2019版一轮优化探究文数(苏教版)练习:第十一章 第一节 抽样方法 含解析

合集下载

一轮优化探究理数(苏教版)课件:第十一章 第一节 抽样方法

一轮优化探究理数(苏教版)课件:第十一章 第一节 抽样方法
第十一章 统计与概率、计数原理 第一节 抽样方法
主干知识 自主排查
C
目 录
ONTENTS
核心考点 互动探究 真题演练 高考预测 课时作业 知能提升
主干知识 自主排查
一、简单随机抽样 1.定义:设一个总体含有 N 个个体,从中逐个不放回地 抽取 n 个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被 抽到的机会都相等,就把这种抽样方法叫做简单随机抽样. 2.最常用的简单随机抽样的方法:抽签法 和随机数表法.
解析:设分别抽取 B、C 型号产品 m1,m2 件, 2 3 5 则由分层抽样的特点可知 = = , 16 m1 m2 ∴m1=24,m2=40,∴n=16+m1+m2=80.
核心考点 互动探究
【例 1】
某大学为了支持 2010 年亚运会,从报名的 24 名大
三的学生中选 6 人组成志愿小组,请用抽签法和随机数表法设 计抽样方案.
1.若把本例中“24 名学生”改为“1 800 名学生”,仍选取 6 人,应该如何进行抽样?
解析:因为总体数较大,若选用抽签法制号签太麻烦,故应选用随 机数表法. 第一步: 先将 1 800 名学生编号, 可以编为 0001,0002,0003, …, 1 800. 第二步:在随机数表中任选一个数,例如选出第 2 行第 5 列的数 2. 第 三 步 : 从 选 定 的 数 开 始 向 右 读 , 依 次 可 得 0736,0751,0732,1355,1410,1256 为样本的 6 个号码,这样我们就得到 一个容量为 6 的样本.
3.为了检查某超市货架上的奶粉是否含有三聚氰胺,要从编 号依次为 01 到 50 的袋装奶粉中抽取 5 袋进行检验.现将 50 袋奶粉按编号顺序平均分成 5 组,用每组选取的号码间隔一样 的系统抽样方法确定所选取的 5 袋奶粉的编号,若第 4 组抽出 的号码为 36, 则第 1 组中用抽签的方法确定的号码是________.

2019版高考数学大一轮复习江苏专版文档:第十一章 统计11.1课时作业

2019版高考数学大一轮复习江苏专版文档:第十一章 统计11.1课时作业

1.(2017·常州期末)某单位有老年人20人,中年人120人,青年人100人,现用分层抽样的方法从所有人中抽取一个容量为n 的样本,已知从青年人中抽取的人数为10,则n =________. 答案 24解析 由分层抽样可得10n =10020+120+100=1024,故n =24.2.打桥牌时,将洗好的扑克牌(52张)随机确定一张为起始牌后,开始按次序搬牌,对任何一家来说,都是从52张总体中抽取一个13张的样本,则这种抽样方法是________. 答案 系统抽样解析 符合系统抽样的特点.3.用简单随机抽样的方法从含有10个个体的总体中抽取一个容量为3的样本,其中某一个体a “第一次被抽到”的可能性与“第二次被抽到”的可能性分别是________. 答案110,110解析 在抽样过程中,个体a 每一次被抽中的概率是相等的,因为总体容量为10,故个体a “第一次被抽到”的可能性与“第二次被抽到”的可能性均为110.4.将参加英语口语测试的1 000名学生编号为000,001,002,…,999,从中抽取一个容量为50的样本,按系统抽样的方法分为50组,如果第一组编号为000,001,002,…,019,且第一组随机抽取的编号为015,则抽取的第35个样本编号为________. 答案 695解析 由题意可知,第一组随机抽取的编号为015,分段间隔数k =N n =1 00050=20,由题意知抽出的这些号码是以15为首项,20为公差的等差数列,则抽取的第35个样本编号为15+(35-1)×20=695.5.某工厂的一、二、三车间在某月份共生产了3 600双皮靴,在出厂前检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a ,b ,c ,且a ,b ,c 成等差数列,则二车间生产的产品数为________. 答案 1 200解析 因为a ,b ,c 成等差数列,所以2b =a +c ,所以从二车间抽取的产品数占抽取产品总数的13,根据分层抽样的性质可知,二车间生产的产品数占产品总数的13,所以二车间生产的产品数为3 600×13=1 200.6.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为________. 答案 10解析 由系统抽样的特点知,抽取号码的间隔为96032=30,抽取的号码依次为9,39,69,…,939.落入区间[451,750]的有459,489,…,729,这些数构成首项为459,公差为30的等差数列,设有n 项,显然有729=459+(n -1)×30,解得n =10.所以做问卷B 的有10人. 7.某电视台为了调查“爸爸去哪儿”节目的收视率,现用分层抽样的方法从4 300人中抽取一个样本,这4 300人中青年人1 600人,且中年人人数是老年人人数的2倍,现根据年龄采用分层抽样的方法进行调查,在抽取的样本中青年人有320人,则抽取的样本中老年人的人数为________. 答案 180解析 设老年人有x 人,从中抽取y 人,则1 600+3x =4 300,得x =900,即老年人有900人,则9001 600=y 320,得y =180.8.某中学教务处采用系统抽样方法,从学校高三年级全体1 000名学生中抽50名学生做学习状况问卷调查.现将1 000名学生从1到1000进行编号,求得间隔数k =20,即分50组每组20人.在第一组中随机抽取一个号,如果抽到的是17号,则第8组中应抽取的号码是________. 答案 157解析 根据系统抽样的特点可知,抽取出的编号成首项为17,公差为20的等差数列,所以第8组应抽取的号码是17+(8-1)×20=157.9.(2017·江苏)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________件. 答案 18解析 ∵样本容量总体个数=60200+400+300+100=350,∴应从丙种型号的产品中抽取350×300=18(件).10.某高中在校学生有2 000人.为了响应“阳光体育运动”的号召,学校开展了跑步和登山的比赛活动.每人都参与而且只能参与其中一项比赛,各年级参与比赛的人数情况如下表:其中a ∶b ∶c =2∶3∶5,全校参与登山的人数占总人数的25.为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则从高二年级参与跑步的学生中应抽取的人数为________. 答案 36解析 根据题意可知,样本中参与跑步的人数为200×35=120,所以从高二年级参与跑步的学生中应抽取的人数为120×32+3+5=36.11.200名职工年龄分布如图所示,从中随机抽取40名职工作样本,采用系统抽样方法,按1~200编号,分为40组,分别为1~5,6~10,…,196~200,若第5组抽取号码为22,则第8组抽取号码为________.若采用分层抽样,40岁以下年龄段应抽取________人.答案 37 20解析 将1~200编号分为40组,则每组的间隔为5,其中第5组抽取号码为22,则第8组抽取的号码应为22+3×5=37;由已知条件得,200名职工中40岁以下的职工人数为200×50%=100,设在40岁以下年龄段中应抽取x 人,则40200=x100,解得x =20.12.一个总体中有90个个体,随机编号0,1,2,…,89,依从小到大的编号顺序平均分成9个小组,组号依次为1,2,3,…,9.现用系统抽样方法抽取一个容量为9的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m +k 的个位数字相同,若m =8,则在第8组中抽取的号码是________. 答案 76解析 由题意知:m =8,k =8,则m +k =16,也就是第8组抽取的号码个位数字为6,十位数字为8-1=7,故抽取的号码为76.13.某市教育主管部门为了全面了解2017届高三学生的学习情况,决定对该市参加2017年高三第一次全省统一考试(后称统考)的32所学校进行抽样调查.将参加统考的32所学校进行编号,依次为1到32,现用系统抽样法抽取8所学校进行调查,若抽到的最大编号为31,则最小编号是________. 答案 3解析 根据系统抽样的特点可知,总体分成8组,组距为328=4,若抽到的最大编号为31,则最小编号是3.14.某校共有学生2 000名,各年级男、女学生人数如下表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为________.答案 16解析 由题意,知二年级女生有380人,那么三年级的学生人数应该是2 000-373-377-380-370=500,即总体中各个年级的人数比为3∶3∶2,故在分层抽样中应在三年级抽取的学生人数为64×28=16.15.某公司员工对户外运动分别持“喜欢”“不喜欢”和“一般”三种态度,其中持“一般”态度的比持“不喜欢”态度的多12人,按分层抽样方法从该公司全体员工中选出部分员工座谈户外运动,如果选出的人有6人对户外运动持“喜欢”态度,有1人对户外运动持“不喜欢”态度,有3人对户外运动持“一般”态度,那么这个公司全体员工中对户外运动持“喜欢”态度的有________人. 答案 36解析 设持“喜欢”“不喜欢”“一般”态度的人数分别为6x ,x,3x ,由题意可得3x -x =12,x =6,∴持“喜欢”态度的有6x =36(人).16.某公路设计院有工程师6人,技术员12人,技工18人,要从这些人中抽取n 个人参加市里召开的科学技术大会.如果采用系统抽样和分层抽样的方法抽取,不用剔除个体,如果参会人数增加1人,则在采用系统抽样时,需要在总体中先剔除1个个体,求n . 解 总体容量为6+12+18=36.当样本容量为n 时,由题意知,系统抽样的间隔为36n ,分层抽样的比例是n36,抽取的工程师人数为n 36×6=n 6,技术员人数为n 36×12=n 3,技工人数为n 36×18=n2,所以n 应是6的倍数,36的约数,即n =6,12,18.当样本容量为(n +1)时,总体容量剔除以后是35人,系统抽样的间隔为35n +1,因为35n +1必须是整数,所以n 只能取6,即样本容量n =6.。

【苏教版】2019版高考数学文科一轮复习优化探究练习 第十一章 第五节 古典概型 含解析

【苏教版】2019版高考数学文科一轮复习优化探究练习 第十一章 第五节 古典概型 含解析

一、填空题1.下列试验中,是古典概型的有________. ①种下一粒种子观察它是否发芽②从规格直径为250 mm±0.6 mm 的一批合格产品中任意抽一个,测量其直径d ③抛一枚硬币,观察其出现正面或反面 ④某人射击中靶或不中靶 答案:③2.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为________.解析:从4张卡片中有序地取得两张的取法共有4×3=12种,其中取得一奇一偶的取法共有4×2=8种(先任取,后取与第一张不同奇偶的).故取得卡片上数字之和为奇数的概率为P =812=23. 答案:233.甲乙二人玩数字游戏,先由甲任想一数字,记为a ,再由乙猜甲刚才想的数字,把乙猜出的数字记为b ,且a ,b ∈{1,2,3},若|a -b |≤1,则称甲、乙“心有灵犀”,现任意找两个人玩这个游戏,则他们“心有灵犀”的概率为________. 解析:甲想一数字有3种结果,乙猜一数字有3种结果,基本事件总数为3×3=9.设“甲、乙心有灵犀”为事件A ,则A 的对立事件B 为“|a -b |>1”,即|a -b |=2,包含2个基本事件, ∴P (B )=29, ∴P (A )=1-29=79. 答案:794.一个坛子里有编号为1,2,…,12的12个大小相同的球,其中1到6号球是红球,其余的是黑球,若从中任取两个球,则取到的都是红球,且至少有1个球的号码是偶数的概率为________.解析:基本事件总数为C 212,事件包含的基本事件数为C 26-C 23,故所求的概率为P =C 26-C 23C 212=211.答案:2115.一个口袋中,装有大小相等的5个黑球,6个白球和4个黄球,从中摸出3个球,那么摸出的3个球颜色不超过2种的概率是________.解析:基本事件总数为C 315,事件“摸出的3个球颜色互不相同”包含的基本事件数为C 16C 15C 14,故所求事件的概率为P =1-C 16C 15C 14C 315=1-2491=6791.答案:67916.在集合{x |x =n π6,n =1,2,3,…,10}中任取一个元素,所取元素恰好满足方程cos x =12的概率是________.解析:基本事件总数为10,满足cos x =12的x 有两个. ∴P =210=15. 答案:157.任取一个三位正整数N ,则对数log 2 N 是一个正整数的概率是________. 解析:∵26=64,27=128,28=256,29=512,210=1 024, ∴满足条件的正整数只有27,28,29三个, ∴所求的概率P =3900=1300. 答案:13008.有一质地均匀的正四面体,它的四个面上分别标有1,2,3,4四个数字.现将它连续抛掷3次,其底面落于桌面,记三次在正四面体底面的数字和为S ,则“S 恰好为4”的概率为________.解析:本题是一道古典概型问题.用有序实数对(a ,b ,c )来记连续抛掷3次所得的3个数字,总事件中含4×4×4=64个基本事件,取S =a +b +c ,事件“S 恰好为4”中包含了(1,1,2),(1,2,1),(2,1,1)三个基本事件,则P (S 恰好为4)=P (A )P (Ω)=364. 答案:3649.在一次教师联欢会上,到会的女教师比男教师多12人,从这些教师中随机挑选一人表演节目,若选到男教师的概率为920,则参加联欢会的教师共有________人.解析:设男教师为n 个人,则女教师为(n +12)人, ∴n 2n +12=920. ∴n =54,∴参加联欢会的教师共有120人. 答案:120 二、解答题10.某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:(1)(2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?(3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率.解析:(1)因为在20至40岁的58名观众中有18名观众收看新闻节目,而大于40岁的42名观众中有27名观众收看新闻节目,所以,经直观分析,收看新闻节目的观众与年龄是有关的.(2)从题中所给条件可以看出收看新闻节目的共45人,随机抽取5人,则抽样比为545=19,故大于40岁的观众应抽取27×19=3(人).(3)抽取的5名观众中大于40岁的有3人,在20至40岁的有2人,记大于40岁的人为a1,a2,a3,20至40岁的人为b1,b2,则从5人中抽取2人的基本事件有(a1,a2),(a1,a3),(a2,a3),(b1,b2),(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),共10个,其中恰有1人为20至40岁的有6个,故所求概率为610=3 5.11.现有一批产品共有10件,其中8件为正品,2件为次品.(1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率;(2)如果从中一次取3件,求3件都是正品的概率.解析:(1)有放回地抽取3次,按抽取顺序(x,y,z)记录结果,则x,y,z都有10种可能,所以基本事件总数为10×10×10=103(种);设事件A为“连续3次都取正品”,则包含的基本事件共有8×8×8=83种,因此P(A)=83103=0.512.(2)可以看作不放回抽样3次,顺序不同,基本事件不同,按抽取顺序记录(x ,y ,z ),则x 有10种可能,y 有9种可能,z 有8种可能, 所以基本事件总数为10×9×8. 设事件B 为“3件都是正品”,则事件B 包含的基本事件总数为8×7×6, 所以P (B )=8×7×610×9×8=715.12.把一颗骰子投掷2次,观察出现的点数,并记第一次出现的点数为a ,第二次出现的点数为b ,试就方程组⎩⎨⎧ax +by =3,x +2y =2,解答下列各题:(1)求方程组只有一个解的概率; (2)求方程组只有正数解的概率. 解析:事件(a ,b )的基本事件有36个.由方程组⎩⎪⎨⎪⎧ ax +by =3,x +2y =2,可得⎩⎪⎨⎪⎧(2a -b )x =6-2b ,(2a -b )y =2a -3.(1)方程组只有一个解,需满足2a -b ≠0,即b ≠2a ,而b =2a 的事件有(1,2),(2,4),(3,6)共3个, 所以方程组只有一个解的概率为 P 1=1-336=1112.(2)方程组只有正数解,需2a -b ≠0且⎩⎪⎨⎪⎧x =6-2b2a -b >0,y =2a -32a -b >0,即⎩⎪⎨⎪⎧ 2a >ba >32b <3或⎩⎪⎨⎪⎧2a <b ,a <32,b >3.其包含的事件有13个:(2,1),(3,1),(4,1),(5,1),(6,1),(2,2),(3,2),(4,2),(5,2),(6,2),(1,4),(1,5),(1,6). 因此所求的概率为1336.。

