高中物理追击和相遇问题专题(含详解)
高三物理追击相遇问题试题答案及解析
高三物理追击相遇问题试题答案及解析1. A、B两辆汽车从同一地点在同一直线上做匀变速直线运动,它们的速度时间图象如图所示,则在6s内A.A、B两辆汽车运动方向相反B.A车的加速度大于B车的加速度C.t=4s时,A、B两辆汽车相距最远D.t=4s时,A、B两辆汽车刚好相遇【答案】C【解析】在v-t图象中速度的正负表示物体的速度方向,即运动方向.由图可知,两物体的速度均沿正方向,所以方向相同,故A错误;由速度图象的斜率大小等于加速度大小,斜率正负表示加速度方向知,A物体的加速度大小小于B物体的加速度大小,方向相反,故B错误;由图象可知,t=4s时,A、B两物体的速度相同,之前B物体的速度比A物体的速度大,两物体相距越来越远,之后A物体的速度大于B物体的速度,两物体相距越来越近,所以t=4s时两物体相距最远,故C正确,D错误.【考点】本题考查考生对匀变速直线运动的速度随时间变化关系图象的理解和掌握.2.甲、乙两车在公路上沿同一方向做直线运动,在时,乙车在甲车前处,它们的图象如图所示,下列对汽车运动情况的描述正确的是A.甲车先做匀速运动再做反向匀减速运动B.在第20s末,甲、乙两车的加速度大小相等C.在第30s末,甲、乙两车相距100mD.在整个运动过程中,甲、乙两车可以相遇两次【答案】D【解析】由图象可知:甲车先做匀速运动再做匀减速直线运动,但是速度图象一直在时间轴的上方,没有反向,故A错误;在第20s末,甲车的加速度大小为a==1m/s2,乙车的加速度甲==m/s2,不相等,故B错误;在第30s末,甲的位移为20×10+大小为a乙×20×20m=400m,乙的位移为×30×20m=300m,所以甲乙两车相距400-300-50m=50m,故C 错误;刚开始乙在甲的前面50m处,甲的速度大于乙的速度,经过一段时间甲可以追上乙,然后甲在乙的前面,到30s末,甲停止运动,甲在乙的前面50m处,此时乙以20m/s的速度匀速运动,所以再经过2.5s乙追上甲,故在整个运动过程中,甲、乙两车可以相遇两次,故D正确.【考点】本题考查追及相遇问题。
经典高一物理追击相遇问题练习题带答案知识交流
经典高一物理追击相遇问题练习题带答案1.公共汽车由停车站从静止出发以2 m/s2的加速度做匀加速运动,这时一辆载重汽车从后面超过公共汽车,载重汽车以10 m/s的速度匀速前进.问:经过多长时间公共汽车能追上载重汽车?在追上前经过多长时间两车相距最远,相距最远时两车之间的距离是多少?2.甲乙两辆汽车行驶在一条平直的公路上,甲车在乙车的后面做速度为v的匀速运动,乙车在前面做初速度为零的匀加速直线运动,加速度为a,同向而行.开始时两车在运动方向上相距s,求使两车可相遇二次v、a、s所满足的关系式3.一辆客车在平直公路上以30 m/s的速度行驶,突然发现正前方40 m处有一货车正以20 m/s的速度沿同一方向匀速行驶,于是客车立即刹车,以2 m/s2的加速度做匀减速直线运动,问此后的过程中客车能否会撞到货车上?4.由于某种错误致使两列车相向行驶在同一轨道上,两车司机同时发现了对方,同时刹车,设两车的行驶速度分别为54 km/h和36 km/h,刹车加速度分别为1.5 m/s2和0.5 m/s2,司机需在多远处同时发现对方才不会相碰?5.升降机以10 m/s的速度匀速下降时,在升降机底板上方高5米的顶部有一螺丝脱落,螺丝经多长时间落到升降机的底板上?如果升降机以2 m/s2的加速度匀加速下降,脱离的螺丝经过多长的时间落到升降机的底板上?(g=10 m/s2).6.为了安全,在公路上行驶的汽车之间应保持必要的距离.已知某高速公路的最高限速为120 km/h,假设前方车辆突然停止,后车司机从发现这一情况经操纵刹车到汽车开始减速所经历的时间(即反应时间)t=0.5 s,刹车时汽车加速度为4 m/s2.则该段高速公路上汽车间应保持的最小距离是多少?7.如图所示,A.B物体相距s=7 m时,A在水平拉力和摩擦力作用下,正以v A=4 m/s的速度向右匀速运动,而物体B此时正以v B=10 m/s的初速度向右匀减速运动,加速度a=-2 m/s2,求A追上B所经历的时间.8.甲、乙两汽车沿同一平直公路同向匀速运动,速度均为16 m/s.在前面的甲车紧急刹车,加速度为a1=3 m/s2,乙车由于司机的反应时间为0.5 s而晚刹车,已知乙的加速度为a2=4 m/s2,为了确保乙车不与甲车相撞,原来至少应保持多大的车距?第二章追击相遇限时训练完成时间:45分钟精品资料1.一个小球A以初速度v0 竖直上抛, 同时在A的正上方20m处由静止释放另一小球B。
追及相遇问题----高中物理模块典型题归纳(含详细答案)
追及相遇问题----高中物理模块典型题归纳(含详细答案)一、单选题1.甲、乙两车从同一地点沿相同方向由静止开始做直线运动,它们运动的加速度随时间变化图象如图所示。
关于两车的运动情况,下列说法正确的是()A.在0~4 s内两车的合力不变B.在t=2 s时两车相遇C.在t=4 s时两车相距最远D.在t=4 s时甲车恰好追上乙车2.某人驾驶一辆质量为m=5×103kg汽车甲正在平直的公路以某一速度匀速运动,突然发现前方50m处停着一辆乙车,立即刹车,刹车后做匀减速直线运动.已知该车刹车后第I个2s 内的位移是24m,第4个2s内的位移是1m.则下列说法正确的是()A.汽车甲刹车后做匀减速直线运动的加速度为B.汽车甲刹车后做匀减速直线运动的加速度为2m/s2C.汽车甲刹车后停止前,可能撞上乙车D.汽车甲刹车前的速度为14m/s3.甲、乙两物体从同一地点同时开始沿同一方向运动,甲物体运动的vt图象为两段直线,乙物体运动的v-t图象为两段半径相同的圆弧曲线,如图所示,图中t4=2t2,则在0~t4时间内,以下说法正确的是()A.甲物体的加速度不变B.乙物体做曲线运动C.甲物体的平均速度等于乙物体的平均速度D.两物体t1时刻相距最远,t4时刻相遇4.甲乙两辆汽车在平直的公路上沿同一方向作直线运动,t=0时刻同时经过公路旁的同一个路标。
在描述两车运动的v-t图中(如图),直线a、b分别描述了甲乙两车在0~20秒的运动情况。
关于两车之间的位置关系,下列说法正确的是()A.在0~10秒内两车逐渐靠近B.在10~20秒内两车逐渐远离C.在5~15秒内两车的位移相等D.在t=10秒时两车在公路上相遇5.甲、乙两质点沿同一方向做直线运动,某时刻经过同一地点.若以该时刻作为计时起点,得到两质点的x﹣t图像如图所示.图像中的OC与AB平行,CB与OA平行.则下列说法中正确的是()A.t1~t2时间内甲和乙的距离越来越远B.0~t2时间内甲的速度和乙的速度始终不相等C.0~t3时间内甲和乙的位移相等.0~t3时间内甲的平均速度大于乙的平均速度6.甲、乙两车同时同地同向出发,在同一水平公路上做直线运动,甲的初速度v甲=16m/s,加速度大小a甲=2m/s2,做匀减速直线运动,乙以初速度v乙=4m/s,加速度大小a乙=1m/s2,做匀加速直线运动,下列叙述正确的是()A.两车再次相遇前二者间的最大距离为20mB.两车再次相遇所需的时间为4sC.两车再次相遇前二者间达到最大距离用时8sD.两车再次相遇在64m处二、多选题7.a、b两车在平直公路上沿同一方向行驶,运动的v﹣t图像如图所示,在t=0时刻,b车在a车前方s0处,在t=t1时间内,a车的位移为s,则()A.若a、b在t1时刻相遇,则B.若a、b在时刻相遇,则下次相遇时刻为2t1C.若a、b在时刻相遇,则D.若a、b在t1时刻相遇,则下次相遇时刻为2t18.物体A以10m/s的速度做匀速直线运动。
