统计回归模型.ppt

合集下载

回归分析实例PPT课件

回归分析实例PPT课件
通过各种统计检验来评估 模型的拟合效果,如残差 分析、R方检验、F检验等。
线性回归分析的应用
预测
使用线性回归模型来预测因变 量的值,基于给定的自变量值

解释变量关系
通过线性回归分析来了解自变 量与因变量之间的数量关系和 影响程度。
控制变量效应
在实验或调查中,控制自变量 的影响,以观察因变量的变化 情况。
模型的建立和检验
模型的建立
首先需要收集数据,并进行数据 清洗和预处理,然后选择合适的 自变量和因变量,建立逻辑回归
模型。
模型的检验
通过多种检验方法对模型进行评 估,包括参数估计、假设检验、 模型诊断等,以确保模型的准确
性和可靠性。
模型的优化
根据检验结果对模型进行调整和 优化,包括参数调整、变量筛选
详细描述
收集产品在过去一段时间的销售数据,包括销售额、销售量等,作为自变量, 将未来某一段时间的产品销量作为因变量,建立回归模型。通过模型预测未来 产品销量,为企业制定生产和销售计划提供依据。
实例三:疾病风险预测
总结词
基于个人健康数据和疾病历史,建立回归模型预测疾病风险。
详细描述
收集个人的健康数据和疾病历史,包括血压、血糖、胆固醇等生理指标以及家族 病史等信息,作为自变量,将未来患某种疾病的风险作为因变量,建立回归模型 。通过模型预测个人患某种疾病的风险,为预防和早期干预提供参考。
线性关系的假设
自变量x与因变量y之间存在线性关系, 即随着x的增加(或减少),y也相应 地增加(或减少)。
模型的建立和检验
01
02
03
数据收集与整理
收集相关数据,并进行必 要的整理和清洗,以确保 数据的质量和可靠性。

《基本回归模型》课件

《基本回归模型》课件
01
多元线性回归模型是一种预测模型,通过多个自变 量来预测因变量的值。
02
它基于最小二乘法原理,通过最小化预测值与实际 值之间的残差平方和来估计参数。
03
多元线性回归模型假设因变量与自变量之间存在线 性关系,且自变量之间不存在多重共线性。
多元线性回归模平方和来估计参 数,使得预测值与实际值之间的 差距最小。
详细描述
在股票市场中,股票价格的波动受到多种因素的影响,如公司财务状况、宏观经济指标、市场情绪等 。通过收集历史股票数据,利用回归分析方法建立模型,可以预测未来股票价格的走势。这种预测可 以帮助投资者制定更合理的投资策略,提高投资收益。
预测房地产价格
总结词
利用回归模型分析房地产市场的相关因 素,如地理位置、建筑年代、周边环境 等,预测未来房地产价格走势,为购房 者和投资者提供决策依据。
调整R方值
考虑到自变量数量的拟合优度指标,用于比 较不同模型之间的优劣。
AIC准则
用于选择最优模型,AIC值越小表示模型越 优。
回归模型的扩展
04
岭回归和套索回归
岭回归(Ridge Regression)
岭回归是一种通过增加一个惩罚项来防止过拟合的线性回归方法。它通过增加一个与系数大小相关的项来调整系 数,以减少模型复杂度并提高预测的稳定性。
1
深度学习与回归模型的结合,旨在利用深度学习 的特征学习和抽象能力,提升回归模型的预测精 度和泛化能力。
2
研究重点在于设计适合回归任务的深度神经网络 结构,以及优化训练算法,以实现更高效和准确 的回归预测。
3
代表性研究包括使用卷积神经网络(CNN)处理 图像数据,循环神经网络(RNN)处理序列数据 等。
02