抽样方法习题课[上学期]--江苏教育版(新编2019教材)

抽样方法习题课[上学期]--江苏教育版(新编2019教材)

以授汝 置之为赠官 而竟不从 都督 《春秋传》曰 家园中生人参 莫相纠摄 围陈留太守王讃于仓垣 令速降之 人神悲悼 以玷圣德 中兵参军吴仲等率众二万寇竟陵 汝既食人 不能肃遏奸萌 宜早为之所 连谋曰 因破东燕酸枣而还 使宗庙有太山之安 猛曰 重死之 尸诸街巷之中十日 明年
轻侮边将 督并幽二州诸军事 石琨奔据冀州 光禄大夫韦謏启谏甚切 率众东下 斩张豺于平乐市 裴宪弃其军奔于淮南 游统禁之 市不改肆 谢玄自广陵救三阿 斯由人怨于下 无爵赏之劝 甚惧 遣使封张骏武威郡公 公其人也 勒命匿劲卒精甲 不亦可乎 使上无偏优 生大败 威刑日滥 动成义

请割武牢以西之地 孤孙茕子 建节邓羌距燕 坦性诚朴 叱力士折其胫而杀之 及诸珍宝珠玉 悉令明年季冬赴集邺都 自司隶以下六官 执旦于望都关 残毒忠善 李威为卫将军 行周公事 陈 讨逆暴之羯 桓子和龙 专综机密之任 今当相偿耳 臣安敢忘之 牲牡尚白 温明已后足可以
容六宫 《诗》云 刘宏为太尉 合二十四郡 宗正呼延攸恨不参顾命也 进阙供国之饶 愿陛下则采椽之不琢 成曰 阳曰 实欲填诸街巷 我单于虽有虚号 窃位宰录 于洛水北筑为京观 及俊僭位 会孔苌督诸突门伏兵俱出击之 建兴太守高瓮各以郡叛归于俊 灾起于燕 辇而还宫 丁 鼓行向云龙
守高乔 时东宫鬼哭 吕毅等自长安讨之 因曰 于是扶曜乘马 金一斤直米二斗 事若不捷 君其惧乎 密规进据罕城 其时兵乱之后 今忽以晋王居之 绝其运路 即位于南郊 徙鲜卑胡羯三千馀户于蓟 遣使从生假道 太守张禹与冯翊太守梁肃奔于允吾 官非才举 亦自求宁 固君子之所耻也 以永
嘉四年死 当以幽州永为世封 聪甚恶之 以勃海人为兴集县 勒亲临哭之 良家子至者三万馀骑 苻健自枋头入关 授之节度 今襄国 将军郑豹 烧评辎重 所经令尉皆杀之 各害人而走 至今楚灼 申钟为侍中 而毒害滋深 臣恐二寇必有窥窬之计 乃遣使诈斌曰 护老贼 将佐亲戚莫不敬惮 则归可

