超声波测距实验报告教材
超声波测距实验报告
![超声波测距实验报告](https://img.taocdn.com/s3/m/92bb992c30b765ce0508763231126edb6f1a76ae.png)
超声波测距实验报告1. 实验目的1.掌握超声波测距的基本原理;2.熟悉超声波测距仪器的使用;3.培养实验操作能力和数据处理能力。
2. 实验原理超声波测距是利用超声波在空气中的传播速度和反射原理,通过测量超声波发射和接收之间的时间间隔来计算被测物体与测距仪之间的距离。
超声波在空气中的传播速度约为 340 m/s。
3. 实验器材与步骤3.1 器材1.超声波测距仪;2.连接线;3.测量物体。
3.2 步骤1.连接超声波测距仪与电源;2.打开超声波测距仪,进行自检;3.将测量物体放置在合适的位置;4.调整超声波测距仪的测量范围;5.记录测量数据;6.分析数据,计算距离。
4. 实验数据与分析本实验共进行五次测量,记录数据如下:序号 | 测量距离(cm) | 误差(cm) |— | ———— | ——– |1 | 150.0 | 2.0 |2 | 152.5 | 1.5 |3 | 148.0 | 2.0 |4 | 151.0 | 1.0 |5 | 149.5 | 1.5 |平均距离 = (150.0 + 152.5 + 148.0 + 151.0 + 149.5) / 5 = 150.0 cm最大误差 = 2.0 cm最小误差 = 1.0 cm5. 实验总结本次实验掌握了超声波测距的基本原理和操作方法,通过对测量数据的分析,得出被测物体与测距仪之间的平均距离为 150.0 cm,最大误差为 2.0 cm,最小误差为 1.0 cm。
实验结果表明,超声波测距技术在实际应用中具有较高的准确性和可靠性。
6. 建议与改进1.在实验过程中,要确保测量物体与测距仪之间的距离在测距仪的测量范围内;2.提高实验操作技巧,减小人为误差;3.后续可以尝试使用不同类型的超声波测距仪进行实验,比较其性能和精度。
7. 实验拓展7.1 超声波测距的应用领域超声波测距技术广泛应用于工业、农业、医疗、交通、安防等领域,例如:1.工业领域:测量物体的尺寸、厚度、距离等;2.农业领域:测量土壤湿度、作物高度等;3.医疗领域:测量人体内部器官的距离、厚度等;4.交通领域:车辆测距、速度检测等;5.安防领域:监控设备、报警系统等。
超声测距模块实验报告
![超声测距模块实验报告](https://img.taocdn.com/s3/m/6e452e0db94ae45c3b3567ec102de2bd9605dee4.png)
一、实验目的1. 理解超声波测距的基本原理。
2. 掌握超声波测距模块的硬件连接与软件编程。
3. 学习使用超声波测距模块进行距离测量。
4. 了解超声波测距在实际应用中的优势与局限性。
二、实验原理超声波测距是利用超声波在介质中传播的速度和距离之间的关系来测量距离的一种方法。
当超声波发射器发出超声波时,它会遇到障碍物并反射回来。
通过测量发射和接收超声波之间的时间差,可以计算出障碍物与发射器之间的距离。
超声波在空气中的传播速度大约为340m/s。
设超声波发射器与接收器之间的距离为d,超声波从发射器传播到障碍物并返回所需的时间为t,则有:\[ d = \frac{v \times t}{2} \]其中,v为超声波在空气中的传播速度,t为超声波往返所需的时间。
三、实验设备1. 超声波测距模块HC-SR042. STM32单片机开发板3. 调试工具4. 电源5. 导线四、实验步骤1. 硬件连接(1)将超声波测距模块的VCC、GND、TRIG和ECHO引脚分别连接到STM32单片机的3.3V、GND、GPIO和中断引脚。
(2)将STM32单片机的电源和地连接到实验平台的电源。
2. 软件编程(1)编写STM32单片机的程序,用于控制超声波测距模块。
(2)程序主要包含以下功能:- 初始化GPIO和中断引脚;- 发送触发信号;- 读取回响信号;- 计算距离;- 显示距离。
(3)使用HAL库函数实现上述功能。
3. 调试与测试(1)将程序烧录到STM32单片机中。
(2)使用调试工具检查程序运行情况。
(3)调整超声波测距模块的位置,测试不同距离下的测量结果。
五、实验结果与分析1. 实验数据通过实验,得到以下数据:| 距离(cm) | 测量值(cm) || :--------: | :--------: || 10 | 9.8 || 20 | 19.7 || 30 | 29.6 || 40 | 39.5 || 50 | 49.4 |2. 数据分析实验结果表明,超声波测距模块的测量精度较高,误差在±1cm以内。
超声波雷达测距实训报告
![超声波雷达测距实训报告](https://img.taocdn.com/s3/m/bc8325b06394dd88d0d233d4b14e852458fb39fd.png)
一、实训目的本次实训旨在通过实际操作,了解超声波雷达测距的原理和实现方法,掌握超声波传感器的基本使用技巧,并学会利用STM32单片机进行数据处理和显示,从而完成一个简单的超声波雷达测距系统。
二、实训器材1. STM32F103单片机开发板2. HC-SR04超声波传感器模块3. OLED显示屏4. 连接线5. 电源三、实训原理超声波雷达测距的原理是利用超声波在空气中的传播速度来测量距离。
当超声波传感器发射超声波时,它会遇到障碍物后反射回来,通过测量超声波从发射到接收的时间差,可以计算出障碍物与传感器之间的距离。
四、实训步骤1. 硬件连接:- 将HC-SR04超声波传感器模块的两个引脚分别连接到STM32单片机的GPIO引脚。
- 将OLED显示屏的相应引脚连接到STM32单片机的SPI或I2C接口。
- 将电源连接到STM32单片机和超声波传感器模块。
2. 软件设计:- 编写STM32单片机的初始化程序,配置GPIO引脚、SPI/I2C接口等。
- 编写超声波传感器的控制程序,用于控制超声波传感器的发射和接收。
- 编写数据处理程序,用于计算超声波从发射到接收的时间差,从而得到距离值。
- 编写OLED显示屏的显示程序,用于显示距离值。
3. 程序实现:- 使用STM32 HAL库函数或直接操作寄存器来实现程序。
- 通过定时器中断来实现超声波传感器的时序控制。
- 使用查表法或直接计算法来实现距离值的转换。
4. 系统测试:- 将系统放置在测试环境中,调整测试距离,观察OLED显示屏上显示的距离值是否准确。
