结构、晶体缺陷和原子位置。
VSM(振动样品磁强计)振动样品磁强计(VSM)是一种用于测量样品磁性的仪器。
它通过在样品上施加磁场并测量样品的磁化曲线来确定样品的磁性。
VSM广泛应用于材料科学、物理学和化学等领域。
它可以用于测量材料的磁化行为、磁相变和磁性参数。
XPS(X射线光电子能谱)X射线光电子能谱(XPS)是一种用于表面元素分析的技术。
它利用入射X射线激发样品表面的光电子,并测量光电子的能量分布来确定样品的表面元素组成和化学状态。
XPS广泛应用于材料科学、表面科学和化学等领域。
它可以用于检测材料的表面成分、氧化态和化学状态。
ICP(电感耦合等离子体发射光谱法)电感耦合等离子体发射光谱法(ICP)是一种用于测量样品中金属和非金属元素含量的方法。
它利用电感耦合等离子体激发样品中的元素,并通过测量元素发射的光谱来确定元素的含量。
EELS的测试原理和应用
![EELS的测试原理和应用](https://img.taocdn.com/s3/m/4cc85c6ce3bd960590c69ec3d5bbfd0a7956d534.png)
EELS的测试原理和应用1. 什么是EELS能量损失谱(Energy Loss Spectroscopy, EELS)是一种扫描透射电子显微镜(STEM)技术的应用,通过测量材料中透射的电子能量损失,获取材料的化学成分和电子结构信息。
EELS通常用于分析材料中的元素组成、电子能带结构、化学键的特征等。
2. EELS的原理EELS的原理基于电子能量损失与材料中原子、电子间相互作用的关系。
当透射电子穿过材料时,与材料中原子发生散射,损失一部分能量。
通过测量电子的能量损失,可以推断材料中的元素类型和电子能带结构。
EELS主要分为共振和非共振两种模式。
共振模式通过选择特定的能量损失进行测量,可以提高测量的灵敏度和分辨率。
非共振模式则采用全能量范围进行测量,对材料中的元素进行定性和定量分析。
3. EELS的应用3.1 材料分析EELS广泛应用于材料科学领域,可以用于分析材料的组成、界面结构、晶格畸变等。
通过测量电子的能量损失,可以获得材料中元素的电子结构信息,进而分析材料的物理和化学性质。
3.2 纳米颗粒表征由于EELS具有高空间分辨率和高能量分辨率的优点,因此在纳米颗粒的表征中得到了广泛应用。
通过EELS技术可以分析纳米颗粒的表面化学组成、晶格结构以及表面等离子体共振等特性。
3.3 生物医学研究EELS可用于生物医学研究中,通过测量生物样品中电子的能量损失,可以获得样品中元素组成、化学键结构以及生物分子的能带结构等信息。
因此,EELS可以用于研究生物分子的结构和功能。
3.4 界面电子学EELS可以用于研究材料的界面电子学性质,通过分析界面处电子的能量损失,可以探测界面的结构和元素组成。
这对于理解界面特性和设计新型材料具有重要意义。
3.5 稀土元素分析由于稀土元素的特殊性质,传统的分析方法往往难以准确测量稀土元素的含量。
而EELS可以通过测量电子的能量损失,定量分析含有稀土元素的材料。
因此,EELS在稀土元素研究中得到广泛应用。
扫描电镜显微分析
![扫描电镜显微分析](https://img.taocdn.com/s3/m/e9c943c387c24028905fc343.png)
扫描电镜显微分析扫描电镜显微分析实验报告一、实验目的1、了解扫描电镜的基本结构和原理。
2、掌握扫描电镜试样的制备方法。
3、了解扫描电镜的基本操作。
4、了解二次电子像、背散射电子像和吸收电子像,观察记录操作的全过程及其在组织形貌观察中的应用。
二、实验内容1、根据扫描电镜的基本原理,对照仪器设备,了解各部分的功能用途。
2、根据操作步骤,对照设备仪器,了解每步操作的目的和控制的部位。
3、在老师的指导下进行电镜的基本操作。
4、对电镜照片进行基本分析。