苏教版江苏专版版高考数学一轮复习第十一章统计与概率第一节抽样方法用样本估计总体教案文解析版

苏教版江苏专版版高考数学一轮复习第十一章统计与概率第一节抽样方法用样本估计总体教案文解析版

1.简单随机抽样(1)抽取方式:逐个不放回抽取;(2)特点:每个个体被抽到的概率相等;(3)常用方法:抽签法和随机数表法.2.分层抽样(1)在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.(2)分层抽样的应用范围:当总体是由差异明显的几个部分组成时,往往选用分层抽样.3.系统抽样的步骤(1)采用随机的方式将总体中的N个个体编号;(2)将编号按间隔k分段,当错误!是整数时,取k=错误!;当错误!不是整数时,从总体中剔除一些个体,使剩下的总体中个体的个数N′能被n整除,这时取k=错误!,并将剩下的总体重新编号;(3)在第一段中用简单随机抽样确定起始的个体编号l;(4)按照一定的规则抽取样本,通常将编号为l,l+k,l+2k,…,l+(n—1)k的个体抽出.4.作频率分布直方图的步骤(1)求全距;(2)决定组距与组数;(3)将数据分组;(4)列频率分布表;(5)画频率分布直方图.5.茎叶图的优点茎叶图的优点是不但可以保留所有信息,而且可以随时记录,这对数据的记录和表示都能带来方便.[提醒] 茎叶图中茎是指中间的一列数,叶是从茎的旁边生长出来的数.6.样本的数字特征(1)众数、中位数、平均数(2)标准差、方差1标准差:样本数据到平均数的一种平均距离,一般用s表示,s=错误!.2方差:标准差的平方s2s2=错误![(x1—错误!)2+(x2—错误!)2+…+(x n—错误!)2],其中x i(i=1,2,3,…,n)是样本数据,n是样本容量,错误!是样本平均数.[小题体验]1.为调查某高校学生对“一带一路”政策的了解情况,现采用分层抽样的方法抽取一个容量为500的样本.其中大一年级抽取200人,大二年级抽取100人.若其他年级共有学生3000人,则该校学生总人数是________.解析:设该校学生总人数为n,则1—错误!=错误!,解得n=7 500.答案:7 5002.某校为了了解教科研工作开展状况与教师年龄之间的关系,将该校不小于35岁的80名教师按年龄分组,分组区间为[35,40),[40,45),[45,50),[50,55),[55,60],由此得到频率分布直方图如图,则这80名教师中年龄小于45岁的有________人.解析:由频率分布直方图可知45岁以下的教师的频率为5×(0.040+0.080)=0.6,所以共有80×0.6=48(人).答案:483.已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________.解析:5个数的平均数错误!=错误!=5.1,所以它们的方差s2=错误![(4.7—5.1)2+(4.8—5.1)2+(5.1—5.1)2+(5.4—5.1)2+(5.5—5.1)2]=0.1.答案:0.11.简单随机抽样中易忽视样本是从总体中逐个抽取,是不放回抽样,且每个个体被抽到的概率相等.2.系统抽样中,易忽视抽取的样本数也就是分段的段数,当错误!不是整数时,注意剔除,剔除的个体是随机的,各段入样的个体编号成等差数列.3.在绘制茎叶图时,易遗漏重复出现的数据,重复出现的数据要重复记录,同时不要混淆茎叶图中茎与叶的含义.[小题纠偏]1.已知某商场新进3000袋奶粉,为检查其三聚氰胺是否超标,现采用系统抽样的方法从中抽取150袋检查,若第一组抽出的号码是11,则第六十一组抽出的号码为________.解析:每组袋数:d=错误!=20,由题意知这些号码是以11为首项,20为公差的等差数列.a61=11+60×20=1211.答案:12112.如图是甲、乙两名篮球运动员在五场比赛中所得分数的茎叶图,则在这五场比赛中得分较为稳定(方差较小)的那名运动员得分的方差为________.解析:由茎叶图知,得分较为稳定的那名运动员是乙,他在五场比赛中得分分别为8,9,10,13,15,所以错误!乙=错误!=11,s错误!=错误!×[(8—11)2+(9—11)2+()2+(13—11)2+(15—11)2]=6.8.答案:6.8错误!错误![题组练透]1.总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为________.7816 657208026314070243699728 01983204923449358200 36234869 6938 7481解析:由随机数表法的随机抽样的过程可知选出的5个个体是08,02,14,07,01,所以第5个个体的编号是01.答案:012.采用系统抽样方法从1000人中抽取50人做问卷调查,将他们随机编号1,2,…,1000.适当分组后在第一组采用简单随机抽样的方法抽到的号码为8.若抽到的50人中,编号落入区间[1,400]的人做问卷A,编号落入区间[401,750]的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷C 的人数为________.解析:根据系统抽样的特点可知,所有做问卷调查的人的编号构成首项为8,公差d=错误!=20的等差数列{a n},所以通项公式a n=8+20(n—1)=20n—12,令751≤20n—12≤1000,得错误!≤n≤错误!,又因为n∈N*,所以39≤n≤50,所以做问卷C的共有12人.答案:123.(2019·南京调研)某高校甲、乙、丙、丁四个专业分别有150,150,400,300名学生.为了解学生的就业倾向,用分层抽样的方法从该校这四个专业中抽取40名学生进行调查,则应从丙专业抽取的学生人数为________.解析:由题意得,应从丙专业抽取的学生人数为40×错误!=16.答案:164.某企业三月中旬生产A、B、C三种产品共3000件,根据分层抽样的结果,企业统计员制作了如下的统计表格:由于不小心,表格中A、C产品的有关数据已被污染看不清楚,统计员记得A产品的样本容量比C产品的样本容量多10,根据以上信息,可得C的产品数量是________件.解析:设样本容量为x,则错误!×1300=130,所以x=300.所以A产品和C产品在样本中共有300—130=170(件).设C产品的样本容量为y,则y+y+10=170,所以y=80.所以C产品的数量为错误!×80=800(件).答案:800[谨记通法]三种抽样方法的比较分层抽样将总体分成几层,分层按比例进行抽取各层抽样时采用简单随机抽样或系统抽样总体由差异明显的几部分组成错误!错误![典例引领]1.(2019·启东模拟)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x +y的值为________.解析:由茎叶图知,甲组的中位数为65,当乙组的中位数也为65时,y=5,此时乙组的平均数为错误!=66,所以x=66×5—(56+65+62+74+70)=3,所以x+y=8.答案:82.(2018·海安质量测试)某校高一年级共有800名学生,根据他们参加某项体育测试的成绩得到了如图所示的频率分布直方图,则成绩不低于80分的学生人数为________.解析:由题设中提供的频率分布直方图可以看出:不低于80分的学生人数为(0.02+0.01)×10×800=240.答案:2403.(2018·苏州测试)为了了解某校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,其频率分布直方图如图所示,已知图中从左到右的前3个小组的频率之比为1∶2∶3,第2小组的频数为12,则报考飞行员的学生人数为________.解析:设报考飞行员的学生人数为x,则错误!=(1—0.037×5—0.013×5)×错误!,解得x=48,即报考飞行员的学生人数为48.答案:48[由题悟法]1.茎叶图中的3个关注点(1)“叶”的位置只有一个数字,而“茎”的位置的数字位数一般不需要统一.(2)重复出现的数据要重复记录,不能遗漏.(3)给定两组数据的茎叶图,估计数字特征,茎上的数字由小到大排列,一般“重心”下移者平均数较大,数据集中者方差较小.2.由频率分布直方图进行相关计算时,需掌握的2个关系式(1)错误!×组距=频率.(2)错误!=频率,此关系式的变形为错误!=样本容量,样本容量×频率=频数.[即时应用]1.(2018·苏北四市期末)某次比赛甲得分的茎叶图如图所示,若去掉一个最高分,去掉一个最低分,则剩下4个分数的方差为________.错误!错误!解析:剩下的4个分数是42,44,46,52,则其平均数是46,故方差为错误!×(16+4+0+36)=14.答案:142.随着社会的发展,食品安全问题渐渐成为社会关注的热点,为了提高学生的食品安全意识,某学校组织全校学生参加食品安全知识竞赛,成绩的频率分布直方图如图所示,数据的分组依次为[20,40),[40,60),[60,80),[80,100],若该校的学生总人数为3000,则成绩不超过60分的学生人数大约为________.解析:由频率分布直方图知,成绩不超过60分的学生的频率为(0.005+0.01)×20=0.3,所以成绩不超过60分的学生人数大约为0.3×3000=900.答案:900错误!错误![锁定考向]样本的数字特征常与频率分布直方图、茎叶图等知识交汇命题.常见的命题角度有:(1)样本的数字特征与直方图交汇;(2)样本的数字特征与茎叶图交汇;(3)样本的数字特征与优化决策问题.[题点全练]角度一:样本的数字特征与直方图交汇1.(2019·苏州调研)样本容量为100的频率分布直方图如图所示,根据样本频率分布直方图估计平均数为________ .解析:平均数为错误!×(6×10+20×12+40×14+24×16+10×18)=14.24.答案:14.24角度二:样本的数字特征与茎叶图交汇2.将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x表示.则7个剩余分数的方差为________.解析:根据茎叶图,去掉1个最低分87,1个最高分99,则错误![87+94+90+91+90+(90+x)+91]=91,所以x=4.所以s2=错误![(87—91)2+(94—91)2+(90—91)2+(91—91)2+(90—91)2+(94—91)2+(91—91)2]=错误!.答案:错误!角度三:样本的数字特征与优化决策问题3.甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环):甲108999乙1010799解析:因为错误!甲=错误!乙=9,s错误!=错误!×[(9—10)2+(9—8)2+(9—9)2+(9—9)2+(9—9)2]=错误!,s错误!=错误!×[(9—10)2+(9—10)2+(9—7)2+(9—9)2+(9—9)2]=错误!>s错误!,故甲更稳定.答案:甲[通法在握]1.利用频率分布直方图估计样本的数字特征的方法(1)中位数:在频率分布直方图中,中位数左边和右边的直方图的面积相等,由此可以估计中位数值.(2)平均数:平均数的估计值等于每个小矩形的面积乘以矩形底边中点横坐标之和.(3)众数:最高的矩形的中点的横坐标.2.利用样本的数字特征解决优化决策问题的依据(1)平均数反映了数据取值的平均水平;标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大,越不稳定;标准差、方差越小,数据的离散程度越小,越稳定.(2)用样本估计总体就是利用样本的数字特征来描述总体的数字特征.[演练冲关]1.(2019·常州调研)用茎叶图记录甲、乙两名同学高三前5次数学测试的成绩,如图.他们在分析对比成绩变化时,发现乙同学成绩的一个数字看不清楚了.若已知乙的平均成绩低于甲的平均成绩,则看不清楚的数字为________.解析:甲的平均成绩为错误!×(99+100+101+102+103)=101,设看不清楚的数字为x,则由题意得错误!×(93+94+97+110+110+x)<101,解得x<1.因为x≥0,x∈N,所以x=0,即看不清楚的数字为0.答案:02.为了考察某校各班参加课外书法小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为________.解析:不妨设样本数据为x1,x2,x3,x4,x5,且x1<x2<x3<x4<x5,则由样本方差为4,知(x1—7)2+(x2—7)2+(x3—7)2+(x4—7)2+(x5—7)2=20.若5个整数的平方和为20,则这5个整数的平方只能在0,1,4,9,16中选取(每个数最多出现2次),当这5个整数的平方中最大的数为16时,分析可知,总不满足和为20;当这5个整数的平方中最大的数为9时,0,1,1,9,9这组数满足要求,此时对应的样本数据为x1=4,x2=6,x3=7,x4=8,x5=10;当这5个整数的平方中最大的数不超过4时,总不满足要求,因此不存在满足条件的另一组数据.答案:10一抓基础,多练小题做到眼疾手快1.(2019·南通中学高三学情调研)一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):轿车A轿车B轿车C舒适型100150z标准型300450600按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆,则z的值为________.解析:由题意知错误!=错误!,解得z=400.答案:4002.(2018·泰州调研)某校在高三年级的1000名学生中随机抽出100名学生的数学成绩作为样本进行分析,得到样本频率分布直方图如图所示,则估计该校高三学生中数学成绩在[110,140)之间的人数为________.解析:由样本频率分布直方图知该校高三学生中数学成绩在[110,140)之间的频率为(0.02+0.026+0.02)×10=0.66,所以估计该校高三学生中数学成绩在[110,140)之间的人数为1000×0.66=660.答案:6603.某校高三年级500名学生中,血型为O型的有200人,A型的有125人,B型的有125人,AB型的有50人.为研究血型与色弱之间的关系,现用分层抽样的方法从这500名学生中抽取一个容量为60的样本,则应抽取________名血型为AB的学生.解析:在整个抽样过程中,每个个体被抽到的概率为错误!=错误!,所以血型为AB的学生应抽取的人数为50×错误!=6.答案:64.已知一组数据:87,x,90,89,93的平均数为90,则该组数据的方差为________.解析:由题意知错误!×(87+x+90+89+93)=90,解得x=91,所以方差s2=错误!×[(87—90)2+(91—90)2+(90—90)2+(89—90)2+(93—90)2]=4.答案:45.(2019·启东第一中学月考)某厂共有1000名员工,准备选择50人参加技术评估,现将这1000名员工编号为1到1000,准备用系统抽样的方法抽取.已知随机抽取到的员工最小的编号是15,那么抽取到的员工最大的编号是________.解析:样本间隔为1000÷50=20,∵随机抽取到的最小的编号是15,∴在抽取到的员工中最大的编号是15+49×20=995.答案:9956.(2018·苏州期末)若一组样本数据9,8,x,10,11的平均数为10,则该组样本数据的方差为________.解析:由错误!=10,得x=12,故方差s2=错误!=2.答案:2二保高考,全练题型做到高考达标1.(2018·通州期末)如图所示的茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分),已知甲组数据的中位数为17,则x的值为________.答案:72.(2019·如皋检测)从编号为01,02,…,50的50个产品中用系统抽样的方法抽取一个样本,已知样本中的前两个编号分别为03,08(编号按从小到大的顺序排列),则样本中最大的编号是________.解析:由题意知,抽样间隔是5,∴样本中最大的编号是3+5×9=48.答案:483.(2018·南京学情调研)为了解某一段公路汽车通过时的车速情况,现随机抽测了通过这段公路的200辆汽车的时速,所得数据均在区间[40,80]中,其频率分布直方图如图所示,则在抽测的200辆汽车中,时速在区间[40,60)内的汽车有________辆.解析:根据频率分布直方图得,时速在区间[40,60)内的频率为(0.01+0.03)×10=0.4,故时速在区间[40,60)内的汽车有0.4×200=80(辆).答案:804.用分层抽样的方法从某高中学生中抽取一个容量为45的样本,其中高一年级抽20人,高三年级抽10人,已知该校高二年级共有学生300人,则该校学生的总人数为________.解析:样本中高二年级抽45—20—10=15(人),设该校学生的总人数为n,则错误!=错误!,所以n=900.答案:9005.(2018·扬州期末)某学校从高三年级共800名男生中随机抽取50名测量身高.根据测量结果可知被测学生身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组:第一组[155,160),第二组[160,165),…,第八组[190,195].按上述分组方式得到的频率分布直方图的一部分如图所示,估计这所学校高三年级全体男生身高在180 cm以上(含180 cm)的人数为________.解析:这所学校高三年级全体男生身高在180 cm以上(含180 cm)的频率为1—(0.008+0.016+0.04+0.04+0.06)×5=1—0.82=0.18,所以全体男生身高在180 cm以上(含180 cm)的人数为0.18×800=144.答案:1446.(2019·海门中学检测)已知数据x1,x2,…,x10的均值为2,标准差为s,又知数据3x1+2,3x2+2,…,3x10+2的方差为27,则s=________.解析:∵数据x1,x2,…,x10的均值为2,标准差为s,数据3x1+2,3x2+2,…,3x10+2的方差为27,∴9s2=27,解得s=错误!.答案:错误!7.已知x是1,2,3,x,5,6,7这七个数据的中位数且1,2,x2,—y这四个数据的平均数为1,则y—错误!的最小值为________.解析:由题意1+2+x2—y=4,所以y=x2—1.由中位数定义知,3≤x≤5,所以y—错误!=x2—1—错误!.当x∈[3,5]时,函数y=x2—1与y=—错误!均为增函数,所以y=x2—1—错误!在[3,5]上为增函数,所以错误!min=8—错误!=错误!.答案:错误!8.(2018·南通调研)为了了解某校教师使用多媒体进行教学的情况,采用简单随机抽样的方法,从该校400名授课教师中抽取20名,调查了他们上学期使用多媒体进行教学的次数,结果用茎叶图表示,如图所示.据此可估计上学期该校400名教师中,使用多媒体进行教学的次数在[16,30)内的人数为________.解析:由茎叶图可知,在20名教师中,上学期使用多媒体进行教学的次数在[16,30)内的人数为8,据此可以估计400名教师中,使用多媒体进行教学的次数在[16,30)内的人数为400×错误!=160.答案:1609.某初级中学共有学生2000名,各年级男、女生人数如下表:初一年级初二年级初三年级女生373x y男生377370z已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19.(1)求x的值;(2)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名?解:(1)因为错误!=0.19,所以x=380.(2)初三年级人数为y+z=2000—(373+377+380+370)=500,现用分层抽样的方法在全校抽取48名学生,应在初三年级抽取的人数为:错误!×500=12(名).10.某班100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a的值.(2)若在同一组数据中,将该组区间的中点值作为这组数据的平均分,根据频率分布直方图,估计这100名学生语文成绩的平均分.(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如表所示,求数学成绩在[50,90)之外的人数.分数段[50,60)[60,70)[70,80)[80,90)x∶y1∶12∶13∶44∶5解:(1)由频率分布直方图知(0.04+0.03+0.02+2a)×10=1,因此a=0.005.(2)估计这次成绩的平均分错误!=55×0.05+65×0.4+75×0.3+85×0.2+95×0.05=73.所以这100名学生语文成绩的平均分为73分.(3)分别求出语文成绩在分数段[50,60),[60,70),[70,80),[80,90)的人数依次为0.05×100=5,0.4×100=40,0.3×100=30,0.2×100=20.所以数学成绩分数段在[50,60),[60,70),[70,80),[80,90)的人数依次为5,20,40,25.所以数学成绩在[50,90)之外的人数有100—(5+20+40+25)=10(人).三上台阶,自主选做志在冲刺名校1.(2018·苏州测试)已知等差数列{a n}的公差为d,若a1,a2,a3,a4,a5的方差为8,则d =________.解析:因为数列{a n}为等差数列,所以a1,a2,a3,a4,a5的平均数为a3,所以方差为错误![(—2d)2+(—d)2+0+d2+(2d)2]=2d2=8,解得d=±2.答案:±22.一组数据是19,20,x,43,已知这组数据的平均数是整数,且24<x<28,则这组数据的方差为________.解析:因为错误!(19+20+x+43)=错误!为整数,且24<x<28,所以x=26,所以这组数据的平均数为错误!=27,方差为错误![(19—27)2+(20—27)2+(26—27)2+(43—27)2]=错误!(64+49+1+256)=错误!×370=92.5.答案:92.53.(2017·北京高考)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),…,[80,90],并整理得到如下频率分布直方图:(1)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等,试估计总体中男生和女生人数的比例.解:(1)根据频率分布直方图可知,样本中分数不小于70的频率为(0.02+0.04)×10=0.6,所以样本中分数小于70的频率为1—0.6=0.4.所以从总体的400名学生中随机抽取一人,其分数小于70的概率估计为0.4.(2)根据题意,样本中分数不小于50的频率为(0.01+0.02+0.04+0.02)×10=0.9,分数在区间[40,50)内的人数为100—100×0.9—5=5.所以总体中分数在区间[40,50)内的人数估计为400×错误!=20.(3)由题意可知,样本中分数不小于70的学生人数为(0.02+0.04)×10×100=60,所以样本中分数不小于70的男生人数为60×错误!=30.所以样本中的男生人数为30×2=60,女生人数为100—60=40,男生和女生人数的比例为60∶40=3∶2.所以根据分层抽样原理,总体中男生和女生人数的比例估计为3∶2.。

