消除焊接应力方法

合集下载

控制变形及减小消除焊接应力的方法

控制变形及减小消除焊接应力的方法

控制变形及减小消除焊接应力的方法一、控制焊接变形的方法1、设计措施(1)选择合理的焊缝尺寸:焊缝尺寸增加,变形随之增大,但是过小的焊缝尺寸将降低结构的承载能力,并使焊接接头的冷却速度加快,热影响区硬度增高,容易产生裂纹等缺陷,因此应在满足结构承载能力和保证焊接质量的前提下,随着板的厚度来选取工艺上可能选用的最小的焊缝尺寸。

(2)尽量减少焊缝数量;适当选择板的厚度,减少肋板数量,从而可减少焊缝和焊接后变形的校正量,如薄板结构件,可用压型结构代替肋板结构,以减少焊缝数量,防止或减少焊后变形。

(3)合理安排焊缝位置:焊缝对称于焊件截面的中性轴或使焊缝接近中性轴均可减少弯曲变形。

(4)预留收缩余量:焊件焊后纵向横向收缩变形可通过对焊缝收缩量的估算,在设计时预先留出收缩余量进行控制。

(5)留出装焊卡具的位置:在结构上留有可装焊夹具的位置,以便在焊接过程中可利用夹具来控制技术变形。

2、反变形法(1)板厚8~12mm钢板单边V型坡口对接焊,装配时反变形1.5°焊接后几乎无角变形。

(2)工字梁焊后因横向收缩引起的角变形,若采用焊前预先把上、下盖板压成反变形(塑性变形),然后装配后进行焊接,即可消除上、下盖板的焊后角变形。

但是上下盖板反变形量的大小主要与该板的厚度和宽度有关,同时还与腹板厚度和热输入有关。

(3)锅炉、集装箱的管接头都集中在上部,焊后引起弯曲变形所以要借用强制反变形夹紧装置,并配以对称均匀加热的痕迹顺序,交替跳焊法这样采用了在外力作用下的弹性反变形再配合以合理的受热的施焊顺序,焊后基本上可消除弯曲变形。

(4)桥式起重机的两根主梁是由左、右腹板和上、下盖板组成的箱型结构的为提高该梁的刚性,梁内设计有大、小肋板,且这些肋板角焊缝大多集中在梁的上部,焊后会引起下桡弯曲变形。

但桥式起重机技术要求规定,主梁焊后应有一定的上拱度,为解决焊后变形与技术要求的矛盾,常采用预制腹板上拱度的方法,即在备料时,预先使两块腹板留出上拱度。

焊接应力的消除方法

焊接应力的消除方法

焊接应力的消除方法一、什么是焊接应力焊接应力,是焊接构件由于焊接而产生的应力。

焊接过程中焊件中产生的内应力和焊接热过程引起的焊件的形状和尺寸变化。

焊接过程的不均匀温度场以及由它引起的局部塑性变形和比容不同的组织是产生焊接应力和变形的根本原因。

当焊接引起的不均匀温度场尚未消失时,焊件中的这种应力和变形称为瞬态焊接应力和变形;焊接温度场消失后的应力和变形称为残余焊接应力和变形。

在没有外力作用的条件下,焊接应力在焊件内部是平衡的。

焊接应力和变形在一定条件下会影响焊件的功能和外观。

二、焊接应力的危害焊接残余应力对焊件有 6个方面的影响:①对强度的影响:如果在高残余拉应力区中存在严重的缺陷,而焊件又在低于脆性转变温度下工作,则焊接残余应力将使静载强度降低。

在循环应力作用下,如果在应力集中处存在着残余拉应力,则焊接残余拉应力将使焊件的疲劳强度降低。

焊件的疲劳强度除与残余应力的大小有关外,还与焊件的应力集中系数应力循环特征系数[6][min]/[6][max]和循环应力的最大值[6][max]有关其影响随应力集中系数的降低而减弱,随[6][min]/[6][max]的降低而加剧,随[6][max]的增加而减弱。