专题4追击相遇问题(精选练习)(原卷版+解析)
人教版新教材物理必修第二册第二章《匀变速直线运动的研究》专题4 追击相遇问题精选练习一、夯实基础1.(2022·广东·深圳中学模拟预测)如图所示,甲、乙两辆汽车并排沿平直路面向前行驶,两车车顶O1、O2两位置都装有蓝牙设备,这两个蓝牙设备在5m以内时能够实现通信。
t=0时刻,甲、乙两车刚好位于图示位置,此时甲车的速度为4m/s,乙车的速度为1m/s,O1、O2的距离为3m。
从该时刻起甲车以1m/s2的加速度做匀减速运动直至停下,乙车保持原有速度做匀速直线运动。
忽略信号传递时间,从t=0时刻起,甲、乙两车能利用蓝牙通信的时间为()A.2s B.10s C.16s D.20s2.小明到汽车站时,车已经沿平直公路驶离车站,司机听到呼喊后汽车马上以2m/s2的加速度匀减速刹车,设小明同时以4m/s的速度匀速追赶汽车,汽车开始刹车时速度为8m/s,减速前距离小明12m。
则小明追上汽车所需的时间为()A.6s B.7s C.8s D.9s3.挥杆套马是我国蒙古传统体育项目,烈马从骑手身边奔驰而过时,骑手持6m长的套马杆,由静止开始催马追赶,二者的v t 图像如图所示,则()A.0~4s内骑手靠近烈马B.6s时刻骑手刚好追上烈马C.在0~4s内烈马的平均速度大于骑手的平均速度D.0~6s内骑手的加速度大于8~9s内烈马的加速度4.(多选)汽车在路上出现故障时,应在车后放置三角警示牌(如图所示),以提醒后面驾车司机减速安全通过。
在夜间,有一货车因故障停驶,后面有一小轿车以30m/s的速度向前驶来,由于夜间视线不好,小轿车驾驶员只能看清前方50m内的物体,并且他的反应时间为0.6s,制动后最大加速度为5m/s2。
假设小轿车始终沿直线运动。
下列说法正确的是()A.小轿车从刹车到停止所用的最短时间为6sB.小轿车的刹车距离(从刹车到停止运动所走的距离)为80mC.小轿车运动到三角警示牌时的最小速度为20m/sD.三角警示牌至少要放在货车后58m远处,才能有效避免两车相撞5.无人驾驶汽车车头的激光雷达就像车辆的“鼻子”,随时“嗅”着正前方120m范围内车辆和行人的“气息”,大大缩短了汽车的制动反应时间,仅需0.2s,图为某次在测试场地进行制动测试时获得的一部分图像(v为汽车的速度,x为位置坐标)。
高一物理追击和相遇专题(含详解)
追及和相遇问题专题研究一、追及和相遇问题的实质研究的两物体能否在相同的时刻到达相同的空间位置的问题。
二、 解决追及和相遇问题的关键1.画出物体运动的情景图2.理清三大关系(1)时间关系 :0t t t B A ±= (2)位移关系:0A B x x x =±(3)速度关系:v A =v B两者速度相等往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。
三、追及、相遇问题的分析方法:A. 画出两个物体运动示意图,根据两个物体的运动性质,选择同一参照物,列出两个物体的位移方程;B. 找出两个物体在运动时间上的关系C. 找出两个物体在运动位移上的数量关系D. 联立方程求解.说明:追及问题中常用的临界条件:⑴速度小者加速追速度大者,速度在接近,但距离在变大。
追上前两个物体速度相等时,有最大距离;⑵速度大者减速追赶速度小者, 速度在接近,但距离在变小。
追上前在两个物体速度相等时,有最小距离.即必须在此之前追上,否则就不能追上.四.典型例题分析:【例1】一小汽车从静止开始以3 m/s 2的加速度行驶,恰有一自行以6 m/s 的速度从车边匀速驶过。
(1)汽车从开动后到追上自行车之前,要经多长时间两者相距最远?此时距离是多少?(2)汽车什么时候追上自行车,此时汽车的速度是多少?【例2】汽车正以10m/s 的速度在平直公路上前进,突然发现正前方有一辆自行车以4m/s 的速度做同方向的匀速直线运动,汽车立即关闭油门做加速度大小为 6 m/s 2的匀减速运动,汽车恰好不碰上自行车。
求关闭油门时汽车离自行车多远?【例3】一列客运列车以20m/s 的速度行驶,突然发现同轨前方120m 处有一列货运列车正以6m/s 的速度匀速前进。
于是该客运列车紧急刹车,以0.8m/s 2的加速度匀减速运动,是判断两车是否相撞。
【例4】甲、乙两车同时从同一地点出发,甲以8m/s的初速度、1m/s2的加速度做匀减速直线运动,乙以2m/s的初速度、0.5 m/s2的加速度和甲同向做匀加速直线运动,求两车再次相遇前两车相距的最大距离和再次相遇时两车运动的时间。
高中物理追击和相遇问题专题带答案
For personal use only in study and research; not forcommercial use专题:直线运动中的追击和相遇问题一、相遇和追击问题的实质研究的两物体能否在相同的时刻到达相同的空间位置的问题。
二、 解相遇和追击问题的关键画出物体运动的情景图,理清三大关系(1)时间关系 :0t t t B A ±=(2)位移关系:0A B x x x =± (3)速度关系:两者速度相等。
它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。
三、追击、相遇问题的分析方法:A. 画出两个物体运动示意图,根据两个物体的运动性质,选择同一参照物,列出两个物体的位移方程;B. 找出两个物体在运动时间上的关系C. 找出两个物体在运动位移上的数量关系D. 联立方程求解.说明:追击问题中常用的临界条件:⑴速度小者追速度大者,追上前两个物体速度相等时,有最大距离;⑵速度大者减速追赶速度小者,追上前在两个物体速度相等时,有最小距离.即必须在此之前追上,否则就不能追上.四、典型例题分析:(一).匀加速运动追匀速运动的情况(开始时v 1< v 2):v 1< v 2时,两者距离变大;v 1= v 2时,两者距离最大;v 1>v 2时,两者距离变小,相遇时满足x 1= x 2+Δx ,全程只相遇(即追上)一次。
【例1】一小汽车从静止开始以3m/s 2的加速度行驶,恰有一自行车以6m/s 的速度从车边匀速驶过.求:(1)小汽车从开动到追上自行车之前经过多长时间两者相距最远?此时距离是多少? (2)小汽车什么时候追上自行车,此时小汽车的速度是多少?答案:(1) 2s 6m (2)12m/s(二).匀速运动追匀加速运动的情况(开始时v 1> v 2):v 1> v 2时,两者距离变小;v 1= v 2时,①若满足x 1< x 2+Δx ,则永远追不上,此时两者距离最近;②若满足x 1=x 2+Δx ,则恰能追上,全程只相遇一次;③若满足x 1> x 2+Δx ,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。
高中物理追击和相遇问题专题带答案
For personal use only in study and research; not forcommercial use专题:直线运动中的追击和相遇问题一、相遇和追击问题的实质研究的两物体能否在相同的时刻到达相同的空间位置的问题。
