混凝土水化热温度计算
混凝土水化热温度计算
混凝土水化热温度计算混凝土在水化过程中会释放热量,这种热量被称为水化热。
混凝土水化热的产生会引起温度升高,这对混凝土构件的施工和性能产生一定的影响。
因此,对混凝土水化热的温度进行准确计算和监测,并采取相应的措施进行控制,是保证混凝土施工质量和使用寿命的重要因素之一第一步,确定混凝土的配合比。
混凝土的配合比直接影响着水化反应的强度和速度,从而达到热量的释放情况。
一般来说,水灰比越小,混凝土的水化反应速度越慢,反之亦然。
因此,在计算混凝土水化热的温度时,首先需要准确确定混凝土的配合比。
第二步,确定混凝土水化反应的速率函数。
混凝土水化过程是一个复杂的化学反应过程,热量的产生与时间有关。
一般来说,混凝土的水化反应速率可以用Arrhenius公式表示:R = Aexp(-E/RT),其中R表示反应速率,A是一个与混凝土配合比、温度等因素有关的常数,E是活化能,可以通过实验或经验值确定,T是绝对温度。
第三步,建立混凝土的水化热温度计算模型。
根据混凝土水化过程的速率函数和热传导等规律,可以建立混凝土的水化热温度计算模型,通过计算模型可以预测混凝土的水化热温度变化情况。
在建立计算模型时,需要考虑诸如热传导、辐射、对流等因素,以及混凝土材料的热物理性质等参数。
第四步,进行温度计算。
根据所建立的水化热温度计算模型,采用数值计算方法进行温度计算。
一般来说,可以采用有限元法或差分法等方法进行计算。
在混凝土水化热温度计算过程中1.温度计算的准确性和精度。
混凝土水化过程是一个复杂的非线性过程,涉及到多个因素的相互作用,因此,温度计算的准确性和精度是一个重要的问题。
为了提高计算的准确性和精度,可以采用实验数据进行验证和修正。
2.温度计算的时间和空间尺度。
混凝土的水化反应过程通常需要数天到数周的时间,而混凝土施工现场通常需要在数小时内完成。
因此,温度计算的时间尺度和空间尺度是需要考虑的重要因素。
可以通过合理的假设和适当的简化,使得温度计算与实际施工相对应。
混凝土水化热计算公式
混凝土水化热计算公式混凝土水化热是指水泥在与水反应时释放的热量,是影响混凝土温度发展的重要因素之一、准确计算混凝土水化热可以帮助工程师了解混凝土的温度变化规律,从而做好温控措施,确保混凝土的质量和性能。
下面介绍一种常用的混凝土水化热计算公式。
Q=k*W*T其中,Q表示混凝土水化热(单位:焦耳),k表示水化热释放系数(单位:焦耳/克),W表示混凝土中水化反应所消耗的水的总重量(单位:克),T表示混凝土中水化反应的总时间(单位:秒)。
这是一种简化的计算公式,通过乘法关系将混凝土水化热与水化反应所消耗的水量和时间相关联。
公式中的水化热释放系数k是一个常数,是根据混凝土的配合比和水胶比等参数经验确定的。
混凝土中水化反应所消耗的水的总重量W是指混凝土中用于水化反应的水的总质量。
这包括混凝土配合比中的用水量以及骨料和水化反应产生的水。
对于不同的混凝土配合比和成分,W的计算方式也有所不同。
混凝土中水化反应的总时间T是指从混凝土开始搅拌到水化反应结束的总时间,通常以秒为单位。
混凝土水化热计算公式的具体应用需要根据具体的工程情况和实验数据进行调整和修正。
同时,由于混凝土的水化热释放还受到外界环境温度、混凝土体积和形状等因素的影响,所以上述计算公式只是一种近似估算方法,实际应用中还需要结合实测数据进行修正和验证。
在实际工程中,混凝土水化热的计算和控制对于保证混凝土的质量和性能至关重要。
过高的水化热可能导致混凝土内部裂缝和变形,从而影响结构的稳定性和使用寿命。
因此,在设计混凝土配合比和施工过程中,合理计算和控制混凝土水化热,采取适当的温度控制措施,是确保混凝土结构工程质量和安全的重要手段。
大体积混凝土温度计算公式
厚度
(m)
龄期⑴
3
6
9
12
15
18
21
24
27
30
1.0
0.36
0.29
0பைடு நூலகம்17
0.09
0.05
0.03
0.01
1.25
0.42
0.31
0.19
0.11
0.07
0.04
0.03
1.5
0.49
0.46
0.38
0.29
0.21
0.15
0.12
0.08
0.05
0.04
2.5
0.65
0.62
0.57
0.48
0.38
0.29
0.23
0.19
0.16
0.15
3.00
0.68
0.67
0.63
0.57
0.45
0.36
0.30
0.25
0.21
0.19
4.00
0.74
0.73
0.72
0.65
0.55
0.46
0.37
0.30
0.25
0.24
t——混凝土的龄期(d)
m----系数,随浇筑温度改变,见下表
浇筑温度(C)
5
10
15
20
25
30
m(l/d)
0.295
0.318
0.340
0.362
0.384
0.406
2、混凝土中心温度计算
Ti(t)=Tj+ Th•e⑴
式中Ti(t)----t龄期混凝土中心温度(C)
大体积混凝土温度计算公式
大体积混凝土施工的主要技术难点是防止混凝土表面裂缝的产生。
造成大体积混凝土开裂的主要原因是干燥收缩和降温收缩。
处于完全自由状态下的混凝土,出现再大的均匀收缩,也不会在内部产生拉应力。
当混凝土处在地基等约束条件下时,内部就会产生拉应力,当拉应力超过当时混凝土的抗拉强度时,混凝土就会开裂。
混凝土中水泥水化用水大约只占水泥重量的20%,在混凝土浇筑硬化后,拌合水中的多余部分的蒸发将使混凝上体积缩小。
混凝土干缩率大致在(2-10) x 10-4范围内,这种干缩是由表及里的一个相当长的过程,大约需要4个月才能基本稳定下来。
干缩在一定条件下又是个可逆过程,产生干缩后的混凝土再处于水饱和状态,混凝土还可有一定的膨胀回复。
值得注意的是早期潮湿养护对混凝土的后期收缩并无明显影响,大体积混凝土的保湿养护只是为了推迟干缩的发生,有利于表层混凝土强度的增长,以及发挥微膨胀剂的补偿收缩作用。
大体积混凝土浇筑凝结后,温度迅速上升,通常经3 d--5d达到峰值,然后开始缓慢降温。
温度变化产生体积胀缩,线胀缩值符合△L=Lo•a•△T的规律,这里线胀缩值数取1 x 10-5(1/ 0C)。
因为混凝土的特点是抗压强度高而抗拉强度低,而且混凝土弹性模量较低,所以升温时体积膨胀一般不会对混凝土产生有害影响。
但在降温时其降温收缩与干燥收缩叠加在一起时,处于约束条件下的混凝土常常会产生裂缝,起初的细微裂缝会引起应力集中,裂缝可逐渐加宽加长,最终破坏混凝上的结构性、抗渗性和耐久性。
