普通旋风除尘器选型计算
旋风除尘器的设计与计算
一、实习目的1、进一步了解旋风除尘器的有关计算2、熟悉用CAD画效果图3、查阅和整理各方面资料,了解旋风除尘器各方面性能及影响因素;二、设计题目设计一台处在常温(20°C),常温下含尘空气的旋风除尘器。
已知条件为:处理气量Q=1300m³/h,粉尘密度ρp=1960kg/m³,空气密度ρ=1.29 kg/m,空气粘度μ=1.8x10-5Pa.s,进入的粉尘粒度分布见下表:设计要求:XLT旋风除尘器,最后实现污染物的达标排放,且除尘效率为85%,压力损失不高于2000Pa。
提交文件:设计说明+旋风除尘器图(CAD制图),图纸输出A4纸。
三、旋风除尘器的工作原理1.1 工作原理(1)气流的运动普通旋风除尘器是由进气管、筒体、锥体和排气管等组成;气流沿外壁由上向下旋转运动:外涡旋;少量气体沿径向运动到中心区域;旋转气流在锥体底部转而向上沿轴心旋转:内涡旋;气流运动包括切向、轴向和径向:切向速度、轴向速度和径向速度。
(2)尘粒的运动:切向速度决定气流质点离心力大小,颗粒在离心力作用下逐渐移向外壁;到达外壁的尘粒在气流和重力共同作用下沿壁面落入灰斗;上涡旋-气流从除尘器顶部向下高速旋转时,一部分气流带着细小的尘粒沿筒壁旋转向上,到达顶部后,再沿排出管外壁旋转向下,最后从排出管排出。
1.2特点(1)旋风除尘器与其他除尘器相比,具有结构简单、占地面积小、投资低、操作维修方便以及适用面宽的优点。
(2)旋风除尘器的除尘效率一般达85%左右,高效的旋风除尘器对于输送、破碎、卸料、包装、清扫等工业生产过程产生的含尘气体除尘效率可达95%-98%,对于燃煤炉窑产生烟气的除尘效率可以达到92%-95%。
(3)XLT 旋风除尘器的主要特点(4)旋风除尘器捕集<5μm 颗粒的效率不高,一般可以作为高浓度除尘系统的预除尘器,与其他类型高效除尘器合用。
可用于10μm 以上颗粒的去除,符合此题的题设条件。
旋风除尘器原理介绍及计算
筒体直径 筒体高度H 排气管伸入筒体的深度 排灰口
1、进口速度u↑: dc50↓, η ↑, Δ P↑, 但u过大二 次扬尘增加, 一般u=12~25m/s .
2 、筒体直径D↓, η ↑, 一般D≤0.8m; 排管Dp↓, η ↑, 一般Dp=(0.5~0.6)D. 3、筒体和锥体总高度 H=5D为宜, 长锥体可提高效率 . 4 、运行参数改变的影响 : 处理风量 , 气温 ( 气体粘 度 ), 粉尘密度等参数的变化 , 都影响除尘器的效率 , 通过实验结果可确定变化关系.
Gc d 100% G0
对于球形粒子 dc确定后,雷思一利希特模式计算其它粒子 的分级效率(水田木村典夫公式)
d 1 exp 0.693
n 1 1 0.67D
i 1 exp[0.6931 ( ) ] 1 dc d p n 1
高流量旋风除尘器
通用旋风除尘器
直径较大( 1.2~3.6m ),处理 流量大。除尘效率: 50~80% 。 K<3
K=4~6,除尘效率:80~90%
相对截面比(K): 筒体截面面积和进气口截面面积之比。
3、按结构形式分:
(1)多管旋风除尘器 由多个相同构造形状和尺寸的小型旋风除尘器 (又叫旋风子)组合在一个壳体内并联使用。具有 处理风量大, 除尘效率较高的特点。
复 习
1、重力沉降室特点
除尘效率:40%~70% 优点:简单、投资少、易维护 缺点:占地大,除尘效率低 应用:初级除尘
2、重力沉降室设计注意事项
1.保证粉尘能沉降,L足够长; 2.气流在沉降室的停留时间要大于尘粒沉 降所需的时间; 3.能100%沉降的最小粒径(临界粒径)。
d min
旋风除尘器的设计与计算
一、实习目的1、进一步了解旋风除尘器的有关计算2、熟悉用CAD画效果图3、查阅和整理各方面资料,了解旋风除尘器各方面性能及影响因素;二、设计题目设计一台处在常温(20°C),常温下含尘空气的旋风除尘器。