二、 解相遇和追击问题的关键画出物体运动的情景图,理清三大关系(1)时间关系 :0t t t B A ±=(2)位移关系:0A B x x x =± (3)速度关系:两者速度相等。
它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。
三、追击、相遇问题的分析方法:A. 画出两个物体运动示意图,根据两个物体的运动性质,选择同一参照物,列出两个物体的位移方程;B. 找出两个物体在运动时间上的关系C. 找出两个物体在运动位移上的数量关系D. 联立方程求解.说明:追击问题中常用的临界条件:⑴速度小者追速度大者,追上前两个物体速度相等时,有最大距离;⑵速度大者减速追赶速度小者,追上前在两个物体速度相等时,有最小距离.即必须在此之前追上,否则就不能追上.四、典型例题分析:(一).匀加速运动追匀速运动的情况(开始时v 1< v 2):v 1< v 2时,两者距离变大;v 1= v 2时,两者距离最大;v 1>v 2时,两者距离变小,相遇时满足x 1= x 2+Δx ,全程只相遇(即追上)一次。
【例1】一小汽车从静止开始以3m/s 2的加速度行驶,恰有一自行车以6m/s 的速度从车边匀速驶过.求:(1)小汽车从开动到追上自行车之前经过多长时间两者相距最远?此时距离是多少? (2)小汽车什么时候追上自行车,此时小汽车的速度是多少?答案:(1) 2s 6m (2)12m/s(二).匀速运动追匀加速运动的情况(开始时v 1> v 2):v 1> v 2时,两者距离变小;v 1= v 2时,①若满足x 1< x 2+Δx ,则永远追不上,此时两者距离最近;②若满足x 1=x 2+Δx ,则恰能追上,全程只相遇一次;③若满足x 1> x 2+Δx ,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。
高一物理追击相遇问题试题答案及解析
高一物理追击相遇问题试题答案及解析1.汽车甲沿着平直的公路以速度做匀速直线运动.当它路过某处的同时,该处有一辆汽车乙开始做初速为0的匀加速运动去追赶甲车.根据上述的已知条件: ()A.可求出乙车从开始起动到追上甲车时所用的时间.B.可求出乙车追上甲车时乙车所走的路程.C.可求出乙车追上甲车时乙车的速度.D.不能求出上述三者中任何一个.【答案】C【解析】甲匀速直线运动有,乙车匀加速有,而且乙车平均速度等于,所以有乙车追上甲车时有,从而可以计算乙车追上甲车时乙车的速度选项C对。
但是不知道乙车的加速度所以无法计算时间和路程选项ABD错【考点】追击相遇问题2.(本题10分)在十字路口,汽车以的加速度从停车线启动做匀加速运动,恰好有一辆自行车以的速度匀速驶过停车线与汽车同方向行驶,求:(1)什么时候它们相距最远?最远距离是多少?(2)在距离停车线多远处汽车追上自行车?追到时汽车的速度是多大?【答案】(1)10s 25m (2)100m 10m/s【解析】(1) 在汽车速度没有达到自行车速度之前,两者的距离是越来越大,当两者速度相等时,两车相距最远,当汽车速度大于自行车速度时,两者距离逐渐减小.设从停车线启动到相距最远所用时间为t,汽车做初速度为0的匀加速直线运动,所以代入数据解得:最远距离(2)汽车追上自行车时,它们相对于停车线的位移相等,设汽车追上自行车所用时间为t′,此时即解得:此时距停车线距离此时汽车速度为:【考点】本题考查追及相遇问题,同时考查匀变速直线运动规律的综合应用.3.甲车以加速度1m/s2由静止开始作匀加速直线运动,乙车落后2s在同一地点由静止出发,以加速度4m/s2作加速直线运动,两车运动方向一致,则乙车追上甲车所用的时间为()A.2s B.3s C.4s D.6s【答案】A【解析】由题意可知,两车机遇时的运动位移相等,运动时间,由运动公式得,,代入数据解得:,故只有A正确。
【考点】追及相遇问题4.如图所示,一辆长为12 m的客车沿平直公路以8.0 m/s的速度匀速向北行驶,一辆长为10 m的货车由静止开始以2.0 m/s2的加速度由北向南匀加速行驶,已知货车刚启动时两车相距180 m,则两车错车所用的时间为A.0.4 s B.0.6 sC.0.8 s D.1.2 s【答案】C时两车开始错车,则有其中,【解析】设货车启动后经过时间t1,在数值上有解之可得,设货车从开始运动到两车错车结束所用时间为t2其中,解得故两车错车时间故选C【考点】考查了追击相遇问题点评:本题属于相遇问题,关键抓住位移关系,运用运动学公式灵活求解.5.某汽车以10 m/s的速度匀速前进,若驾驶员立即刹车,汽车做匀减速运动,经过40 s汽车停止运动.该汽车以10 m/s的速度匀速前进时,突然驾驶员发现正前方60 m处有一辆自行车正以4 m/s的速度与汽车同方向匀速行驶,驾驶员立即刹车做匀减速运动,试求:(1)汽车做匀减速运动的加速度大小a;;(2)汽车做匀减速运动过程中所行驶的距离S1(3)通过计算说明汽车与自行车是否会发生相撞.【答案】(1)(2)(3),所以会发生相撞【解析】(1)由:得:(2)由运动学公式得:(3)当汽车速度减为:时,经历时间:此过程中:汽车前进的位移:自行车前进的位移:由于:所以会发生相撞【考点】追及问题点评:分析追及问题时,一定要注意抓住一个条件、两个关系:①一个条件是两物体速度相等时满足的临界条件,如两物体的距离是最大还是最小,是否恰好追上等.②两个关系是时间关系和位移关系.时间关系是指两物体运动时间是否相等,两物体是同时运动还是一先一后等;而位移关系是指两物体同地运动还是一前一后运动等,其中通过画运动示意图找到两物体间的位移关系是解题的突破口,因此在学习中一定要养成画草图分析问题的良好习惯。
高三物理追击相遇问题试题答案及解析
高三物理追击相遇问题试题答案及解析1.(12分). 2012年10月4日,云南省彝良县发生特大泥石流,一汽车停在小山坡底,突然司机发现在距坡底240m的山坡处泥石流以8m/s的初速度、0. 4m/s2的加速度匀加速倾泻而下,假设泥石流到达坡底后速率不变,在水平地面上做匀速直线运动。
已知司机的反应时间为1s,汽车启动后以0. 5m/s2的加速度一直做匀加速直线运动。
试分析汽车能否安全脱离?【答案】能安全脱离【解析】设泥石流到达坡底的时间为,速率为,则代入数值得,而汽车在的时间内发生位移为速度为令再经时间,泥石流追上汽车,则有代入数值并化简得,因,方程无解。
所以泥石流无法追上汽车,司机能安全脱离。
【考点】追击相遇问题2.一辆值勤的警车停在公路边,当警员发现从他旁边以10m/s的速度匀速行驶的货车严重超载时,决定前去追赶,经过5.5s后警车发动起来,并以2.5m/s2的加速度做匀加速运动,但警车的行驶速度必须控制在90km/h以内.问:(1)警车在追赶货车的过程中,两车间的最大距离是多少?(2)判定警车在加速阶段能否追上货车?(要求通过计算说明)(3)警车发动后要多长时间才能追上货车?【答案】(1)75米(2)没有追上(3)12S【解析】(1)警车在追赶货车的过程中,刚开始货车速度大于警车速度,所以两者之间距离渐渐拉大,当两车速度相等时,它们间的距离最大,此后警车速度超过货车,两者间距离缩短。