当[6][max]接近于屈服强度时,残余应力的影响逐渐消失。

②对刚度的影响:焊接残余应力与外载引起的应力相叠加,可能使焊件局部提前屈服产生塑性变形。

焊件的刚度会因此而降低。

③对受压焊件稳定性的影响:焊接杆件受压时,焊接残余应力与外载所引起的应力相叠加,可能使杆件局部屈服或使杆件局部失稳,杆件的整体稳定性将因此而降低。

残余应力对稳定性的影响取决于杆件的几何形状和内应力分布。

残余应力对非封闭截面(如工字形截面)杆件的影响比封闭截面(如箱形截面)的影响大。

④对加工精度的影响:焊接残余应力的存在对焊件的加工精度有不同程度的影响。

焊件的刚度越小,加工量越大,对精度的影响也越大。

⑤对尺寸稳定性的影响:焊接残余应力随时间发生一定的变化,焊件的尺寸也随之变化。

减少焊接接应力和焊接变形的措施

减少焊接接应力和焊接变形的措施

减少焊接接应力和焊接变形的措施1.选择适当的焊接参数:根据材料的种类和厚度选择合适的焊接电流、电压和焊接速度等参数,以降低焊接接应力和变形的风险。

同时,选择低温软化点的金属填充材料,如铜等,可以降低焊接接应力。

2.采用适当的焊接序列:通过改变焊接顺序,可以降低焊接过程中的接应力和变形。

在多次焊接时,从最中心的部位开始焊接,逐渐向两边延伸。

这样可以避免焊接热量集中在一个地方,减少局部热变形。

3.采用预热和后热处理:预热可以提高焊接材料的可塑性,改善焊接接头的焊接性能。

一般情况下,预热温度为焊接材料的临界温度的50%-70%。

预热后的焊接接头,在焊接完成后应进行后热处理,即将焊接接头加热至临界温度以下保温一段时间,然后缓慢冷却,以进一步消除焊接接头内应力。

4.使用焊接夹具:焊接夹具可以固定工件,减少焊接过程中的变形。

夹具应设计合理,以便保证焊接接头位置准确,但对于自由热变形而言,应当尽量减少夹具的使用。

5.控制焊接热输入量:合理控制焊接过程中的热输入量,以确保焊接接头不过热。

可以采用间歇焊接的方法,在焊接过程中适时停止加热,让工件冷却一段时间以减少热输入。

6.采用适当的接头形状:通过改变焊缝的形状,可以减少焊接过程中的接应力。

一般情况下,V型焊缝和锂阳角焊缝对于减少焊接变形效果较好。

7.选择适当的焊接方式:对于大型工件,可以采用多层焊接或间断焊接的方式进行,以减少焊接材料的热量。

对于特殊形状的工件,可以选择其他焊接方法,如电阻焊、激光焊等。

8.控制冷却速度:焊接完成后,要注意控制冷却速度,避免过快的冷却。

可以采用包裹式焊接,焊接完毕后用保温材料将焊接接头包裹起来,使其缓慢冷却,以减少残余应力。

消除焊接件应力的工厂方法

消除焊接件应力的工厂方法

消除焊接件应力的工厂方法所谓工厂方法,就是立刻见效并且投资很小,极其具备操作性的方法。

某些焊接件,完工后存在极大应力。

比如,使用油压机压配合装配的工件,铸钢件,铸铁冷焊件。

消除应力的方法:1.日光暴晒!在夏天,如果产品不急于赶工,这是个最省钱的办法。

头天晚上把工件拖到露天,当中午2点太阳最毒辣的时候,立刻施焊。

然后让日光暴晒15天,应力得到基本消除。

适用于16Mn之类的结构件和铸钢件,不过弟兄们可就太辛苦啦,需事先预备水壶若干,诸葛行军散少许···,在此先行道乏。

2.敲击!首先用高速钢(报废钻头改,但不是所有钻头都是高速钢的,事先必须查明)磨削一个尖头锤,然后敲击焊缝,标准是每平方厘米至少15点,要敲出坑,切实产生强制变形,才有效果。

否则没用。

弟兄们偷懒不得啊!此法适用于结构钢件。

铸钢件敲击不要太狠了,铸铁件更要轻敲,但点数要增加一倍。

3.使用30度窄坡口!一般坡口都是60度,操作方便,但是焊接时间长,填充金属多,变形大,自然焊接应力就大。

使用窄坡口,不仅降低成本(焊条和焊丝价格比钢板贵至少2倍),提高操作速度(弟兄们对于高效率的工艺从来都是欢迎的),而且极大地降低应力。

除了薄板和特厚板,都适用。

就是对弟兄们的操作技能提出更高要求。

只要抓住一条,焊枪摆动时,坡口两端要停留时间足够(其实不超过0.3秒),看到坡口边缘已经熔化并且液态金属产生波纹才向另一侧摆动,就不会产生未熔合。

焊道层间打磨时要把熔渣除尽,X光检测保证条条焊缝都是I级片,一个缺陷都不会有。

接头要采用冷接法,事先把接头磨削成斜坡状,又美观质量又好。

4.强制加热!如果构件能够预热,后热,应力都能减小。

但是,一个拳头大的铸铁件用507焊条热焊都要两把气割枪加热,稍微大一点的铸件就无法有效加热,也就不能用507焊条热焊,而冷焊应力是比较大的。

怎么办?作一个10孔加热头就行了。

就像猪八戒那个耙子一样。

用20号气焊枪一把,其实气割枪火力更大,别用气割枪啊!回火爆炸了不负责啊!把喷嘴取下,用紫铜棒加工一个10孔加热头,图纸回头我上传过来,现在在王霸里边,然后对要焊接的铸件加热,火焰厉害得多!此法适用于铸铁,铸钢件。