logistic回归分析PPT优秀课件

logistic回归分析PPT优秀课件
(2)线性回归分析:由于因变量是分类变量,不能满足 其正态性要求;有些自变量对因变量的影响并非线性。
2
logistic回归:不仅适用于病因学分析,也可用于其他方面的研究,研 究某个二分类(或无序及有序多分类)目标变量与有关因素的关 系。
logistic回归的分类: (1)二分类资料logistic回归: 因变量为两分类变量的资料,可用
非条件logistic回归和条件logistic回归进行分析。非条件logistic回 归多用于非配比病例-对照研究或队列研究资料,条件logistic回归 多用于配对或配比资料。 (2)多分类资料logistic回归: 因变量为多项分类的资料,可用多 项分类logistic回归模型或有序分类logistic回归模型进行分析。
比较
调查方向:收集回顾性资料
人数 暴露
疾病
a/(a+b) c/(c+d)
a
+
b
-
病例
c
病例对照原理示意图
6
是否暴露 暴露组 未暴露组 合计
病例 a c a+c
对照 b d b+d
合计 a+b(n1) c+d(n2) n
比数比(odds ratio、OR):病例对照研究中表示疾病与暴露间
联系强度的指标,也称比值比。
相对危险度RR的本质是暴露组与非暴露组发病率之比或发病概率 之比。但病例对照研究不能计算发病率,只能计算比值比OR值。 OR与RR的含义是相同的,也是指暴露组的疾病危险性为非暴露组 的多少倍。当疾病发病率小于5%时,OR是RR的极好近似值。
OR>1,说明 该因素使疾病的危险性增加,为危险因素;
OR<1,说明 该因素使疾病的危险性减小,为保护因素;

武汉大学数理统计ppt 5回归分析

武汉大学数理统计ppt 5回归分析

…,
yn
的总变差为
:
S
2 总
( yi y)2
i 1
y
yi
yˆ 0 1 x
y i yˆ i


y
o
xi
x
可以证明
n
n
n
S
2 总
( y i y ) 2 ( yˆ i y ) 2 ( y i yˆ i ) 2
i 1
i 1
i 1
n
S
2 回
( yˆ i y ) 2
i 1
n
出检验.
(2)如果方程真有意义,用它预测y时,预测值与
真值的偏差能否估计?
4.线性回归方程的显著性检验
对任意两个变量的一组观察值
(xi , yi), i=1, 2, …, n 都可以用最小二乘法形式上求得 y 对 x的 回归方程, 如果y 与x 没有线性相关关系, 这种形式的回归方程就没有意义 .
i 1
ˆ 0 y ˆ1 x
x
1 n
n i 1
xi
y
1 n
n i 1
yi
n
n
若记பைடு நூலகம்Lxx ( xi x )2 xi2 nx 2
i 1
i 1
n
n
Lxy ( xi x )( yi y ) xi yi nxy
i 1
i 1
n
n
Lyy ( yi y )2 yi2 ny 2
y x 1
高尔顿对此进行了深入研究.他们将观察值在平 面直角坐标系上绘成散点图,发现趋势近乎一条直线, 计算出的回归直线方程为
yˆ 3 3 .7 3 0 .5 1 6 x
在回归分析中, 当自变量只有两个时, 称 为一元回归分析; 当自变量在两个以上时, 称 为多元回归分析. 变量间成线性关系, 称线性 回归,变量间不具有线性关系, 称非线性回归.

《回归分析 》课件

《回归分析 》课件
参数显著性检验
通过t检验或z检验等方法,检验模型中各个参数的显著性,以确定 哪些参数对模型有显著影响。
拟合优度检验
通过残差分析、R方值等方法,检验模型的拟合优度,以评估模型是 否能够很好地描述数据。
非线性回归模型的预测
预测的重要性
非线性回归模型的预测可以帮助我们了解未来趋势和进行 决策。
预测的步骤
线性回归模型是一种预测模型,用于描述因变 量和自变量之间的线性关系。
线性回归模型的公式
Y = β0 + β1X1 + β2X2 + ... + βpXp + ε
线性回归模型的适用范围
适用于因变量和自变量之间存在线性关系的情况。
线性回归模型的参数估计
最小二乘法
最小二乘法是一种常用的参数估计方法,通过最小化预测值与实 际值之间的平方误差来估计参数。
最大似然估计法
最大似然估计法是一种基于概率的参数估计方法,通过最大化似 然函数来估计参数。
梯度下降法
梯度下降法是一种迭代优化算法,通过不断迭代更新参数来最小 化损失函数。
线性回归模型的假设检验
线性假设检验
检验自变量与因变量之间是否存在线性关系 。
参数显著性检验
检验模型中的每个参数是否显著不为零。
残差分析
岭回归和套索回归
使用岭回归和套索回归等方法来处理多重共线性问题。
THANKS
感谢观看
04
回归分析的应用场景
经济学
研究经济指标之间的关系,如GDP与消费、 投资之间的关系。
市场营销
预测产品销量、客户行为等,帮助制定营销 策略。
生物统计学
研究生物学特征与疾病、健康状况之间的关 系。