时间两车的速度相等.设警车发动后经过t1则在这段时间内:所以两车间的最大距离=90 km/h=25 m/s(2)v当警车刚达到最大速度时,运动时间因为,故此时警车尚未赶上货车,且此时两车距离警车达到最大速度后做匀速运动,设再经过时间追赶上货车,则所以警车发动后要经过才能追上货车【考点】考查追击问题点评:本题难度较小,此类题型属于过程较多的追击问题,一般通过公式法可以求解,但需要对过程较熟悉,并能熟练运用公式,此类题型可以通过图像法求解,图像法具有形象、直观的特点并且能够直观的判断出何时速度最大等优点3.如图所示,质量均为1kg的两个小物体A、B放在水平地面上相距9m,它们与水平地面的动摩擦因数均为m=0.2,现使它们分别以初速度vA =6m/s和vB=2m/s同时相向运动,重力加速度g取10m/s2。
高中物理 追及相遇问题 专题练习 (含详细答案)
第八弹:那些年我们追过的小怪物1、如下图所示,小球甲从倾角θ=30°的光滑斜面上高h=5 cm的A点由静止释放做匀加速运动(加速度a=gsin30°),同时小球乙自C点以速度v0沿光滑水平面向左匀速运动,C点与斜面底端B处的距离L=0.4 m.甲滑下后能沿斜面底部的光滑小圆弧平稳地朝乙匀速追去,甲释放后经过t=1 s刚好追上乙,求乙的速度v0.2.汽车A在红绿灯前停住,绿灯亮起时起动,以0.4 m/s2的加速度做匀加速运动,经过30 s后以该时刻的速度做匀速直线运动.设在绿灯亮的同时,汽车B以8 m/s的速度从A 车旁边驶过,且一直以相同的速度做匀速直线运动,运动方向与A车相同,则从绿灯亮时开始()A.A车在加速过程中与B车相遇B. A、B相遇时速度相同C.相遇时A车做匀速运动D. 两车不可能再次相遇3.同一直线上的A、B两质点,相距s,它们向同一方向沿直线运动(相遇时互不影响各自的运动),A做速度为v的匀速直线运动,B从此时刻起做加速度为a、初速度为零的匀加速直线运动.若A在B前,两者可相遇______次,若B在A前,两者最多可相遇______次.4、一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以3 m/s2的加速度开始加速行驶,恰在这时一辆自行车以6 m/s 的速度匀速驶来,从后边超过汽车.试求:汽车从路口启动后,在追上自行车之前经过多长时间两车相距最远?此时距离是多少?(请分别用公式法、图像法、二次函数极值法、相对运动法尝试解答)5、一列货车以28.8 km/h的速度在平直铁路上运行,由于调度失误,在后面600 m处有一列快车以72 km/h的速度向它靠近.快车司机发觉后立即合上制动器,但快车要滑行2000 m才停止.试判断两车是否会相碰.6、两辆完全相同的汽车,沿水平直路一前一后匀速行驶,速度均为v0.若前车突然以恒定的加速度刹车,在它刚停住时,后车以前车刹车的加速度开始刹车.已知前车在刹车过程中所行驶的距离为x,若要保证两辆车在上述情况中不相撞,则两车在匀速行驶时保持的距离至少应为( )A.1xB.2xC.3xD.4x7、A、B两车沿同一直线向同一方向运动,A车的速度v A=4 m/s,B车的速度v B=10 m/s.当B车运动至A车前方7 m 处时,B车以a=2 m/s2的加速度开始做匀减速运动,从该时刻开始计时,则A车追上B车需要的时间是_____s ,在A 车追上B车之前,二者之间的最大距离是______m.8.如图1-2-1所示,A、B两物体相距s=7 m,A正以v1=4 m/s的速度向右做匀速直线运动,而物体B此时速度v2=10 m/s,方向向右,做匀减速直线运动(不能返回),加速度大小a=2 m/s2,求:①从图示位置开始计时,经多少时间A追上B.②若A、B两物体初始相距s=8 m,A以v1=8 m/s的速度向右做匀速直线运动,其他条件不变,求A追上B时间9、在水平轨道上有两列火车A和B相距x,A车在后面做初速度为v0、加速度大小为2a的匀减速直线运动,而B车同时做初速度为零、加速度为a的匀加速直线运动,两车运动方向相同.要使两车不相撞,求A车的初速度v0满足什么条件.10.火车甲以速度V1向前行驶,发现前方S米处另一辆火车乙正以速度V2(V2<V1)做匀减速运动,加速度的大小为2α,火车甲为了避免与火车乙相撞,也开始做减速运动,则加速度1α的大小至少为多少?11.A、B两物体从同一地点,以相同初速度30 m/s,相同加速度a=10m/s2,间隔2 s时间先后出发,做匀减速运动(可以折返), 求两物体将在何处、何时相遇?12.从相距30 km的甲、乙两站每隔15 min同时以30 km/h的速率向对方开出一辆汽车.若首班车为早晨5时发车,则6时从甲站开出的汽车在途中会遇到多少辆从乙站开出的汽车?★13. A球自距地面高h处开始自由下落(以初速度为零,加速度为10m/s2做匀加速运动),同时B球以初速度v0正对A球竖直上抛(加速度向下,大小为10m/s2,做匀减速运动)空气阻力不计. 问:(1)要使两球在B球上升过程中相遇,则v0应满足什么条件?(2)要使两球在B球下降过程中相遇,则v0应满足什么条件?14—16题为选做题:14.甲、乙两车相距为s,同时同向运动,乙在前面做加速度为a1、初速度为零的匀加速运动,甲在后面做加速度为a2、初速度为v0的匀加速运动,试讨论两车在运动过程中相遇次数与加速度的关系。
高中物理追击和相遇问题专题(含详解).doc
v1.0可编辑可修改直线运动中的追及和相遇问题一、相遇和追及问题的实质研究的两物体能否在相同的时刻到达相同的空间位置的问题。
二、解相遇和追及问题的关键1.画出物体运动的情景图2.理清三大关系( 1)时间关系:t A t B t0(2)位移关系:x A x B x0( 3)速度关系:v A=v B两者速度相等往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。
三、追及、相遇问题的分析方法:A. 画出两个物体运动示意图,根据两个物体的运动性质, 选择同一参照物, 列出两个物体的位移方程;B.找出两个物体在运动时间上的关系C.找出两个物体在运动位移上的数量关系D.联立方程求解 .说明 : 追及问题中常用的临界条件:⑴速度小者加速追速度大者, 速度在接近,但距离在变大。
追上前两个物体速度相等时, 有最大距离 ;⑵速度大者减速追赶速度小者 , 速度在接近,但距离在变小。
追上前在两个物体速度相等时 , 有最小距离 . 即必须在此之前追上 , 否则就不能追上 .四、典型例题分析:( 一 ) .匀加速运动追匀速运动的情况(开始时v1< v 2):1.当 v1< v 2时,两者距离变大;2.当 v1= v 2时,两者距离最大;3.v1>v2时,两者距离变小,相遇时满足x1= x 2+x,全程只相遇( 即追上 ) 一次。
【例 1】一小汽车从静止开始以3m/s2的加速度行驶,恰有一自行车以6m/s 的速度从车边匀速驶过.求:(1) 小汽车从开动到追上自行车之前经过多长时间两者相距最远此时距离是多少(2)小汽车什么时候v1.0可编辑可修改( 二 ) .匀速运动追匀加速运动的情况(开始时v1> v 2):1.当 v1> v 2时,两者距离变小;2.当 v1= v 2时,①若满足x1< x 2+x,则永远追不上,此时两者距离最近;②若满足 x1=x2+x,则恰能追上,全程只相遇一次;③若满足 x1> x2+x,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。