混凝土降温值=温度+水化热温升值-环境温度。
其中温升值的影响因素主要有水泥品种和用量、用水量、大体积混凝土的散热条件(主要包括浇筑方法、混凝土厚度、混凝土各表面的能力和其它降温措施)等。
为尽量发挥混凝土松弛对应力的抵消作用,同时避免在混凝土硬化初期骤然产生过大的应力,应该减慢降温速度。
一般规定,混凝土内外温差不大于25℃,降温速度不大于1.5 0C/ d。
该工程大体积混凝土的特点是:1)基础厚1 .2 m ;2)基础做了SBS防水;3)混凝土一次浇筑3 800 m3;4)混凝土强度等级C40。
大体积混凝土温度计算
10-7-2-1 大体积混凝土温度计算公式1.最大绝热温升(二式取其一) (1) T h =(m +k • F) Q/c • p (2)T h=m c • Q/c • P (1—e -mt)(10-43)式中T h ——混凝土最大绝热温升(℃);m c ——混凝土中水泥(包括膨胀剂)用量(kg/m 3); F ——混凝土活性掺合料用量(kg/m3); K ——掺合料折减系数。
粉煤灰取0.25〜0.30; Q ——水泥28d 水化热(kJ/kg )查表10-81;不同品种、强度等级水泥的水化热 表10-81水泥品种 水泥强度等级 水化热Q (kJ/kg)3d 7d28d 硅酸盐水泥42.5 314 354 375 32.5 250 271 334矿渣水泥32.5180256334c ——混凝土比热、取 0.97 [kJ/ (kg-K )]; p ——混凝土密度、取2400 (kg/m 3);e ——为常数,取2.718; t ——混凝土的龄期(d ); m ——系数、随浇筑温度改变。
查表10-82。
系数m 表10-82浇筑温度(℃)5 10 15 20 25 30 m (l/d)0.295 0.318 0.3400.362 0.384 0.4062.混凝土中心计算温度1.250.42 0.31 0.19 0.11 0.07 0.04 0.03T1(t)=T+T h • q(t)式中T 1⑴一一t 龄期混凝土中心计算温度(℃);T j ——混凝土浇筑温度(℃); &⑴一一t 龄期降温系数、查表10-83。
降温系数& 表10-83浇筑层厚度龄期t (d )(m )3691215181.00.36 0.29 0.17 0.09 0.05 0.03 210.012427301.50 0.49 0.46 0.38 0.29 0.21 0.15 0.12 0.08 0.05 0.042.50 0.65 0.62 0.57 0.48 0.38 0.29 0.23 0.19 0.16 0.153.00 0.68 0.67 0.63 0.57 0.45 0.36 0.30 0.25 0.21 0.194.00 0.74 0.73 0.72 0.65 0.55 0.46 0.37 0.30 0.25 0.243.混凝土表层(表面下50〜100mm处)温度1)保温材料厚度(或蓄水养护深度)6 =0.5h • A(T2—T ) K b//(T —T2)(io-45)式中6 ——保温材料厚度(m);A x——所选保温材料导热系数[W/ (m・K)]查表10-84;几种保温材料导热系数表10-84材料名称密度(kg/m3)导热系数人[W/ (m ・材料名称密度(kg/m3)导热系数人[W/ (m ・建筑钢材7800 58 矿棉、岩棉110~200 0.031~0.06 钢筋混凝土2400 2.33 沥青矿棉毡100~160 0.033~0.052 水0.58 泡沫塑料20~50 0.035~0.047 木模板500~700 0.23 膨胀珍珠岩40~300 0.019~0.065 木屑0.17 油毡0.05草袋150 0.14 膨胀聚苯板15~25 0.042沥青蛭石板350~400 0.081~0.105 空气0.03膨胀蛭石80~200 0.047~0.07 泡沫混凝土0.10 T2——混凝土表面温度(℃);T q——施工期大气平均温度(℃);A——混凝土导热系数,取2.33W/ (m-K);T max——计算得混凝土最高温度(℃);计算时可取T2 —T =15~20℃T m =T2 = 20~25℃K b——传热系数修正值,取1.3~2.0,查表10-85。
水化热计算
××LNG承台混凝土热工计算(承台数据参考自粤东LNG)承台混凝土配合比表1原材料配料方式水水泥P·O42.5R细骨料粗骨料外加剂I外加剂II掺合料粉煤灰掺合料矿粉材料用量(kg/m3)150 245 713 1027 4.85 / 95 145配料比(质量比)0.61 1.00 2.91 4.19 2.0% / 0.39 0.591.最大绝热温升T t=W·Q/c·ρ(1-e-mt)式中T t——混凝土最大绝热温升(℃);W——混凝土中胶凝材料用量(kg/m3);Q——胶凝材料水化热总量(kJ/kg);c——混凝土比热,一般为0.92~1.0[kJ/(kg·K)];ρ——混凝土密度,2400~2500(kg/m3);e——为常数,取2.718;t——混凝土的龄期(d);m——系数、随浇筑温度改变。
查下表。
系数m 表2浇筑温度(℃) 5 10 15 20 25 30 m(l/d)0.295 0.318 0.340 0.362 0.384 0.406其中,胶凝材料水化热总量Q在无试验数据时,可考虑根据下述公式进行计算:Q = k·Q0Q——胶凝材料水化热总量(kJ/kg);Q0——水泥水化热总量(kJ/kg),取375 kJ/kg;k——不同产量掺合料水化热调整系数,见下表。
不同掺量掺合料水化热调整系数表3掺量* 0 10% 20% 30% 40% 粉煤灰(k1) 1 0.96 0.95 0.93 0.82 矿渣粉(k2) 1 1 0.93 0.92 0.84*表中掺量为掺合料占总胶凝材料用量的百分比。
当现场采用粉煤灰与矿粉双掺时,k值按照下式计算:k = k1 + k2– 1k1——粉煤灰掺量对应系数;k2——矿粉掺量对应系数。
最大绝热温升计算结果如下表t(d) 3 7 9 14 18 21 28 T t(℃) 48.4 64.7 66.9 68.4 68.6 68.7 68.72.混凝土中心计算温度T1(t)=T j+T t·ξ(t)式中T1(t)——t龄期混凝土中心计算温度(℃);T j——混凝土浇筑温度(℃),取35℃;ξ(t)——t龄期降温系数、查下表。