三、实验设备仪器与材料Quanta 250 FEG 扫描电子显微镜四、实验原理(一)、扫描电子显微镜的基本结构和成像原理扫描电子显微镜(Scanning Electron Microscope,简称SEM)是继透射电镜之后发展起来的一种电子显微镜简称扫描电镜。
它是将电子束聚焦后以扫描的方式作用样品,产生一系列物理信息,收集其中的二次电子、背散射电子等信息,经处理后获得样品表面形貌的放大图像。
扫描电镜主要由电子光学系统;信号检测处理、图像显示和记录系统及真空系统三大系统组成。
其中电子光学系统是扫描电镜的主要组成部分,主要组成:电子枪、电磁透镜、光栏、扫描线圈、样品室等,其外形和结构原理如图1所示。
由电子枪发射出的电子经过聚光镜系统和末级透镜的会聚作用形成一直径很小的电子束,投射到试样的表面,同时,镜筒内的偏置线圈使这束电子在试样表面作光栅式扫描。
在扫描过程中,入射电子依次在试样的每个作用点激发出各种信息,如二次电子、背散射电子、特征X射线等。
安装在试样附近的探测器分别检测相关反应表面形貌特征的形貌信息,如二次电子、背散射电子等,经过处理后送到阴极射线管(简称CRT)的栅极调制其量度,从而在与入射电子束作同步扫描的CRT上显示出试样表面的形貌图像。
根据成像信号的不同,可以在SEM的CRT上分别产生二次电子像、背散射电子像、吸收电子像、X射线元素分布图等。
本实验主要介绍的二次电子像和背散射电子像。
扫描电镜的基本原理及应用
![扫描电镜的基本原理及应用](https://img.taocdn.com/s3/m/2ab5995efd4ffe4733687e21af45b307e971f94e.png)
扫描电镜的基本原理及应用1. 简介扫描电子显微镜(Scanning Electron Microscope,简称SEM)是一种利用高能电子束进行样本表面成像的仪器。
与传统的透射电子显微镜不同,扫描电子显微镜通过扫描样本表面并测量反射电子的信号来生成图像,因此可以观察到样本表面的形貌、结构和组成。
2. 基本原理扫描电子显微镜的基本原理是利用电子的波粒二象性和电磁透镜的作用,将电子束聚焦到极小的尺寸并扫描样本表面。
主要包括以下几个步骤:2.1 电子源扫描电子显微镜的核心部件是电子枪,它通过发射电子来产生电子束。
电子源通常采用热阴极、场致发射或冷阴极等不同技术,以产生高能、高亮度的电子束。
2.2 电子聚焦电子束经过电子透镜的作用,可以实现对电子束的聚焦。
电子透镜通常由磁场或电场构成,可以调节电子束的聚焦度和放大倍数。
通过调节电子透镜的参数,可以得到所需的电子束直径和形状。
2.3 样本扫描电子束通过扫描线圈进行扫描,并在扫描过程中与样本表面发生相互作用。
扫描线圈可以控制电子束的位置和方向,将电子束在样本表面上进行扫描。
在扫描过程中,电子束与样本表面发生的相互作用产生不同的信号。
2.4 信号检测与处理样本表面与电子束相互作用时,会产生不同的信号。
扫描电子显微镜通常会检测并测量这些信号,用于生成图像。
常用的信号检测方式包括:反射电子检测、二次电子检测、原子力显微镜等。
3. 应用领域扫描电子显微镜在科学研究、工业生产和材料表征等领域有广泛的应用。
以下是扫描电子显微镜的一些常见应用:3.1 材料科学扫描电子显微镜可以观察材料的表面形貌和结构,对材料的微观结构进行分析。
在材料科学研究中,扫描电子显微镜常常用于研究材料的晶体结构、晶界、纳米颗粒和材料表面的纳米结构等。
3.2 生物学扫描电子显微镜在生物学研究中有广泛的应用。
它可以观察生物样本的细胞结构、细胞器和细胞表面的微观结构,对生物样本的形态和结构进行研究。
扫描电子显微镜也被用于病毒、细菌和其他微生物的观察和研究。
金属材料检测,扫描电镜SEM测试
![金属材料检测,扫描电镜SEM测试](https://img.taocdn.com/s3/m/1a4c4aec79563c1ec4da71db.png)
金属材料检测,扫描电镜SEM测试扫描电子显微镜(SEM)是一种用于高分辨率微区形貌分析的大型精密仪器,它是一种介于透射电子显微镜和光学显微镜之间的一种观察手段。