焊后去应力退火方案

焊后去应力退火方案

焊后去应力退火方案引言:在金属焊接过程中,由于热量的集中和迅速冷却,会导致焊接区域产生应力。

这些应力可能会影响焊接件的性能和稳定性。

为了消除这些应力并提高焊接件的质量,一种常用的方法是进行焊后去应力退火。

本文将介绍焊后去应力退火的方案和步骤。

一、退火原理退火是通过加热和冷却的过程改变材料的晶体结构和内部应力状态,从而达到去除应力、提高材料的塑性和韧性的目的。

焊后去应力退火是在焊接完成后,对焊接区域进行加热再冷却处理,使焊接件的内部结构重新组织,达到消除应力的效果。

二、焊后去应力退火的步骤1. 清洁焊接件表面:在进行焊后去应力退火之前,首先需要将焊接件的表面清洁干净,确保无油污、灰尘等杂质。

这可以通过使用溶剂或清洁剂进行擦拭和清洗来完成。

2. 加热焊接区域:将焊接件放入退火炉中,进行加热处理。

退火温度的选择应根据焊接材料的种类和厚度来确定。

一般情况下,退火温度应低于材料的熔点,以避免材料的再熔化。

3. 保持温度和时间:在达到退火温度后,需要将焊接件保持在退火温度下一定的时间。

这个时间称为保温时间,其长短也需要根据焊接材料的种类和厚度来确定。

4. 冷却焊接件:在保温时间结束后,将焊接件从退火炉中取出,进行自然冷却或其他冷却方式。

这一步骤的目的是使焊接件的温度逐渐降低,从而使其内部结构得以稳定。

5. 检查焊后退火效果:在完成焊后去应力退火后,需要对焊接件进行检查,以确保退火效果的达到。

可以通过金相显微镜、硬度计等仪器来观察和测试焊接区域的晶粒结构和硬度等性能指标。

三、焊后去应力退火的注意事项1. 退火温度的选择应根据焊接材料的种类和厚度来确定,需要避免过高或过低的温度对材料造成不良影响。

2. 保温时间的长短应根据焊接材料的种类和厚度来确定,过短的保温时间可能无法达到退火效果,过长的保温时间则可能导致材料的再结晶。

3. 冷却方式的选择应根据焊接件的材料和尺寸来确定,可以采用自然冷却、水淬或风冷等方式。

4. 检查焊后退火效果时,需要确保检测仪器的准确性和可靠性,以避免误判。

焊接件去应力退火工艺

焊接件去应力退火工艺

焊接件去应力退火工艺焊接件是一种常见的加工零件,其制作过程中会产生应力。

为了降低或消除这些应力,常采用应力退火工艺。

本文将就焊接件去应力退火工艺进行详细介绍。

一、应力退火的概念和目的应力退火是指通过加热和冷却的过程,使焊接件内部的应力得到缓解和消除的工艺。

焊接件在焊接过程中会受到热变形、残余应力等影响,而应力退火则可以使焊接件恢复到正常状态,提高其性能和使用寿命。

二、应力退火的工艺步骤1. 温度升高阶段:将焊接件加热到一定温度,使其达到退火温度区间。

2. 保温阶段:保持焊接件在退火温度区间内一定时间,使内部的应力得到缓解和消除。

3. 温度降低阶段:将焊接件从退火温度区间内冷却至室温,终止退火过程。

三、应力退火的影响因素1. 温度:退火温度的选择直接影响焊接件的应力退火效果。

过高的温度可能导致组织粗化、形状变化等问题,而过低的温度则可能无法达到退火效果。

2. 保温时间:保温时间的长短与焊接件的厚度、材料等因素有关。

一般情况下,焊接件的保温时间应根据实际情况进行合理调整。

3. 冷却速度:退火后焊接件的冷却速度也会对其性能产生影响。

过快的冷却速度可能导致应力重新积累,而过慢的冷却速度则可能导致退火效果不佳。

四、应力退火的效果评估应力退火后的焊接件可以通过以下几个方面来评估其退火效果:1. 组织结构:观察焊接件的显微组织结构,如晶粒尺寸、晶界分布等,来判断应力退火的效果。