已知条件为:处理气量Q=1300m³/h,粉尘密度ρp=1960kg/m³,空气密度ρ=1.29 kg/m,空气粘度μ=1.8x10-5Pa.s,进入的粉尘粒度分布见下表:设计要求:XLT旋风除尘器,最后实现污染物的达标排放,且除尘效率为85%,压力损失不高于2000Pa。
提交文件:设计说明+旋风除尘器图(CAD制图),图纸输出A4纸。
三、旋风除尘器的工作原理1.1 工作原理(1)气流的运动普通旋风除尘器是由进气管、筒体、锥体和排气管等组成;气流沿外壁由上向下旋转运动:外涡旋;少量气体沿径向运动到中心区域;旋转气流在锥体底部转而向上沿轴心旋转:内涡旋;气流运动包括切向、轴向和径向:切向速度、轴向速度和径向速度。
(2)尘粒的运动:切向速度决定气流质点离心力大小,颗粒在离心力作用下逐渐移向外壁;到达外壁的尘粒在气流和重力共同作用下沿壁面落入灰斗;上涡旋-气流从除尘器顶部向下高速旋转时,一部分气流带着细小的尘粒沿筒壁旋转向上,到达顶部后,再沿排出管外壁旋转向下,最后从排出管排出。
1.2特点(1)旋风除尘器与其他除尘器相比,具有结构简单、占地面积小、投资低、操作维修方便以及适用面宽的优点。
(2)旋风除尘器的除尘效率一般达85%左右,高效的旋风除尘器对于输送、破碎、卸料、包装、清扫等工业生产过程产生的含尘气体除尘效率可达95%-98%,对于燃煤炉窑产生烟气的除尘效率可以达到92%-95%。
(3)XLT 旋风除尘器的主要特点(4)旋风除尘器捕集<5μm 颗粒的效率不高,一般可以作为高浓度除尘系统的预除尘器,与其他类型高效除尘器合用。
可用于10μm 以上颗粒的去除,符合此题的题设条件。
旋风除尘器计算
0.900877661
1.166666667 粉尘密度
m3/s 1500 kg/m3
与集气罩相连的管道内的气流速度 1.5
特征长度
集气罩 (H+L)大于等于 3D
2.050995905 4.850995905
2.1
烟气密度
23.07 m3/h
1.4
旋风除尘 进口风速vt 进口截面积 长a 宽b 筒体直径 筒体长度H1 椎体长度 排灰口直径D2 壁厚 排气管直径D1 排气管插入深度 压力损失 压力损失系数 P
3mm K标准切向进口
23.00 进口气体流量
0.05
0.32
0.35
0.16
0.14
0.701.19来自1.61 角度烟气流量 烟气浓度 气体动力粘度 排风量
H 罩口直径D
扩张角 罩下口面积 罩上口面积
集气罩高度
管道直径 排风量 压力损失系数 压力损失
Q
1 1 60
1.1 1.7325
4200
m3/h
1400
mg/m3
0.000018 pa·s
罩上口直径
0.255
0.79 0.05
0.37
0.26 1.18
管道内流速 4239
0.18
0.42 0.28
16 4.64 1719.52
4520 0.049
8
除尘效率计算 交界面圆柱高度ho 交界面圆柱半径ro
分割粒径dc50
速度分布指数n 粒径 微米 5 6 7 8 9 10 20 30
2.66 平均径向速度vr
0.34
5.364865733
0.629860002 进口组成
分级效率
旋风除尘器设计与计算
目录1 设计背景 (2)1.1 除尘设计的有关标准 (2)1.1.1 环境空气质量标准(GB3095-1996)环境空气质量分类和分级 (2)1.2 旋风除尘器简介 (3)1.3 旋风除尘器工作原理 (4)1.4 旋风除尘器中的流场 (5)1.4.1 切向速度 (5)1.4.2 径向速度 (5)1.5 离心分离理论 (6)1.5.1 转圈理论(沉降分离理论) (6)1.5.2 筛分理论(平衡轨道理论) (6)1.5.3 边界层分离理论 (7)2 设计计算部分 (7)2.1 单个旋风除尘器的选择计算 (7)2.1.1 工作状况下的气体流量 (7)2.1.2 除尘器型号的选择与相关参数计算(参见书本P177表6—3) (7)2.1.3 