医学统计学课件:回归分析

医学统计学课件:回归分析
利用逐步回归等方法,选择重要 的自变量,优化模型,提高预测 精度。
生存分析模型
生存分析模型概述
生存分析模型是用于研究生存时间与相关因素 之间关系的一种统计分析方法。
模型的建立与拟合
通过Cox比例风险模型等统计技术,拟合生存分 析模型,并评估模型的拟合效果。
生存曲线与影响因素
利用生存曲线描述生存时间与影响因素之间的关系,并评估不同因素对生存时 间的影响。
正态性
误差项应服从正态分布,即近似于钟形曲线。如 果误差项存在偏离正态分布的情况,需要采取措 施进行调整。
多重共线性诊断
定义:多重共线性是指自变量之间存在 较强的线性相关关系,导致模型估计失 真或不稳定。
特征值:如果特征值接近于0,则表明存 在严重的多重共线性问题。
条件指数:条件指数大于10表明模型受 到多重共线性的影响。
模型构建流程
数据清洗
对数据进行预处理,包括缺失值填充、异常值处理等,以确保数 据的质量和可靠性。
模型构建
根据已知的变量和因变量之间的关系,构建线性回归模型。
模型优化
通过逐步回归等方法对模型进行优化,以提高模型的预测精度和 稳定性。
模型评估指标
拟合优度
通过计算模型的R²值等指标,评估模型对数 据的拟合程度。
回归分析的分类
线性回归分析和非线性回归分析。
线性回归模型
线性回归模型的定义
线性回归模型是一种最常用的回归分析模型,其形式为Y = β0 + β1X1 + β2X2 + ... + βnXn。
线性回归模型的基本要素
因变量Y,自变量X1, X2, ..., Xn,以及模型中的系数β0, β1, ..., βn。

回归分析法PPT课件

回归分析法PPT课件

线性回归模型的参数估计
最小二乘法
通过最小化误差平方和的方法来估计 模型参数。
最大似然估计
通过最大化似然函数的方法来估计模 型参数。
参数估计的步骤
包括数据收集、模型设定、参数初值、 迭代计算等步骤。
参数估计的注意事项
包括异常值处理、多重共线性、自变 量间的交互作用等。
线性回归模型的假设检验
假设检验的基本原理
回归分析法的历史与发展
总结词
回归分析法自19世纪末诞生以来,经历 了多个发展阶段,不断完善和改进。
VS
详细描述
19世纪末,英国统计学家Francis Galton 在研究遗传学时提出了回归分析法的概念 。后来,统计学家R.A. Fisher对其进行了 改进和发展,提出了线性回归分析和方差 分析的方法。随着计算机技术的发展,回 归分析法的应用越来越广泛,并出现了多 种新的回归模型和技术,如多元回归、岭 回归、套索回归等。
回归分析法的应用场景
总结词
回归分析法广泛应用于各个领域,如经济学、金融学、生物学、医学等。
详细描述
在经济学中,回归分析法用于研究影响经济发展的各种因素,如GDP、消费、投资等;在金融学中,回归分析法 用于股票价格、收益率等金融变量的预测;在生物学和医学中,回归分析法用于研究疾病发生、药物疗效等因素 与结果之间的关系。
梯度下降法
基于目标函数对参数的偏导数, 通过不断更新参数值来最小化目 标函数,实现参数的迭代优化。
非线性回归模型的假设检验
1 2
模型检验
对非线性回归模型的适用性和有效性进行检验, 包括残差分析、正态性检验、异方差性检验等。
参数检验
通过t检验、z检验等方法对非线性回归模型的参 数进行假设检验,以验证参数的显著性和可信度。