2019苏教版一轮优化探究(文科数学)练习:第十一章 第二节 用样本估计总体含解析

2019苏教版一轮优化探究(文科数学)练习:第十一章 第二节 用样本估计总体含解析

一、填空题1.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a ,中位数为b ,众数为c ,则a 、b 、c 之间的大小关系为________.解析:平均数a =×(15+17+14+10+15+17+17+16+14+12)=14.7,110中位数b =15,众数c =17.∴c >b >a .答案:c >b >a2.一个容量为100的样本,其数据的分组与各组的频数如下:组别频数(0,10]12(10,20]13(20,30]24(30,40]15(40,50]16(50,60]13(60,70]7则样本数据落在(10,40]上的频率为________.解析:由列表知样本数据落在(10,40]上的频数为52,∴频率为0.52.答案:0.523.学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为n 且支出在[20,60)元的样本,其频率分布直方图如图所示,其中支出在[50,60)元的同学有30人.则n 的值为________.解析:支出在[50,60)元的频率为1-0.36-0.24-0.1=0.3,因此=0.3,故n =100.30n答案:1004.甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环):甲108999乙1010799如果甲、乙两人中只有1人入选,则入选的最佳人选应是________.解析:甲=乙=9,s =×[(9-10)2+(9-8)2+(9-9)2+(9-9)2+(9-9)2]=,x x 2甲1525s =×[(9-10)2+(9-10)2+(9-7)2+(9-9)2+(9-9)2]=>s ,故甲更稳定,故填甲.2乙15652甲答案:甲5.为了解某校教师使用多媒体进行教学的情况,采用简单随机抽样的方法,从该校200名授课教师中抽取20名教师,调查了他们上学期使用多媒体进行教学的次数,结果用茎叶图表示如图,据此可估计该校上学期200名教师中,使用多媒体进行教学的次数在[15,25)内的人数为________.解析:由茎叶图知,抽取的20名教师中使用多媒体进行教学的次数在[15,25)内的人数为6,频率为,故200名教师中使用多媒体进行教学的次数在[15,25)内的人数为×200=60.620620答案:606.若样本a 1,a 2,a 3,a 4,a 5的方差是3,则样本2a 1+3,2a 2+3,2a 3+3,2a 4+3,2a 5+3的方差是________.解析:若表示样本a 1,a 2,a 3,a 4,a 5的均值,则样本2a 1+3,2a 2+3,2a 3+3,2a 4+3,2a 5+3a 的均值为2+3.又 (a i -)2=3,∴[(2a i +3)-(2+3)]2= (2a i -2)2=12.a ∑5 i =1a ∑5 i =1a ∑5 i =1a 答案:127.为了了解“预防禽流感疫苗”的使用情况,温州市卫生部门对本地区9月份至11月份使用疫苗的所有养鸡场进行了调查,根据下列图表提供的信息,可以得出这三个月本地区每月注射了疫苗的鸡的数量平均为________万只.月份养鸡场(个数)920105011100解析:由题意得:×(20×1+50×2+100×1.5)=90(万只/月).13答案:908.某校对高三年级的学生进行体检,现将高三男生的体重(单位:kg)数据进行整理后分成六组,并绘制频率分布直方图(如图所示).已知图中从左到右第一、第六小组的频率分别为0.16,0.07,第一、第二、第三小组的频率成等比数列,第三、第四、第五、第六小组的频率成等差数列,且第三小组的频数为100,则该校高三年级的男生总数为________.解析:据题意设第3小组的频率为a ,则由前3小组频率成等比数列得前三小组的频率分别为0.16,,a ,后四组是以a 为首项,以0.07为最后一项的等差数列.故此6组频率之0.16a 和为0.16++.由于整个频率之和为1,故0.16++=1⇒a =0.16a 4(a +0.07)20.16a 4(a +0.07)2.由其相应的频数为100可得高三年级的男生总数为=400(人).1410014答案:4009.某人5次上班途中所花的时间(单位:分钟)分别为x ,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y |的值为________.解析:由题意可得:x +y =20,①(x -10)2+(y -10)2=8,②即x +y =20,x 2+y 2=208,③将①式平方得x 2+y 2+2xy =400,将③式代入得2xy =192,故|x -y |==x 2+y 2-2xy =4.故填4.208-192答案:4二、解答题10.在育民中学举行的电脑知识竞赛中,将九年级两个班参赛的学生成绩(得分均为整数)进行整理后分成五组,绘制成如图所示的频率分布直方图.已知图中从左到右的第一、第三、第四、第五小组的频率分别是0.30,0.15,0.10,0.05,第二小组的频数是40.(1)求第二小组的频率,并补全这个频率分布直方图;(2)求这两个班参赛的学生人数是多少?(3)这两个班参赛学生的成绩的中位数应落在第几小组内?(不必说明理由)解析:(1)各小组的频率之和为1.00,第一、三、四、五小组的频率分别是0.30、0.15、0.10、0.05.∴第二小组的频率为:1.00-(0.30+0.15+0.10+0.05)=0.40.∵第二小组的频率为0.40,∴落在59.5~69.5的第二小组的小长方形的高===0.04.由此可补全直方图,补全的频率组距0.4010直方图如图所示.(2)设九年级两个班参赛的学生人数为x .∵第二小组的频数为40人,频率为0.40,∴=0.40,解得x =100.40x ∴九年级两个班参赛的学生人数为100.(3)九年级两个班参赛学生的成绩的中位数应落在第二小组内.11.甲、乙两位学生参加数学竞赛培训,在培训期间,他们参加的5项预赛成绩记录如下:甲8282799587乙9575809085(1)用茎叶图表示这两组数据;(2)从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率;(3)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?说明理由.解析:(1)作出茎叶图如下:(2)记甲被抽到的成绩为x ,乙被抽到的成绩为y ,用数对(x ,y )表示基本事件:(82,95) (82,75) (82,80) (82,90) (82,85)(82,95) (82,75) (82,80) (82,90) (82,85)(79,95) (79,75) (79,80) (79,90) (79,85)(95,95) (95,75) (95,80) (95,90) (95,85)(87,95) (87,75) (87,80) (87,90) (87,85)基本事件总数n =25.记“甲的成绩比乙高”为事件A ,事件A 包含的基本事件:(82,75) (82,80) (82,75) (82,80) (79,75)(95,75) (95,80) (95,90) (95,85) (87,75)(87,80) (87,85)事件A 包含的基本事件数是m =12.∴P (A )==.mn 1225(3)派甲参赛比较合适.理由如下:甲=85,乙=85,s =31.6,s =50.x x 2甲2乙∴甲=乙,s <s ,x x 2甲2乙∴甲的成绩较稳定,派甲参赛比较合适.12.如图所示是某市有关部门根据该市干部的月收入情况,作抽样调查后画出的样本频率分布直方图,已知图中第一组的频数为4 000,请根据该图提供的信息解答下列问题:(图中每组包括左端点,不包括右端点,如第一组表示收入在[1 000,1 500).(1)求样本中月收入在[2 500,3 500)的人数;(2)为了分析干部的收入与年龄、职业等方面的关系,必须从样本的各组中按月收入再用分层抽样方法抽出100人作进一步分析,则月收入在[1 500,2 000)的这段应抽多少人?(3)试估计样本数据的中位数.解析:(1)∵月收入在[1 000, 1 500)的频率为0.000 8×500=0.4,且有4 000人,∴样本的容量n ==10 000;4 0000.4月收入在[1 500,2 000)的频率为0.000 4×500=0.2;月收入在[2 000,2 500)的频率为0.000 3×500=0.15;月收入在[3 500,4 000)的频率为0.000 1×500=0.05.∴月收入在[2 500,3 500)的频率为1-(0.4+0.2+0.15+0.05)=0.2.∴样本中月收入在[2 500,3 500)的人数为0.2×10 000=2 000.(2)∵月收入在[1 500,2 000)的人数为0.2×10 000=2 000,∴再从10 000人中用分层抽样方法抽出100人,则月收入在[1 500,2 000)的这段应抽取100×=20(人).2 00010 000(3)由(1)知月收入在[1 000,2 000)的频率为0.4+0.2=0.6>0.5,∴样本数据的中位数为1 500+=1 500+250=1 750(元).0.5-0.40.000 4。

2019版一轮优化探究文数(苏教版)练习:第十一章 第一节 抽样方法

2019版一轮优化探究文数(苏教版)练习:第十一章 第一节 抽样方法

一、填空题1.老师在班级50名学生中,依次抽取学号为5,10, 15,20,25,30,35,40,45,50的学生进行作业检查,这种抽样方法是________.解析:因为抽取学号是以5为公差的等差数列,故采用的抽样方法应是系统抽样.答案:系统抽样2.在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本.①采用随机抽样法:抽签取出20个样本;②采用系统抽样法:将零件编号为00,01,…,99,然后平均分组抽取20个样本;③采用分层抽样法:从一级品,二级品,三级品中抽取20个样本.下列说法:(1)无论采用哪种方法,这100个零件中每一个被抽到的概率都相等;(2)①②两种抽样方法,这100个零件中每一个被抽到的概率都相等,③并非如此;(3)①③两种抽样方法,这100个零件中每一个被抽到的概率都相等,②并非如此;(4)采用不同的抽样方法,这100个零件中每一个零件被抽到的概率是各不相同的.其中正确的结论是________.解析:上述三种方法均是可行的,每个个体被抽到的概率均等于20100=15.答案:(1)3.某大学共有学生5 600人,其中专科生1 300人、本科生3 000人、研究生1 300人,现采用分层抽样的方法调查学生利用因特网查找学习资料的情况,抽取的样本为280人,则应在专科生、本科生与研究生这三类学生中分别抽取________.解析:由分层抽样按比例抽取的特点得5 600280=1 300x=3 000y=1 300z,∴x=z=65,y=150,即应在专科生、本科生与研究生这三类学生中分别抽取65人,150人,65人.答案:65人,150人,65人4.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是________.解析:四类食品的每一种被抽到的概率为2040+10+30+20=1 5,∴植物油类和果蔬类食品被抽到的种数之和为(10+20)×15=6.答案:65.高三(1)班共有56人,学号依次为1,2,3,…,56,现用系统抽样的办法抽取一个容量为4的样本.已知学号为6,34,48的同学在样本中,那么还有一个同学的学号应为________.解析:抽取间隔为564=14.已抽取学号为6,34,48,故还有一个同学的学号应为20.答案:206.某高中有三个年级,其中高一学生有600人,若采用分层抽样抽取一个容量为45的样本,已知高二年级抽取20人,高三年级抽取10人,则该高中学生的总人数为________.解析:由题意,高一年级抽了45-20-10=15(人),设总人数为n,则15600=45n,解得n=1 800.答案:1 8007.(2013·高考湖南卷改编)某学校有男、女学生各500名.为了解男、女学生在学习兴趣与业余受好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是________.解析:由于被抽取的个体的属性具有明显差异,因此宜采用分层抽样法.答案:分层抽样法8.防疫站对学生进行身体健康调查,采用分层抽样法抽取.红星中学共有学生1 600名,抽取一个容量为200的样本,已知女生比男生少抽了10人,则该校的女生有________人.解析:设女生有x人,则男生有(1 600-x)人.由题意知2001 600×(1 600-x)=2001 600×x+10,解得x=760.答案:760二、解答题9.为了考察某校的教学水平,将抽查这个学校高三年级的部分学生本年度的考试成绩.为了全面反映实际情况,采取以下三种方式进行抽查(已知该校高三年级共有20个每个班内的学生已经按随机方式编好了学号,假定该校每班学生的人数相同):①从高三年20个20名学生,考察他们的学习成绩;②每个班抽取1人,共计20人20名学生的成绩;③把学生按成绩分成优秀、良好、普通三个级别,从其中共抽取100名学生进行考察(已知该校高三学生共1 000人,若按成绩分,其中优秀生共150人,良好生共600人,普通生共250人).根据上面的叙述,试回答下列问题:(1)上面三种抽取方式的总体、个体、样本分别是什么?每一种抽取方式抽取的样本中,样本容量分别是多少?(2)上面三种抽取方式各自采用的是何种抽取样本的方法?(3)试写出上面的第三种方式抽取样本的步骤.解析:(1)这三种抽取方式的总体都是指该校高三全体学生本年度的考试成绩,个体都是指高三年级每个学生本年度的考试成绩.其中第一种抽取方式的样本为所抽取的20名学生本年度的考试成绩,样本容量为20;第二种抽取方式的样本为所抽取的20名学生本年度的考试成绩,样本容量为20;第三种抽取方式的样本为所抽取的100名学生本年度的考试成绩,样本容量为100.(2)三种抽取方式中,第一种采用的是简单随机抽样法;第二种采用的是系统抽样法和简单随机抽样法;第三种采用的是分层抽样法和简单随机抽样法.3)第三种方式抽样的步骤如下:第一步,分层,因为若按成绩分,其中优秀生共150人,良好生共600人,普通生共250人,所以在抽取样本时,应该把全体学生分成三个层次第二步,确定各个层次抽取的人数.因为样本容量与总体的个体数之比为:100∶1000=1∶10,所以在每个层次中抽取的个体数依次为即第三步,按层次分别抽取.在优秀生中用简单随机抽样法抽取15人;在良好生中用简单随机抽样法抽取60人;在普通生中用简单随机抽样法抽取25人.10.某煤矿有采煤工人400人,运输工人302人,管理和服务人员250人,要从中抽取190人组成职工代表参加讨论奖金分配方案,试确定用何种方法抽取,三种类型的职工各抽多少?解析:由于奖金分配涉及到各种人的利益不同,所以应采用分层抽样方法. 因为总体人数400+302+250=952(人).952190=5余2,应剔除2人.而4005=80(人),302-25=60(人),2505=50(人),所以,采煤工人、运输工人、管理和服务人员分别抽取80人、60人、50人.。

【配套K12】2019版一轮优化探究理数(苏教版)练习:第十一章 第二节 用样本估计总体 Word版

【配套K12】2019版一轮优化探究理数(苏教版)练习:第十一章 第二节 用样本估计总体 Word版

一、填空题1.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a,中位数为b,众数为c,则a、b、c之间的大小关系为________.解析:平均数a=110×(15+17+14+10+15+17+17+16+14+12)=14.7,中位数b=15,众数c=17.∴c>b>a.答案:c>b>a2.一个容量为100的样本,其数据的分组与各组的频数如下:则样本数据落在(10,40]解析:由列表知样本数据落在(10,40]上的频数为52,∴频率为0.52.答案:0.523.学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为n且支出在[20,60)元的样本,其频率分布直方图如图所示,其中支出在[50,60)元的同学有30人.则n的值为________.解析:支出在[50,60)元的频率为1-0.36-0.24-0.1=0.3,因此30n=0.3,故n=100.答案:1004.甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环):如果甲、乙两人中只有________.解析:x 甲=x 乙=9,s 2甲=15×[(9-10)2+(9-8)2+(9-9)2+(9-9)2+(9-9)2]=25,s 2乙=15×[(9-10)2+(9-10)2+(9-7)2+(9-9)2+(9-9)2]=65>s 2甲,故甲更稳定,故填甲. 答案:甲5.为了解某校教师使用多媒体进行教学的情况,采用简单随机抽样的方法,从该校200名授课教师中抽取20名教师,调查了他们上学期使用多媒体进行教学的次数,结果用茎叶图表示如图,据此可估计该校上学期200名教师中,使用多媒体进行教学的次数在[15,25)内的人数为________.解析:由茎叶图知,抽取的20名教师中使用多媒体进行教学的次数在[15,25)内的人数为6,频率为620,故200名教师中使用多媒体进行教学的次数在[15,25)内的人数为620×200=60. 答案:606.若样本a 1,a 2,a 3,a 4,a 5的方差是3,则样本2a 1+3,2a 2+3,2a 3+3,2a 4+3,2a 5+3的方差是________.解析:若a 表示样本a 1,a 2,a 3,a 4,a 5的均值,则样本2a 1+3,2a 2+3,2a 3+3,2a 4+3,2a 5+3的均值为2a +3.又∑5i =1 (a i -a )2=3,∴∑5i =1[(2a i +3)-(2a +3)]2=∑5i =1(2a i-2a)2=12.答案:127.为了了解“预防禽流感疫苗”的使用情况,温州市卫生部门对本地区9月份至11月份使用疫苗的所有养鸡场进行了调查,根据下列图表提供的信息,可以得出这三个月本地区每月注射了疫苗的鸡的数量平均为________万只.解析:由题意得:13×(20×1+50×2+100×1.5)=90(万只/月).答案:908.某校对高三年级的学生进行体检,现将高三男生的体重(单位:kg)数据进行整理后分成六组,并绘制频率分布直方图(如图所示).已知图中从左到右第一、第六小组的频率分别为0.16,0.07,第一、第二、第三小组的频率成等比数列,第三、第四、第五、第六小组的频率成等差数列,且第三小组的频数为100,则该校高三年级的男生总数为________.解析:据题意设第3小组的频率为a,则由前3小组频率成等比数列得前三小组的频率分别为0.16,0.16a,a,后四组是以a为首项,以0.07为最后一项的等差数列.故此6组频率之和为0.16+0.16a +4(a +0.07)2.由于整个频率之和为1,故0.16+0.16a +4(a +0.07)2=1⇒a =14.由其相应的频数为100可得高三年级的男生总数为10014=400(人).答案:4009.某人5次上班途中所花的时间(单位:分钟)分别为x ,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y |的值为________. 解析:由题意可得:x +y =20,① (x -10)2+(y -10)2=8,② 即x +y =20,x 2+y 2=208,③将①式平方得x 2+y 2+2xy =400,将③式代入得2xy =192,故|x -y |=x 2+y 2-2xy =208-192=4.故填4.答案:4 二、解答题10.在育民中学举行的电脑知识竞赛中,将九年级两个班参赛的学生成绩(得分均为整数)进行整理后分成五组,绘制成如图所示的频率分布直方图.已知图中从左到右的第一、第三、第四、第五小组的频率分别是0.30,0.15,0.10,0.05,第二小组的频数是40.(1)求第二小组的频率,并补全这个频率分布直方图; (2)求这两个班参赛的学生人数是多少?(3)这两个班参赛学生的成绩的中位数应落在第几小组内?(不必说明理由)解析:(1)各小组的频率之和为1.00,第一、三、四、五小组的频率分别是0.30、0.15、0.10、0.05.∴第二小组的频率为:1.00-(0.30+0.15+0.10+0.05)=0.40.∵第二小组的频率为0.40,∴落在59.5~69.5的第二小组的小长方形的高=频率组距=0.4010=0.04.由此可补全直方图,补全的直方图如图所示.(2)设九年级两个班参赛的学生人数为x.∵第二小组的频数为40人,频率为0.40,∴40x=0.40,解得x=100.∴九年级两个班参赛的学生人数为100.(3)九年级两个班参赛学生的成绩的中位数应落在第二小组内.11.甲、乙两位学生参加数学竞赛培训,在培训期间,他们参加的5项预赛成绩记录如下:(1)(2)从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率;(3)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?说明理由.解析:(1)作出茎叶图如下:(2)记甲被抽到的成绩为x ,乙被抽到的成绩为y ,用数对(x ,y )表示基本事件: (82,95) (82,75) (82,80) (82,90) (82,85) (82,95) (82,75) (82,80) (82,90) (82,85) (79,95) (79,75) (79,80) (79,90) (79,85) (95,95) (95,75) (95,80) (95,90) (95,85) (87,95) (87,75) (87,80) (87,90) (87,85) 基本事件总数n =25.记“甲的成绩比乙高”为事件A ,事件A 包含的基本事件: (82,75) (82,80) (82,75) (82,80) (79,75) (95,75) (95,80) (95,90) (95,85) (87,75) (87,80) (87,85)事件A 包含的基本事件数是m =12. ∴P (A )=m n =1225.(3)派甲参赛比较合适.理由如下:x 甲=85,x 乙=85,s 2甲=31.6,s 2乙=50. ∴x 甲=x 乙,s 2甲<s 2乙,∴甲的成绩较稳定,派甲参赛比较合适.12.如图所示是某市有关部门根据该市干部的月收入情况,作抽样调查后画出的样本频率分布直方图,已知图中第一组的频数为4 000,请根据该图提供的信息解答下列问题:(图中每组包括左端点,不包括右端点,如第一组表示收入在 [1 000,1 500).(1)求样本中月收入在[2 500,3 500)的人数;(2)为了分析干部的收入与年龄、职业等方面的关系,必须从样本的各组中按月收入再用分层抽样方法抽出100人作进一步分析,则月收入在[1 500,2 000)的这段应抽多少人?(3)试估计样本数据的中位数.解析:(1)∵月收入在[1 000, 1 500)的频率为0.000 8×500=0.4,且有4 000人,=10 000;∴样本的容量n=4 0000.4月收入在[1 500,2 000)的频率为0.000 4×500=0.2;月收入在[2 000,2 500)的频率为0.000 3×500=0.15;月收入在[3 500,4 000)的频率为0.000 1×500=0.05.∴月收入在[2 500,3 500)的频率为1-(0.4+0.2+0.15+0.05)=0.2.∴样本中月收入在[2 500,3 500)的人数为0.2×10 000=2 000.(2)∵月收入在[1 500,2 000)的人数为0.2×10 000=2 000,∴再从10 000人中用分层抽样方法抽出100人,=20(人).则月收入在[1 500,2 000)的这段应抽取100×2 00010 000(3)由(1)知月收入在[1 000,2 000)的频率为0.4+0.2=0.6>0.5,∴样本数据的中位数为1 500+0.5-0.40.000 4=1 500+250=1 750(元).。