求d C(分割直径) (8)2.1.4 计算压力损失 (9)2.1.5 分级除尘效率 (9)2.1.6 总除尘效率 (9)2.2 两个旋风除尘器并联 (9)2.2.1 工作状态下的气体流量 (9)2.2.2 除尘器型号的选择与相关参数计算(参见书本P177表6—3) (10)2.2.3 求d C(分割直径) (10)2.2.4 计算压力损失 (11)2.2.5 分级除尘效率 (11)2.2.6 总除尘效率 (11)3 设计总结 (11)参考文献 (12)回转窑石膏粉尘旋风除尘器工艺设计[摘要]:旋风除尘器广泛地应用于各个行业除尘系统中,本设计针对旋风除尘器的结构及工作原理,分析影响旋风除尘器压力损失的因素,介绍了旋风除尘器内部流场和除尘机理。
针对旋风除尘器除尘效率问题进行了分析,总结了现有改进方案,指出存在的不足,并结合前人的改进思路提出了新的改进方案,以提高旋风除尘器的分离效率,为进一步挖掘旋风除尘器的潜在性能开辟新的思路。
简要地设计了一款旋风除尘器,并在学习中慢慢摸索。
[关键词]:旋风除尘器压力损失分离效率改进方案1 设计背景1.1 除尘设计的有关标准1.1.1 环境空气质量标准(GB3095-1996)环境空气质量分类和分级⑴一类区为自然保护区、风景名胜区和其它需要特殊保护的地区。
旋风除尘器临界直径
旋风除尘器临界直径一、旋风除尘器简介旋风除尘器是一种常见的气体净化设备,广泛应用于工业生产过程中。
它利用气体在旋转过程中产生的离心力,将粉尘颗粒与气体分离,从而达到净化气体的目的。
旋风除尘器具有结构简单、操作维护方便、净化效率高等特点。
二、临界直径的概念与意义临界直径是指旋风除尘器在某一特定条件下,气体中的粉尘颗粒能够被完全分离的直径。
它是衡量旋风除尘器性能的重要参数,对于除尘器的选型和设计具有指导意义。
三、旋风除尘器临界直径的计算与应用临界直径的计算公式为:Dc = (15 * ρs * ω * ε) / (π * ρg * g),其中,Dc为临界直径,ρs为粉尘密度,ω为气体旋转速度,ε为除尘器结构参数,ρg为气体密度,g为重力加速度。
在实际应用中,根据工艺条件和要求,可以通过计算临界直径来确定旋风除尘器的尺寸和结构。
此外,临界直径还可以用于评估旋风除尘器的净化能力,为除尘器的设计和优化提供依据。
四、影响临界直径的因素1.粉尘特性:粉尘的密度、粒径分布、湿润性等特性会影响临界直径。
粉尘密度越大、粒径分布越窄、湿润性越差,临界直径越大。
2.气体条件:气体密度、流速、旋转速度等条件会影响临界直径。
气体密度越大、流速越快、旋转速度越高,临界直径越大。
3.除尘器结构:除尘器的形状、进口位置、出口位置等结构参数会影响临界直径。
合理的结构设计可以提高临界直径,从而提高除尘器的净化性能。
五、提高旋风除尘器临界直径的途径1.优化除尘器结构:通过改进除尘器的形状、尺寸和进出口位置,提高临界直径。
2.采用高效过滤材料:选用高效过滤材料,提高除尘器的过滤性能。
3.改进气体流动条件:通过调节气体流量、旋转速度等条件,提高临界直径。
4.添加辅助设备:在旋风除尘器的基础上,添加湿式除尘器、袋式除尘器等辅助设备,提高净化效率。
六、总结旋风除尘器临界直径是衡量除尘器性能的重要指标,通过对临界直径的计算和影响因素的分析,可以为旋风除尘器的设计、选型和优化提供依据。
旋风除尘器设计计算
1.1、工作原理⑴气流的运动普通旋风除尘器是由进气管、筒体、锥体和排气管等组成;气流沿外壁由上向下旋转运动:外涡旋;少量气体沿径向运动到中心区域;旋转气流在锥体底部转而向上沿轴心旋转:内涡旋;气流运动包括切向、轴向和径向:切向速度、轴向速度和径向速度。
图1⑵尘粒的运动:切向速度决定气流质点离心力大小,颗粒在离心力作用下逐渐移向外壁;到达外壁的尘粒在气流和重力共同作用下沿壁面落入灰斗;上涡旋-气流从除尘器顶部向下高速旋转时,一部分气流带着细小的尘粒沿筒壁旋转向上,到达顶部后,再沿排出管外壁旋转向下,最后从排出管排出。