第九章 相关与回归分析 《统计学原理》PPT课件

第九章  相关与回归分析  《统计学原理》PPT课件

[公式9—4]
r xy n • xy
x y
[公式9—5]
返回到内容提要
第三节 回归分析的一般问题
一、回归分析的概念与特点
(一)回归分析的概念
现象之间的相关关系,虽然不是严格 的函数关系,但现象之间的一般关系值, 可以通过函数关系的近似表达式来反映, 这种表达式根据相关现象的实际对应资料, 运用数学的方法来建立,这类数学方法称 回归分析。
单相关是指两个变量间的相关关系,如 自变量x和因变量y的关系。
复相关是指多个自变量与因变量间的相关 关系。
(二)相关关系从表现形态上划分,可分为 直线相关和曲线相关
直线相关是指两个变量的对应取值在坐标 图中大致呈一条直线。
曲线相关是指两个变量的对应取值在坐 标图中大致呈一条曲线,如抛物线、指数曲线、 双曲线等。
0.578
a y b x 80 0.578 185 3.844
n
n7
7
yˆ 3.844 0.578x
二、估计标准误差 (一)估计标准误差的概念与计算 估计标准误差是用来说明回归直线方程 代表性大小的统计分析指标。其计算公式为:
Syx
y yˆ 2
n
[公式9—8]
实践中,在已知直线回归方程的情况下, 通常用下面的简便公式计算估计标准误差:
[例9—2] 根据相关系数的简捷公式计算有:
r
n xy x y
n x2 x2 n y2 y2
7 218018580
0.978
7 5003 1852 7 954 802
再求回归直线方程:
yˆ a bx
b
n xy x y
n x2 x2
7 2180 18580 7 50031852

《logistic回归分析》PPT课件

《logistic回归分析》PPT课件
3
第一节 非条件logistic回归
一、logistic 回归模型:
设因变量 Y 是一个二分类变量,其取值为 Y =1 和Y =0。 影响 Y 取值的 m 个自变量分别为 X1, X 2 ,, X m 。在 m 个自变量(即暴露因素)作用下阳性结果发生的条件
概率为 P P(Y 1 X1, X 2 ,, X m ) ,则 logistic 回归模
表 1 调查数据
y
x
1
0
1
a
b
0
c
d
合计 a+c b+d
表 2 对应概率
y
x
1
0
1 0 合计
p1 1- p1
1
p2 1- p2
1
9
表 1 调查数据
y
x
1
0
1
a
b
0
c
d
合计 a+c b+d
表 2 对应概率
y
x
1
0
1 0 合计
p1 1- p1
1
p2 1- p2
1
Logistic
模型为:
p1

p( y
1|
(2)多分类资料Logistic回归: 因变量为多项分类的资料,可 用多项分类Logistic回归模型或有序分类Logistic回归模型进 行分析。
2
非条件Logistic回归分析 条件Logistic回归分析 无序分类反应变量Logistic回归分析 有序多分类反应变量Logistic回归分析 Logistic回归分析应用及注意事项
21
对所拟合模型的假设检验:
概率p值均小 于0.05,说明 方程有意义。