高中物理追击和相遇问题专题(含详解)
直线运动中的追与和相遇问题一、相遇和追与问题的实质研究的两物体能否在相同的时刻到达相同的空间位置的问题。
二、 解相遇和追与问题的关键1.画出物体运动的情景图2.理清三大关系(1)时间关系 :0t t t B A ±= (2)位移关系:0A B x x x =± (3)速度关系:两者速度相等往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。
三、追与、相遇问题的分析方法:A. 画出两个物体运动示意图,根据两个物体的运动性质,选择同一参照物,列出两个物体的位移方程;B. 找出两个物体在运动时间上的关系C. 找出两个物体在运动位移上的数量关系D. 联立方程求解.说明:追与问题中常用的临界条件:⑴速度小者加速追速度大者,速度在接近,但距离在变大。
追上前两个物体速度相等时,有最大距离;⑵速度大者减速追赶速度小者, 速度在接近,但距离在变小。
追上前在两个物体速度相等时,有最小距离.即必须在此之前追上,否则就不能追上. 四、典型例题分析:(一).匀加速运动追匀速运动的情况(开始时v1< v2):1.当v1< v2时,两者距离变大;2.当v1= v2时,两者距离最大;3.v1>v2时,两者距离变小,相遇时满足x1= x2+Δx,全程只相遇(即追上)一次。
【例1】一小汽车从静止开始以32的加速度行驶,恰有一自行车以6的速度从车边匀速驶过.求:(1)小汽车从开动到追上自行车之前经过多长时间两者相距最远?此时距离是多少? (2)小汽车什么时候追上自行车,此时小汽车的速度是多少?(二).匀速运动追匀加速运动的情况(开始时v1> v2):1.当v1> v2时,两者距离变小;2.当v1= v2时,①若满足x1< x2+Δx,则永远追不上,此时两者距离最近;②若满足x12+Δx,则恰能追上,全程只相遇一次;③若满足x1> x2+Δx,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。
2025高考物理专项复习专题进阶课三 追及相遇问题含答案
2025高考物理专项复习专题进阶课三追及相遇问题含答案专题进阶课三追及相遇问题核心归纳1.几种追及相遇问题的图像比较:类型图像说明匀加速追匀速(1)t=t0以前,后面物体与前面物体间距逐渐增大;(2)t=t0时,v1=v2,两物体间距最大,为x0+Δx;(3)t=t0以后,后面物体与前面物体间距逐渐减小;(4)能追上且只能相遇一次匀速追匀减速匀加速追匀减速匀减速追匀速开始时,后面物体与前面物体间的距离在逐渐减小,当两物体速度相等时,即t=t0时刻:(1)若Δx=x0,则恰能追上,两物体只能相遇一次,这也是避免相撞的临界条件;(2)若Δx<x0,则不能追上,此时两物体有最小距离,为x0-Δx;(3)若Δx>x0,则相遇两次,设t1时刻匀速追匀加速匀减速追匀加速Δx=x0,两物体第一次相遇,则必有t2时刻两物体第二次相遇,且t2-t0=t0-t1注意:(1)v1是前面物体的速度,v2是后面物体的速度;(2)x0为开始时两物体之间的距离;(3)Δx为从开始追赶到两者速度相等时,前面或后面的物体多发生的位移2.追及相遇问题情况概述:(1)追及问题①若后者能追上前者,则追上时,两者处于同一位置,后者的速度一定不小于前者的速度。
②若后者追不上前者,则当后者的速度与前者相等时,两者相距最近。
(2)相遇问题①同向运动的两物体追及即相遇。
②相向运动的两物体,当各自发生的位移大小之和等于开始时两物体的距离时即相遇。
提醒:(1)若被追赶的物体做匀减速直线运动,一定要注意判断被追上前该物体是否已经停止运动。
(2)仔细审题,注意抓住题目中的关键字眼(如“刚好”“恰好”“最多”“至少”等),充分挖掘题目中的隐含条件。
3.解题思路:(1)根据对两物体运动过程的分析,画出两物体运动的示意图或v-t图像,找到临界状态和临界条件。
(2)根据两物体的运动性质,分别列出两物体的位移方程,注意要将两物体运动时间的关系反映在方程中。
高一物理必修1追击与相遇问题讲练结合(含详解)
高一物理 追击与相遇问题1.相遇和追击问题的实质研究的两物体能否在相同的时刻到达相同的空间位置的问题。
2. 解相遇和追击问题的关键画出物体运动的情景图,理清三大关系(1)时间关系 :0t t t B A ±=(2)位移关系:0A B x x x =± (3)速度关系:两者速度相等。
它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。
3. 相遇和追击问题剖析:(一)追及问题1、追及问题中两者速度大小与两者距离变化的关系。
甲物体追赶前方的乙物体,若甲的速度大于乙的速度,则两者之间的距离 。
若甲的速度小于乙的速度,则两者之间的距离 。
若开始甲的速度小于乙的速度过一段时间后两者速度相等,则两者之间的距离 (填最大或最小)。
2、追及问题的特征及处理方法:“追及”主要条件是:两个物体在追赶过程中处在同一位置,常见的情形有三种:⑴ 初速度为零的匀加速运动的物体甲追赶同方向的匀速运动的物体乙,一定能追上,追上前有最大距离的条件:两物体速度 ,即v v =乙甲。
⑵ 匀速运动的物体甲追赶同向匀加速运动的物体乙,存在一个能否追上的问题。
判断方法是:假定速度相等,从位置关系判断。
①当甲乙速度相等时,甲的位置在乙的后方,则追不上,此时两者之间的距离最小。
②当甲乙速度相等时,甲的位置在乙的前方,则追上,此情况还存在乙再次追上甲。
③当甲乙速度相等时,甲乙处于同一位置,则恰好追上,为临界状态。
解决问题时要注意二者是否同时出发,是否从同一地点出发。
⑶ 匀减速运动的物体追赶同向的匀速运动的物体时,情形跟⑵类似。
3、分析追及问题的注意点:⑴ 要抓住一个条件,两个关系:一个条件是两物体的速度满足的临界条件,如两物体距离最大、最小,恰好追上或恰好追不上等。
两个关系是时间关系和位移关系,通过画草图找两物体的位移关系是解题的突破口。
⑵若被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动。
高中物理必修一追及和相遇问题专题练习及答案解析