2. 力学性能:通过对焊接件进行拉伸、硬度等力学性能测试,来评估退火后的性能变化。

3. 形状和尺寸:退火后焊接件的形状和尺寸是否发生变化,是否达到要求的设计要求。

五、应力退火的注意事项1. 焊接件在进行应力退火前应进行充分的清洁,以避免杂质的影响。

2. 选择合适的退火温度和时间,避免温度过高或保温时间过长导致不必要的损失。

3. 控制好焊接件的冷却速度,避免过快或过慢的冷却速度对退火效果造成影响。

4. 对于大型或复杂的焊接件,应根据实际情况进行分段退火,以确保退火效果的一致性。

消除焊接应力六种方法

消除焊接应力六种方法

消除焊接应力六种方法消除焊接应力的方法有很多种,下面将介绍其中的六种方法。

1. 预热方法:通过在焊接前对焊接部位进行适当的加热,能够减少焊接过程中材料的收缩,从而减少产生的应力。

预热的温度和时间应根据材料的种类和焊接条件的要求来确定。

2. 后热处理方法:在焊接完成后,对焊接部位进行再次加热处理。

后热处理可以通过热处理设备或火焰枪进行,可选择退火、正火、淬火等不同的处理方式。

后热处理可以改变焊接接头的组织结构,消除应力,提高焊接接头的机械性能。

3. 振动方法:通过在焊接过程中对焊接部位施加振动,能够有效地消除应力。

振动能够改变焊接接头的结构,使其更加均匀,减少焊接过程中产生的应力。

振动方法适用于各种类型的焊接,如电阻焊、摩擦焊等。

4. 退火方法:将焊接部位加热到一定温度后,保持一段时间,然后缓慢冷却。

退火能够改变材料的组织结构,消除应力,提高材料的抗拉强度和延伸率。

退火方法适用于焊接接头的后处理,可以通过不同的温度和时间来控制其效果。

5. 淬火方法:将焊接部位快速加热到一定温度后,迅速冷却。

淬火能够改善焊接接头的组织结构,提高抗拉强度和硬度,同时减少产生的应力。

淬火方法适用于高强度材料的焊接,如高强度钢、铝合金等。

6. 冷却方法:在焊接过程中,合理控制冷却速度可以减少焊接接头的应力。

快速冷却可以减小热影响区的大小,减少应力的产生。

利用水冷、风冷等方法可以实现快速冷却,但要注意控制冷却速度,避免产生裂纹等质量问题。

综上所述,消除焊接应力的方法包括预热、后热处理、振动、退火、淬火和冷却等六种方法。

根据不同的焊接条件和要求,可以选择适当的方法进行应用,以达到减少应力、提高焊接接头质量的目的。

焊接应力产生的原因及处理方法

焊接应力产生的原因及处理方法

焊接应力产生的原因及处理方法焊接是一种常见的金属连接方法,常用于制造业和修复工程中。

然而,焊接过程中产生的焊接应力却是一个常见的问题,可能导致焊接结构的变形、开裂甚至破坏。

了解和处理焊接应力是非常重要的。

一、焊接应力的原因1. 温度梯度引起的收缩应力:焊接过程中,焊接区域会受到短时间内的高温冲击,而周围区域的金属温度则较低。

这样的温度梯度将导致焊接区域产生热收缩,而周围区域则保持相对稳定,从而引起焊接应力。

2. 相变引起的体积变化:在焊接过程中,金属的结构可能发生相变,如固态相变或晶体结构重排。

这些相变往往伴随着体积的变化,从而引起焊接区域的应力。

3. 材料匹配问题:如果焊接材料与基材存在差异,如化学成分、热膨胀系数等方面的不匹配,焊接过程中可能会引起应力。

4. 焊接变形的限制:焊接过程中,由于局部加热和相变的影响,金属可能发生形状变化。

而焊接变形的限制,如约束或夹具,会阻碍焊接结构的自由变形,从而产生应力。

5. 焊接过程参数的选择:焊接过程中的工艺参数选择不当,例如焊接速度、电弧电流或电压等方面的选择错误,可能导致焊接区域过热或冷却不充分,进而产生焊接应力。

二、焊接应力的处理方法1. 预热和后热处理:预热焊接材料可以减少焊接区域的温度梯度,从而降低焊接应力的产生。

后热处理可以通过对焊接结构进行加热和冷却的控制,缓解或消除焊接应力。

2. 选择合适的焊接材料:选择合适的焊接材料,包括焊丝、焊条和填充材料,可以减少焊接区域与基材之间的差异,从而降低焊接应力。

3. 使用轻量化结构设计:在焊接结构的设计过程中,考虑减少焊接材料的使用量,避免产生不必要的焊接应力。

4. 控制焊接过程参数:通过合理选择焊接速度、电流、电压等参数,控制焊接过程的热输入和冷却速度,从而降低焊接应力的产生。

5. 合理约束和夹具设计:在焊接过程中,合理约束和夹具的设计可以防止过大的焊接变形,减少焊接应力的产生。

三、对焊接应力的个人观点和理解焊接应力是焊接过程中的一个常见问题,对于确保焊接结构的长期稳定和性能的发挥至关重要。

焊后消除应力的方法

焊后消除应力的方法

焊后消除应力的方法宝子,今天咱来唠唠焊后消除应力的事儿哈。

一、自然时效法。

这就像是给焊接后的物件放个假呢。

把焊接好的东西放在那,让它自己随着时间慢慢释放应力。

这个过程可能比较漫长,就像咱们等花开一样,需要耐心。

不过它的好处就是简单呀,不需要啥复杂的设备啥的,就把东西搁在那,让大自然的时间魔法去起作用。

比如说一些不是很着急使用,结构也相对简单的焊接件,用这个方法就挺不错的呢。

二、热时效法。

这个就像是给焊接件做个“热桑拿”。

把焊接后的物件加热到一定的温度,然后再慢慢冷却。

一般是加热到几百度呢,这个温度就像是给那些被焊接弄得紧张兮兮的金属分子做个按摩,让它们放松下来。

不过这个方法得小心操作,温度要是没控制好,就像你蒸桑拿的时候温度调太高了,那可就适得其反啦。

而且加热设备啥的也得靠谱,这就像你去好的桑拿房才有好体验一样。

三、振动时效法。

这可是个很有趣的方法呢。

就像给焊接件来一场摇滚音乐会。

通过特定的振动设备让焊接件振动起来,那些应力就像是在摇滚的节奏下被抖落了。

这个方法速度相对快一些,不像自然时效要等那么久。

而且呀,设备也不是特别庞大,比较适合一些中小型的焊接件。

就像小物件在小舞台上也能嗨起来释放压力一样。

四、还有一种是喷丸处理。

这就像是给焊接件来一场“弹珠雨”。

用小钢珠或者其他弹丸高速撞击焊接件的表面。

这一撞呀,就把表面的应力给打散了。

不过这个方法得注意弹丸的大小、速度这些参数,要是太猛了,可能会把焊接件表面弄伤,就像弹珠打得太用力会把东西砸坏一样。

总之呢,每种方法都有它的优缺点,咱们得根据焊接件的具体情况,像它的大小、用途、结构啥的来选择合适的消除应力的方法。

这样才能让焊接后的东西既牢固又稳定,就像咱们人一样,消除了压力才能更好地发挥作用呀。

焊接应力产生原因及去应力方法

焊接应力产生原因及去应力方法

焊接应力产生原因及去应力方法摘要:焊接从本质上来说是一种融化和再凝固的工艺过程,因凝固时间不同,导致先后凝固部分相互作用而产生了内应力。

这种内应力再焊接制造过程中往往带来的都是不好的质量结果,所以我们需要分析其产生原因,针对性采取措施减少焊接应力以及消除焊接应力。

关键词:焊接应力;去应力引言焊接应力即是在焊接结构时由于焊接而产生的内应力,它可以依据产生作用的时间被分为焊接瞬时应力和焊接残余应力。

所谓焊接瞬时应力是指在焊接的过程中某一个焊接瞬时产生的焊接应力,它是会跟着时间的变化而发生变化的,而在焊接之后,某一个受到焊接的焊件内还残留的焊接应力被称为焊接残余应力。

1 产生焊接残余应力的原因之所以会产生焊接残余应力,主要是由于焊件在焊接的过程中所受到的加热是不均匀的。

按照焊接残余应力的发生来源,可将焊接残余应力分为直接应力、间接应力和组织应力三种。

直接的焊接应力是焊接残余应力所产生的最主要的原因,它是受到不均匀的加热和冷却之后所产生的,根据加热和冷却时的温度梯度而发生变化。

间接的焊接应力则是焊件由于焊前的加工状况造成的应力。

焊件在受到轧制和拉拔时会产生一定的残余应力。

间接的残余应力如果在某一种场合下叠加到焊接的残余应力上去,焊件受到焊接发生变形,也会将其影响附加到焊接残余应力上去。

而且,焊件一旦受到外来的某一种约束,产生相应的附加应力,也属于间接应力的范畴。

组织应力也就是由相变造成的比容变化而产生的应力,它的产生是由于焊件的组织发生了变化。

虽说组织应力会由于含碳量和材料其他成分的不同而产生差异,但我们一般都会将其所产生的影响进行分析研究。

2 减少焊接应力的措施焊接是产生焊接残余应力的根本原因,减少焊缝数量和尺寸能有效减少焊接量,通过控制焊接量可有效减少应力。

在同等焊接强度下,焊缝尺寸较小的,其焊接残余应力较小。

应尽量避免多条焊缝在同一部位集中,焊缝距离过近时,焊缝间会产生耦合,形成复杂残余应力场,焊缝间距离一般应大于3倍板厚且不小于100mm。

焊接应力产生的原因及处理方法

焊接应力产生的原因及处理方法

文章标题:深度探讨焊接应力产生的原因及处理方法一、焊接应力产生的原因1.1 热应力在焊接过程中,局部加热和冷却会使焊接点处产生热应力,进而产生变形和应力积累。

1.2 材料变形焊接时,在材料受热膨胀的作用下,局部产生变形,从而造成焊接应力。

1.3 结构不稳定受到焊接应力影响,材料内部结构变化,导致受力不均匀,进而加剧应力积累。

二、焊接应力的处理方法2.1 预测和分析通过先进的模拟技术和计算方法,对焊接结构的应力情况进行准确预测,为后续处理方法的选择提供指导。

2.2 合理的结构设计在焊接结构的设计过程中,结合实际情况,合理安排焊接接头的位置和结构,减小应力的产生。

2.3 使用退火处理通过对焊接结构进行退火处理,降低材料内部的应力,减小应力积累的程度。

2.4 使用残余应力衰减方法采用振动、冷却、锯切等方法,使焊接结构中残余应力得以衰减,进而减小结构变形和损坏的可能性。

总结与回顾通过深入探讨焊接应力产生的原因及处理方法,我们发现预测和分析、合理的结构设计、使用退火处理以及残余应力衰减方法等手段是降低焊接应力的有效途径。

在实际工程中,我们需要充分了解材料的物理特性和焊接过程的影响,合理选择处理方法,以确保焊接结构的质量和稳定性。

个人观点和理解作为文中的作者,我认为在处理焊接应力时,我们需要在事先对应力进行充分的预测和分析,并且在实际操作中,合理地运用各种处理方法,以确保焊接结构的质量和稳定性。