- 分析测试结果,找出系统误差的来源,并进行优化。
五、实训结果与分析1. 测试结果:- 在不同的测试距离下,OLED显示屏上显示的距离值与实际距离基本相符,说明系统具有较高的测量精度。
2. 误差分析:- 超声波在空气中的传播速度受温度、湿度等因素的影响,导致测距误差。
- 超声波传感器的响应时间存在一定的延迟,也会导致测距误差。
实训报告超声波测距仪
![实训报告超声波测距仪](https://img.taocdn.com/s3/m/2f3573805122aaea998fcc22bcd126fff7055db0.png)
一、实训目的本次实训旨在通过实际操作,掌握超声波测距仪的设计、制作和调试方法,了解超声波测距的原理和特点,提高动手能力和创新思维。
二、实训内容1. 超声波测距原理超声波测距仪是利用超声波的传播速度和反射原理进行距离测量的设备。
当超声波发射器发射超声波信号后,遇到障碍物会反射回来,接收器接收反射信号,通过计算超声波往返时间,即可得到距离。
2. 超声波测距仪设计(1)硬件设计本次实训所设计的超声波测距仪主要由以下模块组成:1)超声波发射模块:采用超声波发射器产生40kHz的超声波信号。
2)超声波接收模块:采用超声波接收器接收反射回来的超声波信号。
3)单片机模块:采用AT89S51单片机作为主控制器,负责控制超声波发射、接收、数据处理和显示。
4)显示模块:采用四位共阳数码管显示距离。
5)电源模块:采用稳压电源为整个系统供电。
(2)软件设计1)初始化:设置单片机工作状态,初始化各个模块。
2)超声波发射:单片机控制超声波发射器发射超声波信号。
3)超声波接收:单片机控制超声波接收器接收反射回来的超声波信号。
4)数据处理:计算超声波往返时间,根据超声波在空气中的传播速度,计算出距离。
5)显示:将计算出的距离显示在数码管上。
3. 超声波测距仪调试(1)硬件调试:检查各个模块的连接是否正确,确保电路正常工作。
(2)软件调试:编写程序,调试单片机控制程序,使超声波测距仪能够正常工作。
三、实训过程1. 硬件制作(1)按照电路图连接各个模块,焊接电路板。
(2)组装超声波发射器、接收器和数码管。
2. 软件编写(1)根据超声波测距原理,编写程序实现超声波发射、接收、数据处理和显示功能。
(2)调试程序,确保超声波测距仪能够正常工作。
3. 调试与测试(1)检查电路连接是否正确,确保电路正常工作。
(2)调试单片机控制程序,使超声波测距仪能够正常工作。
(3)进行实际测量,测试超声波测距仪的测量精度和稳定性。
四、实训结果与分析1. 测量精度通过实际测量,超声波测距仪的测量精度在1厘米以内,满足日常使用要求。
超声波测距实验报告
![超声波测距实验报告](https://img.taocdn.com/s3/m/87b1896aeefdc8d376ee32f6.png)
目录1、课题设计的目的和意义 (3)2、课题要求 (3)2.1、基本功能要求 (3)2.2、提高要求 (4)3、重要器件功能介绍 (4)3.1、CX20106A红外线发射接收专用芯片 (4)3.2、AT89C51系列单片机的功能特点 (5)3.3、ISD1700优质语音录放电路 (6)4、超声波测距原理 (8)4.1、超声波测距原理图 (8)4.2、超声波测距的基本原理 (9)5、硬件系统设计 (10)5.1、超声波发射单元 (10)5.2、超声波接收单元 (11)5.3、显示单元 (11)5.4、语音单元 (12)5.5、硬件设计中遇到的难题: (12)6、系统软件设计 (14)7、调试与分析 (15)7.1调试 (15)7.2误差分析 (15)8、总结 (16)9、附件 (17)9.1、总电路 (17)9.2、主要程序 (18)10、参考文献 (22)1课题设计的目的及意义随着科学技术的快速发展,超声波在测距仪中的应用越来越广,但就目前技术水平而言,人们可以利用的测距技术还十分有限,因此,这是一个正在蓬勃发展而又有无限前景的技术及产业领域。
展望未来,超声波测距作为一种新型的非常重要有用的工具在各方面都有很大的发展空间,它将朝着更加高定位高精度的方向发展,以满足日益发展的社会需求。
如声纳的发展趋势:研究具体的高定位精度的被动测距声纳,以满足军事和渔业等的发展需求,实现远程的被动探测和识别。
毋庸置疑,未来的超声波测距仪将与自动化智能化接轨,与其他的测距仪集成和融合,形成多测距仪。
超声波测距在某些场合有着显著的优点,因为这种方法是利用计算超声波在被测物体和超声波探头之间的传输来测量距离的,因此它是一种非接触式的测量,所以他就能够在某些场合或环境比较恶劣的环境下使用。
比如测有毒或者有腐蚀性化学物质的液面高度或者高速公路上快速行驶汽车之间的距离。
随着测距仪的技术进步,测距仪将从具有单纯判断功能发展到具有学习功能,最注重发展到具有创造力。
超声波测距 实验报告
![超声波测距 实验报告](https://img.taocdn.com/s3/m/302a71c30c22590102029d2e.png)
Q1
40106
图 6
7490 芯片的时钟接前一位的 Q3。最低位 7490 芯片的时钟接 17kHz TTL 方波(由信号 发生器提供)和闸门波形相与(或者相与非)的结果。闸门波形由下图所示的电路产生:
1 发(Q1)
D
SET
Q
Q3
CLR
Q
收
图 7
4、报警电路。
图 8
此部分的功能是通过存储器(用 74161 芯片)保存计数值,在报警时间(如图 8)内用 组合逻辑电路对计数值进行比较。若计数值小于 30(cm) (且小于存储器中的值) ,则利用
实验日期 2010-7-13~2010-7-15
实验室
222
座位号
23
清华大学电子工程系
电子技术课程设计 实验报告
超声波测距系统
班级 无 82 学号 2008011098 姓名 刘硕 交报告日期 2010-7-17
【实验任务】
1. 测量距离不小于 0.5m 米,数字显示,动态更新测量结果,更新时间约 1 秒。测量精 度优于 0.05m,显示精度 0.01m。 2.测量距离不小于 1.0m 米,数字显示,动态更新测量结果,更新时间约 1 秒。测量精 度优于 0.01m,显示精度 0.01m 3.测量距离不小于 2.0m 米,数字显示,动态更新测量结果,更新时间约 1 秒。测量精 度优于 0.01m,显示精度 0.01m 距离小于 0.3m 时,用蜂鸣片发出间歇式的“嘀一嘀”声响报 警。 4*.显示无跳动、闪烁,距离小于 0.3m 且距离变近时,用蜂鸣片发出间歇式的“嘀一嘀” 声响报警。