混凝土水化热计算
℃
H=h+2h’= 2.62
h’=k*λ/β= 0.31
△T= Tmax-Tq= 28.3
℃
Tbmax--混凝土表面最高温度(℃)
Tq--大气的平均温度 18
H-一混凝土的计算厚度 2.62
h’--混凝土的虚厚度 0.31
h--混凝土的实际厚度 2
ΔT--混凝土中心温度与外界气温之差的最大值 28.3
λ--混凝土的导热系数,此处可取 2.33
K--计算折减系数,根据试验资料可取 0.666
β--混凝土模板及保温层的传热系数(W/m*m•K),取 5
混凝土内表温度差:△Tc= Tmax-Tbmax= 20.0
<25℃
混凝土表面温度和大气的
温差:
△Td= Tbmax-Tq= 8.3
<25℃
所以,混凝土表面可以满足防裂要求
Th =mc*Q/(c*p)+mf/50 = 不同龄期混凝土的绝热温 升可按下式计算:
39.1
Tt=Th(1-e-mt) 式中:Tt:t龄期时混凝 土的绝热温升(℃)
Tn:混凝土最终绝热温升 (℃)
M:随水泥品种及浇筑温度而异,取m= 0.318
T:龄期
mf:掺和料用量,mf= 167
Q:单位水泥水化热,Q=
Tmax:混凝土内部最高温 度(℃)
Tj:混凝土浇筑温度,根 据天气条件下底板混凝土 施工实测平均结果,假定 为15℃
Tt:t龄期时的绝热温升
δ:降温系数,取0.36 按照混凝土最终绝热温升 39.0℃代入 Tmax=15+39*0.36=29.0 ℃
混凝土拌和温度计算表
材料名称
重量m(Kg)
比热c(KJ/Kg.℃)
混凝土水化热温度计算
附录1混凝土水化热温度计算混凝土配合比(Kg)实际采用的原材料情况如下:水泥为旋窑生产的普通42.5水泥,总水化热为Q0=461kJ/kg,入罐温度为50℃。
UEA膨胀剂入罐温度为40℃。
粉煤灰入罐温度为40℃。
细骨料为细度模数大于2.3的中砂,含水量为5%,入罐温度为12℃。
粗骨料为5-31.5mm的连续级配碎石,含水量为0.5%,入罐温度为12℃。
水为地下水,入罐温度为4℃。
考虑骨料含水量以后,混凝土原材料的实际用量见下表。
混凝土密度ρ=320+34+76+8.0+143+747+1030=2358kg/m3温度计算步骤如下:根据DB33/T1024-2005 计算每方混凝土中水泥折算用量W h1.W h=W c + kW f =320+34+76×0.2=369.2kg2. 计算混凝土出机器温度T0,按下表进行合计:2725.5 41617.2 T0 =41617.2 / 2725.5=15.3℃3.计算混凝土浇筑温度T j :运算、浇筑时日平均气温约为Ta=14℃,取Tj=T0 =15.3℃4.计算混凝土最大绝热温升值T r ,取混凝土的比热c=0.096kj/(kg.k): Tr=W h Q0 / cρ=(369.2×461)/(0.96×2358)=75.2℃5.计算4.8m厚承台混凝土内部最高温度Tmax,对4.8m厚、浇筑温度为15.3℃的混凝土,可取ζ=0.65进行计算:Tmax =Tj+Tr=15.3+0.65×75.2=64.2℃6.计算4.8m厚承台底板混凝土保温养护材料厚度δ:养护时最低气温约为Ta=8℃,允许最大的表面温度Tb=64.2 –25=39.2℃,采用塑料薄膜和草袋进行保湿保温不透风养护,导热系数λ=0.14W/(m.K),传热修正系数α=1.3,ζ=0.5hλλ(Tb-Ta)×α/ (λc(Tmax – Tb))=0.5×4.8×0.14×(39.2 – 8)×1.3 / (2.3×25) = 0.237(m)每层草袋厚约3cm,需8层草袋,数量太多,改为塑料薄膜和纤维毛毯,导热系数λ0.05W/(m.k),传热修正系数α=1.3δ= 0.5×4.8×0.05×(39.2 – 8)×1.3 / (2.3×25) = 0.085m实际施工时,承台最厚的部位采用两层塑料薄膜和两层纤维毛毯的保温保湿养护方案。
混凝土温度计算
1、混凝土温度控制计算1.1混凝土最大绝热温度Th=mc·Q/c·ρ(1-e-mt)式中 Th——混凝土最大绝热温升(℃);mc——混凝土中水泥(包括膨胀剂)用量(kg/m3),300kg;Q——水泥28d水化热(kJ/kg),查建筑施工手册得375 kJ/kg;c——混凝土比热、取0.97[kJ/(kg·K)];ρ——混凝土密度、取2400(kg/m3);e——为常数,取2.718;t——混凝土的龄期(d),3天;m——系数、随浇筑温度改变,选择浇筑温度20℃,m值为0.362。
1.2混凝土中心计算温度T1(t)=Tj+Th·ξ(t)式中 T1(t)——t龄期混凝土中心计算温度(℃);Tj——混凝土浇筑温度(℃),20℃;ξ(t)——t龄期降温系数、查表建筑施工手册表得降温系数ξ1.3混凝土表层(表面以下50~100mm处)温度计算T2(t)=Tq+4·h'(H-h')[T1(t)-Tq]/H2式中 T2(t )——混凝土表面温度(℃);Tq ——施工期大气平均温度(℃),5℃; h'——混凝土虚厚度(m ); h'=k ·λ/β =2/3×2.33 /1.41≈1.1k ——折减系数,取2/3;λ——混凝土导热系数,取2.33[W/(m ·K )];β——混凝土表面模板及保温层等的传热系数[W/(m2·K )]; β=1/[Σδi/λi +1/βq] =1/(0.04/0.06+1/23) =1.41δi ——保温材料厚度(m ),0.04m ;λi ——保温材料导热系数[W/(m ·K )],土工布(黑心棉)选择0.06; βq ——空气层的传热系数,取23[W/(m2·K )] H ——混凝土计算厚度(m ); H =h +2h' =3+2×1.1 =5.2h ——混凝土实际厚度(m )。
水化热计算公式
水泥遇水后发生一系列物理化学反应时放出的热量称为水化热,以J/g表示。
水泥的水化热和放热速度直接关系到混凝土工程的质量。
在大体积混凝土结构中甚至能产生几十度的温差,巨大的温度应力会导致混凝土开裂,加大了混凝土被腐蚀的速率。
水化热测试对水泥的生产、使用及理论研究都非常重要。
水泥水化热测试分为直接法(代用法)、间接法(基准法)两种。