2019版一轮优化探究文数(苏教版)练习:第十一章 第四节 随机事

2019版一轮优化探究文数(苏教版)练习:第十一章 第四节 随机事

一、填空题 1.给出关于满足AB 的非空集合A 、B 的四个命题:①若任取x ∈A ,则x ∈B 是必然事件; ②若任取x ∉A ,则x ∈B 是不可能事件; ③若任取x ∈B ,则x ∈A 是随机事件; ④若任取x ∉B ,则x ∉A 是必然事件.其中正确的命题是________.(把你认为正确的命题序号都填上) 解析:∵A B ,∴A 中的任一元素都是B 中的元素, 而B 中至少有一个元素不在A 中. 因此①正确,②错误,③正确,④正确. 答案:①③④2.抛掷一颗骰子,观察掷出的点数,设事件A 为出现奇数点,事件B 为出现2点,已知P (A )=12,P (B )=16,则出现奇数点或2点的概率之和为________. 解析:出现奇数点或2点的事件为A ∪B . P (A ∪B )=P (A )+P (B )=12+16=46=23. 答案:233.在人民商场付款处排队等候付款的人数及其概率如下:解析:P =1-(0.1+0.16)=0.74. 答案:0.744.已知某台纺纱机在1小时内发生0次、1次、2次断头的概率分别是0.8,0.12,0.05,则这台纺纱机在1小时内断头不超过两次的概率和断头超过两次的概率分别为______和________.解析:P 1=0.8+0.12+0.05=0.97.P 2=1-P 1=1-0.97=0.03. 答案:0.97 0.035.三张卡片上分别写有字母E ,E ,B ,将三张卡片随机地排成一行,恰好排成英文单词BEE 的概率为________.解析:记写有字母E 的两张卡片分别为E 1,E 2,则三张卡片随机排成一行的所有可能情况为BE 1E 2E 2E 1,E 1BE 2E 2B ,E 2BE 1E 1B ,共6种,其中三张卡片恰好排成英文单词BEE 的事件个数为2,故所求的概率P =26=13. 答案:136.有编号为A 1,A 2,…,A 10的10个零件,测量其直径(单位:cm),得到下面数据:(1)从上述10个零件中,随机抽取1个,则这个零件为一等品的概率为________. (2)从一等品零件中,随机抽取2个,则这2个零件直径相等的概率为________. 解析:(1)由所给数据可知,一等品零件共有6个.设“从10个零件中,随机抽取1个为一等品”为事件A ,则P (A )=610=35.(2)“从一等品零件中,随机抽取的2个零件直径相等”(记为事件B )的所有可能结果有:{A 1,A 4},{A 1, A 6},{A 4,A 6},{A 2,A 3},{A 2,A 5},{A 3,A 5},共有6种,所以P (B )=615=25. 答案:35 257.某产品分甲、乙、丙三级,其中乙、丙两级均属次品,若生产中出现乙级品的概率为0.03,丙级品的概率为0.01,则对产品抽查,抽得正品的概率为________.解析:1-0.03-0.01=0.96. 答案:0.968.设有关于x 的一元二次方程x 2+2ax +b 2=0.若a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,则上述方程有实根的概率为________.解析:设事件A 为“方程x 2+2ax +b 2=0有实根”,当a ≥0,b ≥0时,方程x 2+2ax +b 2=0有实根的充要条件为a ≥b .基本事件共有12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),其中第一个数表示a 的取值,第二个数表示b 的取值. 事件A 中包括9个基本事件,事件A 发生的概率为P (A )=912=34. 答案:349.已知盒子中有散落的棋子15粒,其中6粒是黑子,9粒是白子,已知从中取出2粒都是黑子的概率是17,从中取出2粒都是白子的概率是1235,现从中任意取出2粒恰好是同一色的概率是________.解析:从盒子中任意取出2粒恰好是同一色的概率恰为取2粒白子的概率与取2粒黑子的概率的和,即为17+1235=1735. 答案:1735 二、解答题10.某医院一天派出医生下乡医疗,派出医生人数及其概率如下:医生人数 0 1 2 3 4 5人及以上概率0.10.16xy0.2z(1)(2)若派出医生最多4人的概率为0.96,最少3人的概率为0.44,求y 、z 的值. 解析:(1)由派出医生不超过2人的概率为0.56,得 0.1+0.16+x =0.56, ∴x =0.3.(2)由派出医生最多4人的概率为0.96,得 0.96+z =1,∴z =0.04.由派出医生最少3人的概率为0.44,得 y +0.2+z =0.44, ∴y =0.44-0.2-0.04=0.2.11.某学校篮球队、羽毛球队、乒乓球队的某些队员不只参加了一支球队,具体情况如图所示,现从中随机抽取一名队员,求:(1)该队员只属于一支球队的概率; (2)该队员最多属于两支球队的概率.解析:(1)设“该队员只属于一支球队”为事件A ,则事件A 的概率P (A )=1220=35. (2)设“该队员最多属于两支球队”为事件B ,则事件B 的概率P (B )=1-220=910.12.某地区教研部门要对高三期中数学练习进行调研,考察试卷中某道填空题的得分情况.已知该题有两空,第一空答对得3分,答错或不答得0分;第二空答对得2分,答错或不答得0分.第一空答对与否与第二空答对与否是相互独立的.从所有试卷中随机抽取1 000份,其中该题的得分组成容量为1 000的样本,统计结果如下表:第一空得分情况 得分 0 3 人数198802第二空得分情况 得分 0 2 人数698302 (1) (2)这个地区的一名高三学生因故未参加考试,如果这名学生参加考试,对于该填空题,以样本中各种得分情况的频率(精确到0.1)作为该同学相应的各种得分情况的概率.试求该同学第一空得分不低于第二空得分的概率. 解析:(1)设样本试卷中该题的平均得分为x ,则由表中数据可得: x =0×198+3×802+0×698+2×3021 000=3.01,据此可估计整个地区中该题的平均得分为3.01分.(2)依题意,第一空答对的概率为8021 000≈0.8,第二空答对的概率为3021 000≈0.3,记“第一空答对”为事件A,“第二空答对”为事件B,则“第一空答错”为事件A,“第二空答错”为事件B.若要使第一空得分不低于第二空得分,则A发生或A与B同时发生,故有:P(A)+P(A·B)=0.8+(1-0.8)×(1-0.3)=0.94.故该同学第一空得分不低于第二空得分的概率为0.94.。

近年高考数学一轮复习第十一章统计与概率课时训练(五十)抽样方法、用样本估计总体文(2021年整理)

近年高考数学一轮复习第十一章统计与概率课时训练(五十)抽样方法、用样本估计总体文(2021年整理)

(江苏专版)2019版高考数学一轮复习第十一章统计与概率课时跟踪检测(五十)抽样方法、用样本估计总体文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((江苏专版)2019版高考数学一轮复习第十一章统计与概率课时跟踪检测(五十)抽样方法、用样本估计总体文)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(江苏专版)2019版高考数学一轮复习第十一章统计与概率课时跟踪检测(五十)抽样方法、用样本估计总体文的全部内容。

课时跟踪检测(五十)抽样方法、用样本估计总体一抓基础,多练小题做到眼疾手快1.(2018·南通中学高三数学练习)一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):轿车A轿车B轿车C舒适型100150z标准型300450600按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆,则z的值为________.解析:由题意知错误!=错误!,解得z=400.答案:4002.(2018·泰州调研)某校在高三年级的1 000名学生中随机抽出100名学生的数学成绩作为样本进行分析,得到样本频率分布直方图如图所示,则估计该校高三学生中数学成绩在[110,140)之间的人数为________.解析:由样本频率分布直方图知该校高三学生中数学成绩在[110,140)之间的频率为(0.02+0。

026+0.02)×10=0。

66,所以估计该校高三学生中数学成绩在[110,140)之间的人数为1 000×0.66=660.答案:6603.(2018·淮安高三期中)某校高三年级500名学生中,血型为O型的有200人,A型的有125人,B型的有125人,AB型的有50人.为研究血型与色弱之间的关系,现用分层抽样的方法从这500名学生中抽取一个容量为60的样本,则应抽取________名血型为AB的学生.解析:在整个抽样过程中,每个个体被抽到的概率为错误!=错误!,所以血型为AB的学生应抽取的人数为50×错误!=6.4.(2018·徐州高三年级期中考试)已知一组数据:87,x,90,89,93的平均数为90,则该组数据的方差为________.解析:由题意知错误!×(87+x+90+89+93)=90,解得x=91,所以方差s2=错误!×[(87-90)2+(91-90)2+(90-90)2+(89-90)2+(93-90)2]=4.答案:45.为了了解1 200名学生对学校某项教改实验的意见,打算从中抽取一个容量为30的样本,考虑采取系统抽样,则分段的间隔k为________.解析:在系统抽样中,确定分段间隔k,对编号进行分段,k=错误!(N为总体的容量,n为样本的容量),所以k=错误!=错误!=40.答案:406.(2018·苏州期末)若一组样本数据9,8,x,10,11的平均数为10,则该组样本数据的方差为________.解析:由错误!=10,得x=12,故方差s2=错误!=2。

2019版一轮优化探究文数(苏教版)练习:第十一章 第四节 随机事件的概率 含解析

2019版一轮优化探究文数(苏教版)练习:第十一章 第四节 随机事件的概率 含解析

一、填空题 1.给出关于满足AB 的非空集合A 、B 的四个命题:①若任取x ∈A ,则x ∈B 是必然事件; ②若任取x ∉A ,则x ∈B 是不可能事件; ③若任取x ∈B ,则x ∈A 是随机事件; ④若任取x ∉B ,则x ∉A 是必然事件.其中正确的命题是________.(把你认为正确的命题序号都填上) 解析:∵A B ,∴A 中的任一元素都是B 中的元素, 而B 中至少有一个元素不在A 中. 因此①正确,②错误,③正确,④正确. 答案:①③④2.抛掷一颗骰子,观察掷出的点数,设事件A 为出现奇数点,事件B 为出现2点,已知P (A )=12,P (B )=16,则出现奇数点或2点的概率之和为________. 解析:出现奇数点或2点的事件为A ∪B . P (A ∪B )=P (A )+P (B )=12+16=46=23. 答案:233.在人民商场付款处排队等候付款的人数及其概率如下:解析:P =1-(0.1+0.16)=0.74. 答案:0.744.已知某台纺纱机在1小时内发生0次、1次、2次断头的概率分别是0.8,0.12,0.05,则这台纺纱机在1小时内断头不超过两次的概率和断头超过两次的概率分别为______和________.解析:P 1=0.8+0.12+0.05=0.97.P 2=1-P 1=1-0.97=0.03. 答案:0.97 0.035.三张卡片上分别写有字母E ,E ,B ,将三张卡片随机地排成一行,恰好排成英文单词BEE 的概率为________.解析:记写有字母E 的两张卡片分别为E 1,E 2,则三张卡片随机排成一行的所有可能情况为BE 1E 2E 2E 1,E 1BE 2E 2B ,E 2BE 1E 1B ,共6种,其中三张卡片恰好排成英文单词BEE 的事件个数为2,故所求的概率P =26=13. 答案:136.有编号为A 1,A 2,…,A 10的10个零件,测量其直径(单位:cm),得到下面数据:(1)从上述10个零件中,随机抽取1个,则这个零件为一等品的概率为________. (2)从一等品零件中,随机抽取2个,则这2个零件直径相等的概率为________. 解析:(1)由所给数据可知,一等品零件共有6个.设“从10个零件中,随机抽取1个为一等品”为事件A ,则P (A )=610=35.(2)“从一等品零件中,随机抽取的2个零件直径相等”(记为事件B )的所有可能结果有:{A 1,A 4},{A 1, A 6},{A 4,A 6},{A 2,A 3},{A 2,A 5},{A 3,A 5},共有6种,所以P (B )=615=25. 答案:35 257.某产品分甲、乙、丙三级,其中乙、丙两级均属次品,若生产中出现乙级品的概率为0.03,丙级品的概率为0.01,则对产品抽查,抽得正品的概率为________.解析:1-0.03-0.01=0.96.。