1.2、影响旋风器性能的因素⑴二次效应-被捕集粒子的重新进入气流在较小粒径区间内,理应逸出的粒子由于聚集或被较大尘粒撞向壁面而脱离气流获得捕集,实际效率高于理论效率;在较大粒径区间,粒子被反弹回气流或沉积的尘粒被重新吹起,实际效率低于理论效率;通过环状雾化器将水喷淋在旋风除尘器内壁上,能有效地控制二次效应;临界入口速度。
⑵比例尺寸在相同的切向速度下,筒体直径愈小,离心力愈大,除尘效率愈高;筒体直径过小,粒子容易逃逸,效率下降;锥体适当加长,对提高除尘效率有利;排出管直径愈少分割直径愈小,即除尘效率愈高;直径太小,压力降增加,一般取排出管直径d e=(0.6~0.8)D;特征长度(natural length)-亚历山大公式:排气管的下部至气流下降的最低点的距离旋风除尘器排出管以下部分的长度应当接近或等于l ,筒体和锥体的总高度以不大于5倍的筒体直径为宜。
⑶运行系统的密闭性,尤其是除尘器下部的严密性:特别重要,运行中要特别注意。
在不漏风的情况下进行正常排灰 ⑷ 烟尘的物理性质气体的密度和粘度、尘粒的大小和比重、烟气含尘浓度 ⑸操作变量提高烟气入口流速,旋风除尘器分割直径变小,除尘器性能改善 ;入口流速过大,已沉积的粒子有可能再次被吹起,重新卷入气流中,除尘效率下降;效率最高时的入口速度,一般在10-25m/s 范围。
旋风除尘器如何选型
旋风除尘器是一种操作简单、经久耐用、耐高温并且投资小的除尘设备,它不需要电磁脉冲阀和除尘布袋等易损配件,因此广泛得到应用。
旋风除尘器的选型设计主要包括类型确定、筒体直径计算及除尘器风量的确定等内容旋风除尘器的选型设计主要包括类型确定、筒体直径计算及除尘器风量的确定等内容。
1、选型原则①旋风式除尘器净化气体量应与实际需要处理的含尘气体量一致。
选择旋风式除尘器直径时应尽量小些,如果要求通过的风量较大,可采用几个小直径的旋风除尘器并联为宜。
②旋风式除尘器入口风速要保持18~23m/s,过低时除尘效率下降:过高时阻力损失及耗电量均要增加,且除尘效率提高不明显。
③所选择的旋风式除尘器的阻力损失小,动力消耗少,且结构简单、维护简便。
④旋风式除尘器能捕集到的小粉尘粒子应稍小于被处理气体中的粉尘粒度。
⑤当含尘气体温度很高时,要注意保温,避免水分在除尘器内凝结。
假如粉尘不吸收水分、露点为30~50℃时,除尘器的温度应高出30℃左右,假如粉尘吸水性较强(如水泥、石膏和含碱粉尘等)、露点为20~50℃时,除尘器的温度应高出露点温度40~50℃。
⑥旋风除尘器结构的密闭要好,确保不漏风。
尤其是负压操作,更应注意卸料锁风装置的可靠性。
⑦易燃易爆粉尘(如煤粉)应设有防爆装置。
防爆装置的通常做法是在入口管道上加一个安全防爆阀门。
⑧当粉尘黏性较小时,允许含尘质量浓度与旋风筒直径有关,即直径越大其允许含尘质量浓度也越大。
具体的关系见表。
2、选型步骤旋风除尘器的选型计算主要包括类型和筒体直径及个数的确定等内容。
一般步骤和方法如下所述。
①除尘系统需要处理的气体量。
当气体温度较高、含尘量较大时,其风量和密度发生较大变化,需要进行换算。
若气体中水蒸气含量较大时,亦应考虑水蒸气的影响。
②根据所需处理气体的含尘质量浓度、粉尘性质及使用条件等初步选择除尘器类型。
③根据需要处理的含尘气体量Q,按下式算出除尘器直径:或根据需要处理气体量算出除尘器进口气流速度(一般在12~25m/s之间),由选定的含尘气体进口速度和需要处理的含尘气体量算出除尘器入口截面积,再由除尘器各部分尺寸比例关系选出除尘器。
XLT旋风除尘器 计算及CAD图
目录一、旋风除尘器的基础知识 (1)二、计算书 (4)三、设计心得 (7)一、旋风除尘器的基础知识旋风除尘器是利用旋转气流产生的离心力从气流中分离,用来分离粒径大于5~15 以上的颗粒物。
工业上已有100多年的历史。