追击和相遇问题一、追击问题的分析方法:A. 根据追逐的两个物体的运动性质,选择同一参照物,列出两个物体的位移方程;⎭⎬⎫;.;.的数量关系找出两个物体在位移上间上的关系找出两个物体在运动时C B 相关量的确定D.联立议程求解.说明:追击问题中常用的临界条件:⑴速度小者追速度大者,追上前两个物体速度相等时,有最大距离;⑵速度大者减速追赶速度小者,追上前在两个物体速度相等时,有最小距离.即必须在此之前追上,否则就不能追上.1.一车处于静止状态,车后距车S0=25处有一个人,当车以1的加速度开始起动时,人以6的速度匀速追车,能否追上?若追不上,人车之间最小距离是多少?答案.S 人-S 车=S 0 ∴ v 人t-at 2/2=S0即t 2-12t+50=0Δ=b 2-4ac=122-4×50=-56<0方程无解.人追不上车 当v 人=v 车at 时,人车距离最小 t=6/1=6s ΔS min =S 0+S 车-S 人=25+1×62/2-6×6=7m2.质点乙由B 点向东以10的速度做匀速运动,同时质点甲从距乙12远处西侧A 点以4的加速度做初速度为零的匀加速直线运动.求: ⑴当甲、乙速度相等时,甲离乙多远?⑵甲追上乙需要多长时间?此时甲通过的位移是多大? 答案.⑴v 甲=v 乙=at 时, t=2.5sΔS=S 乙-S 甲+S AB=10×2.5-4×2.52/2+12=24.5m⑵S 甲=S 乙+S ABat 2/2=v 2t+S AB t 2-5t-6=0t=6sS 甲=at 2/2=4×62/2=72m3.在平直公路上,一辆摩托车从静止出发,追赶在正前方100m 处正以v 0=10m/s 的速度匀速前进的卡车.若摩托车的最大速度为v m =20m/s,现要求摩托车在120s 内追上卡车,求摩托车的加速度应满足什么 答案.摩托车 S 1=at 12/2+v m t 2v m =at 1=20卡车 S 2=v o t=10t S 1=S 2+100 T=t 1+t 2t ≤120s a ≥0.18m/s 24.汽车正以10m/s 的速度在平直公路上前进,发现正前方有一辆自行车以4m/s 的速度同方向做匀速直线运动,汽车应在距离自行车多远时关闭油门,做加速度为6m/s 2的匀减速运动,汽车才不至于撞上自行车? 答案.S 汽车≤S 自行车+d当v 汽车=v 自行车时,有最小距离 v 汽车=v 汽车0-at t=1sd 0=S 汽车-S 自行车=v 汽车0t-at 2/2-v 自行车=3m 故d ≥3m 解二: ΔS=S 自行车+d-S 汽车=(v 自行车t+d)-(v 汽车 0t-at 2/2)=d-6t+3t2=d-3+3(t-1)2当t=1s时, ΔS有极小值ΔS1=d-3 ΔS1≥0d≥3m二、相遇问题的分析方法:A.根据两物体的运动性质,列出两物体的运动位移方程;B.找出两个物体的运动时间之间的关系;C.利用两个物体相遇时必须处于同一位置,找出两个物体位移之间的关系;D.联立方程求解.5.高为h的电梯正以加速度a匀加速上升,忽然天花板上一螺钉脱落,求螺钉落到底板上的时间.答案.S梯-S钉=h∴ h=vt+at2/2-(vt-gt2/2)=(a+g)t2/26.小球1从高H处自由落下,同时球2从其正下方以速度v0竖直上抛,两球可在空中相遇.试就下列两种情况讨论的取值范围.⑴在小球2上升过程两球在空中相遇;⑵在小球2下降过程两球在空中相遇.答案.h1+h2=Hh1=gt2/2 h2=v0t-gt2/2∴ t=h/v0⑴上升相遇 t<v0/g∴ H/v0>v0/g v02>gH⑵下降相遇 t>v0/g t′<2v0/g∴ H/v0>v0/g v02<gHH/v0<2v0/g v02>gH/2即Hg>v02>Hg/27.从同一抛点以30m/s初速度先后竖直上抛两物体,抛出时刻相差2s,不计空气阻力,取g=10m/s2,两个物体何时何处相遇?答案.S1=v0(t+2)-g(t+2)2/2S2=v0t-gt2/2当S1=S2时相遇t=2s (第二个物体抛出2s)S1=S2=40m8.在地面上以2v0竖直上抛一物体后,又以初速度v0在同一地点竖直上抛另一物体,若要使两物体在空中相遇,则两物体抛出的时间间隔必须满足什么条件?(不计空气阻力)答案.第二个物体抛出时及第一个物体相遇Δt1=2×2v0/g第二个物体落地时及第一个物体相遇Δt2=2×2v0/g-2v0/g=2v0/g∴ 2v0/g≤Δt≤4v0/g追及相遇专题练习1.如图所示是A、B两物体从同一地点出发,沿相同的方向做直线运动的v-t图象,由图象可知 ( )图5A.A比B早出发5 s B.第15 s末A、B速度相等C.前15 s内A的位移比B的位移大50 m D.第20 s末A、B位移之差为25 m2.a、b两物体从同一位置沿同一直线运动,它们的速度图像如图所示,下列说法正确的是 ( )A.a、b加速时,物体a的加速度大于物体b的加速度B .20秒时,a 、b 两物体相距最远C .60秒时,物体a 在物体b 的前方D .40秒时,a 、b 两物体速度相等,相距200 m3.公共汽车从车站开出以4 m/s 的速度沿平直公路行驶,2 s 后一辆摩托车从同一车站开出匀加速追赶,加速度为2 m/s 2,试问:(1)摩托车出发后,经多少时间追上汽车? (2)摩托车追上汽车时,离出发处多远? (3)摩托车追上汽车前,两者最大距离是多少?4.汽车A 在红绿灯前停住,绿灯亮起时起动,以0.4 m/s 2的加速度做匀加速运动,经过30 s 后以该时刻的速度做匀速直线运动.设在绿灯亮的同时,汽车B 以8 m/s 的速度从A 车旁边驶过,且一直以相同的速度做匀速直线运动,运动方向及A 车相同,则从绿灯亮时开始 ( )A.A 车在加速过程中及B 车相遇B.A 、B 相遇时速度相同C.相遇时A 车做匀速运动D.两车不可能再次相遇5.同一直线上的A 、B 两质点,相距s ,它们向同一方向沿直线运动(相遇时互不影响各自的运动),A 做速度为v 的匀速直线运动,B 从此时刻起做加速度为a 、初速度为零的匀加速直线运动.若A 在B 前,两者可相遇几次?若B 在A 前,两者最多可相遇几次?6.一列货车以28.8 km/h 的速度在平直铁路上运行,由于调度失误,在后面600 m 处有一列快车以72 km/h 的速度向它靠近.快车司机发觉后立即合上制动器,但快车要滑行2000 m 才停止.试判断两车是否会相碰7.一列火车以v 1的速度直线行驶,司机忽然发现在正前方同一轨道上距车为s 处有另一辆火车正沿着同一方向以较小速度v 2做匀速运动,于是他立即刹车,为使两车不致相撞,则a 应满足什么8.A 、B 两车沿同一直线向同一方向运动,A 车的速度v A =4 m/s,B 车的速度v B =10 m/s.当B 车运动至A 车前方7 m 处时,B 车以a =2 m/s 2的加速度开始做匀减速运动,从该时刻开始计时,则A 车追上B 车需要多长时间?在A 车追上B 车之前,二者之间的最大距离是多少?9.从同一地点以30 m/s 的速度先后竖直上抛两个物体,抛出时间相差2 s,不计空气阻力,两物体将在何处何时相遇? 10.汽车正以10 m/s 的速度在平直公路上匀速直线运动,突然发现正前方有一辆自行车以4 m/s 的速度同方向做匀速直线运动,汽车立即关闭油门,做加速度为6 m/s 2的匀减速运动,求汽车开始减速时,他们间距离为多大时恰好不相撞?参考答案1. 【答案】D【解析】首先应理解速度-时间图象中横轴和纵轴的物理含义,其次知道图线的斜率表示加速度的大小,图线及时间轴围成的面积表示该时间内通过的位移的大小.两图线的交点则表示某时刻两物体运动的速度相等.由图象可知,B 物体比A 物体早出发5 s ,故A 选项错;10 s 末A 、B 速度相等,故B 选项错;由于位移的数值等于图线及时间轴所围“面积”,所以前15 s 内B 的位移为150 m ,A 的位移为100 m ,故C 选项错;将图线延伸可得,前20 s 内A 的位移为225 m ,B 的位移为200 m ,故D 选项正确. 2.【答案】C【解析】υ—t 图像中,图像的斜率表示加速度,图线和时间轴所夹的面积表示位移.当两物体的速度相等时,距离最大.据此得出正确的答案为C 。
高中物理追击和相遇问题专题带答案.