高考数学江苏新攻略总复习课标通用练习:第十一章第一节 抽样方法 含解析

高考数学江苏新攻略总复习课标通用练习:第十一章第一节 抽样方法 含解析

第一节抽样方法课时作业练1.为了解72名学生的学习情况,采用系统抽样的方法,从中抽取容量为8的样本,则分段的间隔为.答案92.(2018江苏丹阳中学期中)某校高三年级500名学生中,血型为O型的有200人,A型的有125人,B型的有125人,AB型的有50人.为研究血型与色弱之间的关系,现用分层抽样的方法从这500名学生中抽取一个容量为60的样本,则应抽取名血型为AB型的学生.答案6解析应抽取50×60=6名血型为AB型的学生.6003.某高二学生练习投篮,每次投篮命中率约为30%,现采用随机模拟的方法估计该生投篮命中的概率:先用计算器产生0到9之间的整数值的随机数,指定0,1,2表示命中,3,4,5,6,7,8,9表示不命中;再以每三个随机数为一组,代表3次投篮的结果.经随机模拟产生了如下随机数表:据此估计该生3次投篮恰有2次命中的概率为.答案0.2解析由随机数表可知共有20组随机数,其中表示3次投篮恰有2次命中的有191,271,027,113,=0.2.共4组,所以估计该生3次投篮恰有2次命中的概率为4204.下列抽取样本的方式是简单随机抽样的有个.①从无限多个个体中抽取50个个体作为样本;②箱子里有100支铅笔,现从中选取10支进行检验,在抽样时,从中任意拿出一支检验后再放回箱子里;③从50个个体中一次性抽取5个个体作为样本.答案0解析①不满足总体的个体数有限的特点;②不满足不放回抽取的特点;③不满足逐个抽取的特点.5.某公司在甲、乙、丙、丁四个地区分别有150、120、180、150个销售点.公司为了调查产品的销售情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区有20个大型销售点,要从中抽取7个销售点调查其销售收入和售后服务等情况,记这项调查为②,则完成①②这两项调查宜采用的抽样方法依次是.答案分层抽样法,简单随机抽样法解析一般甲、乙、丙、丁四个地区会存在差异性,所以采用分层抽样法较好.在丙地区大型销售点的数目较少,宜采用简单随机抽样法.6.某单位有840名职工,现采用系统抽样的方法抽取42人做问卷调查,将840人按1,2, (840)机进行编号,则抽取的42人中,编号落入区间[481,720]的人数为.答案12解析因为840÷42=20,所以编号在[481,720]内的人数为(720-480)÷20=12.7.(2019江苏南京高三模拟)某中学共有学生2 000人,其中高一年级共有学生650人,高二年级男生有370人.现从全校学生中随机抽取1名,抽到高二年级女生的概率是0.19,则该校高三年级的学生共有人.答案600解析高二年级女生的人数为0.19×2 000=380,则高二年级共有学生750人,所以该校高三年级的学生共有2 000-650-750=600人.8.一个总体中有90个个体,将其随机编号为0,1,2,…,89,依从小到大的编号顺序平均分成9个小组,组号依次为1,2,3,…,9,现用系统抽样的方法抽取一个容量为9的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码的个位数字与m+k的个位数字相同.若m=8,则在第8组中抽取的号码是.答案76解析由题意知m=8,k=8,则m+k=16,也就是第8组抽取的号码个位数字为6,十位数字为7,故在第8组中抽取的号码是76.9.某工厂在12月份共生产3 600双皮鞋,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取.若从第一,二,三车间抽取的产品数分别为a,b,c,且a,b,c构成等差数列,则第二车间生产的产品数为.答案 1 200.解析因为a,b,c构成等差数列,所以2b=a+c,即第二车间抽取的产品数占抽样产品总数的13由分层抽样的性质可知第二车间生产的产品数占12月份生产总数的1,即1 200双皮鞋.310.某高中在校学生有2 000人.为了响应“阳光体育运动”的号召,学校开展了跑步和登山比赛活动.每人都参与而且只参与其中一项比赛,各年级参与比赛的人数情况如下表:高一年级高二年级高三年级跑步a b c登山x y z其中a∶b∶c=2∶3∶5,全校参与登山的人数占总人数的2.为了了解学生对本次活动的满意程度,5从中抽取一个容量为200的样本进行调查,则应从高二年级参与跑步的学生中抽取人. 答案36)=120,所以应从高二年级参与跑步的学解析根据题意可知样本中参与跑步的人数为200×(1-25=36人.生中抽取120×32+3+511.(2018江苏苏州调研)某班运动队由足球运动员18人、篮球运动员12人、乒乓球运动员6人组成(每人只参加一项),现从这些运动员中抽取一个容量为n的样本,若分别采用系统抽样法和分层抽样法,则都不用剔除个体.当样本容量为n+1时,若采用系统抽样法,则需要剔除1个个体,则样本容量n为.答案6解析 总体容量为6+12+18=36.当样本容量为n 时,由题意可知,系统抽样的抽样距为36n,分层抽样的抽样比是n36,则采用分层抽样法抽取的乒乓球运动员人数为6×n 36=n6,篮球运动员人数为12×n 36=n3,足球运动员人数为18×n 36=n2,可知n 应是6的倍数,36的约数,故n=6,12,18.当样本容量为n+1时,剔除1个个体,此时总体容量为35,系统抽样的抽样距为35n+1.因为35n+1必须是整数,所以n 只能取6,即样本容量n 为6.12.某高中现有在校生1 600人,其中高一学生520人,高二学生500人,高三学生580人.如果想通过抽查其中的80人来调查学生的消费情况,考虑到不同年级学生的消费情况有明显差别,而同一年级内的学生消费情况差异较小,问应当采用怎样的抽样方法?高三学生中应抽查多少人? 解析 因为不同年级的学生消费情况有明显的差别,而同一年级内的学生消费情况差异较小,所以应采用分层抽样的方法.故高三学生中应抽查80×5801 600=29人.13.经问卷调查,某班学生对音乐分别持“喜欢”“不喜欢”和“一般”三种态度,其中持“一般”态度的比持“不喜欢”态度的多12人.按分层抽样的方法从全班学生中选出部分学生座谈音乐,如果选出了5位“喜欢”音乐的同学、1位“不喜欢”音乐的同学和3位持“一般”态度的同学,问全班学生中“喜欢”音乐的人数比全班人数的一半还多多少人?解析 设持“不喜欢”态度的同学有x 人,则持“一般”态度的同学有(12+x)人,由于每位同学被抽到的可能性相同,故1x =312+x ,解得x=6.故每位同学被抽到的可能性为16,“喜欢”音乐的同学有5÷16=30人,全班总人数为30+6+(12+6)=54.故全班学生中“喜欢”音乐的人数比全班人数的一半还多30-542=3人.基础滚动练(滚动循环 夯实基础)1.已知全集U={1,2,3,4},A={1,x,y},若∁U A={4},则x+y= . 答案 52.若等比数列{a n }的公比大于1,a 5-a 1=15,a 4-a 2=6,则a 3= . 答案 4解析 设等比数列{a n }的公比为q,q>1,则a 5-a 1=a 1q 4-a 1=15,a 4-a 2=a 1q 3-a 1q=6,两式联立,解得a 1=1,q=2,所以a 3=a 1q 2=4.3.(2018江苏三校高三模拟)如图,铜质六角螺帽毛胚是由一个正六棱柱挖去一个圆柱所构成的.已知正六棱柱的底面边长、高都为4 cm,圆柱的底面积为9√3 cm 2.若将该螺帽熔化后铸成一个高为6 cm 的正三棱柱零件,则该正三棱柱零件的底面边长为 cm.(不计损耗)答案 2√10解析 设正三棱柱的底面边长为a cm,则 6×√34×42×4-9√3×4=6×√34a 2, 解得a 2=40,a=2√10.4.(2019江苏盐城高三模拟)在正三棱柱ABC-A 1B 1C 1中,已知AB=2,AA 1=4,若E,F 分别是棱BB 1和CC 1上的点,则三棱锥A-A 1EF 的体积是 . 答案4√33解析 V A -A 1EF =V F -AA 1E =13S △AA 1E h=13×12×4×2×√3=4√33. 5.函数f(x)=kcos x 的图象过点P (π3,1),则该函数在点P 处的切线的倾斜角是 . 答案2π3 解析 f (π3)=kcos π3=1,则k=2,则f '(x)=-2sin x,则f '(π3)=-2×√32=-√3,即切线的斜率为-√3.设倾斜角是θ,θ∈[0,π),则tan θ=-√3,θ=2π3. 6.已知向量a,b 满足|a|=2,|b|=1,|a-2b|=2√3,则a 与b 的夹角为 . 答案 2π3解析 设a 与b 的夹角为θ(θ∈[0,π]), ∵|a|=2,|b|=1,|a -2b|=2√3,∴|a -2b|2=|a|2+4|b|2-4|a||b|cos θ=4+4-4×2×1×cos θ=12.∴cos θ=-12.又0≤θ≤π,∴θ=2π3. 7.设函数f(x)对任意的x 都满足f(1-x)=f(1+x),且对任意的a,b∈(-∞,1],a≠b 时,都有f (a )-f (b )a -b<0.若f(m+1)<f(2),则实数m 的取值范围是 .答案 (-1,1)解析 由题意可得函数f(x)的图象关于直线x=1对称,且在(-∞,1]上单调递减,则在[1,+∞)上单调递增,则f(m+1)<f(2)⇔0<m+1<2,解得-1<m<1.8.(2019江苏南京、盐城高三模拟)如图,在平面直角坐标系xOy 中,焦点在x 轴上的椭圆C:x 28+y 2b2=1经过点(b,2e).其中e 为椭圆C 的离心率.过点T(1,0)作斜率为k(k>0)的直线l 交椭圆C 于A,B 两点(A 在x 轴下方). (1)求椭圆C 的标准方程;(2)过点O 且平行于l 的直线交椭圆C 于点M,N,求AT ·BT MN 2的值;(3)记直线l 与y 轴的交点为P.若AP⃗⃗⃗⃗⃗ =25TB ⃗⃗⃗⃗⃗ ,求直线l 的斜率k.解析(1)因为椭圆x 28+y 2b2=1经过点(b,2e),所以b 28+4e 2b2=1.因为e2=c 2a 2=c 28,所以b 28+c 22b2=1.因为a 2=b 2+c 2,所以b 28+8-b 22b2=1.整理得b 4-12b 2+32=0,解得b 2=4或b 2=8(舍).所以椭圆C 的方程为x 28+y 24=1.(2)设A(x 1,y 1),B(x 2,y 2).因为T(1,0),所以直线l 的方程为y=k(x-1).联立直线l 与椭圆C 的方程可得{y =k (x -1),x 28+y 24=1,消去y,得(2k 2+1)x 2-4k 2x+2k 2-8=0,所以{x 1+x 2=4k 22k 2+1,x 1x 2=2k 2-82k 2+1.因为MN∥l,所以直线MN 的方程为y=kx.联立直线MN 与椭圆C 的方程可得{y =kx ,x 28+y 24=1,消去y,得(2k 2+1)x 2=8,解得x 2=82k 2+1.因为MN∥l,所以AT ·BT MN 2=(1-x 1)(x 2-1)(x M -x N )2.因为(1-x 1)(x 2-1)=-[x 1x 2-(x 1+x 2)+1]=72k 2+1,(x M -x N )2=4x 2=322k 2+1,所以AT ·BT MN 2=(1-x 1)(x 2-1)(x M -x N )2=72k 2+1·2k 2+132=732. (3)在y=k(x-1)中,令x=0,则y=-k,所以P(0,-k). 故AP⃗⃗⃗⃗⃗ =(-x 1,-k-y 1),TB ⃗⃗⃗⃗⃗ =(x 2-1,y 2). 因为AP⃗⃗⃗⃗⃗ =25TB ⃗⃗⃗⃗⃗ ,所以-x 1=25(x 2-1),即x 1+25x 2=25.由(2)知{x 1+x 2=4k 22k 2+1,x 1x 2=2k 2-82k 2+1.由{x 1+x 2=4k 22k 2+1,x 1+25x 2=25,解得x 1=-4k 2+23(2k 2+1),x 2=16k 2-23(2k 2+1).因为x 1x 2=2k 2-82k 2+1,所以-4k 2+23(2k 2+1)×16k 2-23(2k 2+1)=2k 2-82k 2+1.整理得50k 4-83k 2-34=0,解得k 2=2或k 2=-1750(舍).又k>0,所以k=√2.。