目前,扫描电镜已被广泛应用于生命科学、物理学、化学、司法、地球科学、材料学以及工业生产等领域的微观研究。
金属材料检测中SEM主要应用金属及其合金的性能是由微观组织、化学成分和晶体结构来决定的,连续可调的放大倍数等特点使得扫描电镜在断口形貌,微区形貌及定性定量分析,失效分析等方面有着重要作用。
1、微观组织观察光学显微镜可以用来观察常规组织,整体上看到两种或几种相的分配比例,但是由于其放大倍数有限(一般最大放大倍数2000倍),很多组织中的片层结构、针状结构、第二相、共晶体等很难清楚的观测到。
扫描电镜利用其放大倍数大且连续可调的特点,实现了宏观形貌与显微组织同时观测的目的。
2、断口形貌观察景深大的特点使扫描电镜在分析常规实验断口、现场失效断口等方面获得了很好的应用,断口试样无需破坏,无需制样,放入样品仓可直接观察,这些都是光学显微镜、透射电镜等检测仪器所不能比拟的。
首先,宏观观察失效断口,判断断裂源区及裂纹扩展方向;其次利用扫描电镜微观判定断裂源区及扩展区的断裂类型,最后结合失效件的原始情况、生产工艺、用户处理及使用情况、化学成分、金相检测、力学性能检测等得出结论。
扫描电镜具有什么特点?扫描电子显微镜具有景深大、分辨率高、成像直观、立体感强、放大倍数范围宽以及待测样品可在三维空间内进行旋转和倾斜等特点。
另外,扫描电镜具有可测样品种类丰富,几乎不损伤和污染原始样品以及可同时获得形貌、结构、成分和结晶学信息等优点。
扫描电镜可应用在哪些地方?1、金属、陶瓷、矿物、水泥、半导体、纸张、塑料、食品、农作物和化工产品的显微形貌、晶体结构和相组织的观察与分析。
2、各种材料微区化学成分的定量检测。
3、粉末、微粒、纳米样品形态观察和粒度测定。
4、机械零件与工业产品的失效分析。
SEM和EDS的现代分析测试方法
![SEM和EDS的现代分析测试方法](https://img.taocdn.com/s3/m/17a9a59127fff705cc1755270722192e4536589a.png)
SEM和EDS的现代分析测试方法SEM(扫描电子显微镜)和EDS(能量散射X射线分析)是一对常用于材料科学和地质学等领域的现代分析测试方法。
SEM利用电子束扫描样品表面,通过获取样品表面的电子信号来生成高分辨率的图像;EDS则通过分析样品表面散射的X射线能谱来确定样品元素的组成。
这两种技术的结合能够提供精确的显微结构和化学成分信息,为材料研究和质量控制提供了有力的分析手段。
SEM主要通过扫描电子束在样品表面的不同位置进行扫描,利用激发的次级电子、反射电子和主束电子回散射的电子等不同信号来获得样品表面的形貌信息。
相对于光学显微镜,SEM具有更高的分辨率和放大倍数,能够观察到更小尺寸的细节结构。
此外,SEM还可以通过选择不同的操作模式(如反射电子显微镜模式和透射电子显微镜模式)来观察不同类型的样品,如金属、陶瓷、生物样品等。
在材料科学领域,SEM常用于观察样品中的晶体结构、颗粒形貌、纤维组织等微观结构。
EDS是SEM的一个重要附属技术,它通过分析样品表面散射的X射线能谱来确定样品元素的组成。
当电子束轰击样品表面时,样品中的原子会激发出一系列特征X射线。
这些X射线的能量和强度与样品中元素的种类和含量有关。
EDS系统可以通过收集散射的X射线并对其进行能量谱分析,从而确定样品中存在的元素及其相对含量。
EDS不仅能够提供定性分析结果,还可以通过比对与标准参考谱库进行定量分析,得到精确的元素含量。
SEM-EDS组合技术具有广泛的应用范围。
在材料科学中,它可以用于研究材料的显微结构、相变、晶粒生长等问题。
例如,可以通过SEM观察金属材料中的晶粒尺寸和分布,进而对材料的力学性能和导电性能进行评估。
同时,通过使用EDS技术,还可以分析材料中微量元素的含量,进一步揭示材料的化学成分和微观特征。
总之,SEM和EDS是一对功能强大的现代分析测试方法。
它们可以提供高分辨率的显微结构和准确的化学组分信息,而且应用范围广泛,适用于材料科学、地质学、生物学和环境科学等领域的研究和应用。