专题:直线运动中的追击和相遇问题一、相遇和追击问题的实质研究的两物体能否在相同的时刻到达相同的空间位置的问题。
二、 解相遇和追击问题的关键画出物体运动的情景图,理清三大关系 (1)时间关系 :0t t t B A ±=(2)位移关系:0A B x x x =±(3)速度关系:两者速度相等。
它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。
三、追击、相遇问题的分析方法:A. 画出两个物体运动示意图,根据两个物体的运动性质,选择同一参照物,列出两个物体的位移方程;B. 找出两个物体在运动时间上的关系C. 找出两个物体在运动位移上的数量关系D. 联立方程求解.说明:追击问题中常用的临界条件:⑴速度小者追速度大者,追上前两个物体速度相等时,有最大距离;⑵速度大者减速追赶速度小者,追上前在两个物体速度相等时,有最小距离.即必须在此之前追上,否则就不能追上.四、典型例题分析:(一).匀加速运动追匀速运动的情况(开始时v 1< v 2):v 1< v 2时,两者距离变大;v 1= v 2时, 两者距离最大;v 1>v 2时,两者距离变小,相遇时满足x 1= x 2+Δx ,全程只相遇(即追上)一次。
【例1】一小汽车从静止开始以3m/s 2的加速度行驶,恰有一自行车以6m/s 的速度从车边匀速驶过.求:(1)小汽车从开动到追上自行车之前经过多长时间两者相距最远?此时距离是多少? (2)小汽车什么时候追上自行车,此时小汽车的速度是多少? 答案:(1) 2s 6m (2)12m/s(二).匀速运动追匀加速运动的情况(开始时v 1> v 2):v 1> v 2时,两者距离变小;v 1= v 2时,①若满足x 1< x 2+Δx ,则永远追不上,此时两者距离最近;②若满足x 1=x 2+Δx ,则恰能追上,全程只相遇一次;③若满足x 1> x 2+Δx ,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。
高中物理追击和相遇问题专题(含详解).
直线运动中的追及和相遇问题一、相遇和追及问题的实质研究的两物体能否在相同的时刻到达相同的空间位置的问题。
二、 解相遇和追及问题的关键1.画出物体运动的情景图2.理清三大关系(1)时间关系 :0t t t B A ±= (2)位移关系:0A B x x x =±(3)速度关系:v A=v B两者速度相等往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。
三、追及、相遇问题的分析方法: A. 画出两个物体运动示意图,根据两个物体的运动性质,选择同一参照物,列出两个物体的位移方程; B. 找出两个物体在运动时间上的关系 C. 找出两个物体在运动位移上的数量关系 D. 联立方程求解.说明:追及问题中常用的临界条件:⑴速度小者加速追速度大者,速度在接近,但距离在变大。
追上前两个物体速度相等时,有最大距离; ⑵速度大者减速追赶速度小者, 速度在接近,但距离在变小。
追上前在两个物体速度相等时,有最小距离.即必须在此之前追上,否则就不能追上. 四、典型例题分析:(一).匀加速运动追匀速运动的情况(开始时v 1< v 2): 1.当v 1< v 2时,两者距离变大; 2.当v 1= v 2时,两者距离最大;3.v 1>v 2时,两者距离变小,相遇时满足x 1= x 2+Δx ,全程只相遇(即追上)一次。
【例1】一小汽车从静止开始以3m/s 2的加速度行驶,恰有一自行车以6m/s 的速度从车边匀速驶过.求:(1)小汽车从开动到追上自行车之前经过多长时间两者相距最远?此时距离是多少? (2)小汽车什么时候追上自行车,此时小汽车的速度是多少?(二).匀速运动追匀加速运动的情况(开始时v 1> v 2): 1.当v 1> v 2时,两者距离变小;2.当v 1= v 2时,①若满足x 1< x 2+Δx ,则永远追不上,此时两者距离最近;②若满足x 1=x 2+Δx ,则恰能追上,全程只相遇一次; ③若满足x 1> x 2+Δx ,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理追击和相遇问题专题(含详解)第 2 页 共 17 页直线运动中的追及和相遇问题一、相遇和追及问题的实质研究的两物体能否在相同的时刻到达相同的空间位置的问题。
二、 解相遇和追及问题的关键1.画出物体运动的情景图2.理清三大关系(1)时间关系 :0t t t B A ±= (2)位移关系:0A B x x x =±(3)速度关系:v A =v B两者速度相等往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。
三、追及、相遇问题的分析方法:A. 画出两个物体运动示意图,根据两个物体的运动性质,选择同一参照物,列出两个物体的位移方程;B. 找出两个物体在运动时间上的关系C. 找出两个物体在运动位移上的数量关系D. 联立方程求解.说明:追及问题中常用的临界条件:⑴速度小者加速追速度大者,速度在接近,但距离在变大。
追上前两个物体速度相等时,有最大距离;⑵速度大者减速追赶速度小者, 速度在接近,但距离在变小。
追上前在两个物体速度相等时,有最小距离.即必须在此之前追上,否则就不能追上.四、典型例题分析:(一).匀加速运动追匀速运动的情况(开始时v1< v2):1.当v1< v2时,两者距离变大;2.当v1= v2时,两者距离最大;3.v1>v2时,两者距离变小,相遇时满足x1= x2+Δx,全程只相遇(即追上)一次。
【例1】一小汽车从静止开始以3m/s2的加速度行驶,恰有一自行车以6m/s的速度从车边匀速驶过.求:(1)小汽车从开动到追上自行车之前经过多长时间两者相距最远?此时距离是多少? (2)小汽车什么时候追上自行车,此时小汽车的速度是多少?(二).匀速运动追匀加速运动的情况(开始时v1>v2):1.当v1> v2时,两者距离变小;2.当v1=v2时,①若满足x1<x2+Δx,则永远追不上,第 3 页共 17 页此时两者距离最近;②若满足x1=x2+Δx,则恰能追上,全程只相遇一次;③若满足x1> x2+Δx,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。
【例2】一个步行者以6m/s的最大速率跑步去追赶被红灯阻停的公共汽车,当他距离公共汽车25m时,绿灯亮了,汽车以1m/s2的加速度匀加速启动前进,问:人能否追上汽车?若能追上,则追车过程中人共跑了多少距离?若不能追上,人和车最近距离为多少?(三).匀减速运动追匀速运动的情况(开始时v1>v2):1.当v1> v2时,两者距离变小;2.当v1=v2时,①若满足x1<x2+Δx,则永远追不上,此时两者距离最近;②若满足x1= x2+Δx,则恰能追上,全程只相遇一次;③若满足x1> x2+Δx,则后者撞上第 4 页共 17 页前者(或超越前者),此条件下理论上全程要相遇两次。
【例3】汽车正以10m/s的速度在平直公路上前进,突然发现正前方有一辆自行车以4m/s 的速度做同方向的匀速直线运动,汽车立即关闭油门做加速度大小为 6 m/s2的匀减速运动,汽车恰好不碰上自行车。
求关闭油门时汽车离自行车多远?(四).匀速运动追匀减速运动的情况(开始时v1<v2):1.当v1< v2时,两者距离变大;2.当v1= v2时,两者距离最远;3.当v1>v2时,两者距离变小,相遇时满足x1=x2+Δx,全程只相遇一次。
【例4】当汽车B在汽车A前方7m时,A正以v A=4m/s 的速度向前做匀速直线运动,而汽车B此时速度v B =10m/s,并关闭油门向前做匀减速直线运动,加速度大小为a=2m/s2。