Ix<30cm Q3 BDC
图 10
实现距离小于 30cm 且距离变近报警的电路:
超声波测距仪实训报告
![超声波测距仪实训报告](https://img.taocdn.com/s3/m/0ca254756fdb6f1aff00bed5b9f3f90f76c64da6.png)
超声波测距仪实训报告一、实训目的本次实训的目的是通过设计和制作超声波测距仪,深入了解超声波测距的原理和应用,掌握相关的电子电路设计、焊接、调试和编程技能,提高实际动手能力和问题解决能力。
二、实训原理超声波测距的原理是利用超声波在空气中的传播速度和往返时间来计算距离。
超声波发生器发射出一定频率的超声波,当遇到障碍物时会反射回来,被超声波接收器接收。
通过测量发射和接收的时间差,再根据超声波在空气中的传播速度(约 340 米/秒),就可以计算出障碍物与测距仪之间的距离。
计算公式为:距离=(传播速度 ×时间差)/ 2三、实训设备和材料1、超声波传感器模块(HCSR04)2、单片机开发板(如 STM32、Arduino 等)3、面包板、杜邦线4、电阻、电容等电子元件5、示波器、万用表6、电脑及编程软件四、实训步骤1、硬件电路设计将超声波传感器模块与单片机开发板连接,根据模块的引脚定义和开发板的接口,使用杜邦线进行连接。
连接电源和地,确保电路的供电正常。
2、软件编程选择相应的编程环境,如 Arduino IDE 或 Keil 等。
编写控制程序,实现超声波的发射和接收,并计算距离。
通过串口将测量的距离数据发送到电脑上进行显示。
3、电路焊接与调试如果需要制作永久性的电路,可以将元器件焊接在电路板上。
使用示波器和万用表检查电路的工作状态,确保信号的正常传输。
4、系统测试将制作好的超声波测距仪放置在不同的距离处,测量并记录数据。
分析测量结果的准确性和稳定性,对系统进行优化和改进。
五、遇到的问题及解决方法1、信号干扰在实际测量中,发现测量结果有时会出现较大的误差,经过检查发现是由于周围环境中的电磁干扰导致的。
解决方法是增加滤波电容,提高电路的抗干扰能力。
2、测量范围有限超声波测距仪的测量范围受到传感器性能和环境因素的影响。
为了扩大测量范围,尝试调整发射功率和接收灵敏度,但效果不明显。
最终通过更换性能更好的超声波传感器模块解决了问题。
超声波测距实习报告
![超声波测距实习报告](https://img.taocdn.com/s3/m/ccb66e41c381e53a580216fc700abb68a882ad15.png)
一、实习背景随着科技的不断发展,超声波测距技术逐渐在各个领域得到广泛应用。
为了提高自身实践能力,了解超声波测距技术在实际应用中的原理和操作,我参加了本次超声波测距实习。
二、实习目的1. 了解超声波测距的基本原理及工作流程;2. 掌握超声波测距仪的使用方法及注意事项;3. 培养动手能力和团队合作精神;4. 提高对超声波测距技术在实际应用中的认识。
三、实习内容1. 超声波测距原理及工作流程超声波测距是利用超声波在介质中传播的速度和反射原理来测量距离的一种技术。
当超声波发射器发出超声波后,在遇到障碍物时,部分超声波会被反射回来。
通过测量发射超声波和接收反射超声波之间的时间差,可以计算出障碍物与测距仪之间的距离。
超声波测距工作流程如下:(1)发射器发射超声波;(2)超声波遇到障碍物后反射回来;(3)接收器接收反射回来的超声波;(4)计算发射和接收之间的时间差;(5)根据超声波在介质中的传播速度,计算出障碍物与测距仪之间的距离。
2. 超声波测距仪的使用方法及注意事项(1)使用前,确保超声波测距仪的电源充足,避免因电量不足导致测量误差;(2)将测距仪放置在平稳的表面上,避免因震动导致测量误差;(3)调整测距仪的量程,使其适应被测物体的距离;(4)根据需要,调整测距仪的发射角度,确保超声波能够有效传播;(5)在测量过程中,避免测距仪受到其他信号的干扰;(6)测量完成后,关闭测距仪,确保设备安全。
3. 实际操作在实习过程中,我们使用超声波测距仪对实验室内的物体进行了测量。
具体操作如下:(1)将测距仪放置在平稳的桌面上;(2)调整测距仪的量程,使其适应被测物体的距离;(3)调整测距仪的发射角度,确保超声波能够有效传播;(4)按下测距仪的测量按钮,开始测量;(5)观察测距仪的显示屏,读取测量结果;(6)重复以上步骤,对多个物体进行测量。
四、实习心得通过本次超声波测距实习,我深刻认识到以下几方面:1. 超声波测距技术在实际应用中的重要性;2. 掌握超声波测距仪的使用方法及注意事项对于提高测量精度至关重要;3. 动手能力在实践过程中得到了锻炼,为今后的工作积累了宝贵经验;4. 团队合作精神在实习过程中得到了体现,为今后的团队协作打下了基础。
超声波测距实验报告
![超声波测距实验报告](https://img.taocdn.com/s3/m/150b3237a36925c52cc58bd63186bceb19e8edae.png)
超声波测距模块工作原理
超声波发射器发射 一组超声波脉冲
脉冲遇到物体后反 射回来
超声波接收器接收 反射回来的脉冲
通过计算发射和接 收脉冲之间的时间 差,得到物体与传 感器之间的距离
编写Arduino程序,控制 超声波传感器发送和接收 信号
连接Arduino板与电脑, 上传程序并运行
调整超声波传感器的角度 和位置,确保测量距离准 确
开始测量
准备超声波传感器和Arduino板 连接超声波传感器和Arduino板 编写程序,设置触发和接收引脚 启动Arduino板,开始测量距离
数据记录和处理
添加标题
添加标题
添加标题
添加标题
拓展应用场景:将超声波测距技术 应用于更多领域,如自动驾驶、智 能机器人等。
降低成本:通过优化设计和生产工艺, 降低超声波传感器和测距系统的成本, 使其更广泛地应用于各种领域。
感谢您的观看
汇报人:XX
实验步骤
准备实验器材
超声波传感器 添加标题
连接线 添加标题
添加标题 Arduino开发板
添加标题 面包板
跳线 添加标题
测量工具 添加标题
添加标题 电脑和软件
添加标题 实验环境
搭建实验装置
准备超声波传感器、 Arduino板、面包板、跳 线等材料
连接超声波传感器与 Arduino板的引脚
连接Arduino板与面包板 的引脚
学会使用超声波传感器进行距离测 量
学会分析实验数据,得出结论
掌握数据处理和分析技巧
学习如何使用超声波传感器进行距 离测量
超声波测距报警器实验报告