特点:结构简单、占地面积小,投资低,操作维修乖、方便,压力损失中等,动力消耗不大,可用各种材料只、制造,能用于高温、高压及腐蚀性气体并可回收干颗粒物,效率可达80%左右。
1.1 旋风除尘器的工作原理普通旋风除尘器由简体、锥体和进、排气管等组成。
含尘气体由进口切向进入后,沿筒体内壁由上向下做圆周运动,并有少量气体沿径向运动到中心区内。
这股向下旋转的气流大部分到达锥体顶部附近时折转向上,在中心区域旋转上升,最后由排气管排出。
这股气流做向上旋转运动时,也同时进行着径向离心运动。
气流旋转运动时,尘粒在离心力作用下,逐渐向外壁移动。
到达外壁的尘粒,在外旋流的推力和重力的共同作用下,沿器壁落至灰斗中,实现与气流的分离。
此外,当气流从除尘器顶向下高速旋转时,顶部压力下降,使一部分气流带着微细尘粒沿筒体内壁旋转向上,到达顶盖后再沿排气管外壁旋转向下,最后汇入排气管排走。
1.2 旋风除尘器的性能指标除尘装置性能用技术指标和经济指标来评价。
技术指标主要有处理能力、净化效率和压力损失等;经济指标主要有设备费、运行费和占地面积等。
此外,还应考虑装置的安装、操作、检修的难易等因素。
(1)处理能力除尘装置的处理能力是指除尘装置在单位时间内所能处理的含尘气体的流量,一般以体积流量Q表示。
实际运行的净化装置,由于本体漏气等原因,往往装置进口和出口的气体流量不同,因此,用两者的平均值表示处理能力。
(2)净化效率净化效率是表示除尘装置捕集粉尘效果的重要技术指标,可定义为被捕集的粉尘量与进入装置的总粉尘量之比。
总效率η:总效率是指同一时间内净化装置去除的污染物数量与进入装置的污染物数量之比。
通过率:当净化效率很高时,或为了说明污染物的排放率,有时采用通过率来表示除尘装置的性能。
旋风除尘器的设计与计算
一、实习目的1、进一步了解旋风除尘器的有关计算2、熟悉用CAD 画效果图3、查阅和整理各方面资料,了解旋风除尘器各方面性能及影响因素;二、设计题目设计一台处在常温(20°C ),常温下含尘空气的旋风除尘器。
已知条件为:处理气量Q=1300m3/h ,粉尘密度ρp=1960kg/m3,空气密度ρ=1.29kg/m ,空气粘度μ=1.8x10-5Pa.s ,进入的粉尘粒度分布见下表:设计要求:XLT 旋风除尘器,最后实现污染物的达标排放,且除尘效率为85%,压力损失不高于2000Pa 。
提交文件:设计说明+旋风除尘器图(CAD 制图),图纸输出A4纸。
三、旋风除尘器的工作原理1.1工作原理(1)气流的运动普通旋风除尘器是由进气管、筒体、锥体和排气管等组成;气流沿外壁由上向下旋转运动:外涡旋;少量气体沿径向运动到中心区域;旋转气流在锥体底部转而向上沿轴心旋转:内涡旋;气流运动包括切向、轴向和径向:切向速度、轴向速度和径向速度。
(2)尘粒的运动:切向速度决定气流质点离心力大小,颗粒在离心力作用下逐渐移向外壁;到达外壁的尘粒在气流和重力共同作用下沿壁面落入灰斗;上涡旋-气流从除尘器顶部向下高速旋转时,一部分气流带着细小的尘粒沿筒壁旋转向上,到达顶部后,再沿排出管外壁旋转向下,最后从排出管排出。
1.2特点(1)旋风除尘器与其他除尘器相比,具有结构简单、占地面积小、投资低、操作维修方便以及适用面宽的优点。
(2)旋风除尘器的除尘效率一般达85%左右,高效的旋风除尘器对于输送、破碎、卸料、包装、清扫等工业生产过程产生的含尘气体除尘效率可达95%-98%,对于燃煤炉窑产生烟气的除尘效率可以达到92%-95%。
(3)XLT 旋风除尘器的主要特点(4)旋风除尘器捕集<5μm 颗粒的效率不高,一般可以作为高浓度除尘系统的预除尘器,与其他类型高效除尘器合用。
可用于10μm 以上颗粒的去除,符合此题的题设条件。
常规旋风除尘器结构参数设计计算表
m
0.10.3
m
m 15-25
0.42 0.25 0.1625 0.1625 0.165 0.5 0.33 0.32 0.4 0.3 0.195 0.3 16.84 2.35