此时开始计时,则A追上B需要的时间是多少?第 5 页共 17 页第 6 页 共 17 页针对训练:(课后作业:每天一个题。
做题时,可尝试用多种解法,如:一.公式法(推荐);二.图象法;三.极值法;四.相对运动法)1.现有一辆摩托车先由静止开始以2.5m/s2的加速度做匀加速运动,后以最大行驶速度25m/s 匀速行驶,追赶前方以15m/s 的速度同向匀速行驶的卡车。
已知摩托车开始运动时与卡车的距离为200m ,则:(1)追上卡车前二者相隔的最大距离是多少?(2)摩托车经过多少时间才能追上卡车?2.为了安全,在公路上行驶的汽车之间应保持必要的距离。
已知某高速公路的最高限速v =120km/h 。
假设前方车辆突然停止,后车司机从发现这一情况,经操纵刹车,到汽车开始减速所经历的时间(即反应时间)t =0.50s 。
刹车时汽车受到阻力的大小f 为汽车重力的0.40倍。
该高速公路上汽车间的距离s 至少应为多少?3.动车从A 站以210.5/a m s 的加速度匀加速度启动,当速度达到180km/h 时开始做匀速行驶,接近B 站以大小第 7 页 共 17 页为220.5/a m s =的加速度匀减速刹车,静止时恰好正点到达B 站。
某次,动车在A 站因故晚出发了3min ,以210.5/a m s =匀加速启动后,当速度达到216km/h 开始匀速运动,接近B 站以大小为220.5/a m s =的加速度匀减速刹车,静止时也恰好正点到达B 站。
求A ,B 两站间的距离。
4.一辆轿车违章超车,以108 km/h 的速度驶入左侧逆行道时,猛然发现正前方80 m 处一辆卡车正以72 km/h 的速度迎面驶来,两车司机同时刹车,刹车加速度大小都是10 m/s2,两司机的反应时间(即司机发现险情到实施刹车所经历的时间)都是Δt.试问Δt 是何数值,才能保证两车不相撞?5.一辆巡逻车最快能在10 s 内由静止加速到最大速度50 m/s ,并能保持这个速度匀速行驶,问该巡逻车在平直的高速公路上由静止追上前方2000 m 处正以35 m/s 的速度匀速行驶的汽车,至少需要多少时间?6.一辆值勤的警车停在公路边,当警员发现从他旁边以v=12m/s 的速度匀速行驶的货车有违章行为时,决定前去追赶。
经过t0=2s ,警车发动起来,以加速度a=2m/s2做匀加速运动,若警车最大速度可达vm=16m/s ,问:(1)在警车追上货车之前,两车间的最大距离是多少? (2)警车发动起来以后至少多长时间可以追上货车?7.平直的公路上,甲车匀速行驶,速度为10m/s,当它经过乙车处时,乙车从静止开始以a=1m/s2的加速度作匀加速运动,方向与甲车运动方向相同。
求(1)乙车追上甲车前,它们的最大距离?(2)乙车经过多长时间追上甲车?8.甲车以10 m/s的速度在平直的公路上匀速行驶,乙车以4 m/s的速度与甲车平行同向做匀速直线运动,甲车经过乙车旁边时开始以0.5 m/s2的加速度刹车,从甲车刹车开始计时,求:(1)乙车在追上甲车前,两车相距的最大距离;(2)乙车追上甲车所用的时间。
9.一辆值勤的警车停在公路边,当警员发现从他旁边以10 m/s的速度匀速行驶的货车严重超载时,决定前去追赶,经过5.5 s后警车发动起来,并以一定的加速度做匀加速运动,但警车行驶的最大速度是25m/s.警车发动后刚好用12 s的时间追上货车,问:(1)警车启动时的加速度多大?(2)警车在追赶货车的过程中,两车间的最大距离是多少?10.甲、乙两车在一条直线上沿相同方向运动,甲在乙第 8 页共 17 页第 9 页 共 17 页前56 m x =处,甲以初速度116 m/s v =、加速度大小为21 2 m/s a =匀减速刹车,乙以初速度2 4 m/s v =、加速度大小为221 m/s a =做匀加速运动,求: (1)乙车追上甲车前二者间的最大距离; (2)乙车追上甲车所需时间.11.一辆汽车在平直的公路上以20m/s的速度匀速行驶,其后1000m 处的摩托车要在起动后3分钟内追上汽车,若摩托车所能达到的最大速度为30m/s ,则它的加速度至少为多大?12.A 、B 两辆汽车在笔直的公路上同向行驶.当B 车在A 车前84m 处时,B 车速度为4 m/s ,且正以2 m/s2的加速度做匀加速运动;经过一段时间后,B 车加速度突然变为零.A 车一直以20 m/s 的速度做匀速运动,经过12s 后两车相遇.问B 车加速行驶的时间是多少?13.汽车以3 m/s2的加速度开始启动的瞬间,一辆以6 m/s 的速度沿同方向做匀速直线运动的自行车恰好从汽车的旁边通过.求:(1)汽车在追上自行车前多长时间与自行车相距最远? (2)汽车经多长时间追上自行车?14.客车以v = 20 m/s 的速度行驶,突然发现同轨道的第 10 页 共 17 页 正前方s = 120 m 处有一列货车正以v0 = 6m/s 的速度同向匀速前进,于是客车紧急刹车,若客车刹车的加速度大小为a = 1m/s2,做匀减速运动,问:(1)客车是否会与货车相撞?(2)若会相撞,则在什么时刻相撞?客车位移为多少?若不相撞,则客车与货车的最小距离为多少?15. A 、B 两列火车在同一轨道上同向行驶,A 车在前,速度vA=20m/s ,B 车在后,速度vB=30m/s 。
因大雾,能见度很低,B 车在距A 车750m 处才发现前方A 车,这时B 车立即刹车。
已知B 车在进行火车刹车测试时发现,若车以30m/s 的速度行驶时刹车后至少要前进1800m 才能停下,问:B 车刹车的最大加速度为多大?计算说明A 车若按原来速度前进,两车是否会相撞?能见度至少达到多少米时才能保证两辆火车不相撞?针对训练参考答案1.(1)由题意得摩托车匀加速运动最长时间s a v t m 011==,位移 m s m a v s m 0021252021=<==, 所以摩托车在达到最大速度之前没有追上卡车。
当追上卡车前二者速度相等时相距最大,设从开始经过t2时间速度相等,最大间距为Sm ,于是有匀v at =2,则:sa v t 62==匀最大间距mat t v s s m 24521)(2220=-+=匀(2)设从开始经t 时间摩托车追上卡车,则有t v s t t v av m m匀+=-+012)(2 解得 t=32.5s2.在反应时间内,汽车做匀速运动,运动的距离 s1=vt ① (2分)设刹车时汽车的加速度的大小为a ,汽车的质量为m ,有kmg =ma ② (2分) 自刹车到停下,汽车运动的距离222s a=v ③ (2分) 所求距离s=s1+s2=1.6×102m (或156m )3.从启动到速度达到v1 =180km/s =50m/s 时用时100s ,开始减速到静止B 站用时也为100s 。
匀速行驶时间设为t1 .由v----t 图可得: 11(2200)/2ABs v t =+ --------(1)第二次启动到速度达v2 =216km/s ,用时120s ,减速刹车到B 站用时仍为120s ,匀速行驶时间设为t2,则: 22(2240)/2ABs v t =+ ————(2)又两次均正点到达,则12200420t t +=+ ————-(3)由上面3式可解得 60ABs km = sAB 表示AB 间的距离4.设轿车行驶的速度为v1,卡车行驶的速度为v2, 则v1=108 km/h=30 m/s , v2=72 km/h=20 m/s ,在反应时间Δt 内两车行驶的距离分别为s1、s2,则 s1=v1Δt ① s2=v2Δt ②轿车、卡车刹车所通过的距离分别为s3、s4则s3=102302221⨯=a v m =45 m ③s4=202102222⨯=a v m =20 m ④ 为保证两车不相撞,必须s1+s2+s3+s4<80 m ⑤将①②③④代入⑤解得 Δt <0.3 s5.150s6.(1)当警车与货车速度相等时,两者距离最大。