直接法测定水泥水化热实验原理:热量计在恒定的温度环境中,直接测定热量计内水泥胶砂的温度变化,通过计算热量计内积蓄的和散失的热量总和,求得水泥水化7d内的水化热。
水泥水化热测定装置:热量计;恒温水槽;胶砂搅拌机;天平;捣棒等。
实验步骤:①准备工作试验前应将广口保温瓶(g)、软木塞(g1 )、铜套管(g2)、截锥形圆筒(g3)和盖(g4)、衬筒(g5)及软木塞封蜡(g6)分别称量记录。
热量计各部件除衬筒外,应编号成套使用。
②热量计热容量的计算热量计的热容量,按下式计算,计算结果保留至0.01:式中:C—不装水泥胶砂时热量计的热容量,单位为焦耳每摄氏度(J/℃);g—保温瓶质量,单位为克(g);g1—软木塞质量,单位为克(g);g2——铜套管质量,单位为克(g);g3—塑料截锥筒质量,单位为克(g);g4—塑料截锥筒盖质量,单位为克(g);g5—衬筒质量,单位为克(g);g6—软木塞底面的蜡质量,单位为克(g);v—温度计伸人热量计的体积,单位为立方厘米(cm3)。
式中各系数分别为所用材料的比热容,单位为焦耳每克摄氏度[J/(g .℃)]。
③热量计散热常数的测定测定前24 h开起恒温水槽,使水温恒定在(20士0.1)℃范围内。
试验前热量计各部件和试验用品在试验室(20±2℃)温度下恒温24h,首先在截锥形圆筒内放人塑料衬筒和铜套管,然后盖上中心有孔的盖子,移人保温瓶中。
用漏斗向圆筒内注入温水,准确记录用水质量(W)和加水时间(精确到(min),然后用配套的插有温度计的软木塞盖紧。
混凝土水化热温度计算
附录五混凝土水化热温度计算混凝土配合比(Kg)实际采用的原材料情况如下:水泥为枣庄生产的普通42.5水泥,总水化热为Q=461kJ/kg,入罐温0度为50℃。
粉煤灰入罐温度为40℃。
矿粉入罐温度为40℃。
细骨料为细度模数大于2.3的中砂,含水量为5%,入罐温度为12℃。
粗骨料为5-31.5mm的连续级配碎石,含水量为0.5%,入罐温度为12℃。
水为地下水,入罐温度为4℃。
考虑骨料含水量以后,混凝土原材料的实际用量见下表。
3ρ混凝土密度=320+34+38+7.7+153+832+1000=2376.7kg/m温度计算步骤如下:W h、计算每方混凝土中水泥折算用量1.W W kW =312+35+38=385kgh=f c +2. 计算混凝土出机器温度T,按下表进行0合计:2776.5 40384.4 T=40384.4 /2776.5=14.55℃03.计算混凝土浇筑温度T : j运算、浇筑时日平均气温约为Ta=18℃,参考T=14.55℃,0取Tj=18℃4.计算混凝土最大绝热温升值T,取混凝土的比热c=0.96kj/(kg.k): rTr=WQρ=(385×461)/(0.96×2376.7)=77.8℃0 / ch5.计算1m厚承台混凝土内部最高温度Tmax,对1m厚、浇筑温度为进行计算:=0.65ζ℃的混凝土,可取15.3.Tmax =Tj+Tr=18+0.65×77.8=68.6℃6.计算1m厚承台底板混凝土保温养护材料厚度δ:养护时最低气温约为Ta=18℃,允许最大的表面温度Tb=68.6 –25=43℃,采用塑料薄膜和草袋进行保湿保温不透风养护,导热系数λ=0.14W/(m.K),传热修正系数α=1.3,δ=0.5hλ(Tb-Ta)×α/ (λ(Tmax –Tb))c=0.5×1×0.14×(43 –18)×1.3 / (2.3×25) = 0.0395(m)即3.4mm。
C35强度等级水泥混凝土水化热温度计算
T (τ):(℃)W:(kg/m3)Q:350(kj/kg)C:0.98(kj/(kg.℃))ρ:2376(kg/m 3)m:0.4e:常 数,取2.718;τ:e -mt =039.1(℃)3.1(℃)42.2(℃)取τ=736.7(℃)T (7)max =39.8(℃)式中:T 0-(℃)W sa =5.0%W g =0.0%4.2c 2=02.1c 2=33520℃15℃40℃19.9℃T 0 =T 0=+料仓砂石料温度T sa =胶凝材料平均温度T g =0.92(m ce T ce +m sa T sa +m g T g )+4.2T w (m w -W sa m sa -W g m g )4.2m w +0.9(m ce +m sa +m g )c 1(W sa m sa T sa +W g m g )-c 2(W sa m sa +W g m g )4.2m w +0.9(m ce +m sa +m g )+= T W 、T ce 、T sa 、T g -水、胶凝材料、砂、石的温度;W sa 、W g -砂石的含水率c 1 、c 2-水的比热容(KJ/Kg.K)及溶解热(KJ/Kg)。
当骨料温度>0℃时,水的c 1=当骨料温度≤0℃时,水的c 1=我公司采用地下水拌制砼,水温T w =0.92(m ce T ce +m sa T sa +m g T g )+4.2T w (m w -W sa m sa -W g m g )4.2m w +0.9(m ce +m sa +m g )c 1(W sa m sa T sa +W g m g )-c 2(W sa m sa +W g m g )4.2m w +0.9(m ce +m sa +m g )混凝土拌合物的温度 m W 、m ce 、m sa 、m g -水、胶凝材料、砂、石的用量(Kg); 所以T(∞)max=T(∞)+Tmax(F )=②同时实际上混凝土内部的最高温度多数发生在浇筑的最初4-7天;T (7)=WQ(1-e -m*3)/Cρ=T (7)+Tmax(F ) =2、混凝土浇筑温度计算:(1)根据热量平衡法则,混凝土拌合物的温度可按以下公式计算:系 数, 随水泥品种、比表面积及浇筑温度而不同的取值:混凝土龄期(d); ①混凝土最高热绝热温升T时:T (∞) = WQ / (Cρ) = 根据大体积粉煤灰混凝土施工经验由活性掺合料引起的最高温升值可按以下公式计算:T max(F) =F/50 =F—每m 3砼中复合粉及膨胀剂的总量。
混凝土温度计算公式讲解学习
混凝土温度计算公式1.最大绝热温升(二式取其一)(1)Th=(mc+k·F)Q/c·ρ(2)Th=mc·Q/c·ρ(1-e-mt)式中 Th——混凝土最大绝热温升(℃);mc——混凝土中水泥(包括膨胀剂)用量(kg/m3);F——混凝土活性掺合料用量(kg/m3);K——掺合料折减系数。