1.95 0.25 0.75 0.75 0.75 0.5 1.5 1.85 1.9 0.15 0.45 0.45 17.06 11.10
旋风除尘器各部分尺寸常用比值
名称
一般
常用
外筒直径(D0)
直筒高(L1) 排风管直径(De)
排风管长(L) 进风口高(C) 进风口宽(B) 排灰口直径(Dd) 进风口面积(A)
半锥角(α) 进口高宽比
L1=(0.5-2)D0 De=(0.3-0.6)D0 L=(0.3-0.75)D0 C=(0.4-0.5)D0 B=(0.2-0.25)D0 Dd=(0.15-0.4)D0
A=BC
13°-15°
2-4
L1=2D0 De=0.5D0 L=0.33D0 C=0.5D0 B=0.25D0 Dd=0.25D0
A=BC
器设计相关计算
内芯长 选取值
L
入口宽 比值
入口宽 计算值 1(b)
入口宽 计算值 2(b)
入口宽 选取值
(b)
入口高 比值
入口高 计算值 1(l)
入口高 计算值 2(l)
入口高 选取值
(l)
பைடு நூலகம்出灰口 比值
出灰口 计算值
Φ
出灰口 选取值
Φ
进风口 风速Vt
总高度
备注
m
0.20.25
m
m
m
0.40.5
m
m
旋风除尘器设计相关计算
旋风除尘器的设计
✧ 设计步骤✧ 主要包括类型、筒体直径及个数等参数确定。
1、确定处理量:32000压力损失✧ 2、选择除尘器类型:自己设计✧ 3、确定除尘器直径:高效旋风除尘器:D<900mm大流量旋风除尘器:D ≈1.2~3.6m锥体高度比筒体高度更重要一般圆筒高度H1=(1.5~2.0)D 锥体高度H2=(2~3.5)D锥体段高度与锥角(20~30°)与排灰口直径有关✧ 4、效率与压损核算总阻力=进口阻力+旋涡流场阻力+排气管阻力 ✧ 结果:入口风速一般在15~25m/s ✧ ✧(212PaP g υξρ=∆其中: —气体密度,kg/m3;v —入口气速,m/s ; —局部阻力系数根据雷思—利希特模式:])(6931.0[-exp -111i +⨯=n cp d d η可求出除尘器对不同粒径的离子的去除效率。
进气方式(1)切向:最普通、使用相对较多(2)螺旋面:与水平呈近似10°向下,有利于气体向下作倾斜的运动,并避免相邻螺旋的干扰,应小于15 °,一般取β≈11 ° (3)渐开线(蜗壳):进气径向减薄,减少对内部气流的干扰和撞击,加大了进口与排气管的距离,同时减少阻力20%~30%,其中以180 °为佳(4)轴向:最大限度减少进气与旋转气流间的干扰,提高效率进气管断面形式✧矩形b/h越小,入口气流径向越薄,尘粒移向器壁的路程越短,h/b=2左右h/b=2~3,b=(0.2~0.25)D,h=(0.4~0.75)D✧相对断面比=筒体断面积/进口断面积高效旋风除尘器:K=6~13.5普通旋风除尘器:K=4~6大流量旋风除尘器:K<3排气管✧排气管的直径越小,压损越大,效率越高de=(0.3~0.65)D✧排气管的切入深度过大,表面摩擦增加,上涡流空间增大✧排气管的切入深度过小或者不切入,正常旋流发生弯曲或不稳定,粉尘逃逸可能性增大切入深度> 0.8进气口高度气体在排气管内剧烈旋转,排气管末端设计成蜗壳状可减小能量损失✧6、并联使用?:✧应采用相同型号旋风除尘器,并需合理的设计风管,使每个除尘器处理量相等,避免串流;或为每个除尘器单独设置集尘箱✧7、串联使用:✧一般不宜串联使用:必须串联时,应采用不同性能旋尘器,低效者置于前端集灰斗的设计集灰斗是完成气固两相介质分离的最终环节,安装于除尘器锥体处,气流非常接近高湍流,而粉尘也正是由此排出,因此,二次夹带的机会也就更多,在则,旋流核心为负压,如果设计不当,造成灰斗漏气,就会使粉尘的二次飞扬加剧,严重影响除尘效率。
旋风除尘器选型
• 计算法:①由入口浓度c0,出口浓度ce(或排放
标准)计算除尘效率η;