扫描电镜技术在材料科学中的应用
![扫描电镜技术在材料科学中的应用](https://img.taocdn.com/s3/m/259cc097294ac850ad02de80d4d8d15abe2300c3.png)
扫描电镜技术在材料科学中的应用材料科学是一门应用学科,它研究各种物质的性质、结构、制备和应用等方面的科学问题。
在材料科学中,有很多研究方法和分析技术,其中扫描电镜技术是一种非常重要的方法。
本文将从扫描电镜技术的概念、优点以及在材料科学中的应用,探讨该技术在材料科学领域中的价值和发展前景。
一、扫描电镜技术的概念扫描电镜技术(Scanning Electron Microscope,SEM)是一种常用的材料表征、分析、观察的技术。
该技术利用高能电子束照射样品,观察样品在电场作用下发生的不同电子过程,通过收集样品表面反射、吸收、透射等电子的各种信号,进而获得样品表面形态、表面元素分布、晶体结构等信息。
扫描电镜技术主要分为三个步骤,包括样品制备、电子显微镜成像和信号检测等。
首先,样品需要进行处理和制备,以便于观察和分析,比如需要进行切片、抛光等处理。
然后,采用电子显微镜照射样品,通过收集样品表面反射、背散射等电子信号,来获得样品的形貌和结构等信息。
最后,通过图像的处理和分析,以及各种数据的比对和分析,来进一步分析样品的性质和结构等。
二、扫描电镜技术的优点扫描电镜技术的优点主要包括以下几个方面:1.分辨率高:扫描电镜技术的分辨率非常高,能够观察到极小的表面形貌和微观结构,甚至能够研究到纳米级别的材料结构。
2.实时性好:扫描电镜技术能够实时进行样品观察和分析,并且可以通过调整各种参数来达到最佳的显影效果和分析结果,具有成像速度快、操作简便等特点。
3.多功能性强:扫描电镜技术可以观察样品的形貌、成分分布、晶体结构等多方面信息,而且可以进行高分辨率的成像、分析、比对等操作,多功能性非常强。
4.适用范围广:扫描电镜技术适用于多种材料和样品,比如金属材料、半导体材料、生物医学材料等,在材料科学、生物医学等多领域有着广泛应用。
三、扫描电镜技术在材料科学领域中的应用非常广泛,主要应用于材料结构、形貌、成分、性能、缺陷等方面的研究。
显微测试技术在材料研究中的应用
![显微测试技术在材料研究中的应用](https://img.taocdn.com/s3/m/2adbde603d1ec5da50e2524de518964bce84d259.png)
显微测试技术在材料研究中的应用材料是人类社会发展的重要基础和物质基础,材料研究一直是材料科学领域的热点。
显微测试技术是材料研究中的重要手段之一,可以通过对材料进行显微观察和测试,了解材料的微观结构和性能,为材料的设计、制备和应用提供重要依据。
本文将介绍显微测试技术在材料研究中的应用。
一、光学显微镜技术在材料研究中的应用光学显微镜技术是一种利用可见光照射样品,通过光学透镜组将样品的像放大并呈现在显微镜镜筒内供观察的技术。
这是最基础的显微测试技术,也是许多显微测试技术的基础。
在材料研究中,光学显微镜技术被广泛应用于材料的微观形貌和组织结构的研究。
例如,通过光学显微镜可以直接观察材料的晶体结构、晶界、缺陷等特征。
同时,还可以通过光学显微镜分析材料的表面形貌、气泡分布、韧性等性能。
这种技术还常用于研究复杂的多相材料和光学性质。
二、扫描电子显微镜技术在材料研究中的应用扫描电子显微镜技术是一种利用电子束照射样品,通过电子信号检测出样品表面反射、散射、吸收或透射的信号,形成图像并呈现在显微镜屏幕上的技术。
在材料研究中,扫描电子显微镜技术可以观察材料表面形貌、晶体结构、晶界、缺陷、孔隙等特征。
同时,通过电子衍射技术还可以对材料的晶体结构进行表征。
这种技术还常用于大面积扫描和表面形貌测量。
三、透射电子显微镜技术在材料研究中的应用透射电子显微镜技术是一种利用电子束穿透样品,通过选通器或投影镜将电子探测信号放大,最终形成图像并呈现在显微镜屏幕上的技术。