![超声波测距报警器实验报告](https://img.taocdn.com/s3/m/425caa8df9c75fbfc77da26925c52cc58bd690f5.png)
超声波测距报警器实验报告一、实验目的本实验旨在设计并实现一个基于超声波的测距报警器,通过测量物体与传感器之间的距离,当距离小于设定的阈值时,触发报警装置,以实现对特定区域的距离监测和预警功能。
二、实验原理超声波测距是通过测量超声波在空气中的传播时间来计算距离的。
超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,碰到障碍物后反射回来,接收器收到反射波就立即停止计时。
已知超声波在空气中的传播速度为 340 米/秒,根据计时器记录的时间 t,就可以计算出发射点距障碍物的距离 s,计算公式为:s = 340t/2 。
三、实验设备与材料1、超声波传感器模块(包括发射器和接收器)2、微控制器(如 Arduino 开发板)3、蜂鸣器4、显示屏(用于显示测量距离)5、杜邦线若干6、电源(如电池盒或 USB 电源)四、实验步骤1、硬件连接将超声波传感器的 VCC 引脚连接到电源的正极端,GND 引脚连接到电源的负极端。
将超声波传感器的 Trig 引脚连接到微控制器的数字输出引脚,Echo 引脚连接到微控制器的数字输入引脚。
将蜂鸣器的正极连接到微控制器的数字输出引脚,负极连接到电源的负极端。
将显示屏连接到微控制器的相应引脚。
2、软件编程使用 Arduino 开发环境编写控制程序。
首先,设置微控制器的引脚模式,包括输入和输出引脚。
然后,在主循环中,通过向 Trig 引脚发送一个短脉冲来触发超声波传感器发送超声波。
等待 Echo 引脚变为高电平,开始计时;当 Echo 引脚变为低电平时,停止计时,并根据时间计算距离。
将计算得到的距离与设定的阈值进行比较,如果小于阈值,驱动蜂鸣器报警,并在显示屏上显示距离和报警信息。
3、调试与测试编译并上传程序到微控制器。
进行实物测试,逐步调整传感器的位置和方向,以及阈值的大小,观察报警效果和距离测量的准确性。
五、实验结果与分析1、距离测量结果在不同距离下进行多次测量,记录测量值。
超声波测距实验报告
![超声波测距实验报告](https://img.taocdn.com/s3/m/c44cdbd9a0c7aa00b52acfc789eb172ded63991b.png)
超声波测距系统实物设计报告一.设计要求1.测量距离不小于0.3米,数字显示清晰,无数字叠加,动态显示测量结果,更新时间约为0.5秒左右。
2.测量精度优于0.1米,显示精度0.01米。
3.距离小于0.3米时,蜂鸣器发出”嘀嘀”报警。
4.测量距离超过1.0米时,指示灯显示超量程。
二.系统设计思路1.原理框图2.系统组成模块(一)(一)40KHZ 40KHZ 方波产生电路1、分析:利用555定时器组成的多谐振荡器作为时钟信号的产生电路,通过理论计算加上微调电阻和电容的值,得到所需频率的矩形波,当R2远大于R1时,矩形波的占空比接近50%50%,可近似为方波。
,可近似为方波。
超声波振荡器控制门超声波放大器闸门CP 信号(2Hz )计数开启清零计数超声波放大滤波正弦波前沿检测超声波接收器超量程灯光显示小于0.3米蜂鸣报计数显示电路反射物超声波发射器17KHzCP 2、单元电路如下图;3、参数计算:4、仿真结果:(二)(二)2Hz 2Hz 时钟信号发生电路:时钟信号发生电路:1、分析:利用555定时器组成的多谐振荡器作为时钟信号的产生电路,定时器组成的多谐振荡器作为时钟信号的产生电路,通过通过理论计算加上调整电阻和电容的值,得到所需频率的矩形波。
其中占空比在70%70%以上。
以上。
以上。
2、单元电路如下所示:参数计算:R1=710K 欧,R2=375欧,C1=1微F (三)17kHz 时钟信号发生电路:时钟信号发生电路:1、分析:利用555定时器组成的多谐振荡器作为时钟信号的产生电路,定时器组成的多谐振荡器作为时钟信号的产生电路,通过通过理论计算加上调整电阻和电容的值,得到所需频率的矩形波。
理论计算加上调整电阻和电容的值,得到所需频率的矩形波。
2、单元电路如下所示:3、参数计算:R1=1K 欧,R2=395欧,C5=47nf ;4、仿真5、功能:数字显示的测量结果要求动态更新时间约0.5秒左右,所以要求一个频率约2Hz 的时钟信号来控制刷新数据,保证结果显示稳定不闪烁。
超声波测距仪实验报告
![超声波测距仪实验报告](https://img.taocdn.com/s3/m/a1fc098610661ed9ac51f386.png)
课题名称:超声波测距仪班级:应用电子0901:吴星超学号:0503090128指导老师:文博前言随着人类社会从工业化社会到信息化社会的发展,视觉传达设计经历了商业美术、工艺美术、印刷美术设计、装潢设计、平面设计等几大阶段的演变,最终成为以视觉媒介为载体,利用视觉符号表现并传达信息的设计。
对于每一位“为传达而设计”的设计者来说,如何正确、充分地传达信息是我们始终要面临的中心问题。
但是,在当今社会,由于科技的进步,社会环境和社会秩序的更新,各种视觉媒介的充斥,影响着人们的思维、观念和感情,仅仅把传达信息的关键词定位于正确和充分显然是不够的。
鉴于时代的要求与设计本质的要求,必须要把视觉传达设计的创新重视起来,以创新为前提充分准确地传达信息。
设计界存在着大量的抄袭、模仿之作,使得设计活动成为一种程式。
比如一说到大学标志,就等于是篆书外加一个圆托印章;一谈到VIS设计,便是大量相同的模版拷贝;一说到数码的视觉符号,就是一大堆蚂蚁般的“1”+“0”;一谈到商品的广告,就是戴眼镜的博士或美女的推荐代言等等。
人们无时无刻都被这些“东施效颦”的设计所侵犯和骚扰,这些设计给我们带来了视觉污染,人们不禁要问:设计究竟怎么了?面对这些,我们每一个设计师都责无旁贷。
现在该是大力宣扬“设计创新”的时候了,因为这个时代比以往任何时期都更需要清晰而独创的视觉传达设计。
那么,视觉传达设计的创新究竟体现在哪些方面?目录一、超声波测距仪的制作 (3)1.1 超声波测距的原理 (3)1.2 超声测距仪的硬件电路 (5)1.2.1回流信号放大电路 (5)1.2.2 信号检波电路 (6)1.3超声波测距程序设计 (7)二、总结: (20)三、参考文献 (20)一、超声波测距仪的制作1.1 超声波测距的原理根据相关的物理学知识,声音在介质中如空气和石头中传播时,其衰减特性与其频率相关,频率越高越不容易衰减,相应地其传播距离越远。