• ②选结构型式;
•
③根据选用的除尘器的分级效率ηd(分级效率
曲线)和净化粉尘的粒径频度分布f0,计算ηT,若ηT>
η,即满足要求,否则按要求重新计算。
•
④确定型号规格
•
⑤计算压力损失。
第27页,共31页。
• 经验法:①计算所要求的除尘效率η;
•
• H、B——气流入口的宽度与高度; • L1、L2——圆筒与圆锥的高度。
第18页,共31页。
• 临界粒径dcp
• 根据假想圆筒理论求取 • 由 ft=fd 得:
• r0——假想圆柱面半径
• 当处理气量为Q(m3/s)时,则 • 代入上式得: •
第19页,共31页。
• 2.阻力:
•
ξ——阻力系数
而下作旋转运动,这股旋转向下的气流称为外涡旋 (外涡流),外涡旋到达锥体底部转而沿轴心向上旋 转,最后经排出管排出。这股向上旋转的气流称为内涡
旋(内涡流)。外涡旋和内涡旋的旋转方向相同,
含尘气流作旋转运动时,尘粒在惯性离心力推动下 移向外壁,到达外壁的尘粒在气流和重力共同作用 下沿壁面落入灰斗。
• 气流从除尘器顶部向下高速旋转时,顶部压力下降,一 部分气流会带着细尘粒沿外壁面旋转向上,到达顶部后, 在沿排出管旋转向下,从排出管排出。这股旋转向上的
• ②选定除尘器的结构型式;
•
③根据选用的除尘器的η—Vi实验曲
线,确定入口风速Vi;
• ④根据气量Q,入口风速Vi计算进口 面积A;
• ⑤由旋风器的类型系数
• 求除尘器筒体直径D,然后便从手册中查 到所需的型号规格。
旋风除尘器设计计算
大气污染控制工程实习设计说明书学院:资源环境学院姓名:学号:2014011321旋风除尘器设计计算1、前言介绍:尘器是利用旋转气流产生的离心力使尘粒从气流中分离的,用来分离粒径大于5—10μm以上的的颗粒物。
工业上已有100多年的历史。
特点:结构简单、占地面积小,投资低,操作维修方便,压力损失中等,动力消耗不大,可用于各种材料制造,能用于高温、高压及腐蚀性气体,并可回收干颗粒物。
优点:效率80%左右,捕集<5μm颗粒的效率不高,一般作预除尘用。
类型:除尘器的结构形式按进气方式可分为直入式、蜗壳式和轴向进入式;按气流组织分类有回流式、直流式、平流式和旋流式多种2、工作原理旋风除尘器是利用旋转气流所产生的离心力将尘粒从合尘气流中分离出来的除尘装置。
旋风除尘器内气流与尘粒的运动概况:旋转气流的绝大部分沿器壁自圆简体,呈螺旋状由上向下向圆锥体底部运动,形成下降的外旋含尘气流,在强烈旋转过程中所产生的离心力将密度远远大于气体的尘粒甩向器壁,尘粒一旦与器壁接触,便失去惯性力而靠入口速度的动量和自身的重力沿壁面下落进入集灰斗。
旋转下降的气流在到达圆锥体底部后.沿除尘器的轴心部位转而向上.形成上升的内旋气流,并由除尘器的排气管排出。
自进气口流人的另一小部分气流,则向旋风除尘器顶盖处流动,然后沿排气管外侧向下流动,当达到排气管下端时,即反转向上随上升的中心气流一同从诽气管排出,分散在其中的尘粒也随同被带走。
3、影响旋风器性能的因素⑴二次效应-被捕集粒子的重新进入气流在较小粒径区间内,理应逸出的粒子由于聚集或被较大尘粒撞向壁面而脱离气流获得捕集,实际效率高于理论效率;在较大粒径区间,粒子被反弹回气流或沉积的尘粒被重新吹起,实际效率低于理论效率;通过环状雾化器将水喷淋在旋风除尘器内壁上,能有效地控制二次效应;临界入口速度。
⑵比例尺寸在相同的切向速度下,筒体直径愈小,离心力愈大,除尘效率愈高;筒体直径过小,粒子容易逃逸,效率下降;锥体适当加长,对提高除尘效率有利;排出管直径愈少分割直径愈小,即除尘效率愈高;直径太小,压力降增加,一般取排出管直径de=(0.6~0.8)D;特征长度-亚历山大公式:排气管的下部至气流下降的最低点的距离,旋风除尘器排出管以下部分的长度应当接近或等于l,筒体和锥体的总高度以不大于5倍的筒体直径为宜。
旋风除尘器的选型计算