焊接应力的处理是一个综合性问题,需要结合材料特性、结构设计和处理方法,进行全面的考量,从而达到最佳的处理效果。

以上就是我撰写的关于焊接应力产生的原因及处理方法的文章,希望能够帮助您更深入地理解这个主题。

焊接是一种广泛应用于工程领域的连接方法,但焊接过程中会产生焊接应力,这对焊接结构的质量和稳定性都会产生一定的影响。

对于焊接应力的产生原因和处理方法进行深入的探讨,对于工程领域的从业者和研究人员都具有重要的意义。

在焊接过程中,焊接点处会产生热应力、材料变形和因结构不稳定所导致的焊接应力。

焊接应力的消除方法

焊接应力的消除方法

爆炸工艺
• 将特种专用炸药沿焊缝走向粘贴在焊缝附近。炸药引爆后产生连续的冲击波迫使结构的峰值应力 区域发生塑性变形,以此达到消应力的目的。瞬间完成,适合大型和特大型的结构,爆炸法消应 力施工时十分强调安全措施,在城市建筑中应用有一定的困难。
高温回火
• 于构件残余应力的最大值通常可达到该种材料的屈服点,而金属在高温下屈服点将降低。所以将 构件的温度升高至某一定数值时,应力的最大值也应该减少到该温度下的屈服点数值。如果要完 全消除结构中的残余应力,则必须将构件加热到其屈服点等于零的温度,所以一般所取的回火温 度接近于这个温度。
形,使逐步得到的焊接残余应力降低和均化,以减少焊接变形和焊接裂纹的形成。
焊接应力消除设备
• 焊接应力消除设备对焊趾进行冲击,可以快速修复焊趾的缺陷,降低应力集中,并伴随其压应力 区的作用可以在一定程度上降低焊趾边未受冲击焊缝的残余应力;焊接应力消除设备能以每秒2 万次的频率沿焊缝方向冲击焊趾部位,使之产生较大的压缩塑性变形,使焊趾处发生圆滑的几何 过渡,大大降低应力集中;消除焊趾处表层的微小裂纹和熔渣缺陷,抑制焊接裂纹的提前萌生, 调整应力场,并产生一定数值的压应力,使焊趾部位得到强化,对提高焊接接头的疲劳寿命有明 显的作用。
振动时效
• 振动时效是对构件施加交变应力,与构件上的残余应力叠加达到材料的屈服应力,发生局部的宏 观和微观塑性变形;这种塑形变形往往首先发生在残余应力最大和构件应力集中点,使这里的残 余应力得以释放,达到降低和均化残余应力的作用。
• 尽管振动时效设备不具备去氢和恢复塑形的功能,但从尺寸稳定性比较,已经达到和超过热时效 的水平;振动时效是一种以消除应力、提高尺寸稳定性为目的替代热时效的先进工艺。
• 常采用TIG重熔工艺对焊趾进行修整,重建裂纹起裂前的状态,降低由于焊趾缺陷所造成的应力 集中现象,以延长疲劳寿命。同时TIG重熔也能改善焊缝区的横向残余应力;重熔对于焊缝纵向 残余应力的改善不明显,残余应力绝对值下降不大;但对于纵向ቤተ መጻሕፍቲ ባይዱ余应力的均匀分布有一定效果。 但对横向残余应力有明显的改善效果,残余应力的绝对值下降明显而且分布趋于均匀。

减少焊接残余应力的方法

减少焊接残余应力的方法

减少焊接残余应力的方法焊接残余应力是焊接过程中产生的一种应力,它会对焊接结构的性能和使用寿命产生不利影响。

为了减少焊接残余应力,保证焊接结构的质量和可靠性,我们可以采取以下几种方法:1. 控制焊接参数焊接参数的选择对焊接残余应力有重要影响。

在进行焊接前,需要对焊接材料的性质进行全面了解,选择合适的焊接电流、电压和速度等参数。

通过控制焊接参数,可以减少焊接过程中的热输入,从而减小焊接残余应力的产生。

2. 采用预热和后热处理预热是指在进行焊接前,提前对焊接部位进行加热处理。

通过预热可以改变焊接部位的组织结构,减少焊接时的热应力,从而减少焊接残余应力的产生。

后热处理是指在焊接完成后,对焊接部位进行加热或冷却处理。

通过后热处理可以改变焊接部位的组织结构,缓解残余应力,提高焊接结构的抗应力能力。

3. 采用合适的焊接顺序焊接顺序的选择对焊接残余应力的分布有重要影响。

通常情况下,应先进行低应力的焊接,再进行高应力的焊接。

这样可以有效地减少焊接残余应力的积累,降低焊接结构的应力水平。

4. 采用适当的焊接方式不同的焊接方式对焊接残余应力的产生有不同的影响。

例如,TIG 焊接比MIG焊接产生的残余应力要小。

因此,在焊接过程中应选择合适的焊接方式,以减少焊接残余应力的产生。

5. 采用适当的焊接接头形式焊接接头的形式对焊接残余应力的分布和大小有重要影响。

一般情况下,采用U型接头或V型接头可以降低焊接残余应力的产生。

此外,还可以采用适当的补偿接头结构,以减少焊接残余应力的影响。

6. 采用适当的焊接填充材料焊接填充材料的选择对焊接残余应力的产生有一定的影响。

一般情况下,选择与基材相似的焊接填充材料可以减小焊接残余应力的产生。

此外,还可以选择具有较低热膨胀系数的填充材料,以减少焊接残余应力的影响。

7. 采用适当的焊接工艺焊接工艺的选择对焊接残余应力的产生有重要影响。

在进行焊接时,应选择合适的焊接工艺,尽量避免焊接过程中的过热和过冷。

减少焊接应力和焊接变形的方法

减少焊接应力和焊接变形的方法

减少焊接应力和焊接变形的方法(1)采用适当的焊接程序,如分段焊、分层焊;(2)尽可能采用对称焊缝,使其变形相反而抵消;(3)施焊前使结构有一个和焊接变形相反的预变形;(4)对于小构件焊前预热、焊后回火,然后慢慢冷却,以消除焊接应力。