当声音的频率在20KHz以上的围时,超出了人耳的听觉围,变成了超声波,可以传播较远的距离而不衰减,且其本身的信号频率特性不容易受环境噪音的干扰。
课程设计实验报告-超声波测距仪的设计
![课程设计实验报告-超声波测距仪的设计](https://img.taocdn.com/s3/m/91eed7795acfa1c7aa00cca2.png)
西安邮电大学单片机课程设计报告书题目:超声波测距仪的设计院系名称自动化学院朱敏(06)李蕊蕊(12)朱奇峰(18)学生姓名周腾(19)但莉(22)专业名称测控技术与仪器班级测控0901班时间2012年 5 月 21 日至 6 月3 日超声波测距仪的设计一、设计目的本设计利用超声波传输中距离与时间的关系,采用STC51单片机进行控制和数据处理,设计出能够精确测量两点间距离的超声波测距仪。
同时了解单片机各脚的功能,工作方式,计数/定时,I/O口的相关原理,并巩固学习单片机的相关内容知识。
二、设计要求1.设计一个超声波测距仪,能够用四段数码管准确显示所测距离2.精度小于1CM,测量距离大于200CM三、设计器材元器件数量STC51单片机 1个超声波测距模块URF-04 1个电阻(1K 200 4.7K) 3 个晶振(12MHz) 1 个共阳极四位数码管 1 个极性电容(33pF) 2 个非极性电容(22uF) 1 个四、超声波测距系统原理在超声探测电路中,发射端得到输出脉冲为一系列方波,其宽度为发射超声的时间间隔,被测物距离越大,脉冲宽度越大,输出脉冲个数与被测距离成正比。
超声测距大致有以下方法:①取输出脉冲的平均值电压,该电压(其幅值基本固定)与距离成正比,测量电压即可测得距离;②测量输出脉冲的宽度,即发射超声波与接收超声波的时间间隔t,故被测距离为S=1/2vt。
本测量电路采用第二种方案。
由于超声波的声速与温度有关,如果温度变化不大,则可认为声速基本不变。
如果测距精度要求很高,则应通过温度补偿的方法加以校正。
超声波测距适用于高精度的中长距离测量。
因为超声波在标准空气中的传播速度为331.45米/秒,由单片机负责计时,单片机使用12.0M晶振,所以此系统的测量精度理论上可以达到毫米级。
超声波测距的算法设计: 超声波在空气中传播速度为每秒钟340米(15℃时)。
X2是声波返回的时刻,X1是声波发声的时刻,X2-X1得出的是一个时间差的绝对值,假定X2-X1=0.03S,则有340m×0.03S=10.2m。
超声波测距实验报告
![超声波测距实验报告](https://img.taocdn.com/s3/m/a99b4537f56527d3240c844769eae009581ba2eb.png)
超声波测距实验报告超声波测距实验报告引言:超声波测距是一种常见的测量技术,广泛应用于工业、医学和科学研究领域。
通过发射超声波并测量其返回时间,我们可以计算出被测物体与传感器之间的距离。
本实验旨在探究超声波测距的原理和应用,并通过实际操作验证其可靠性和准确性。
实验步骤:1. 实验器材准备:超声波传感器、数字示波器、计算机等。
2. 连接电路:将超声波传感器与数字示波器和计算机相连。
3. 设置参数:根据实验要求,设置传感器的工作频率和测量范围。
4. 发射超声波:通过控制电路,使传感器发射超声波信号。
5. 接收信号:传感器接收到返回的超声波信号,并将其转换为电信号。
6. 数据处理:将接收到的信号传输到计算机,并使用相应的软件进行数据处理和分析。
7. 计算距离:根据超声波的传播速度和返回时间,计算被测物体与传感器之间的距离。
实验结果:经过多次实验,我们得到了一系列距离数据,并进行了统计和分析。
结果表明,超声波测距的准确性较高,误差在合理范围内。
同时,我们还观察到在不同环境条件下,超声波的传播和测量结果可能会受到一定的影响。
例如,声波在空气中的传播速度与温度和湿度有关,因此在不同的环境下,需要进行相应的修正。
实验讨论:超声波测距技术在许多领域中都有广泛应用。
在工业领域,它可以用于测量物体的距离、检测障碍物并进行避障等。
在医学领域,超声波测距被应用于超声诊断、医学成像等。
此外,超声波测距还可以用于地震勘探、水下探测等科学研究领域。
然而,超声波测距也存在一些局限性。
首先,超声波在传播过程中会受到物体的吸收、散射和衍射等影响,从而导致信号衰减和失真。
其次,超声波的传播速度与介质的性质和温度有关,因此在不同的介质中,需要进行相应的修正和校准。
此外,超声波测距还受到传感器的分辨率和灵敏度等因素的限制,影响了其测量的精确度。
结论:通过本次实验,我们深入了解了超声波测距的原理和应用。
实验结果表明,超声波测距是一种准确可靠的测量技术,具有广泛的应用前景。
超声波测距
![超声波测距](https://img.taocdn.com/s3/m/c3abd0fdc8d376eeaeaa319b.png)
超声波测距仪实训报告姓名:学号:一、题目要求;1.使用超声波传感器测量距离。
2.测量精度到达0.1米。
3.通过设计制作来更好地理解超声波传感器和51单片机的工作原理与实际应用。
二、方案设计;首先利用单片机输出一个40KHZ的信号,把信号引入到与超声波发射器相连的信号引脚上,再由超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物返回,超声波接收器收到反射波就立即停止计时。
超声波接收器再通过一个解码器,当无信号返回时解码器输出高电平,当有信号返回时解码器输出低电平。
超声波在空气中的传播速度为340m/s,根据计时器记录的时间t,就可以计算出发射点距障碍物的距离,即:S=VT/2。
最后使用共阳7段数码管动态显示出测量距离。
三、硬件设计与实现;1、at89s51单片机最小系统超声波测距仪首先必须输出一个40KHZ的信号,所以可以利用单片机最小系统,使其中1脚输出40KHZ的高低电平信号。
单片机的最小系统包括:时钟振荡电路、复位电路、电源电路、程序储存控制电路。
时钟振荡电路必须在XTAL1和XTAL2之间跨接晶体振荡器和微调电容,晶体振荡器常用12M,电容用30pf;复位电路包括上电复位与按键复位,可利用电容充电与按下按键来实现复位功能,电容使用电解电容22uf,电阻1K。
程序储存控制由内部启动,所以直接接入5V高电平。
2. 超声波发射电路由于电片机输出的电流较小,远远不能启动超声波发射器,所以发射电路最主要的是需要1个驱动电路将40KHZ的信号输给T/R40超声波发射器。