2019版一轮优化探究理数(苏教版)练习:第十一章 第二节 用样本估计总体

2019版一轮优化探究理数(苏教版)练习:第十一章 第二节 用样本估计总体

一、填空题1.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a ,中位数为b ,众数为c ,则a 、b 、c 之间的大小关系为________. 解析:平均数a =110×(15+17+14+10+15+17+17+16+14+12)=14.7, 中位数b =15,众数c =17.∴c >b >a . 答案:c >b >a2.一个容量为100的样本,其数据的分组与各组的频数如下:则样本数据落在(10,40]解析:由列表知样本数据落在(10,40]上的频数为52, ∴频率为0.52. 答案:0.523.学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为n 且支出在[20,60)元的样本,其频率分布直方图如图所示,其中支出在[50,60)元的同学有30人.则n 的值为________. 解析:支出在[50,60)元的频率为 1-0.36-0.24-0.1=0.3, 因此30n =0.3,故n =100. 答案:1004.甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环):如果甲、乙两人中只有________.解析:x 甲=x 乙=9,s 2甲=15×[(9-10)2+(9-8)2+(9-9)2+(9-9)2+(9-9)2]=25, s 2乙=15×[(9-10)2+(9-10)2+(9-7)2+(9-9)2+(9-9)2]=65>s 2甲,故甲更稳定,故填甲. 答案:甲5.为了解某校教师使用多媒体进行教学的情况,采用简单随机抽样的方法,从该校200名授课教师中抽取20名教师,调查了他们上学期使用多媒体进行教学的次数,结果用茎叶图表示如图,据此可估计该校上学期200名教师中,使用多媒体进行教学的次数在[15,25)内的人数为________.解析:由茎叶图知,抽取的20名教师中使用多媒体进行教学的次数在[15,25)内的人数为6,频率为620,故200名教师中使用多媒体进行教学的次数在[15,25)内的人数为620×200=60. 答案:606.若样本a 1,a 2,a 3,a 4,a 5的方差是3,则样本2a 1+3,2a 2+3,2a 3+3,2a 4+3,2a 5+3的方差是________.解析:若a 表示样本a 1,a 2,a 3,a 4,a 5的均值,则样本2a 1+3,2a 2+3,2a 3+3,2a 4+3,2a 5+3的均值为2a +3.又∑5i =1 (a i -a )2=3,∴∑5i =1[(2a i +3)-(2a +3)]2=∑5i =1 (2a i -2a )2=12. 答案:127.为了了解“预防禽流感疫苗”的使用情况,温州市卫生部门对本地区9月份至11月份使用疫苗的所有养鸡场进行了调查,根据下列图表提供的信息,可以得出这三个月本地区每月注射了疫苗的鸡的数量平均为________万只.解析:由题意得:13×(20×1+50×2+100×1.5)=90(万只/月). 答案:908.某校对高三年级的学生进行体检,现将高三男生的体重(单位:kg)数据进行整理后分成六组,并绘制频率分布直方图(如图所示).已知图中从左到右第一、第六小组的频率分别为0.16,0.07,第一、第二、第三小组的频率成等比数列,第三、第四、第五、第六小组的频率成等差数列,且第三小组的频数为100,则该校高三年级的男生总数为________.解析:据题意设第3小组的频率为a ,则由前3小组频率成等比数列得前三小组的频率分别为0.16,0.16a ,a ,后四组是以a 为首项,以0.07为最后一项的等差数列.故此6组频率之和为0.16+0.16a +4(a +0.07)2.由于整个频率之和为1,故0.16+0.16a +4(a +0.07)2=1⇒a =14.由其相应的频数为100可得高三年级的男生总数为10014=400(人).答案:4009.某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x-y|的值为________.解析:由题意可得:x+y=20,①(x-10)2+(y-10)2=8,②即x+y=20,x2+y2=208,③将①式平方得x2+y2+2xy=400,将③式代入得2xy=192,故|x-y|=x2+y2-2xy =208-192=4.故填4.答案:4二、解答题10.在育民中学举行的电脑知识竞赛中,将九年级两个班参赛的学生成绩(得分均为整数)进行整理后分成五组,绘制成如图所示的频率分布直方图.已知图中从左到右的第一、第三、第四、第五小组的频率分别是0.30,0.15,0.10,0.05,第二小组的频数是40.(1)求第二小组的频率,并补全这个频率分布直方图;(2)求这两个班参赛的学生人数是多少?(3)这两个班参赛学生的成绩的中位数应落在第几小组内?(不必说明理由)解析:(1)各小组的频率之和为1.00,第一、三、四、五小组的频率分别是0.30、0.15、0.10、0.05.∴第二小组的频率为:1.00-(0.30+0.15+0.10+0.05)=0.40.∵第二小组的频率为0.40,∴落在59.5~69.5的第二小组的小长方形的高=频率组距=0.4010=0.04.由此可补全直方图,补全的直方图如图所示.(2)设九年级两个班参赛的学生人数为x . ∵第二小组的频数为40人,频率为0.40, ∴40x =0.40,解得x =100.∴九年级两个班参赛的学生人数为100.(3)九年级两个班参赛学生的成绩的中位数应落在第二小组内.11.甲、乙两位学生参加数学竞赛培训,在培训期间,他们参加的5项预赛成绩记录如下:(1)(2)从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率; (3)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?说明理由. 解析:(1)作出茎叶图如下:(2)记甲被抽到的成绩为x ,乙被抽到的成绩为y ,用数对(x ,y )表示基本事件: (82,95) (82,75) (82,80) (82,90) (82,85) (82,95) (82,75) (82,80) (82,90) (82,85) (79,95) (79,75) (79,80) (79,90) (79,85) (95,95) (95,75) (95,80) (95,90) (95,85) (87,95) (87,75) (87,80) (87,90) (87,85) 基本事件总数n =25.记“甲的成绩比乙高”为事件A,事件A包含的基本事件:(82,75)(82,80)(82,75)(82,80)(79,75)(95,75)(95,80)(95,90)(95,85)(87,75)(87,80)(87,85)事件A包含的基本事件数是m=12.∴P(A)=mn=1225.(3)派甲参赛比较合适.理由如下:x甲=85,x乙=85,s2甲=31.6,s2乙=50.∴x甲=x乙,s2甲<s2乙,∴甲的成绩较稳定,派甲参赛比较合适.12.如图所示是某市有关部门根据该市干部的月收入情况,作抽样调查后画出的样本频率分布直方图,已知图中第一组的频数为4 000,请根据该图提供的信息解答下列问题:(图中每组包括左端点,不包括右端点,如第一组表示收入在[1 000,1 500).(1)求样本中月收入在[2 500,3 500)的人数;(2)为了分析干部的收入与年龄、职业等方面的关系,必须从样本的各组中按月收入再用分层抽样方法抽出100人作进一步分析,则月收入在[1 500,2 000)的这段应抽多少人?(3)试估计样本数据的中位数.解析:(1)∵月收入在[1 000, 1 500)的频率为0.000 8×500=0.4,且有4 000人,∴样本的容量n=4 0000.4=10 000;月收入在[1 500,2 000)的频率为0.000 4×500=0.2;月收入在[2 000,2 500)的频率为0.000 3×500=0.15;月收入在[3 500,4 000)的频率为0.000 1×500=0.05. ∴月收入在[2 500,3 500)的频率为1-(0.4+0.2+0.15+0.05)=0.2.∴样本中月收入在[2 500,3 500)的人数为0.2×10 000=2 000.(2)∵月收入在[1 500,2 000)的人数为0.2×10 000=2 000,∴再从10 000人中用分层抽样方法抽出100人,则月收入在[1 500,2 000)的这段应抽取100×2 00010 000=20(人).(3)由(1)知月收入在[1 000,2 000)的频率为0.4+0.2=0.6>0.5,∴样本数据的中位数为1 500+0.5-0.40.000 4=1 500+250=1 750(元).。

高考数学一轮复习 第11章 概率与统计11.4抽样方法教学案 苏教版

高考数学一轮复习 第11章 概率与统计11.4抽样方法教学案 苏教版

11.4 抽样方法考纲要求1.理解随机抽样的必要性和重要性.2.会用简单随机抽样法从总体中抽取样本;了解分层抽样和系统抽样方法,或根据分层抽样比计算总体或样本中的个体数.1.简单随机抽样 (1)定义从个体数为N 的总体中__________取出n (n <N )个个体作为________,如果每个个体都有__________被取到,那么这样的抽样方法称为简单随机抽样.(2)分类简单随机抽样⎩⎪⎨⎪⎧,.2.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n (n <N )的样本,系统抽样的步骤为: (1)采用______的方式将总体中的N 个个体编号.(2)将编号按间隔k 分段,当N n 是整数时,k =________;当N n不是整数时,从总体中__________,使剩下的总体中个体的个数N ′能被n 整除,这时k =__________,并将剩下的总体重新编号.(3)在第一段中用简单随机抽样确定______的个体编号l.(4)按照一定的规则抽取样本,通常将编号为l,______,______,…,________的个体抽出.3.分层抽样当总体由________的几个部分组成时,为了使______更客观地反映总体情况,我们常常将总体中的个体按________分成__________的几部分,然后按各部分在总体中__________实施抽样,这种抽样方法叫分层抽样.1.某中学进行了该学年度期末统一考试,该校为了了解高一年级1 000名学生的考试成绩,从中随机抽取了100名学生的成绩单,就这个问题来说,下面说法正确的序号是__________.①1 000名学生是总体②每个学生是个体③1 000名学生的成绩是一个个体④样本的容量是1002.老师在班级50名学生中,依次抽取学号为5,10,15,20,25,30,35,40,45,50的学生进行作业检查,这种抽样方法是__________.3.(2012江苏盐城二模)某校共有学生2 000名,各年级人数如下表所示:年级高一高二高三人数800600600现用分层抽样的方法在全校抽取120名学生,则应在高三年级抽取的学生人数为__________.4.(2012江苏徐州质检)某校高一、高二、高三学生共有3 200名,其中高三800名,如果通过分层抽样的方法从全体学生中抽取一个160人的样本,那么应当从高三的学生中抽取的人数是__________.三种抽样方法有什么异同点?提示:类别共同点各自特点相互联系适用范围简单随机抽样从总体中逐个抽取总体中的个体数较少系统抽样将总体均匀分成几部分,按事先确定的规则在各部分抽取在起始部分抽样时采用简单随机抽样总体中的个体数较多分层抽样抽样过程中每个个体被抽取的机会均等将总体分成几层,分层进行抽取各层抽样时采用简单随机抽样或系统抽样总体由差异明显的几部分组成一、系统抽样【例1】将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为_________________.方法提炼解决系统抽样问题要掌握系统抽样的以下特点: (1)元素个数多且均衡的总体; (2)各个个体被抽到的机会均等; (3)起始用简单随机抽样; (4)k =N n(不能整除的,剔出余数).请做针对训练2二、分层抽样【例2】 某政府机关在编人员100人,其中副处级以上干部10人,一般干部70人,工人20人.上级机关为了了解职工对政府机构改革的意见,要从中抽取一个容量为20的样本.试确定用何种方法抽取,请具体实施操作.方法提炼分层抽样适用于总体是由差异明显的几部分组成的情况,这样更能反映总体的情况,是等可能抽样.当各层抽取的个体数目确定后,每层中的样本抽取可用简单随机抽样或系统抽样的方法.用分层抽样法抽样的关键是确定抽样比,抽样比=样本容量总体中的个体数=每层抽取的个体数该层的个体数.用抽样比乘以该层的个体数等于在该层中抽取的个体数.请做针对训练3从近三年高考试题来看,本节考查的重点是分层抽样.牢记从各部分抽取的个体数与该部分个体数的比值等于样本容量与总体的个体数的比值,是正确解决此问题的关键,抽样过程为不放回抽样,且必须保证每个个体被抽到的可能性相同.该部分题型多以填空题为主,属于容易题.1.用随机数表从100名学生(其中男生25人)中抽取20人进行评教,某男生被抽到的概率是__________.2.(2012江苏南京金陵中学预测卷)高三(1)班共有56人,学号依次为1,2,3, (56)现用系统抽样的办法抽取一个容量为4的样本,已知学号为6,34,48的同学在样本中,那么还有一个同学的学号应为__________.3.某工厂生产了某种产品3 000件,它们来自甲、乙、丙三条生产线.为检查这批产品的质量,决定采用分层抽样的方法进行抽样.若从甲、乙、丙三条生产线抽取的个数分别为a,b,c,且a,b,c构成等差数列,则乙生产线生产了__________件产品.参考答案基础梳理自测 知识梳理1.(1)逐个不放回地 样本 相同的机会 (2)抽签法 随机数表法2.(1)随机 (2)N n 剔除一些个体 N ′n(3)起始 (4)l +k l +2k l +(n -1)k3.差异明显 样本 不同的特点 层次比较分明 所占的比 基础自测1.④ 解析:①中1 000名学生的成绩是总体,②中每个学生的成绩是个体,③中一名学生的成绩是一个个体.2.系统抽样 解析:由所给的数据可以看出这种抽样方法为系统抽样.3.36 解析:按比例分配得120×600800+600+600=36(人).4.40 解析:160×14=40.考点探究突破【例1】 25,17,8 解析:由题意及系统抽样的定义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k (k ∈N *)组抽中的号码是3+12(k -1).令3+12(k -1)≤300得k ≤1034,因此第Ⅰ营区被抽中的人数是25;令300<3+12(k -1)≤495得1034<k ≤42,因此第Ⅱ营区被抽中的人数是42-25=17.所以第Ⅲ营区被抽中的人数是50-42=8.【例2】解:因机构改革关系到每人的不同利益,故采用分层抽样的方法为妥. ∵10020=5,105=2,705=14,205=4, ∴从副处级以上干部中抽取2人,从一般干部中抽取14人,从工人中抽取4人. 因副处级以上干部与工人人数都较少,把他们分别按1~10编号与1~20编号,然后制作号签,采用抽签法分别抽取2人和4人;对一般干部70人采用00,01,…,69编号,然后用随机数表法抽取14人.演练巩固提升 针对训练 1.15解析:简单随机抽样时每个个体被抽到的可能性相同. 2.20 解析:采用系统抽样,所抽出的样本成等差数列,故另一个同学的学号应是20. 3.1 000 解析:因为a ,b ,c 构成等差数列,根据分层抽样的原理,所以甲、乙、丙三条生产线生产的产品数也成等差数列,其和为3 000件,所以乙生产线生产了1 000件产品.。