合理的焊缝设计(1)避免焊缝集中、三向交叉焊缝;(2)焊缝尺寸不宜太大;(3)焊缝尽可能对称布置,连接过渡平滑,避免应力集中现象;(4)避免仰焊。

空冷氩弧焊枪的设计与制造通过对目前普遍使用的水冷氩弧焊枪结构的分析研究,在此基础上加以改进,自行设计、制造出了一种简单、方便、可用于无水冷场合作业的空冷氩弧焊枪。

工艺试验表明,该焊枪性能稳定,用此焊枪焊出的焊缝成形良好,符合预期的设想。

关键词空冷氩弧焊枪设计1.前言氩弧焊是利用氩气作保护气体的气体保护电弧焊。

焊接时电弧在电极与焊件之间燃烧,氩气使金属熔池、熔滴及钨极端头与空气隔绝。

它是利用钨电极与工件间产生的电弧热熔化母材及填充金属的一种焊接方法。

焊接时保护气体从焊枪的喷嘴中连续喷出,在电弧周围形成气体层(层流状态)隔绝气体起到保护作用,从而获得优质的焊缝。

作为氩弧焊机重要组成部分之一的氩弧焊枪,其作用是夹持钨极、传异焊接电流和输送保护气。

焊枪按冷却方式的不同,可分为水冷式和气冷式两种。

目前在教学、科研和实际生产中使用较多的是水冷式焊枪。

此类焊枪带有一个进水管和一个出水管,焊接时通水,通过水的循环将热量带走,从而使焊枪的温度降低而起到冷却作用。

水冷式焊枪通常要将焊接电缆装入通水管中作成水冷电缆,只有这样,才有可能提高施焊时的电流密度,减轻电缆重量,但却因此增加了制造上的困难,成本因此大大提高。

更有甚者,有些场合无冷却水,这就给焊接施工人员提出了难题。

为了弥补现有水冷焊枪上述这些方面的不足,我们自行设计并制造出了一种空冷氩弧焊枪,这种焊枪的主要特点是无需冷却水,结构简单,能很方便地应用于现场安装,以及无氩弧焊机的情况下使用。

因为,采用我们设计制造的焊枪只须一台常规直流弧焊机,再配以供气系统,即可进行焊接操作,大大降低了对设备的要求,由此降低了成本。

焊接残余应力的消除方法详解-精

焊接残余应力的消除方法详解-精

焊接残余应力的消除方法焊接残余应力是焊接技术带来的一个几乎无法避免的缺陷,其危害众所周知。

当焊接造成的残余应力会影响结构安全运行时,还需设法消除焊接残余应力,改善焊接接头的塑性和韧性,以提高焊件结构性能。

一、焊接的应力与应变:在接过程中,由于焊接件产生温度梯度,接头组织和性能的不均匀,就会在焊件内产生应力和应变。

焊后残留在焊件内的焊接应力就是焊接残余应力,它是没有外载荷作用时就存在的应力。

二、焊接残余应力的危害:焊接残余应力与外载荷产生的应力叠加,局部区域应力过高,使结构承载能力下降,引起裂纹和变形,使焊件形状和尺寸发生变化,需要进行矫形。

变形过大会因无法矫形而报废甚至导致结构失效。

三、减少焊接残余应力和变形的措施:①设计②焊接工艺如:➢尽量减少焊接接头数量➢相邻焊缝间应保持足够的间距➢尽可能避免交叉,避免出现十字焊缝➢焊缝不要布置在高应力区➢焊前预热等等四、焊后残余应力的消除方法消除焊接残余应力的方法有:热处理、锤击、振动法和预载法等。

1、热处理消除法焊后热处理是一种消除焊接残余应力常用的方法。

工程上我们主要用退火处理,退火温度越高、保温时间越长,消除焊接残余应力的效果就越好。

但是温度过高,使工件表面氧化比较严重,组织可能发生转变,影响工件的使用性能,存在弊端。

蠕变应力松弛理论为热处理消除焊接残余应力提供了另一条思路,工件在较低温度时会发生蠕变,材料内部的残余应力会因应力松弛而得到释放,只要保温时间足够长,理论上残余应力可完全消除。

在低温消除焊接残余应力时,材料的组织和性能变化甚微,几乎不影响材料的使用性能,而且低温处理材料表面的氧化和脱碳也比较小,这就可以在材料的力学性能和组织基本不变的情况下达到降低材料焊接残余应力的目的。

2、锤击消除法焊后采用带小圆头面的手锤锤击焊缝及近缝区,使焊缝及近缝区的金属得到延展变形,用来补偿或抵消焊接时所产生的压缩塑性变形,使焊接残余应力降低。

锤击时要掌握好打击力量,保持均匀、适度,避免因打击力量过大造成加工硬化或将焊缝锤裂。

焊接的应力如何消除

焊接的应力如何消除

焊接的应力如何消除?焊接应力一、焊接残余应力的分类1.根据应力性质划分:拉应力、压应力2.根据引起应力的原因划分:热应力、组织应力、拘束应力3.根据应力作用方向划分:纵向应力、横向应力、厚度方向应力4.根据应力在焊接结构中的存在情况划分:单向应力、两向应力、三向应力5.根据内应力的发生和分布范围划分:第一类应力、第二类应力、第三类应力二、焊接残余应力的分布规律1.纵向应力бx的分布бx在焊件横截面上的分布规律为:焊缝及其附近区域为残余拉应力,一般可达材料的屈服强度,随着离焊缝距离的增加,拉应力急剧下降并转为压应力。

бx在焊件纵截面上的分布规律为:在焊件纵截面端头,бx=0,越靠近纵截面的中间,бx越图2—11为板边堆焊时,бx在焊缝横截面上的分布。

T形接头的бx分布与立板和水平板尺寸有很大关系,δ/h越小,接近于板边堆焊的情况;δ/h 越大,接近于等宽板对接的情况。

2.横向应力бy的分布бy =бy′+бy″бy′:焊缝及其塑性变形区的纵向收缩引起的横向应力;бy″:焊缝及其塑性变形区的横向收缩不均匀、不同时引起的横向应力。

3.特殊情况下的焊接残余应力① 厚板中的焊接残余应力② 拘束状态下焊接残余应力③ 封闭焊缝中的残余应力④ 焊接梁柱中的残余应力⑤ 焊接管道中的残余应力三、焊接残余应力对焊接结构的影响1.对结构强度的影响只要材料具有足够的塑性,焊接残余应力的存在并不影响结构的静载强度。