常用3个反向器既可,可是由于自己对三极管驱动电路较为了解,用三极管的成本又较低,所以在刚开始选择了使用三极管驱动电路。
三极管使用9012的PNP管。
发射极接入电源,基极通过电阻与单片机的频率输出脚相连,集电极连接1个电阻后接地,当基极接受到单片机输出的一个微小的电流时,集电极就能输出1个其100倍的电流。
超声波测距器实验报告
![超声波测距器实验报告](https://img.taocdn.com/s3/m/f112f91c227916888486d7d4.png)
超声波测距器的设计设计说明:超声波测距器可应用于汽车倒车、建筑施工工地以及一些工业现场的位置监控,也可用于,如液位、井深、管道长度、物体厚度等的测量。
也有很多方法可以测量,这里用超声波设计一个测距器,实现距离的测量。
1、基本部分a)测量电阻范围:0.10—3.00mb)测量精度:1cmc)测量时与被测物体无直接接触,能够清晰、稳定的显示测量结果。
2、发挥部分a)可以根据温度的不同,导致的速度的不同,用不同的速度测量距离。
摘要:本文介绍了基于AT89C52单片机的超声波测距器。
通过DS18B20数字温度测量仪测出当前的室温,送入单片机,单片机经过对比,进而得出用哪个档进行测量,单片机和发射电路发射出超声波,超声波遇到障碍物,反射回来,在经过接收电路接收,送入单片机,单片机经过计算,得出距离,并在数码管上显示出距离。
测量精度高达±0.5%,并且显示稳定的4位有效数字。
不仅测量简便,读数直观,且测量精度、分辨率较高。
关键词:单片机;DS18B20;CX20106A;TCT40-10F1;TCT40-10S1一、系统设计1、模块方案比较与论证由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量。
利用超声波检测距离设计比较方便,计算处理也较简单,并且在测量精度方面也能达到日常使用的要求。
超声波发生器可以分为两大类:一类是用电器方式产生超声波;另一类是用机械方式产生超声波。
根据设计要求并综合各方面因素,本次决定采用AT89C51单片机作为主控制器,用动态扫描法实现LED数字显示,超声波驱动信号用单片机的定时器完成,本系统的总方框图如图(1)所示:为较好的实现各模块的功能,我们分别设计了几种方案并分别进行了论证。
1.1单片机系统及显示电路单片机采用89C51或其兼容系列。
系统采用12MH最高精度的精度,以获得较稳定的时钟频率,并减小测量误差。
单片机用P1.0端口输出超声波换能器所需的40kHz方波信号,利用外中断0口检测超声波接收电路输出的返回信号。
超声波测距实训报告
![超声波测距实训报告](https://img.taocdn.com/s3/m/dd35c9c4c9d376eeaeaad1f34693daef5ef71368.png)
超声波测距实训报告
超声波测距实训报告
一、实验目的
1. 掌握超声波测距的原理和方法;
2. 学习使用超声波模块进行测距;
3. 验证超声波测距的准确性和可靠性。
二、实验原理
超声波测距原理是利用超声波传播速度较快、能够穿透介质的特性来测量距离的一种方法。
通过发射超声波信号并接收回波信号,根据信号的往返时间来计算距离。
超声波模块一般由超声波传感器和控制电路组成。
超声波传感器会发射一束超声波信号,并接收回波信号。
控制电路会计算信号往返时间,并转换为距离值。
三、实验步骤
1. 将超声波模块与Arduino主板通过引脚连接;
2. 在Arduino上编写程序,设置超声波模块的引脚模式,并读取距离值;
3. 将Arduino通过USB线连接到电脑上,并上传程序;
4. 打开串口监视器,观察并记录测得的距离值;
5. 移动障碍物,再次记录距离值,并与实际距离进行对比。
四、实验数据
实验中我们测得的距离值如下:
实际距离(cm)测得距离(cm)
10 9.8
20 19.6
30 29.4
五、实验结果分析
通过实验数据可以看出,超声波测距的结果与实际距离十分接近,测距精度较高。
但是由于超声波信号的传播受到环境影响,如空气温度、湿度等,可能会有一定的误差。
同时,超声波测距的有效范围也受限于传感器的特性。
六、实验结论
通过本次实验,我们成功掌握了超声波测距的原理和方法,并验证了其准确性和可靠性。
超声波测距在实际应用中具有较高的测量精度和稳定性,广泛用于物体检测、避障等领域。
超声测距实验报告
![超声测距实验报告](https://img.taocdn.com/s3/m/dad0639c760bf78a6529647d27284b73f342360a.png)
超声测距实验报告一、实验目的本次超声测距实验的目的是利用超声波的特性来测量物体之间的距离,并通过实验数据分析和处理,了解超声测距的原理、误差来源以及提高测量精度的方法。
二、实验原理超声波是一种频率高于 20kHz 的机械波,其在空气中的传播速度约为 340m/s。
超声测距的原理是通过发射超声波脉冲,并测量从发射到接收反射波的时间间隔,根据时间与速度的关系计算出距离。
具体计算公式为:距离=(超声波传播时间 ×超声波传播速度)/ 2 。
三、实验设备与材料1、超声波发射与接收模块2、微控制器(如 Arduino 或 STM32)3、显示模块(如液晶显示屏或数码管)4、电源5、反射物体(如平面板、障碍物等)四、实验步骤1、硬件连接将超声波发射与接收模块与微控制器连接,确保连接正确无误。
连接显示模块,以便实时显示测量的距离值。
接通电源,为整个系统供电。
2、软件编程使用相应的编程语言(如 C 或 Python)编写控制程序,实现超声波的发射、接收以及时间测量和距离计算。
对测量数据进行处理和滤波,以提高测量的稳定性和准确性。
3、实验环境设置选择一个相对空旷、无明显干扰的实验场地。
确定测量的起始点和目标反射物体的位置。
4、测量操作启动系统,开始发射超声波脉冲。
记录每次测量的时间间隔和计算得到的距离值。
改变反射物体的距离,进行多次测量。
五、实验数据记录与分析以下是部分实验数据记录:|测量次数|反射物体距离(m)|测量时间间隔(μs)|计算距离(m)|误差(m)|||||||| 1 | 100 | 5882 | 099 |-001 || 2 | 150 | 8823 | 149 |-001 || 3 | 200 | 11764 | 199 |-001 || 4 | 250 | 14705 | 249 |-001 || 5 | 300 | 17646 | 299 |-001 |通过对实验数据的分析,可以发现测量结果存在一定的误差。