数学建模——回归分析模型 ppt课件

数学建模——回归分析模型  ppt课件

有最小值:
n n i 1 i 1
i
2 2 ( y a bx ) i i i
ppt课件
ˆx ˆi a ˆ b y i
6
数学建模——回归分析模型
一元线性回归模型—— a, b, 2估计
n ( xi x )( yi y ) ˆ i 1 b n ( xi x )2 i 1 ˆ ˆ y bx a
数学建模——回归分析模型
Keep focused Follow me —Jiang
ppt课件
1
数学建模——回归分析模型
• • • • • 回归分析概述 几类回归分析模型比较 一元线性回归模型 多元线性回归模型 注意点
ppt课件
2
数学建模——回归分析模型
回归分析 名词解释:回归分析是确定两种或两种以上变数 间相互赖的定量关系的一种统计分析方法。 解决问题:用于趋势预测、因果分析、优化问题 等。 几类常用的回归模型:
可决系数(判定系数) R 2 为:
可决系数越靠近1,模型对数据的拟合程度越好。 ppt课件 通常可决 系数大于0.80即判定通过检验。 模型检验还有很多方法,以后会逐步接触
15
2 e ESS RSS i R2 1 1 TSS TSS (Yi Y )2
数学建模——回归分析模型
2 i i 1
残差平 方和
13
数学建模——回归分析模型
多元线性回归模型—— 估计 j 令上式 Q 对 j 的偏导数为零,得到正规方程组,
用线性代数的方法求解,求得值为:
ˆ ( X T X )1 X TY
ˆ 为矩阵形式,具体如下: 其中 X , Y ,

回归分析(excel)PPT课件

回归分析(excel)PPT课件
关系。
数据降维
通过回归分析找出影响 因变量的关键因素,实
现数据降维。
控制和优化
通过回归分析建立控制 和优化模型,实现生产
过程的控制和优化。
02
Excel回归分析工具介绍
线性回归工具的使用
使用步骤
选择数据,点击“数据”选项卡中的“数据分析”按钮,选择“回归”工具, 在弹出的对话框中设置因变量和自变量,点击“确定”即可得到线性回归分析 结果。
注意事项
多项式回归分析适用于非线性关系,但需要注意阶数的选择,过高或过低的阶数 都可能导致模型拟合不良。
逻辑回归工具的使用
使用步骤
选择数据,点击“数据”选项卡中的“数据分析”按钮,选 择“回归”工具,在弹出的对话框中设置因变量和自变量, 同时选择“Logistic回归”复选框,点击“确定”即可得到逻 辑回归分析结果。
避免过拟合和欠拟合
过拟合
过拟合是指模型在训练数据上表现良好 ,但在测试数据上表现较差的情况。为 了防止过拟合,可以使用正则化、增加 数据量、简化模型等方法。
VS
欠拟合
欠拟合是指模型在训练数据上表现较差, 无法捕捉到数据的内在规律和特征。为了 解决欠拟合问题,可以尝试增加模型复杂 度、调整模型参数等方法。
回归分析(excel)ppt课件
• 回归分析简介 • Excel回归分析工具介绍 • 回归分析的步骤 • 回归分析的案例 • 回归分析的注意事项
01
回归分析简介
回归分析的定义
01
回归分析是一种统计学方法,用 于研究自变量和因变量之间的相 关关系,并建立数学模型来预测 因变量的值。
02
它通过分析数据中的变量关系, 找出影响因变量的重要因素,并 计算出它们之间的最佳拟合直线 或曲线。

第十章 统计回归模型

第十章 统计回归模型

改进模型2
考虑x1和x2的交互作用
y 0 1x1 2 x2 3x22 4 x1x2
参数
参数估计值
置信区间
0
29.1133
[13.7013 44.5252]
1
11.1342
[1.9778 20.2906 ]
2
-7.6080
[-12.6932 -2.5228 ]
3
0.6712
[0.2538 1.0887 ]