粉煤灰取0.25~0.30;Q——水泥28d水化热(kJ/kg)查表;c——混凝土比热、取0.97[kJ/(kg·K)];ρ——混凝土密度、取2400(kg/m3);e——为常数,取2.718;t——混凝土的龄期(d);m——系数、随浇筑温度改变。
T1(t)=Tj+Th·ξ(t)式中 T1(t)——t龄期混凝土中心计算温度(℃);Tj——混凝土浇筑温度(℃);ξ(t)——t龄期降温系数3.混凝土表层(表面下50~100mm处)温度1)保温材料厚度(或蓄水养护深度)δ=0.5h·λx(T2-Tq)Kb/λ(Tmax-T2)式中δ——保温材料厚度(m);λx——所选保温材料导热系数[W/(m·K)]T2——混凝土表面温度(℃);Tq——施工期大气平均温度(℃);λ——混凝土导热系数,取2.33W/(m·K);Tmax——计算得混凝土最高温度(℃);计算时可取T2-Tq=15~20℃Tmax=T2=20~25℃Kb——传热系数修正值,取1.3~2.0T2——混凝土表面温度(℃);Tq——施工期大气平均温度(℃);λ——混凝土导热系数,取2.33W/(m•K);Tmax——计算得混凝土最高温度(℃);计算时可取T2-Tq=15~20℃Tmax=T2=20~25℃Kb——传热系数修正值,取1.3~2.0传热系数修正值保温层种类K1K21纯粹由容易透风的材料组成(如:草袋、稻草板、锯末、砂子)2.63.0 2由易透风材料组成,但在混凝土面层上再铺一层不透风材料2.02.33在易透风保温材料上铺一层不易透风材料1.61.94在易透风保温材料上下各铺一层不易透风材料1.31.55纯粹由不易透风材料组成(如:油布、帆布、棉麻毡、胶合板)1.31.5 注:1.K1值为一般刮风情况(风速<4m/s,结构位置>25m);2.K2值为刮大风情况。
温度计算
附件2:混凝土温度应力计算C40P6混凝土配合比:材料名称水泥(PO42.5)水砂石膨胀剂粉煤灰外加剂(P)矿粉重量(kg/m3)310 180 690 1040 28 85 25、9.2 70 一、温度计算(1)胶凝材料水化热计算Q=KQ0Q—胶凝材料水化热总量(KJ/Kg)Q0—水泥水化热总量(KJ/Kg)Q0=4/(7/ Q7﹣3/ Q3)取Q7=270KJ/KgQ3=240KJ/KgQ0=297.9 KJ/KgK—不同掺量掺合料水化热调整系数K=K1+K2﹣1K1取0.95,K2取0.93 K=0.88Q=262.1 KJ/Kg(2)混凝土绝热温升计算计算公式:Tt=WQ/ c⍴×(1﹣e﹣mt)Tt—龄期为t时混凝土的绝热温升(℃)W—每立方混凝土的胶凝材料用量(kg/m3)c—混凝土比热容c=0.96Q —胶凝材料水化热(KJ/kg)⍴—混凝土质量密度⍴=2400kn/m3t —混凝土的龄期(d)常数:e=2.718 m取0.384计算混凝土各龄期t为1d、3 d、7 d、10 d、14d、28 d的绝热温升及温差如下:计算公式:T(t)=49.3×(1-2.718﹣0.384×t)当t=1d T(1)= 49.3×(1-2.718﹣0.384×1)= 15.7℃当t=3d T(3)= 49.3×(1-2.718﹣0.384×3)= 33.7℃T= T(3)﹣T(1)= 21.4℃∆当t=7d T(7)= 49.3×(1-2.718﹣0.384×7)= 45.9℃T= T(7)﹣T(3)= 14.53℃∆当t=10d T(10)= 49.3×(1-2.718﹣0.384×10)= 48.2℃T= T(10)﹣T(7)= 2.73℃∆当t=14d T(14)= 49.3×(1-2.718﹣0.384×14)= 49.1℃T= T(14)﹣T(10)= 0.99℃∆(3)各龄期混凝土收缩变形值的当量温度计算A混凝土收缩的相对变形值计算:计算公式:εy=εy0(1-e_0.01t)×M1×M2×M3ּ ּ ּ ּ ּ×M10(t)εy—龄期为t时混凝土收缩引起的相对变形值(t)εy0—标准状态下混凝土最终收缩的相对变形值εy0=3.24×10﹣4M1=1.0、M2=1.0、M3=1.0、M4=1.0、M5=1.0、M6:3d=1.09、7d=1.0、10d=0.96、14d=0.93、M7=1.18、M8=1.1、M9=1.0、M10=1.0=3.24×10﹣4×(1-e_0.01×3)×1.042×1.09×1.18×1.1=0.141×10﹣4εy(3)εy=3.24×10﹣4×(1-e_0.01×7)×1.042×1.0×1.18×1.1=0.296×10﹣4(7)=3.24×10﹣4×(1-e_0.01×10)×1.042×0.96×1.18×1.1=0.4×10﹣4εy(10)εy=3.24×10﹣4×(1-e_0.01×14)×1.042×0.93×1.18×1.1=0.53×10﹣4(14)B混凝土收缩相对变形值的当量温度计算:=εy(t)/a计算公式:T y(t)T y(t)—龄期为t时混凝土的收缩当量温度(℃)a —混凝土线膨胀系数a=1.0×10﹣5T y(3)=0.141×10﹣4/1.0×10﹣5=1.41℃T y(7)=0.296×10﹣4/1.0×10﹣5=2.96℃T y(10)=0.4×10﹣4/1.0×10﹣5=4.0℃T y(14)=0.53×10﹣4/1.0×10﹣5=5.3℃(4)混凝土的弹性模量计算=βE0(1﹣e﹣φt)计算公式:E(t)E(t)—龄期为t时混凝土的弹性模量(N/mm2)E0—混凝土弹性模量取3.25×104φ—系数取0.09β—混凝土中掺合料修正系数β=β1×β2β1取0.99,β2取1.02 得β=1.0E(3)=3.25×104×(1-2.718﹣0.09×3)=0.77×104N/mm2E(7)=3.25×104×(1-2.718﹣0.09×7)=1.52×104N/mm2E(10)=3.25×104×(1-2.718﹣0.09×10)=1.93×104N/mm2E(14)=3.25×104×(1-2.718﹣0.09×14)=2.33×104N/mm2(5)里表温差计算A混凝土内部实际最高温升计算T m(t) =T j + T t×ζ(t)T m(t) —t龄期时混凝土内最高温度(℃)T j —混凝土浇筑温度取23℃T t —t龄期混凝土的绝热温升(℃)ζ(t)—t龄期时降温系数ζ(3)=0.5、ζ(7)=0.43、ζ(10)=0.35、ζ(14)=0.26T