设计超声波测距仪报告书非常详细
![设计超声波测距仪报告书非常详细](https://img.taocdn.com/s3/m/f96d01d850e2524de5187e73.png)
目录第一章绪论 (1)1.1 课题背景及意义 (1)1.2 国内外发展状况和需改进的地方 (1)第二章超声波测距原理 (4)2.1 超声波简介 (4)2.2 超声波传感器 (5)2.3 超声测距原理 (6)2.4 盲区处理 (8)第三章超声波测距系统硬件设计方案论证 (9)3.1 方案一 (9)3.2 方案二 (9)3.3 方案三 (10)3.4 方案确定 (10)第四章超声波测距系统硬件设计思路及调试 (12)4.1 设计要求 (12)4.2 超声波测距系统的结构框图 (12)4.3 各功能模块电路介绍 (13)4.3.1 超声波产生电路 (13)4.3.2 驱动电路模块 (14)4.3.3 接收放大电路模块 (15)4.3.4 峰值检波模块 (16)4.3.5 电压比较器模块 (17)4.3.6 电平转换模块 (18)4.3.7 温度测量模块 (19)4.3.8 键盘显示电路 (21)4.4 超声波测距系统硬件调试 (25)第五章超声波测距系统软件设计及调试 (27)5.1 超声波测距系统程序设计流程 (27)5.1.1 主程序设计流程 (27)5.1.2 距离计算流程 (28)5.2 软件调试 (29)第六章超声波测距系统最终调试 (30)第七章总结 (32)7.1 研究结论 (32)7.2 本系统的不足和需改进的地方 (32)参考文献 (33)致谢 (34)附录A 超声波测距系统硬件电路图 (34)附录B 超声波测距系统软件程序 (35)第一章绪论1.1 课题背景及意义利用超声波测量己知基准位置和目标物体表面之间距离的方法,称为超声波测距法。
利用超声波作为定位技术是蝙蝠等一些无目视能力的生物作为防御及捕捉猎物生存的手段,也就是由生物体发射不被人们听到的超声波(20kHz以上的机械波),借助空气媒质传播由被待捕捉的猎物或障碍物反射回来的时间间隔长短与被反射的超声波的强弱判断猎物性质或障碍位置的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子信息系统综合设计报告超声波测距仪目录摘要 (3)第一章绪论 (3)1.1 设计要求 (3)1.2 理论基础 (3)1.3 系统概述 (4)第二章方案论证 (4)2.1 系统控制模块 (5)2.2距离测量模块 (5)2.3 温度测量模块 (5)2.4 实时显示模块 (5)2.5 蜂鸣报警模块 (6)第三章硬件电路设计 (6)3.1 超声波收发电路 (6)3.2 温度测量电路 (7)3.3 显示电路 (8)3.4 蜂鸣器报警电路 (9)第四章软件设计 (10)第五章调试过程中遇到的问题及解决 (11)5.1 画PCB及制作 (11)5.2 焊接问题及解决 (11)5.3 软件调试 (11)实验总结 (12)附件 (13)元器件清单 (13)HC-SR04超声波测距模块说明书 (14)电路原理图 (16)PCB图 (16)程序 (17)摘要该系统是一个以单片机技术为核心,实现实时测量并显示距离的超声波测距系统。
系统主要由超声波收发模块、温度补偿电路、LED显示电路、CPU处理电路、蜂鸣器报警电路等5部分组成。
系统测量距离的原理是先通过单片机发出40KHz 方波串,然后检测超声波接收端是否接收到遇到障碍物反射的回波,同时测温装置检测环境温度。
单片机利用收到回波所用的时间和温度补偿得到的声速计算出距离,显示当前距离与温度,按照不同阈值进行蜂鸣报警。
由于超声波检测具有迅速、方便、计算简单、易于做到实时控制的特点,并且在测量精度方面能达到工业实用的要求,因此在生产生活中得到广泛的应用,例如超声波探伤、液位测量、汽车倒车雷达等。
关键词:超声波测距温度测量单片机 LED数码管显示蜂鸣报警第一章绪论1.1设计要求设计一个超声波测距仪,实现以下功能:(1)测量距离要求不低于2米;(2)测量精度±1cm;(3)超限蜂鸣器或语音报警。
1.2理论基础一、超声波传感器基础知识超声波传感器是利用晶体的压电效应和电致伸缩效应,将机械能与电能相互转换,并利用波的特性,实现对各种参量的测量。
超声波的传播速度与介质的密度和弹性特性有关,与环境条件也有关:在气体中,超声波的传播速度与气体种类、压力及温度有关,在空气中传播速度为C=331.5+0.607t/0C (m/s) 式中,t为环境温度,单位为0C.二、压电式超声波发生器原理压电式超声波发生器实际上是利用压电晶体的谐振来工作的。
它有两个压电晶片和一个共振板。
当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。
反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收器了。
三、超声波测距原理由于超声波指向性强,能量消耗缓慢,在空气中传播的距离较远,因而超声波经常用于距离的测量。
利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求。
超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。
超声波在空气中的传播速度为C,根据计时器记录的时间t,就可以计算出发射点距障碍物的距离(s),即:s=Ct/2 。
从上面超声波特性可以知道:超声波在空气中的传播速度与温度有关:C=331.5+0.607t/0C (m/s),如果温度变化不大,则可认为声速是基本不变的,典1.3系统概述超声波测距仪主要由超声波收发装置、单片机、测温装置、报警装置、LCD显示等组成。
系统检测距离的原理是通过单片机发出40 kHz的方波脉冲信号后,检测接收端是否能够接收到遇障碍物反射的回波,同时,测温装置检测环境温度。
单片机利用收到回波所用的时间和温度补偿得到的声速计算出距离,同时显示出当前距离与温度。
测量距离范围为2~250cm。
可测量温度范围为-30~150°C。
有温度与距离显示,误差小,精度高。
蜂鸣器预警和距离采样频率动态变化,距离越远,采样越慢。
图一系统框图第二章方案论证2.1系统控制模块控制器主要用于控制超声波起振脉冲的产生、对回波信号的处理、温度测量模块、蜂鸣报警以及显示模块的控制。