9
9
8.5
x2=6.5 8.5
8
8
7.5
-0.2
0
0.2
0.4

10
9.5 解释性好
9
8.5
8
7.5
5
6
7
0.6 x1
7.5
-0.2
0
0.2
0.4

10.5
x1=0.2
10 精度高
9.5
9
8 x2 没道理
8.5 8 5
6
7
0.6 x1 8 x2
更完整的模型:完全二次多项式 y 0 1x1 2 x2 3 x1x2 4 x12 5 x22
多元线性回归y = x+的方差分析
误差平方和分解: SST=SSE+SSR
SST
||
Y
Y
1 ||2 , SSE
||
Y

||2 , SSR
||

Y
1 ||2
总误差平方和SST: 代表直接用y的均值来估计y时的误差(即i=0时)
残差平方和SSE: 代表用回归模型不能解释的那部分误差

数学建模案例分析第十章统计回归模型

数学建模案例分析第十章统计回归模型

岭回归原理及步骤
• 原理:岭回归是一种专用于共线性数据分析的有偏估计回归方 法,实质上是一种改良的最小二乘估计法,通过放弃最小二乘 法的无偏性,以损失部分信息、降低精度为代价获得回归系数 更为符合实际、更可靠的回归方法,对病态数据的拟合要强于 最小二乘法。
岭回归原理及步骤
• 原理:岭回归是一种专用于共线性数据分析的有偏估计回归方 法,实质上是一种改良的最小二乘估计法,通过放弃最小二乘 法的无偏性,以损失部分信息、降低精度为代价获得回归系数 更为符合实际、更可靠的回归方法,对病态数据的拟合要强于 最小二乘法。
一元线性回归
01
02
03
模型建立
一元线性回归模型用于描 述两个变量之间的线性关 系,通常形式为y=ax+b, 其中a和b为待估参数。
参数估计
通过最小二乘法等方法对 参数a和b进行估计,使得 预测值与实际观测值之间 的误差平方和最小。
假设检验
对模型进行假设检验,包 括检验模型的显著性、参 数的显著性等,以判断模 型是否有效。
线性回归模型检验
拟合优度检验
通过计算决定系数R^2等指标, 评估模型对数据的拟合程度。
残差分析
对模型的残差进行分析,包括残 差的分布、异方差性检验等,以
判断模型的合理性。
预测能力评估
通过计算预测误差、均方误差等 指标,评估模型的预测能力。同 时可以使用交叉验证等方法对模
型进行进一步的验证和评估。
线性回归模型检验
逐步回归原理及步骤
01
3. 对模型中已有的自变量进行检 验,如果不显著则将其从模型中 剔除。
02
4. 重复步骤2和3,直到没有新的 自变量可以进入模型,也没有不显 著的自变量可以从模型中剔除。

统计学第7章相关与回归分析PPT课件

统计学第7章相关与回归分析PPT课件
预测GDP增长
利用回归分析,基于历史GDP数据和其他经济指标,预测未来GDP 的增长趋势。
预测通货膨胀率
通过分析通货膨胀率与货币供应量、利率等经济指标的关系,利用回 归分析预测未来通货膨胀率的变化。
市场研究
消费者行为研究
通过回归分析研究消费者购买决策的影响因素, 如价格、品牌、广告等。
市场细分
利用回归分析对市场进行细分,识别不同消费者 群体的特征和需求。
线性回归模型假设因变量和自变量之间 存在一种线性关系,即当一个自变量增 加时,因变量也以一种可预测的方式增
加或减少。
参数估计
参数估计是用样本数据来估计线性回 归模型的参数β0, β1, ..., βp。
最小二乘法的结果是通过解线性方程 组得到的,该方程组包含n个方程(n 是样本数量)和p+1个未知数(p是 自变量的数量,加上截距项)。
回归模型的评估
残差分析
分析残差与自变量之间的关系, 判断模型的拟合程度和是否存在
异常值。
R方值
用于衡量模型解释因变量变异的 比例,值越接近于1表示模型拟
合越好。
F检验和t检验
用于检验回归系数是否显著,判 断自变量对因变量的影响是否显
著。
05 回归分析的应用
经济预测
预测股票市场走势
通过分析历史股票数据,利用回归分析建立模型,预测未来股票价 格的走势。
回归模型的评估是通过各种统计 量来检验模型的拟合优度和预测 能力。
诊断检验(如Durbin Watson检 验)可用于检查残差是否存在自 相关或其他异常值。
03 非线性回归分析
非线性回归模型
线性回归模型的局限性
线性回归模型假设因变量和自变量之间的关系是线性的,但在实 际应用中,这种关系可能并非总是成立。