2019版一轮优化探究文数(苏教版)练习:第十一章 第五节

2019版一轮优化探究文数(苏教版)练习:第十一章 第五节

一、填空题1.下列试验中,是古典概型的有________.①种下一粒种子观察它是否发芽②从规格直径为250 mm±0.6 mm 的一批合格产品中任意抽一个,测量其直径d ③抛一枚硬币,观察其出现正面或反面④某人射击中靶或不中靶答案:③2.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为________.解析:从4张卡片中有序地取得两张的取法共有4×3=12种,其中取得一奇一偶的取法共有4×2=8种(先任取,后取与第一张不同奇偶的).故取得卡片上数字之和为奇数的概率为P ==.81223答案:233.甲乙二人玩数字游戏,先由甲任想一数字,记为a ,再由乙猜甲刚才想的数字,把乙猜出的数字记为b ,且a ,b ∈{1,2,3},若|a -b |≤1,则称甲、乙“心有灵犀”,现任意找两个人玩这个游戏,则他们“心有灵犀”的概率为________.解析:甲想一数字有3种结果,乙猜一数字有3种结果,基本事件总数为3×3=9.设“甲、乙心有灵犀”为事件A ,则A 的对立事件B 为“|a -b |>1”,即|a -b |=2,包含2个基本事件,∴P (B )=,29∴P (A )=1-=.2979答案:794.一个坛子里有编号为1,2,…,12的12个大小相同的球,其中1到6号球是红球,其余的是黑球,若从中任取两个球,则取到的都是红球,且至少有1个球的号码是偶数的概率为________.解析:基本事件总数为C ,事件包含的基本事件数为C -C ,故所求的概率2122623为P ==.C26-C23C 212211答案:2115.一个口袋中,装有大小相等的5个黑球,6个白球和4个黄球,从中摸出3个球,那么摸出的3个球颜色不超过2种的概率是________.解析:基本事件总数为C ,事件“摸出的3个球颜色互不相同”包含的基本315事件数为C C C ,故所求事件的概率为P =1-=1-=.161514C16C15C14C 31524916791答案:67916.在集合{x |x =,n =1,2,3,…,10}中任取一个元素,所取元素恰好满足方n π6程cos x =的概率是________.12解析:基本事件总数为10,满足cos x =的x 有两个.12∴P ==.21015答案:157.任取一个三位正整数N ,则对数log 2 N 是一个正整数的概率是________.解析:∵26=64,27=128,28=256,29=512,210=1 024,∴满足条件的正整数只有27,28,29三个,∴所求的概率P ==.39001300答案:13008.有一质地均匀的正四面体,它的四个面上分别标有1,2,3,4四个数字.现将它连续抛掷3次,其底面落于桌面,记三次在正四面体底面的数字和为S ,则“S 恰好为4”的概率为________.解析:本题是一道古典概型问题.用有序实数对(a ,b ,c )来记连续抛掷3次所得的3个数字,总事件中含4×4×4=64个基本事件,取S =a +b +c ,事件“S 恰好为4”中包含了(1,1,2),(1,2,1),(2,1,1)三个基本事件,则P (S 恰好为4)==.P (A )P (Ω)364答案:3649.在一次教师联欢会上,到会的女教师比男教师多12人,从这些教师中随机挑选一人表演节目,若选到男教师的概率为,则参加联欢会的教师共有920________人.解析:设男教师为n 个人,则女教师为(n +12)人,∴=.n2n +12920∴n =54,∴参加联欢会的教师共有120人.答案:120二、解答题10.某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:文艺节目新闻节目总计20至40岁401858大于40岁152742总计5545100(1)由表中数据直观分析,收看新闻节目的观众是否与年龄有关?(2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?(3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率.解析:(1)因为在20至40岁的58名观众中有18名观众收看新闻节目,而大于40岁的42名观众中有27名观众收看新闻节目,所以,经直观分析,收看新闻节目的观众与年龄是有关的.(2)从题中所给条件可以看出收看新闻节目的共45人,随机抽取5人,则抽样比为=,故大于40岁的观众应抽取27×=3(人).5451919(3)抽取的5名观众中大于40岁的有3人,在20至40岁的有2人,记大于40岁的人为a 1,a 2,a 3,20至40岁的人为b 1,b 2,则从5人中抽取2人的基本事件有(a 1,a 2),(a 1,a 3),(a 2,a 3),(b 1,b 2),(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),共10个,其中恰有1人为20至40岁的有6个,故所求概率为=.6103511.现有一批产品共有10件,其中8件为正品,2件为次品.(1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率;(2)如果从中一次取3件,求3件都是正品的概率.解析:(1)有放回地抽取3次,按抽取顺序(x ,y ,z )记录结果,则x ,y ,z 都有10种可能,所以基本事件总数为10×10×10=103(种);设事件A 为“连续3次都取正品”,则包含的基本事件共有8×8×8=83种,因此P (A )==0.512.83103(2)可以看作不放回抽样3次,顺序不同,基本事件不同,按抽取顺序记录(x ,y ,z ),则x 有10种可能,y 有9种可能,z 有8种可能,所以基本事件总数为10×9×8.设事件B 为“3件都是正品”,则事件B 包含的基本事件总数为8×7×6,所以P (B )==.8×7×610×9×871512.把一颗骰子投掷2次,观察出现的点数,并记第一次出现的点数为a ,第二次出现的点数为b ,试就方程组Error!解答下列各题:(1)求方程组只有一个解的概率;(2)求方程组只有正数解的概率.解析:事件(a ,b )的基本事件有36个.由方程组Error!可得Error!(1)方程组只有一个解,需满足2a -b ≠0,即b ≠2a ,而b =2a 的事件有(1,2),(2,4),(3,6)共3个,所以方程组只有一个解的概率为P 1=1-=.3361112(2)方程组只有正数解,需2a -b ≠0且Error!即Error!或Error!其包含的事件有13个:(2,1),(3,1),(4,1),(5,1),(6,1),(2,2),(3,2),(4,2),(5,2),(6,2),(1,4),(1,5),(1,6).因此所求的概率为.1336。

2019版一轮优化探究文数(苏教版)练习:第十一章 第五节

2019版一轮优化探究文数(苏教版)练习:第十一章 第五节

一、填空题1.下列试验中,是古典概型的有________. ①种下一粒种子观察它是否发芽②从规格直径为250 mm±0.6 mm 的一批合格产品中任意抽一个,测量其直径d ③抛一枚硬币,观察其出现正面或反面 ④某人射击中靶或不中靶 答案:③2.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为________.解析:从4张卡片中有序地取得两张的取法共有4×3=12种,其中取得一奇一偶的取法共有4×2=8种(先任取,后取与第一张不同奇偶的).故取得卡片上数字之和为奇数的概率为P =812=23. 答案:233.甲乙二人玩数字游戏,先由甲任想一数字,记为a ,再由乙猜甲刚才想的数字,把乙猜出的数字记为b ,且a ,b ∈{1,2,3},若|a -b |≤1,则称甲、乙“心有灵犀”,现任意找两个人玩这个游戏,则他们“心有灵犀”的概率为________. 解析:甲想一数字有3种结果,乙猜一数字有3种结果,基本事件总数为3×3=9.设“甲、乙心有灵犀”为事件A ,则A 的对立事件B 为“|a -b |>1”,即|a -b |=2,包含2个基本事件, ∴P (B )=29, ∴P (A )=1-29=79. 答案:794.一个坛子里有编号为1,2,…,12的12个大小相同的球,其中1到6号球是红球,其余的是黑球,若从中任取两个球,则取到的都是红球,且至少有1个球的号码是偶数的概率为________.解析:基本事件总数为C 212,事件包含的基本事件数为C 26-C 23,故所求的概率为P =C 26-C 23C 212=211.答案:2115.一个口袋中,装有大小相等的5个黑球,6个白球和4个黄球,从中摸出3个球,那么摸出的3个球颜色不超过2种的概率是________.解析:基本事件总数为C 315,事件“摸出的3个球颜色互不相同”包含的基本事件数为C 16C 15C 14,故所求事件的概率为P =1-C 16C 15C 14C 315=1-2491=6791.答案:67916.在集合{x |x =n π6,n =1,2,3,…,10}中任取一个元素,所取元素恰好满足方程cos x =12的概率是________.解析:基本事件总数为10,满足cos x =12的x 有两个. ∴P =210=15. 答案:157.任取一个三位正整数N ,则对数log 2 N 是一个正整数的概率是________. 解析:∵26=64,27=128,28=256,29=512,210=1 024, ∴满足条件的正整数只有27,28,29三个, ∴所求的概率P =3900=1300. 答案:13008.有一质地均匀的正四面体,它的四个面上分别标有1,2,3,4四个数字.现将它连续抛掷3次,其底面落于桌面,记三次在正四面体底面的数字和为S ,则“S 恰好为4”的概率为________.解析:本题是一道古典概型问题.用有序实数对(a ,b ,c )来记连续抛掷3次所得的3个数字,总事件中含4×4×4=64个基本事件,取S =a +b +c ,事件“S恰好为4”中包含了(1,1,2),(1,2,1),(2,1,1)三个基本事件,则P(S恰好为4)=P(A)P(Ω)=364.答案:3649.在一次教师联欢会上,到会的女教师比男教师多12人,从这些教师中随机挑选一人表演节目,若选到男教师的概率为920,则参加联欢会的教师共有________人.解析:设男教师为n个人,则女教师为(n+12)人,∴n2n+12=9 20.∴n=54,∴参加联欢会的教师共有120人.答案:120二、解答题10.某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:文艺节目新闻节目总计20至40岁401858大于40岁152742总计5545100(1)(2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?(3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率.解析:(1)因为在20至40岁的58名观众中有18名观众收看新闻节目,而大于40岁的42名观众中有27名观众收看新闻节目,所以,经直观分析,收看新闻节目的观众与年龄是有关的.(2)从题中所给条件可以看出收看新闻节目的共45人,随机抽取5人,则抽样比为545=19,故大于40岁的观众应抽取27×19=3(人).(3)抽取的5名观众中大于40岁的有3人,在20至40岁的有2人,记大于40岁的人为a 1,a 2,a 3,20至40岁的人为b 1,b 2,则从5人中抽取2人的基本事件有(a 1,a 2),(a 1,a 3),(a 2,a 3),(b 1,b 2),(a 1, b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),共10个,其中恰有1人为20至40岁的有6个,故所求概率为610=35.11.现有一批产品共有10件,其中8件为正品,2件为次品.(1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率;(2)如果从中一次取3件,求3件都是正品的概率.解析:(1)有放回地抽取3次,按抽取顺序(x ,y ,z )记录结果,则x ,y ,z 都有10种可能,所以基本事件总数为10×10×10=103(种);设事件A 为“连续3次都取正品”,则包含的基本事件共有8×8×8=83种,因此P (A )=83103=0.512.(2)可以看作不放回抽样3次,顺序不同,基本事件不同,按抽取顺序记录(x ,y ,z ),则x 有10种可能,y 有9种可能,z 有8种可能, 所以基本事件总数为10×9×8. 设事件B 为“3件都是正品”,则事件B 包含的基本事件总数为8×7×6, 所以P (B )=8×7×610×9×8=715.12.把一颗骰子投掷2次,观察出现的点数,并记第一次出现的点数为a ,第二次出现的点数为b ,试就方程组⎩⎨⎧ax +by =3,x +2y =2,解答下列各题:(1)求方程组只有一个解的概率; (2)求方程组只有正数解的概率.解析:事件(a ,b )的基本事件有36个.由方程组⎩⎨⎧ ax +by =3,x +2y =2,可得⎩⎨⎧(2a -b )x =6-2b ,(2a -b )y =2a -3.(1)方程组只有一个解,需满足2a -b ≠0,即b ≠2a ,而b =2a 的事件有(1,2),(2,4),(3,6)共3个, 所以方程组只有一个解的概率为 P 1=1-336=1112.(2)方程组只有正数解,需2a -b ≠0且 ⎩⎪⎨⎪⎧ x =6-2b 2a -b >0,y =2a -32a -b >0,即⎩⎪⎨⎪⎧ 2a >ba >32b <3或⎩⎪⎨⎪⎧2a <b ,a <32,b >3.其包含的事件有13个:(2,1),(3,1),(4,1),(5,1),(6,1),(2,2),(3,2),(4,2),(5,2),(6,2),(1,4),(1,5),(1,6). 因此所求的概率为1336.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、填空题
1.老师在班级50名学生中,依次抽取学号为5,10, 15,20,25,30,35,40,45,50的学生进行作业检查,这种抽样方法是________.
解析:因为抽取学号是以5为公差的等差数列,故采用的抽样方法应是系统抽样.答案:系统抽样
2.在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本.
①采用随机抽样法:抽签取出20个样本;
②采用系统抽样法:将零件编号为00,01,…,99,然后平均分组抽取20个样本;
③采用分层抽样法:从一级品,二级品,三级品中抽取20个样本.
下列说法:
(1)无论采用哪种方法,这100个零件中每一个被抽到的概率都相等;
(2)①②两种抽样方法,这100个零件中每一个被抽到的概率都相等,③并非如此;
(3)①③两种抽样方法,这100个零件中每一个被抽到的概率都相等,②并非如此;
(4)采用不同的抽样方法,这100个零件中每一个零件被抽到的概率是各不相同的.
其中正确的结论是________.
解析:上述三种方法均是可行的,每个个体被抽到的概率均等于20
100=
1
5.
答案:(1)
3.某大学共有学生5 600人,其中专科生1 300人、本科生3 000人、研究生1 300人,现采用分层抽样的方法调查学生利用因特网查找学习资料的情况,抽取的样本为280人,则应在专科生、本科生与研究生这三类学生中分别抽取________.
解析:由分层抽样按比例抽取的特点得5 600
280=
1 300
x=
3 000
y=
1 300
z,∴x=z=65,
y=150,即应在专科生、本科生与研究生这三类学生中分别抽取65人,150人,
65人.
答案:65人,150人,65人
4.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是________.
解析:四类食品的每一种被抽到的概率为
20
40+10+30+20=
1 5,
∴植物油类和果蔬类食品被抽到的种数之和为(10+20)×1
5=6.
答案:6
5.高三(1)班共有56人,学号依次为1,2,3,…,56,现用系统抽样的办法抽取一个容量为4的样本.已知学号为6,34,48的同学在样本中,那么还有一个同学的学号应为________.
解析:抽取间隔为56
4=14.
已抽取学号为6,34,48,故还有一个同学的学号应为20.
答案:20
6.某高中有三个年级,其中高一学生有600人,若采用分层抽样抽取一个容量为45的样本,已知高二年级抽取20人,高三年级抽取10人,则该高中学生的总人数为________.
解析:由题意,高一年级抽了45-20-10=15(人),
设总人数为n,则15
600=
45
n,解得n=1 800.
答案:1 800
7.(2013·高考湖南卷改编)某学校有男、女学生各500名.为了解男、女学生在学习兴趣与业余受好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是________.。

相关文档
最新文档