在材料研究中,透射电子显微镜技术可以观察材料的微观结构,通过电子衍射技术还可以对材料的晶体结构进行表征。
同时,这种技术还可以用于研究材料的纳米化特性、电子显微学、薄膜材料等应用领域。
四、X射线衍射技术在材料研究中的应用X射线衍射技术是一种利用X射线穿过样品,产生衍射信号表征材料内部结构的技术。
在材料研究中,X射线衍射技术可以用于分析材料的结晶特性、晶格参数、晶体缺陷、应变、纳米结构等。
扫描电镜的工作原理与应用
![扫描电镜的工作原理与应用](https://img.taocdn.com/s3/m/7d97573fdf80d4d8d15abe23482fb4daa48d1d54.png)
扫描电镜的工作原理与应用扫描电镜是一种高分辨率、高清晰度的显微镜,主要用于观察各种微观物体的形态、结构和组成。
其工作原理相比传统的光学显微镜要复杂得多。
在本文中,我将详细介绍扫描电镜的工作原理和应用。
一、扫描电镜的基本原理扫描电镜(Scanning Electron Microscopy,SEM)采用电子束而非光束照射样品,因此它具有高于光学显微镜的空间分辨率和深度清晰度。
SEM 使用高能电子束扫描样品表面,并探测所产生的次级电子、后向散射电子或荧光X射线等信号信号。
通过对这些信号的分析和数字处理,可以产生像素级的扫描图像,并确定样品的组成和结构。
扫描电子显微镜采用的主要原理是:将样品表面上的电子自主子级电子转换为信号,再将此信号放大、处理和记录。
SEM 中大多数扫描电子必须通过所用的样品形成的电荷屏障,否则将被折回光子元件中。
样品的电子子级电子外激发过程产生的信号,即次级电子,是包含有样品表面信息的电流信号,探针数据采集设备可将其转换成像素级图像。
SEM 所存在的分解能力是电子束在样品表面的扩散、散射和返回时波长的比值决定的。
二、扫描电镜的应用1.生物学:扫描电镜可帮助生物学家观察细胞和细胞器在微观尺度上的结构以及病毒的形态和特征。
它是研究生物体的材料性质、微观形态和结构,解析其细节显微解剖形态以及结构的最佳选择,对于肿瘤、心血管疾病、神经退行性疾病等疾病的发病机理及防治研究都有重要的应用价值。
2.物理学:扫描电镜可以测量微观物体的形态和结构,被广泛应用于材料凝聚态物理、力学和地质学等领域。
在材料科学领域中,它用于研究新材料的结构和形态,以及材料性能的变化。
3.化学:因其高分辨率和高清晰度,扫描电镜是研究化学领域中的重要工具。
它可以用于观察表面结构和相互作用,包括材料的结构、质量分析和表面成像。
此外,扫描电镜也可以用于探测微细结构和纳米级结构。
4.电子学:扫描电镜可以被用于测试电子元件的性能和结构,以及电路板等电子产品的质量控制。
扫描电子显微镜在高分子聚合物研究中的应用综述
![扫描电子显微镜在高分子聚合物研究中的应用综述](https://img.taocdn.com/s3/m/d5b3937727284b73f24250a0.png)
扫描电子显微镜在高分子聚合物研究中的应用1扫描电子显微镜的原理及特点扫描电子显微镜作为一种有被的显微结构分析工具,可以对各种材料进行多种肜式的观察与分析,具有分辨率高,景深长、成像富有立体感等优点,利用扫描电镜分析显微结构,其内容丰富、方法直观。
扫描电子显徽镜的工作原理为:由热阴极电子枪发射出的电子在电场作用下加速.经过2个或3个电磁透镜的作用,在样品表面聚集成为极细的电子束。
该电子束在束透镜上方的双偏转线圈作用下.在样品表面扫描。
被加速的电子束与样品室中的样品相互作用,激发样品产,丰出各种物理信号.其强度随样品表面特征而变。
样品表而不同的特征信号,被按顺序、成比例地转换为视频信号。
通过对其中某种物理信号的检测、视频放大和信号处理.调制阴极射线管的电子束强度,从而在荧光屏上获得反映样品表面特征的扫描图像。
扫描电镜的成像原理就是以电子束作为照明源,把聚焦得很细的电子束以光栅状扫描方式照射到试样上,产牛各种与试样性质有关的信息,然后加以收集和处理从,而获得微观形貌放大像。