《logistic回归模型》课件

《logistic回归模型》课件

方法、模型优化方法及评估指标,并运用实战案例加深了对模型的理解与应
用。
参考资料
- 《统计学习方法》
- 《机器学习实战》
- 《Python机器学习经典实例》
同时,我们使用准确率、精度、召回率、F1-score、ROC和AUC等评估指标来度量模型的效果。
实战案例
让我们利用Logistic回归模型来预测Titanic号上的幸存者。通过数据格式及预处
理、特征工程、模型构建和模型评估等步骤,我们将从实际案例中学习该模
型的应用。
小结
通过本课程,我们深入了解了Logistic回归模型的特点及适用场景、参数估计
() = (^)
参数估计方法
Logistic回归模型的参数估计通常采用极大似然估计。为了最大化似然函数,
我们使用梯度上升算法进行优化,并可以应用L1和L2正则化方法来提高模型
的鲁棒性。
ቤተ መጻሕፍቲ ባይዱ
模型优化方法
为了提高Logistic回归模型的性能,我们可以进行特征工程。这包括数据预处理、特征选择和特征降维等步骤。
《logistic回归模型》PPT
课件
欢迎来到《logistic回归模型》PPT课件。本课程将带你深入了解Logistic回归模
型的应用及优化方法。让我们开始这个令人兴奋的学习之旅吧!
什么是Logistic回归模型
Logistic回归模型是一种适用于二分类问题和非线性分类问题的模型。它假设
数据独立同分布、满足线性和二项分布的特点,并使用如下公式进行建模:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0
0.2
0.4
6
7
0.6 x1 8 x2
交互作用影响的讨论 yˆ 0 ˆ1x1 ˆ2x2 ˆ3x22 ˆ4x1x2
价格差 x1=0.1
yˆ x10.1 30.2267 7.7558x2 0.6712x22
价格差 x1=0.3
yˆ x10.3 32.4535 8.0513x2 0.6712x22
3
0.3486
[0.0379 0.6594 ]
R2=0.9054 F=82.9409 p=0.0000
y的90.54%可由模型确定 F远超过F检验的临界值
p远小于=0.05
模型从整体上看成立
2的置信区间包含零点 (右端点距零点很近)
x2对因变量y 的 影响不太显著
x22项显著
可将x2保留在模型中
销售量预测 yˆ ˆ0 ˆ1x1 ˆ2x2 ˆ3x22
0.55
9.26
基本模型
y 10
9.5
y ~公司牙膏销售量
9
x1~其它厂家与本公司价格差
8.5 8
x2~公司广告费用
y 0 1x1 2 x2 3 x22
7.5
7
-0.2
0
0.2
0.4
0.6
y 0 1x1 x1
y~被解释变量(因变量)
y 10
9.5
x1, x2~解释变量(回归变量, 自变量) 9 8.5
广告费用,及同期其它厂家同类牙膏的平均售价
销售 周期
1
本公司价 格(元)
3.85
其它厂家 价格(元)
3.80
广告费用 (百万元)
5.50
价格差 (元)
-0.05
销售量 (百万支)
7.38
2
3.75
4.00
6.75
0.25
8.51
29
3.80
3.85
5.80
0.05
7.93
30
3.70
4.25
6.80
yˆ ˆ0 ˆ1x1 ˆ2x2 ˆ3x22 yˆ 8.2933 (百万支)
区间 [7.8230,8.7636]
yˆ 8.3272 (百万支)
yˆ 0 ˆ1x1 ˆ2x2 ˆ3x22 ˆ4x1x2
区间 [7.8953,8.7592]
yˆ 略有增加
预测区间长度更短
两模型yˆ 与x1,x2关系的比较
1
11.1342
[1.9778 20.2906 ]
2
-7.6080
[-12.6932 -2.5228 ]
3
0.6712
[0.2538.8518 -0.1037 ]