对脆性材料制造的焊接结构,由于材料不能进行塑性变形,随着外力的增加,构件不可能产生应力均匀化,所以在加载过程中应力峰值不断增加。

当应力峰值达到材料的强度极限时,局部发生破坏,而最后导致构件整体破坏。

所以焊接残余应力对脆性材料的静载强度有较大的影响。

2.对构件加工尺寸精度的影响3.对梁柱结构稳定性的影响四、减小焊接残余应力的措施一般来说,可以从设计和工艺两方面着手:1.设计措施① 尽可能减少焊缝数量;② 合理布置焊缝;③ 采用刚性较小的接头形式。

消除焊接残余应力的四种方法

消除焊接残余应力的四种方法

消除焊接残余应力的四种方法杨延功焦启林【摘要】:正1.高温回火法消除焊接残余应力的高温回火分整体和局部两种方式。

(1)整体高温回火。

将整个焊件放在炉中加热到一定温度,然后保温一段时间再冷却。

同一种材料,回火温度越高、时间越长,残余应力消除得越彻底。

通过整体高温回火可消除80%~【关键词】:消除焊接残余应力高温回火温差拉伸消除残余应力消除应力回火温度液压试验机械拉伸法焊接结构具体方法【分类号】:TG407【正文快照】:1.高温回火法消除焊接残余应力的高温回火分整体和局部两种方式。

川整体高温回火。

将整个焊件放在炉中加热到一定温度,然后保温一段时间再冷却。

同一种材料,回火温度越高、时间越长,残余应力消除得越彻底。

通过整体高温回火可消除80%- 90%的残余应力,这是生产中应用最广1、自然时效2、热时效3、振动时效(目前用的最多的一种)振动时效的实质是以共振的形式给工件施加附加动应力,当附加动应力与残余应力叠加后,达到或超过材料的屈服极限时,工件发生微观或宏观塑性变形,从而降低和均化工件内部的残余应力,并使其尺寸精度达到稳定。

残余应力产生及消除方法残余应力产生:工件经机械加工后,其表面层都存在残余应力。

残余压应力可提高工件表面的耐磨性和受拉应力时的疲劳强度,残余拉应力的作用正好相反。

若拉应力值超过工件材料的疲劳强度极限时,则使工件表面产生裂纹,加速工件的损坏。

引起残余应力的原因有以下三个方面:( 一)冷塑性变形引起的残余应力在切削力作用下,已加工表面受到强烈的冷塑性变形,其中以刀具后刀面对已加工表面的挤压和摩擦产生的塑性变形最为突出,此时基体金属受到影响而处于弹性变形状态。

切削力除去后,基体金属趋向恢复,但受到已产生塑性变形的表面层的限制,恢复不到原状,因而在表面层产生残余压应力。

( 二)热塑性变形引起的残余应力工件加工表面在切削热作用下产生热膨胀,此时基体金属温度较低,因此表层金属产生热压应力。

当切削过程结束时,表面温度下降较快,故收缩变形大于里层,由于表层变形受到基体金属的限制,故而产生残余拉应力。

减少焊接应力与变形的工艺措施主要有

减少焊接应力与变形的工艺措施主要有

减少焊接应力与变形的工艺措施主要有:一、预留收缩变形量根据理论计算和实践经验,在焊件备料及加工时预先考虑收缩余量,以便焊后工件达到所要求的形状、尺寸。

二、反变形法根据理论计算和实践经验,预先估计结构焊接变形的方向和大小,然后在焊接装配时给予一个方向相反、大小相等的预置变形,以抵消焊后产生的变形。

三、刚性固定法焊接时将焊件加以刚性固定,焊后待焊件冷却到室温后再去掉刚性固定,可有效防止角变形和波浪变形。

此方法会增大焊接应力,只适用于塑性较好的低碳钢结构。

四、选择合理的焊接顺序尽量使焊缝自由收缩。

焊接焊缝较多的结构件时,应先焊错开的短焊缝,再焊直通长焊缝,以防在焊缝交接处产生裂纹。

如果焊缝较长,可采用逐步退焊法和跳焊法,使温度分布较均匀,从而减少了焊接应力和变形合理的装配和焊接顺序。

具体如下:1)先焊收缩量大的焊缝,后焊收缩量较小的焊缝;2)焊缝较长的焊件可以采用分中对称焊法、跳焊法,分段逐步退焊法。

交替焊法;3)焊件焊接时要先将所以的焊缝都点固后,再统一焊接。

能够提高焊接焊件的刚度,点固后,将增加焊接结构的刚度的部件先焊,使结构具有抵抗变形的足够刚度;4)具有对称焊缝的焊件最好成双的对称焊使各焊道引起的变形相互抵消;5)焊件焊缝不对称时要先焊接焊缝少的一侧。