人工皮革是以纤维为增强材料,以高分子粘合剂为基体,通过涂敷或浸渍方式构成的复合材料。
随着科学技术的进步和市场的需求,纤维增强材料由以往棉纤维改进为合成纤维,由线密度较粗的纤维发展到超细纤维;纤维的集合体也由较早的仅用机织物、针织物,又增加了非织造布品种;而作为基体材料的粘合剂,又分为聚氯乙烯(PVC)和聚氨酯(PU)的两类。
纤维集合体之一的超细纤维材料又可以是通过共混纺丝法或复合纺丝法制得的。
而制得的人工皮革又有光面和绒面之别。
’显然,人工皮革形态结构的微细构造,只用人的手指去触摸或用眼睛去观察是无法准确与清晰的了解到的。
必须借助于近代分析仪器的手段给予准确的解析。
(1)未知样品A从市场得到两块人造皮革样品,手感柔软、舒适,适于作服装革。
使用扫描电镜(SEM)对其作了形态结构分析,EM照片如图1所示。
由SEM图1可得到如下信息:1)人工皮革是由一簇簇纤维构成的非织造布为增强材料,并被PU胶包覆;2)单纤维为直径约5微米的圆形纤维,即0.3---0.4dtex,且每根单纤维直径基本相同,推断是由海一岛型复合纺丝法制得的超细纤维,每根复合纤维中大约是由64个岛组成;3)非织造布有可能是采用先浸PV A,再浸PU胶的工艺;抽出过程中去除了PV A后,在纤维束PU胶之间形成空隙,为人工皮革提供了弹性;4)采用的是浸胶工艺,不是涂层工艺,但是提胶量很小;5)两个人工皮革样品均为双面起绒结构,绒毛较长者,内部结构略松散,手感更柔软,另一个样品绒毛较短,内部也较密实,手感略显硬。
现代材料分析测试技术
![现代材料分析测试技术](https://img.taocdn.com/s3/m/82e6c85fa9114431b90d6c85ec3a87c241288a61.png)
现代材料分析测试技术1. 引言现代材料分析测试技术是指利用科学仪器和方法对材料进行测试、分析和评估的一种技术手段。
随着材料科学的不断发展和技术的进步,现代材料分析测试技术在工业、科研和生产领域起着至关重要的作用。
本文将介绍常用的现代材料分析测试技术,包括扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)、红外光谱(FTIR)等。
2. 扫描电子显微镜(SEM)扫描电子显微镜(SEM)是一种非常重要的材料分析测试仪器。
它通过扫描材料表面并通过电子束与材料相互作用来获得材料表面微观形貌和成分信息。
SEM广泛应用于材料科学、纳米材料研究、材料工艺等领域。
它可以观察样品的表面形貌、晶体结构、晶粒大小等,并通过能谱分析仪来获得元素组成信息。
3. 透射电子显微镜(TEM)透射电子显微镜(TEM)是一种用于观察材料内部结构的高分辨率显微镜。
TEM通过电子束穿透材料,并通过对透射电子进行束缚和散射来图像化材料的内部结构。
它在材料科学、纳米技术、纤维材料等领域具有重要的应用价值。
TEM能够观察材料的晶体结构、晶格缺陷、晶粒尺寸等,并可获得高分辨率的像像。
4. X射线衍射(XRD)X射线衍射(XRD)是一种常用的材料分析测试技术。
它利用材料对入射X射线的衍射现象来研究材料的晶体结构和晶格参数。
XRD广泛应用于材料科学、矿产勘探、无机化学等领域。
XRD可以确定材料的晶体结构、晶格常数、相对结晶度等,并可通过对射线衍射的精确测定来研究材料的相变行为和配位状态。
5. 红外光谱(FTIR)红外光谱(FTIR)是一种常用的材料分析测试技术,可以用来研究材料的分子结构和化学键的振动情况。
红外光谱可以提供关于材料的化学成分、结构和功能的重要信息。
它广泛应用于材料科学、有机化学、聚合物科学等领域。
红外光谱可以帮助确定材料的分子结构、功能团的存在和分布,以及材料的晶体性质等。
6. 总结现代材料分析测试技术在材料科学和工程领域起着至关重要的作用。
【实验】扫描电镜实验报告
![【实验】扫描电镜实验报告](https://img.taocdn.com/s3/m/c4161cccaaea998fcd220ebd.png)