工业通风除尘用旋风除尘器的选择计算摘要:针对工业通风除尘用旋风除尘器应用,介绍了旋风器的结构组成及改进措施,简述了单体使用和多筒多管组合技术注意问题和选择计算方法,文中给出了多种旋风器结构参数和技术参数。
关键字:旋风除尘器多筒多管组合1 引言旋风除尘器(简称旋风器)与其他除尘器相比,具有结构简单、造价便宜、维护管理方便以及适用面宽的特点。
旋风器适用于工业炉窑烟气除尘和工厂通风除尘;工业气力输送系统气固两相分离与物料气力烘干回收。
高性能的旋风器对于输送、破碎、卸料、包装、清扫等工业生产过程产生的含尘气体除尘效率可以达到95%~98%,对于燃煤炉窑产笺烟尘除尘效率可以达到92%~95%。
旋风器亦可以作为高浓度除尘系统的预除尘器,与其他类型高效除尘器合用。
旋风器具有可以适宜和于高温高压含尘气体除尘的特点。
旋风器的类型有切流反转式、轴流反转式、直流式等。
工厂通风除尘使用的主要是切流反转式旋风器。
2 旋风器结构2.1 单体基本结构单体基本结构参见图1,含尘气体通过进口起旋器产生旋转气流,粉尘在离心力作用下脱离气流和筒锥体边壁运动,到达壁附近的粉尘在气流的作用下进入收尘灰斗,去除了粉尘的气体汇向轴心区域由排气芯管排出。
图1 旋风器结构示意图2.2 结构改进措施旋风器在长期使用中,为了达到低阻高效性能其结构不断进行改进,改进措施主要有:(1)进气通道由切向进气改为回转通道进气,通过改变含尘气体的浓度分布、减少短路流排尘量。
回转通道在90°左右时阻力较小。
(2)把传统的单进口改为多进口,有效地改进旋转流气流偏心,同时旋风器阻力显著下降。
(3)在筒锥体上加排尘通道,防止到达壁面的粉尘二次返混。
(4)采用锥体下部装有二次分离装置(反射屏或中间小灰斗)防止收尘二次返混。
(5)排气芯管上部加装二次分离器,利用排气强旋转流进行微细粉尘的二次分离,对捕集短路粉尘极为有效。
(6)在筒锥体分离空间加装减阻件降阻,等。
(完整版)除尘器选型计算
(完整版)除尘器选型计算我国环保部门采⽤的的mg/m3,把它转换成PPM 时,两者转换时查到下⾯的公式mg/m3=M/22.4·ppm·[273/(273+T)]*(Ba/101325)上式中:M----为⽓体分⼦量 ppm----测定的体积浓度值 T----温度 Ba----压⼒袋除尘计算1、⼯况风量Q)1(*324.101*15.273)15.273(*K Pat Q Q S ++=Q S —标况⽓量,m 3/h ,按锅炉烟⽓⼯况量的110%计算 t —⼯况温度,℃ Pa —当地⼤⽓压, kPa K —漏风率(3~5%)2、过滤⾯积S ,m 2vQS 60=v —过滤速度,m/min即过滤速度SQv60=实际过滤速度psvvε=εp—粉尘层的平均空隙率,⼀般为0.8~0.95.3、滤袋数nDLSnπ=D—滤袋直径mm(外滤式110~180mm,内滤式200~300mm)L—袋长m(2~10mm)4、进出⼝参数进⼝尺⼨:S1136001vQS=V1—进⼝风速m/s为了不让粒径⼤的颗粒积于管道内,使得管道堵塞,在进除尘器之前的管道中采⽤⼤风速,⼀般进⽓⼝风速15—25m/s,根据不同粉尘采⽤不同风速(除尘器后的排⽓管道内由于不存在粉尘沉淀问题,⽓体流速取8~12m/s。
⼤型除尘系统采⽤砖或混凝⼟制管道时,管道内的⽓速常采⽤6~8m/s,垂直管道如烟囱出⼝⽓速取10~20m/s。
那么进出⽓⼝尺⼨可由截⾯积算出,⼀般截⾯形状为圆形或⽅形。
含尘⽓体在管道内的速度也可采⽤下述的经验计算⽅法求得。
(1)在垂直管道内,⽓速应⼤于管道内粉尘粒⼦的悬浮速度,考虑到管道内的⽓流速度分布的不均匀性和能够带⾛贴近管壁的尘粒,管道内的⽓速应为尘粒悬浮速度的1.3~1.7倍。
对于管路⽐较复杂和管壁粗糙度较⼤的取上限,反之取下限。
(2)在⽔平管道内,⽓速应按照能够吹⾛沉积在管道底部的尘粒的条件来确定。
(3)倾斜管道内的⽓速,介于垂直管道和⽔平管道之间,倾斜⾓⼤者取⼩值,倾斜⾓⼩者取⼤值。