m(3) =23+ 33.7×0.5 =39.85℃T m(7) =23+ 45.9×0.43 =42.7℃T m(10) =23+ 48.2×0.35 =39.8℃T m(14) =23+ 49.1×0.26 =35.7℃B混凝土表层温度计算计算公式:T b(t) =T q+4/H2×h´(H- h´)∆T(t)T b(t) —t龄期时混凝土内表层温度(℃)T q —t龄期时大气平均温度(℃)取29℃H —混凝土的计算厚度(m)H=h+2 h´h —混凝土的实际厚度(m)h´—混凝土的虚厚度(m)h´=Kλ/βλ—混凝土的导热系数(m)取2.33W/m•KK —计算折减系数取0.666β—模板及保温层的传热系数(W/m2•K)β=1/(Σδi/λi+1/βq)δi—各种保温材料的厚度(m)取0.02mλi—各种保温材料的导热系数(W/m•K)保温材料选草帘,取0.14 W/m •Kβq—空气层传热系数取23 W/m2•K∆T(t) —t龄期时混凝土内最高温度与外界气温之差(℃)∆T(t) =Tmax﹣Tq计算得β=5.3 W/m2•Kh´=0.666×2.33/5.3 =0.29mH=1.6+2×0.29=2.18mTb(3) =29+4/2.182×0.29×(2.18﹣0.29)×10.85 =34.0℃Tb(7) =29+4/2.182×0.29×(2.18﹣0.29)×13.7 =35.2℃Tb(10) =29+4/2.182×0.29×(2.18﹣0.29)×10.8 =33.9℃Tb(14) =29+4/2.182×0.29×(2.18﹣0.29)×6.7 =32.1℃C混凝土各龄期里表温度差:T1 (t) = T m(t)﹣T b(t)∆T1 (t) —t龄期时混凝土里表温差(℃)∆T1 (3)=5.85℃、∆T1 (7)=7.5℃、∆T1 (10)= 5.9℃、∆T1 (14)= 3.6℃∆(6)混凝土浇筑体综合降温差计算T2 (t)=1/6〔4T m(t)﹢T bm(t)﹢T dm(t)〕﹢T y(t)﹣T w (t)∆T2 (t) —t龄期时混凝土浇筑体在降温过程中的综合降温(℃)∆T m(t)—t龄期时混凝土内最高温度(℃)T bm(t)、T dm(t) —混凝土浇筑体达到最高温度T max时,其块体上、下表层的温度(℃)T y(t) —龄期为t时混凝土的收缩当量温度(℃)T w (t)—混凝土浇筑体预计的稳定温度或最终稳定温度(℃)取29℃T bm(t) = T b(t)T bm(3)=34.0℃T bm(7)=35.2℃T bm(10)=33.9℃T bm(14)=32.1℃当基础底板混凝土底部为混凝土垫层时λi 取1.6 W/m•K,厚度为0.15m。
大体积混凝土温度自动计算表
⼤体积混凝⼟温度⾃动计算表混凝⼟的绝热热温升及保温层厚度计算1.⽔化热计算公式Q=KQ 0式中:Q--胶凝材料⽔化热总量(KJ/kg)K--不同掺量掺合料⽔化热调整系数,取值见下表K=K 1+K 2-1K 1--粉煤灰掺量对应的⽔化热调整系数按下表K 2--矿粉掺时对应的⽔化热调整系数按下表本⼯程⽤⽔泥⽤量402胶凝材料总计473则Q =3542.混凝⼟的绝热温升式中:T(t)--混凝⼟龄期为t时的绝热温升(℃)W--每⽴⽅混凝⼟的胶凝材料⽤量(kg/m 3)C--混凝⼟的⽐热,⼀般为0.92-1.0取0.96(KJ/kg·℃)ρ--混凝⼟的重⼒密度,2400-2500取2400(kg/m 3)m---与⽔泥品种、浇筑温度等有关的系数,0.3-0.5取0.4(d -1)t---混凝⼟龄期(d)正常取值t=∝则T max =72.673.混凝⼟各龄期内部实际温度T J =25℃)1()(m t e C W Qt T --=)()(T max 1t T T t j ξ?+=则T 1(3)=64.100.54T1(13)=48.130.32T1(4)=63.370.53T1(14)=46.050.29T1(5)=62.650.52T 1(21)=41.720.23T 1(6)=61.920.51T1(7)=60.200.48T1(8)=58.480.46T 1(9)=56.760.44T1(10)=54.580.41T1(11)=52.400.38T1(12)=50.220.354.保温层厚度计算式中:δ--混凝⼟表⾯的保温层厚度(m)λ0--混凝⼟的导热系数[W/(m·K)]取值 2.33λi --第i层保温材料的导热系数[W/(m·K)]T b --混凝⼟浇筑体表⾯温度(℃)T q --混凝⼟达到最⾼温度(浇筑后3d-5d)的⼤⽓平均温度(℃)T max --混凝⼟浇筑体内最⾼温度(℃)h--混凝⼟结构的实际厚度(m)T b -T q --可取15-20℃取值20T max -T b --可取20-25℃取值20K --传热系数修正值,见下表K 1K 22 2.31.6 1.91.3 1.51.3 1.5注:K 1值为风速不⼤于4m/s的情况,其余为K 2λ1=0.04加⼀层棉被λ2=0.04δ1=0.001mδ2=0.03m λi=0.04h=1.8则δ=0.02015.混凝⼟表⾯保温层传热系数由不易透风的材料组成筏板厚度(m)保温层材料计划⽤⼀层塑料薄膜保温层种类由易透风材料组成,但在混凝⼟⾯层上再铺⼀层不透风材料在易透风保温材料上铺⼀层不易透风材料在易透风保温材料上下各铺⼀层不易透风材料bb q b i K T T T T h ?--=)()(5.0m ax 0λλδ)/1//(1q i i βλδβ+∑=则β=1.226.混凝⼟各龄期表⾯温度T q =15℃混凝⼟虚铺厚度h'则h'=1.2714m混凝⼟计算厚度则H= 4.34m 则T 2(3)=55.66T2(4)=55.06T2(5)=54.46T 2(6)=53.86T2(7)=52.43T2(8)=51.01T 2(9)=49.58T2(10)=47.78T2(11)=45.97T2(12)=44.17T 2(21)= 37.137.混凝⼟⾥表温差△T(3)=8.44212/])()['('4)(H T t T h H h T t T q q --+=βλ/'?=k h '2h h H +=△T(4)=8.31△T(5)=8.19△T(6)=8.06△T(7)=7.77△T(8)=7.47△T(9)=7.17△T(10)= 6.80△T(11)= 6.42△T(12)= 6.05△T(21)= 4.59保温层合理8.