采用STC89C52 单片机作为系统控制器。
它的运算功能强,软件编程灵活,自由度大,可用软件编程实现各种算法和逻辑控制,并且功耗低,成本低,技术成熟。
其程序可以采用 C语言编写,可读性强,烧写程序容易,这大大加快了系统的开发与调试。
而且STC89C52有2个独立的定时器,两个独立的外部中断,正好可以达到我们的要求;IO足够,还可外拓功能(如进行报警器的接入)。
2.2距离测量模块采用超声波传感器测距。
由于超声波的波长短,超声波射线可以和光线一样,能够反射、折射、也能够聚焦,而且遵循几何光学上的定律,即超声波从一种物质表面反射时,反射角等于入射角。
超声波具有较好的指向性,频率越高,指向性越强,具有较高的分辨率,因而其测试精度也较其他方法高。
而且超声波传感器具有体积小,结构简单,信号处理可靠性高的特点,价格较便宜,成功案例较多,可行性很高。
这里选用HC-SR04超声波测距模块,该模块性能稳定,测度距离精确,超微型,只相当于两个发射、接收头的面积,无盲区,反应速度快(10ms的测量周期)。
2.3 温度测量模块方案一:采用热敏电阻。
热敏电阻体积小,使用方便,但是精度、重复性、可靠性较差,对于检测1摄氏度的信号是不适用的。
在温度测量系统中,采用单片温度传感器,比如AD590,LM35、TMP75等。
但这些芯片输出的都是模拟信号,必须经过A/D转换后才能送给计算机,这样就使得测温装置的结构较复杂。
方案二:采用数字温度芯片DS18B20测量温度。
测温范围是-55——+125摄氏度,固有测温分辨率是0.5摄氏度。
输出信号全数字化,便于单片机处理及控制,省去传统测温方法的很多外围电路。
且该芯片的物理化学性很稳定,线形较好,能很好地满足此次测温要求。
经过以上比较,决定采用方案二。
2.4 实时显示模块方案一:使用液晶显示屏显示。
液晶显示屏(LCD)具有轻薄短小、低耗电量、无辐射危险,平面直角显示及影像稳定不闪烁等优势,可视面积大,画面效果好,分辨率高,抗干扰能力强等特点。
但是由于只需要显示温度和距离,信息量较少而液晶显示占用的控制资源较多,切对外界环境要求高,不宜维护。
方案二:使用传统的数码管显示。
数码管的特点:低能耗、低损耗、寿命长,对外界环境要求低,易于维护,同时其精度比较高,称量快,操作简单。
数码管是采用BCD编码显示数字,程序编译容易,资源占用较少。
根据以上的论述,采用方案二。
2.5蜂鸣报警模块方案一:采用语音芯片ISD1420,WT588D系列等。
音质好,播报清晰,有较高的灵敏度,但是增加了硬件电路的复杂度,使得设计和焊接的难度加大。
而且对单片机和语音芯片的要求都比较高。
方案二:采用蜂鸣器报警。
在单片机的外围接一个蜂鸣器实现报警,而控制部分完全由单片机软件编程实现,使得设计变得更加简单,成本也更加低了。
根据上面的论述,拟定采取方案二。
第三章硬件电路设计硬件设计主要包括以下几个模块:超声波收发电路,蜂鸣器报警电路,温度测量电路,显示电路等。
以下是各个模块具体内容。
3.1 超声波收发电路HC-SR04超声波测距模块可提供 2cm-400cm的非接触式距离感测功能,测距精度可达高到 3mm;模块包括超声波发射器、接收器与控制电路。
基本工作原理:(1)采用IO 口TRIG 触发测距,给最少10us 的高电平信呈;(2)模块自动发送8 个40KHZ 的方波,自动检测是否有信号返回;(3)有信号返回,通过IO 口ECHO 输出一个高电平,高电平持续的时间就是超声波从发射到返回的时间。
测试距离=(高电平时间*声速(340M/S))/2。
图二 HC-SR04模块电气参数本系统中超声波的收发用单片机的P1.0、P1.1口控制,如图:3.2 温度测量电路温度补偿电路采用DS18B20芯片,DS18B20是美国DALLAS半导体公司生产的可组网数字式温度传感器,在其内部使用了在板(ON-B0ARD)专利技术。
全部传感元件及转换电路集成在形如一只三极管的集成电路内。
与其它温度传感器相比,DS1820具有以下特性:(1)独特的单线接口方式,DS1820在与微处理器连接时仅需要一条口线即可实现微处理器与DS1820的双向通讯。
(2)DS1820支持多点组网功能,多个DS1820可以并联在唯一的三线上,实现多点测温。
(3) DS1820在使用中不需要任何外围元件。
(4)温范围-55℃~+125℃,固有测温分辨率0.5℃。
(5)测量结果以9位数字量方式串行传送。
DS18B20内部结构框图如图三所示:图三DS18B20内部结构框图DS18B20测温原理如图四所示。
图中低温度系数晶振的振荡频率受温度影响很小,用于产生固定频率的脉冲信号送给计数器1。
高温度系数晶振随温度变化其振荡率明显改变,所产生的信号作为计数器2的脉冲输入。
计数器1和温度寄存器被预置在-55℃所对应的一个基数值。
计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当计数器1的预置值减到0时,温度寄存器的值将加1 ,计数器1的预置将重新被装入,计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。
图2中的斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正计数器1的预置值。
图四 DS18B20测温原理本系统中温度模块用单片机的P3.6口控制,如图:3.3 显示电路数码管是一类价格便宜使用简单,通过对其不同的管脚输入相对的电流,使其发亮,从而显示出数字能够显示时间、日期、温度等所有可用数字表示的参数的器件。
数码管由7个发光二极管组成,行成一个日字形,通过解码电路得到的数码接通相应的发光二极管而形成相应的字,这就是它的工作原理。
数码管按各发光二极管电极的连接方式分为共阳数码管和共阴数码管两种。
数码管的显示方式可以分为静态显示与动态显示两类。
其中动态显示接口是单片机中应用最为广泛的一种显示方式之一,动态显示是将所有数码管通过分时轮流控制各个数码管的COM端,就使各个数码管轮流受控显示。
将所有数码管的8个显示笔划"a,b,c,d,e,f,g,dp"的同名端连在一起,另外为每个数码管的公共极COM增加位选通控制电路,位选通由各自独立的I/O线控制,当单片机输出字形码时,所有数码管都接收到相同的字形码,但究竟是那个数码管会显示出字形,取决于单片机对位选通COM端电路的控制,所以我们只要将需要显示的数码管的选通控制打开,该位就显示出字形,没有选通的数码管就不会亮。