【关键字】实验扫描电镜实验报告篇一:扫描电镜实验报告扫描电镜实验报告班级:材化11学号:姓名:李彦杰日期:XX 05 16一、实验目的1. 了解扫描电镜的构造及工作原理;2. 扫描电镜的样品制备;3. 利用二次电子像对纤维纵向形貌进行观察;4. 了解背散射电子像的应用。
二、实验仪器扫描电子显微镜(热发射扫描型号JSM-5610LV)、真空镀金装置。
扫描电镜原理是由电子枪发射并经过聚焦的电子束在样品表面扫描,激发样品产生各种物理信号,经过检测、视频缩小和信号处理,在荧光屏上获得能反映样品表面各种特征的扫描图像。
扫描电镜由下列五部分组成,主要作用简介如下:1.电子光学系统。
其由电子枪、电磁透镜、光阑、样品室等部件组成。
为了获得较高的信号强度和扫描像,由电子枪发射的扫描电子束应具有较高的亮度和尽可能小的束斑直径。
常用的电子枪有三种形式:普通热阴极三极电子枪、六硼化镧阴极电子枪和场发射电子枪。
前两种属于热发射电子枪;后一种则属于冷发射电子枪,也叫场发射电子枪,其亮度最高、电子源直径最小,是高分辨本领扫描电镜的理想电子源。
电磁透镜的功能是把电子枪的束斑逐级聚焦缩小,因照射到样品上的电子束斑越小,其分辨率就越高。
扫描电镜通常有三个磁透镜,前两个是强透镜,缩小束斑,第三个透镜是弱透镜,焦距长,便于在样品室和聚光镜之间装入各种信号探测器。
为了降低电子束的发散程度,每级磁透镜都装有光阑;为了消除像散,装有消像散器。
样品室中有样品台和信号探测器,样品台还能使样品做平移、倾斜、转动等运动。
2. 扫描系统。
扫描系统的作用是提供入射电子束在样品表面上以及阴极射线管电子束在荧光屏上的同步扫描信号。
3. 信号检测、缩小系统。
样品在入射电子作用下会产生各种物理信号、有二次电子、背散射电子、特征X射线、阴极荧光和透射电子。
不同的物理信号要用不同类型的检测系统。
它大致可分为三大类,即电子检测器、阴极荧光检测器和X射线检测器。
4. 真空系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
扫描电子显微镜分析测试及应用
扫描电子显微镜的制造是依据电子与物质的相互作用。
当一束高能的入射电子轰击物质表面时,被激发的区域将产生二次电子、俄歇电子、特征x射线和连续谱X射线、背散射电子、透射电子,以及在可见、紫外、红外光区域产生的电磁辐射。
同时,也可产生电子-空穴对、晶格振动(声子)、电子振荡(等离子体)。
原则上讲,利用电子和物质的相互作用,可以获取被测样品本身的各种物理、化学性质的信息,如形貌、组成、晶体结构、电子结构和内部电场或磁场等等。
SEM是scanning electron microscope(扫描式电子显微镜)的简写。
扫描电子显微镜是1965年发明的较现代的细胞生物学研究工具,主要是利用二次电子信号成像来观察样品的表面形态,即用极狭窄的电子束去扫描样品,通过电子束与样品的相互作用产生各种效应,其中主要是样品的二次电子发射。
二次电子能够产生样品表面放大的形貌像,这个像是在样品被扫描时按时序建立起来的,即使用逐点成像的方法获得放大像。
功能介绍
扫描电子显微镜的制造依据是电子与物质的相互作用。
当一束高能的入射电子轰击物质表面时,被激发的区域将产生二次电子、俄歇电子、特征x射线和连续谱X射线、背散射电子、透射电子,以及在可见、紫外、红外光区域产生的电磁辐射。
同时,也可产生电子-空穴对、晶格振动(声子)、电子振荡(等离子体)。
原则上讲,利用电子和物质的相互作用,可以获取被测样品本身的各种物理、化学性质的信息,如形貌、组成、晶体结构、电子结构和内部电场或磁场等等。
扫描电子显微镜正是根据上述不同信息产生的机理,采用不同的信息检测器,使选择检测得以实现。
如对二次电子、背散射电子的采集,可得到有关物质微观形貌的信息;对x射线的采集,可得到物质化学成分的信息。
正因如此,根据不同需求,可制造出功能配置不同的扫描电子显微镜。
机构组成