混凝⼟各龄期的弹性模量计算式中:E0--混凝⼟的弹性模量,⼀般取28d的弹性量32500φ--系数,取0.09β--混凝⼟中掺合料结弹性模量的修正系数β=β1*β2β=0.99则E(3)=7612.57716E(6)=13424.02515E(9)=17860.48958E(21)=27313.311939.各龄期混凝⼟收缩变形及收缩当量温差9.1混凝⼟收缩变形εy(t)=εy(3)=0.0000205εy(6)=0.0000405εy(9)=0.0000598εy(21)=0.00013169.2收缩当量温差3.24*(1-POWER(2.718,-0.01*t))*H96/10000 )1()(teEtEφβ--=11210)1()(MMMet m tyy-=-εεαε/)()(ttTyy=α--混凝⼟的线膨胀系数,取1.0*10-5T y (3)= 2.053T y (6)= 4.046T y (9)= 5.980T y (21)=13.16010.混凝⼟最⼤综合温差绝对值△T(t)=T 0+T(t)*0.666+Ty(t)-Tq△t—混凝⼟最⼤综合温差绝对值T 0—混凝⼟浇筑⼊模温度,取℃25T q —外部环境温度,因现场养护时间约20d,取℃15则△T(3)=54.743△T(6)=55.284△T(9)=53.781△T(21)=50.94211.各龄期温度收缩应⼒式中:ν ——混凝⼟的泊松⽐,取0.15 - 0.20;0.15r--混凝⼟的松弛系数0.4s--混凝⼟外约束系数0.32则σ(3)=0.588σ(6)= 1.048σ(9)= 1.356σ(21)= 1.964 12.混凝⼟抗拉强度式中:f tk --混凝⼟抗拉强度标准值,取2.64γ--系数,取0.3则f tk (3)= 1.567f tk (6)= 2.204f tk (9)= 2.463f tk (21)=2.63513.抗裂计算式中 :η--掺合料对混凝⼟抗拉强度影响系数η=η*ηαε/)()(t t T y y =sr vt T t E t ??-?=1)()()(ασ)1()(t tk tk e f t f γ--=)(/)()(t t f t tk σηµ≥η1= 1.01η2= 1.00抗裂安全系数,取 1.15则µ(3)= 2.695µ(6)= 2.129µ(9)= 1.838µ(21)= 1.358满⾜抗裂条件满⾜抗裂条件满⾜抗裂条件满⾜抗裂条件。
混凝土水化热计算
混凝土水化热计算
混凝土的水化热是指混凝土在固化过程中由于水化反应所释放的热量。
混凝土水化反应是指水与水泥粉末之间的反应,产生水化产物,并伴随放热。
水化热的大小与混凝土中的水化程度有关,水化程度越高,释放的水
化热就越多。
混凝土的水化热主要是由水化反应引起的,水化反应一般分为早期水
化反应和后期水化反应。
早期水化反应主要是指水与水泥粉末快速反应,
并生成大量的水化产物,伴随放热。
后期水化反应主要是指混凝土逐渐固化,并产生更加坚固的水化产物。
混凝土水化热计算的基本原理是根据混凝土中的水化反应的放热量和
水化程度之间的关系进行计算。
一般来说,混凝土的水化程度可以通过早
期水化热生成速率来衡量。
早期水化热生成速率是指单位时间内混凝土中
水化反应所产生的热量。
1.确定混凝土的配合比和水化热参数:混凝土的配合比是指水泥、骨
料和水的比例。
水化热参数是指混凝土中各组分的水化反应热量和水化速
率的参数。
2.计算混凝土中的水化反应热量:根据配合比和水化热参数,计算混
凝土中各组分水化反应的热量。
3.计算混凝土的早期水化热生成速率:根据混凝土中水化反应的热量
和时间,计算早期水化热生成速率。
早期水化热生成速率可以通过实验测
量或者理论计算得到。
4.计算混凝土中的总水化热:根据早期水化热生成速率和时间,计算
混凝土在整个早期水化过程中产生的总水化热。
要注意的是,混凝土水化热计算的结果是理论值,实际情况中会受到多种因素的影响,如外界温度、混凝土的性质等。
因此,在实际工程中需要结合实际情况进行调整和控制。
混凝土温度计算公式 系数公式
系数公式混凝土温度计算公式 1.最大绝热温升(二式取其一)(1)Th=(mc+k?F)Q/c?ρ(2)Th=mc?Q/c?ρ(1-e-mt)式中Th----混凝土最大绝热温升(℃); mc----混凝土中水泥(包括膨胀剂)用量(kg/m3); F----混凝土活性掺合料用量(kg/m3); K----掺合料折减系数。
粉煤灰取0.25~0.30; Q----水泥28d水化热(kJ/kg)查表; c----混凝土比热、取0.97[kJ/(kg?K)];ρ----混凝土密度、取2400(kg/m3); e----为常数,取2.718; t----混凝土的龄期(d); m----系数、随浇筑温度改变。
T1(t)=Tj+Th?ξ(t)式中 T1(t)----t龄期混凝土中心计算温度(℃); Tj----混凝土浇筑温度(℃);ξ(t)----t龄期降温系数 3.混凝土表层(表面下50~100mm处)温度 1)保温材料厚度(或蓄水养护深度)δ=0.5h?λx(T2-Tq)Kb/λ(Tmax-T2)式中δ----保温材料厚度(m);λx----所选保温材料导热系数[W/(m?K)]T2----混凝土表面温度(℃); Tq----施工期大气平均温度(℃);λ----混凝土导热系数,取2.33W/(m?K); Tmax----计算得混凝土最高温度(℃);计算时可取T2-Tq=15~20℃ Tmax =T2=20~25℃ Kb----传热系数修正值,取1.3~2.0 T2----混凝土表面温度(℃); Tq----施工期大气平均温度(℃);λ----混凝土导热系数,取 2.33W/(moK); Tmax----计算得混凝土最高温度(℃);计算时可取T2-Tq=15~20℃ Tmax=T2=20~25℃ Kb----传热系数修正值,取1.3~2.0 传热系数修正值保温层种类K1K2 1纯粹由容易透风的材料组成(如:草袋、稻草板、锯末、砂子)2.63.0 2由易透风材料组成,但在混凝土面层上再铺一层不透风材料2.02.3 3在易透风保温材料上铺一层不易透风材料1.61.9 4在易透风保温材料上下各铺一层不易透风材料1.31.5 5纯粹由不易透风材料组成(如:油布、帆布、棉麻毡、胶合板)1.31.5 注:1.K1值为一般刮风情况(风速<4m/s,结构位置>25m); 2.K2值为刮大风情况。