;6)采用对称与中轴的焊接和由中间向两侧焊接都有利于抵抗焊接变形。

7)在焊接结构中,当钢板拼接时,同时存在着横向的端接焊缝和纵向的边接焊缝。

应该先焊接端接焊缝再焊接边接焊缝。

8)在焊接箱体时,同时存在着对接焊缝和角接焊缝时,要先焊接对接焊缝后焊接角接焊缝。

9)十字接头和丁字接头焊接时,应该正确采取焊接顺序,避免焊接应力集中,以保证焊缝获得良好的焊接质量。

对称与中轴的焊缝,应由内向外进行对称焊接。

10)焊接操作时,减少焊接时的热输入,(降低电流、加快焊接速度、)。

11)焊接操作时,减少熔敷金属量(焊接时采用小坡口、减少焊缝宽度、焊接角焊时减少焊脚尺寸).。

焊接后消除应力的热处理方法

焊接后消除应力的热处理方法

焊接后消除应力的热处理方法1. 引言:为何焊接后要消除应力焊接这一工艺,简直是现代制造业的“终极秘籍”。

然而,焊接完成后,材料内部就像是一锅煮熟的麻辣烫,充满了各种应力。

为了确保焊接件能在未来的使用中稳定可靠,我们得给它们进行一番热处理,就像给过度劳累的小伙伴放个假一样。

那这“热处理”究竟是什么呢?它其实就是通过加热和冷却的过程,来消除焊接后遗留的应力,让焊接件“松口气”,恢复健康。

这就像你做完一场马拉松后,泡个热水澡,放松一下肌肉,效果那叫一个好!2. 热处理的基本原理说到热处理,我们得先了解一下它的基本原理。

热处理简单来说就是通过控制温度和时间,把材料加热到一定的温度,然后再冷却。

这就像我们烤饼干一样,拿到烤箱里调好温度,再等它慢慢变成金黄的美味。

焊接后的材料内部,常常因为加热冷却的速度不均匀,产生了许多不必要的应力,就像挤压的橡皮泥一样。

热处理就是通过慢慢加热和冷却,把这些应力释放出来,让材料恢复原有的“体态”,保证它在使用中的稳定性和可靠性。

3. 热处理的方法3.1 退火退火,是热处理中的“老大哥”。

它就像是焊接件的“长者”,带着温柔的怀抱把焊接后的应力一一抚平。

退火的过程就是把焊接件加热到一定的高温,然后慢慢冷却。

这就好比你放下一个热锅,让它自然冷却,不用急躁,慢慢来,最后效果自然棒棒的。

退火可以有效地消除应力,使材料变得更加柔软,便于后续的加工。

3.2 正火正火,简单来说就是焊接件的“铁人训练”。

它把材料加热到比退火更高的温度,再快速冷却。

这就像你在健身房里锻炼,挥汗如雨,迅速把肌肉塑造得更结实。

正火能提高材料的强度和硬度,但也会带来一些应力,所以在一些特殊的应用场合,我们还会在正火后再进行其他热处理,以达到最佳效果。

3.3 回火回火呢,就是对焊接件进行的一种“善后处理”。

在材料经过硬化之后,我们会对它进行回火处理。

回火的温度要比硬化时低一些,这就像是锻造完一把剑后,放在冷却的水中让它变得更坚韧。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.6 爆炸法工艺
将特种专用炸药沿焊缝走向粘贴在焊缝附近。炸药引爆后产生 连续的冲击波迫使结构的峰值应力区域发生塑性变形,以此达 到消应力的目的。据报道消除厚度可达70mm,效果可达60%, 瞬间完成,适合大型和特大型结构,在水利涵管方面应用较多。 爆炸法消应力施工时十分强调安全措施,故在城市建筑中应用 有一定困难。
2.2 TIG 重熔 机大梁维修)
(上海宝冶工程技术公司进行重型门式起重
焊趾缺陷是一种焊道融合线上中难以避免的小而尖锐、连 续的缺陷,往往成为结构疲劳破坏的裂纹源。常采用TIG 重熔 工艺对焊趾进行修整,重建裂纹起裂前的状态,降低由于焊趾 缺陷所造成的应力集中现象,以延长了疲劳寿命。同时TIG 重 熔也能改善焊缝区的横向残余应力;重熔对于焊缝的纵向残余 应力改善不明显,残余应力绝对值下降不大;但对于纵向残余 应力的均匀分布有一定效果。但对横向残余应力有明显的改善 效果,残余应力绝对值下降明显而且分布趋于均匀。
⑴当焊缝金属在熔融状态下,由于振动使气泡、杂质等容易上浮、 排除。 ⑵在结晶过程振动可细化晶粒,使焊缝的力学性能得到提高。 ⑶温度大于600 ℃的区域,材料在强度逐步恢复的冷却过程中,伴随振动 的热塑性变形,使逐步形成的焊接残余应力得到降低和均化, 可减少焊接变形及焊接裂纹的形成。
2.5 超声冲击与锤击 超声冲击消应力技术由乌克兰巴顿焊接研究所提出,近年 引入我国,已在北京电视台钢结构立柱上进行过试验。超声冲 击消应力工艺的特点是:在超声频率(≥16KHz)下应用束状冲 头,在对焊趾和焊缝表面进行冲击;试验表明: ⑴超声冲击对一定深度的表层有消应力的效果,在采用对焊道 全覆盖冲击时,被冲击的表面会形成压应力,对2~4mm 深度 层消应力效果可达34~55%。 ⑵采用焊趾冲击法,可以快速修复焊趾的缺陷,降低应力集中。 并伴随其压应力区的作用可以在一定程度上降低焊趾边未受冲 击焊缝的残余应力,下降率达19%,对提高接头的疲劳寿命有 明显作用。 ⑶由于冲击工艺处理的特点,仅可以用于冲击工具可达的外表 面,其工作效率约为1200mm2/min。冲击工艺是以点接触、 压应力屈服为主要特征的“面效应”型消应力工艺,伴随一定 的 振动时效效果,比较适合高拘束状态短焊缝的局部处理。
建筑钢结构残余应力的消除工艺
一些高要求的建筑大型焊接钢结பைடு நூலகம்上已采用了时效 工艺,包括有技术标准支持的热时效、振动时效、TIG 重熔和锤击工艺,以及研发中的振动焊接、超声冲击、 爆炸法技术。 2.1 热时效 上海金茂大厦的钢架
对重要焊接构件先进行整体热时效,然后在现场与其它 构件进行组合拼焊的工艺是建筑钢结构制造常采用的方法。 其具有焊缝去氢、恢复塑性和消应力三重功能。一般认为热 时效的消应力效果为40-80%
2.4振动焊接(VW or VCW) 振动焊接又称振动调制焊接、随焊振动,是目前国内外正在研 发的新技术;在振动时效标准的附录中,已确认为可与振动时 效组合的工艺之一。其不改变原有的焊接工艺;在焊接过程, 通过一个几百瓦的小激振器对构件注入频率和振幅可控的振动, 即形成振动焊接。这种限幅的振动,势必对焊接熔池和热影响 区产生一定的作用:
2.3振动时效(VSR) 振动时效是对构件施加交变应力,与构件上的残余应力叠加 达到材料的屈服应力,发生局部的宏观和微观塑性变形;这 种塑性变形往往首先发生在残余应力最大处和构件的应力集 中点,使这里的残余应力得以释放,达到降低和均化残余应 力的作用。应用振动时效技术在我国已达25年,相继出台三 个技术标准 。 尽管振动时效不具备去氢和恢复塑性的功能,但从尺寸 稳定性比较,已达到和超过热时效的水平,振动时效是一种 以消应力、提高尺寸稳定性为目标的替代热时效的先进工艺。 尽管目前振动时效在建筑钢结构应用尚少,但根据建筑钢结 构的载荷特点与施工要求,振动时效有可能成为今后建筑钢 结构消应力的主流工艺之一。
相关文档
最新文档