扫描电子显微镜由三大部分组成:真空系统,电子束系统以及成像系统。
以下提到扫描电子显微镜之处,均用SEM代替
真空系统
真空系统主要包括真空泵和真空柱两部分。
真空柱是一个密封的柱形容器。
真空泵用来在真空柱内产生真空。
有机械泵、油扩散泵以及涡轮分子泵三大类,机械泵加油扩散泵的组合可以满足配置钨枪的SEM的真空要求,但对于装置了场致发射枪或六硼化镧枪的SEM,则需要机械泵加涡轮分子泵的组合。
成像系统和电子束系统均内置在真空柱中。
真空柱底端即为右图所示的密封室,用于放置样品。
之所以要用真空,主要基于以下两点原因:
电子束系统中的灯丝在普通大气中会迅速氧化而失效,所以除了在使用SEM时需要用真空以外,平时还需要以纯氮气或惰性气体充满整个真空柱。
为了增大电子的平均自由程,从而使得用于成像的电子更多。
电子束系统
电子束系统由电子枪和电磁透镜两部分组成,主要用于产生一束能量分布极窄的、电子能量确定的电子束用以扫描成像。
电子枪
电子枪用于产生电子,主要有两大类,共三种。
一类是利用场致发射效应产生电子,称为场致发射电子枪。
这种电子枪极其昂贵,在十万美元以上,且需要小于10-10torr的极高真空。
但它具有至少1000小时以上的寿命,且不需要电磁透镜系统。
另一类则是利用热发射效应产生电子,有钨枪和六硼化镧枪两种。
钨枪寿命在30~100小时之间,价格便宜,但成像不如其他两种明亮,常作为廉价或标准SEM配置。
六硼化镧枪寿命介于场致发射电子枪与钨枪之间,为200~1000小时,价格约为钨枪的十倍,图像比钨枪明亮5~10倍,需要略高于钨枪的真空,一般在10-7torr以上;但比钨枪容易产生过度饱和和热激发问题。
电磁透镜
热发射电子需要电磁透镜来成束,所以在用热发射电子枪的SEM上,电磁透镜必不可少。
通常会装配两组:
汇聚透镜:顾名思义,汇聚透镜用汇聚电子束,装配在真空柱中,位于电子枪之下。
通常不止一个,并有一组汇聚光圈与之相配。
但汇聚透镜仅仅用于汇聚电子束,与成像会焦无关。
物镜:物镜为真空柱中最下方的一个电磁透镜,它负责将电子束的焦点汇聚到样品表面。
成像系统
电子经过一系列电磁透镜成束后,打到样品上与样品相互作用,会产生次级电子、背散射电子、欧革电子以及X射线等一系列信号。
所以需要不同的探测器譬如次级电子探测器、X 射线能谱分析仪等来区分这些信号以获得所需要的信息。
虽然X射线信号不能用于成像,但习惯上,仍然将X射线分析系统划分到成像系统中。
有些探测器造价昂贵,比如Robinsons式背散射电子探测器,这时,可以使用次级电子探测器代替,但需要设定一个偏压电场以筛除次级电子。
工作原理
SEM的工作原理是用一束极细的电子束扫描样品,在样品表面激发出次级电子,次级电子的多少与电子束入射角有关,也就是说与样品的表面结构有关,次级电子由探测体收集,并在那里被闪烁器转变为光信号,再经光电倍增管和放大器转变为电信号来控制荧光屏上电子
束的强度,显示出与电子束同步的扫描图像。
图像为立体形象,反映了标本的表面结构。
为了使标本表面发射出次级电子,标本在固定、脱水后,要喷涂上一层重金属微粒,重金属在电子束的轰击下发出次级电子信号。
光学显微镜(OM)、TEM、SEM成像原理比较
由电子枪发射的电子,以其交叉斑作为电子源,经二级聚光镜及物镜的缩小形成能谱仪获得。
具有一定能量、一定束流强度和束斑直径的微细电子束,在扫描线圈驱动下,于试样表面2材料形貌分析观察作栅网式扫描。
聚焦电子束与试样相互作,产生二次电子发射(以及其它物理信号)。
二次电子信号被探测器收集转换成电讯号,经视频放大后输入到显像管栅极,调制与入射电子束同步扫描的显像管亮度,得到反映试样表面形貌的二次电子像。
SEM应用
⑴生物:种子、花粉、细菌……
⑵医学:血球、病毒……
⑶动物:大肠、绒毛、细胞、纤维……
⑷材料:陶瓷、高分子、粉末、环氧树脂……
⑸化学、物理、地质、冶金、矿物、污泥(杆菌)、机械、电机及导电性样品,如半导体(IC、线宽量测、断面、结构观察……)电子材料等。