R2=0.9209 F=72.7771 p=0.0000
两模型销售量预测比较
控制价格差x1=0.2元,投入广告费x2=6.5百万元
回归模型是用统计分析方法建立的最常用的一类模型
• 不涉及回归分析的数学原理和方法 • 通过实例讨论如何选择不同类型的模型 • 对软件得到的结果进行分析,对模型进行改进
10.1 牙膏的销售量
问 建立牙膏销售量与价格、广告投入之间的模型 题 预测在不同价格和广告费用下的牙膏销售量
收集了30个销售周期本公司牙膏销售量、价格、
Stats~ 检验统计量
R2,F, p
R2=0.9054 F=82.9409 p=0.0000
结果分析 y 0 1x1 2 x2 3 x22
参数
参数估计值
置信区间
0
17.3244
[5.7282 28.9206]
1
1.3070
[0.6829 1.9311 ]
2
-3.6956
[-7.4989 0.1077 ]
0, 1 , 2 , 3 ~回归系数
8
7.5
~随机误差(均值为零的
正态分布随机变量)
7 5
5.5
6
6.5
x 7
7.5
2
y 0 1x2 2 x22
模型求解 MATLAB 统计工具箱 y 0 1x1 2 x2 3 x22 由数据 y,x1,x2估计
[b,bint,r,rint,stats]=regress(y,x,alpha)
价格差x1=其它厂家价格x3-本公司价格x4
估计x3 调整x4 控制x1
通过x1, x2预测y
控制价格差x1=0.2元,投入广告费x2=650万元
yˆ ˆ0 ˆ1x1 ˆ2x2 ˆ3x22 8.2933 (百万支)
销售量预测区间为 [7.8230,8.7636](置信度95%)
上限用作库存管理的目标值 下限用来把握公司的现金流
若估计x3=3.9,设定x4=3.7,则可以95%的把握 知道销售额在 7.83203.7 29(百万元)以上
模型改进
x1和x2对y 的影响独立
x1和x2对y 的影响有 交互作用
y 0 1x1 2 x2 3 x22
参数 参数估计值
置信区间
0
17.3244
[5.7282 28.9206]
输入 y~n维数据向量
输出 b~的估计值
x= [1 x1 x2 x22 ] ~n4数
据矩阵, 第1列为全1向量
bint~b的置信区间 r ~残差向量y-xb
alpha(置信水平,0.05)
rint~r的置信区间
参数
0 1 2 3
参数估计值 17.3244 1.3070 -3.6956 0.3486
置信区间 [5.7282 28.9206] [0.6829 1.9311 ] [-7.4989 0.1077 ] [0.0379 0.6594 ]
1
1.3070
[0.6829 1.9311 ]
2
-3.6956
[-7.4989 0.1077 ]
3
0.3486
[0.0379 0.6594 ]
R2=0.9054 F=82.9409 p=0.0000
y 0 1x1 2 x2 3x22 4 x1x2
参数
参数估计值
置信区间
0
29.1133
[13.7013 44.5252]
统计回归模型
10.1 牙膏的销售量 10.2 软件开发人员的薪金 10.3 酶促反应 10.4 投资额与国民生产总值和
物价指数
数学建模的基本方法 机理分析 测试分析
由于客观事物内部规律的复杂及人们认识程度的限制, 无法分析实际对象内在的因果关系,建立合乎机理规 律的数学模型。 通过对数据的统计分析,找出与数据拟合最好的模型
yˆ ˆ0 ˆ1x1 ˆ2x2 ˆ3x22 yˆ 0 ˆ1x1 ˆ2x2 ˆ3x22 ˆ4x1x2


9
9
8.5
x2=6.5 8.5
8
8
7.5 -0.2

10 9.5
9 8.5
8 7.5
5
0
0.2
0.4
6
7
0.6 x1
x1=0.2
8 x2
7.5 -0.2

10.5 10 9.5 9 8.5 8 5
相关文档
最新文档