大体积混凝土水化热计算及冷凝管布设方案
大体积混凝土水化热计算及冷凝管布设方案附件七:大致积混凝土水化热计算及冷凝管布设方案根据对往年同季节气温进行统计,本地区9月16日~10月15日每天高温一般不超过25℃,10月16日~11月15日每天高温一般不超过15℃。
根据本工程施工进度计划,49#和54#两个机位处于9月16日~10月15日期间进行大致积混凝土承台施工,50#~53#机位处于10月16日~11月15日期间进行施工。
因此,考虑混凝土水化热环境因素时,49#和54#两个机位按照25℃大气温度进行计算,50#~53#机位按照15℃大气温度进行计算。
计算时,考虑海水对流,按照海水温度低于大气温度5℃进行计算。
1、单位系统质量单位:kg;力的单位:kgf;能量单位:kcal,1kcal=4.186kcal,考虑使用海水降温,使用kcal作为能量单位更利于计算;长度单位:m;温度单位:℃;时间单位:h。
2、混凝土参数比重:2500kg/m³;导热系数:2.02kcal/(m.h.K);对流系数:19.84kcal/(㎡.h.K);比热容:0.23kcal/(kg.K)。
根据以往施工经验,考虑自拌C45混凝土现场养护条件28天强度等级为50Mpa,达到70%强度(31.5Ma)所需时间为25℃3天,15℃7天。
考虑采用普通硅酸盐水泥,胶凝材料根据发热量全部折合成水泥掺量为450kg/m³。
C45混凝土在25℃和15℃天气环境下的强度发展曲线如下图左图和右图所示。
(备注:图中强度单位为kgf/㎡。
)3、温度要求(1)混凝土表里温差不得超过25℃,表层温度取混凝土面以内5cm位置,内部温度取混凝土内部最高温度;混凝土表层温度和环境温度差不得超过20℃。
降温速度不宜超过2℃/d。
使用midas软件建立模型计算模型。
为更加直观的观察混凝土部的温度应力,建模时采用只建立1/2模型,但进行整体对称计算的方式。
为简化计算,直接将承台模型简化成圆柱结构。
大体积混凝土温度自动计算表
47.78 45.97 44.17 37.13
8.44 8.31 8.19 8.06 7.77 7.47 7.17 6.80 6.42 6.05 4.59
保温层合 理
8.混凝土 各龄期的 弹性模量 计算
E(t) E0 (1 e t )
式中:
E0--混凝土 的弹性模 量,一般取
28d的弹性
量
φ--系数, 取0.09
K1
由易透风材料组成,但在混凝土面层上再铺一层 不透风材料
2
在易透风保温材料上铺一层不易透风材料
1.6
1.3
K2 2.3 1.9
在易透风保温材料上下各铺一层不易透风材料 1.3
1.5
由不易透风的材料组成
注:K1值为 风速不大于 4m/s的情 况,其余为 K2
保温层材料计划用一层塑料薄膜
加一层棉被
δ1=
(kg/m3) C--混凝土
的ρ比--热混,凝一土
的重力密 m---与水泥
品种、浇筑
温度等有关
的系数,
0.3-0.5取
0.4(d-1)
t---混凝土
龄期(d)
正常取值t=
∝
则Tmax=
72.67
3.混凝土 各龄期内 部实际温 度
T1(t) Tj Tmax (t)
TJ=
25 ℃
则
T1(3)=
64.10 0.54 T1(13)= 48.13 0.32
2.695
μ(6)=
2.129
μ(9)=
1.838
μ(21)=
1.358
20% 1.03 1.13 1.01 1.00
30% 0.97 1.09
1.15
满足抗裂条件 满足抗裂条件 满足抗裂条件 满足抗裂条件
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
附录五
混凝土水化热温度计算
混凝土配合比(Kg)
实际采用的原材料情况如下:
水泥为枣庄生产的普通42.5水泥,总水化热为Q0=461kJ/kg,入罐温度为50℃。
粉煤灰入罐温度为40℃。
矿粉入罐温度为40℃。
细骨料为细度模数大于2.3的中砂,含水量为5%,入罐温度为12℃。
粗骨料为5-31.5mm的连续级配碎石,含水量为0.5%,入罐温度为12℃。
水为地下水,入罐温度为4℃。
考虑骨料含水量以后,混凝土原材料的实际用量见下表。
混凝土密度ρ=320+34+38+7.7+153+832+1000=2376.7kg/m3
温度计算步骤如下:
1、计算每方混凝土中水泥折算用量W h
W h=W c + kW f =312+35+38=385kg
2. 计算混凝土出机器温度T0,按下表进行
合计:2776.5 40384.4 T0 =40384.4 /2776.5=14.55℃
3.计算混凝土浇筑温度T j :
运算、浇筑时日平均气温约为Ta=18℃,参考T0 =14.55℃,
取Tj=18℃
4.计算混凝土最大绝热温升值T r ,取混凝土的比热c=0.96kj/(kg.k):
Tr=W h Q0 / cρ=(385×461)/(0.96×2376.7)=77.8℃
5.计算1m厚承台混凝土内部最高温度Tmax,对1m厚、浇筑温度为15.3℃的混凝土,可取ζ=0.65进行计算:
Tmax =Tj+Tr=18+0.65×77.8=68.6℃
6.计算1m厚承台底板混凝土保温养护材料厚度δ:
养护时最低气温约为Ta=18℃,允许最大的表面温度Tb=68.6 –25=43℃,采用塑料薄膜和草袋进行保湿保温不透风养护,导热系数λ=0.14W/(m.K),传热修正系数α=1.3,
δ=0.5hλ(Tb-Ta)×α/ (λc(Tmax – Tb))
=0.5×1×0.14×(43 – 18)×1.3 / (2.3×25) = 0.0395(m)
即3.4mm。
每层草帘厚约2cm,需一层薄膜加1层草帘即可满足保湿保温需求,也可改为塑料薄膜和纤维毛毯,导热系数
λ0.05W/(m.k),传热修正系数α=1.3
δ= 0.5×1×0.05×(43 –18)×1.3 / (2.3×25) = 0.014m(1.4mm)
实际施工时,筏板可采用一层塑料薄膜和一层纤维毛毯的保温保湿养护方案。
经过上述计算得知,现场采用覆盖一层地膜后再选用一层草帘或一层棉毡即可保证混凝土的保温工作,满足混凝土的内外温差不超过25℃温差要求,计算结论:采用覆盖保温即可满足温度控制,不需要采用暗敷设冷凝管降温措施。