有理数知识点归纳及典型例题

合集下载

有理数知识点归纳及典型例题

有理数知识点归纳及典型例题

一、【正负数】 有理数的分类:★☆▲_____________统称整数,试举例说明。

_____________统称分数,试举例说明。

____________统称有理数。

[基础练习] 1☆把下列各数填在相应额大括号内: 1,-,-789,25,0,-20,,-590,6/7 ·正整数集{ …};·正有理数集{ …};·负有理数集{ …} ·负整数集{ …};·自然数集{ …};·正分数集{ …} ·负分数集{ …}2☆ 某种食用油的价格随着市场经济的变化涨落,规定上涨记为正,则元的意义 是 ;如果这种油的原价是76元,那么现在的卖价是 。

二、【数轴】 规定了 、 、 的直线,叫数轴[基础练习]1☆如图所示的图形为四位同学画的数轴,其中正确的是( )2☆在数轴上画出表示下列各数的点,并按从大到小的顺序排列,用“>”号连接起来。

4,-|-2|, , 1, 03下列语句中正确的是( )A数轴上的点只能表示整数 B数轴上的点只能表示分数C数轴上的点只能表示有理数 D所有有理数都可以用数轴上的点表示出来4、★ ①比-3大的负整数是_______; ②已知m是整数且-4<m<3,则m为_______________。

③有理数中,最大的负整数是 ,最小的正整数是 。

最大的非正数是 。

④与原点的距离为三个单位的点有_ _个,他们分别表示的有理数是 _和_ _。

5、★★在数轴上点A 表示-4,如果把原点O 向负方向移动1个单位,那么在新数轴上点A 表示的数是( ) ,三、【相反数】的概念像2和-2、-5和5、和这样,只有 不同的两个数叫做互为相反数。

0的相反数是 。

一般地:若a 为任一有理数,则a 的相反数为-a 相反数的相关性质: 1、相反数的几何意义:表示互为相反数的两个点(除0外)分别在原点O 的两边,并且到原点的距离相等。

有理数知识点及经典题型

有理数知识点及经典题型

有理数知识点及经典题型规定了原点,正方向,单位长度的直线叫做数轴。

注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。

2.数轴上的点与有理数的关系⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。

⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。

(如,数轴上的点π不是有理数)3.利用数轴表示两数大小⑴在数轴上数的大小比较,右边的数总比左边的数大;⑵正数都大于0,负数都小于0,正数大于负数;⑶两个负数比较,距离原点远的数比距离原点近的数小。

4.数轴上特殊的最大(小)数⑴最小的自然数是0,无最大的自然数;⑵最小的正整数是1,无最大的正整数;⑶最大的负整数是-1,无最小的负整数5.a可以表示什么数⑴a>0表示a是正数;反之,a是正数,则a>0;⑵a<0表示a是负数;反之,a是负数,则a<0⑶a=0表示a是0;反之,a是0,,则a=06.数轴上点的移动规律根据点的移动,向左移动几个单位长度则减去几,向右移动几个单位长度则加上几,从而得到所需的点的位置。

相反数⒈相反数只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。

注意:⑴相反数是成对出现的;⑵相反数只有符号不同,若一个为正,则另一个为负;⑶0的相反数是它本身;相反数为本身的数是0。

2.相反数的性质与判定⑴任何数都有相反数,且只有一个;⑵0的相反数是0;⑶互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=03.相反数的几何意义在数轴上与原点距离相等的两点表示的两个数,是互为相反数;互为相反数的两个数,在数轴上的对应点(0除外)在原点两旁,并且与原点的距离相等。

有理数知识点及配套例题整理(经典实用)

有理数知识点及配套例题整理(经典实用)

有理数知识点及专项练习(二)知识点1:负数代表相反意义的量例: 1.下列有正数和负数表示相反意义的量,其中正确的是( )A. 一天凌晨的气温是—50C ,中午比凌晨上升100C ,所以中午的气温是+100CB. 如果生产成本增加12%,记作+12%,那么—12%表示生产成本降低12%C. 如果+5.2米表示比海平面高5.2米,那么—6米表示比海平面低—6米D. 如果收入增加10元记作+10元,那么—8表示支出减少8元2.某粮店出售三种品牌的面粉,袋上分别标有质量为(50±0.1)kg 、(50±0.2)kg 、(50±0.3)kg 的字样,从中任意拿出两袋,它们的质量最多相差 . 知识点2:有理数的定义 例: 1.把下列各数填在相应的大括号内: -7,3.5,1 2,3.3333,0,3π,+29,1.362109…,-1.15,-0.1010010001… 非负数集合{ }; 整数集合{ }; 负分数集合{ }; 有理数集合{ }。

知识点3:数轴与相反数例: 1.(1)数轴上到-2点的距离是3的点是 ,(2)在数轴上表示数a 的点到原点的距离为3,则a-3= .2.-3的相反数是 ,3-π的相反数是 .3.a 与b 互为相反数,c 与d 互为倒数,a+b-cd= .4.比较大小:45- 89-. 5.(1)有理数a 对应点在数轴上的位置如下图所示,则a ,-a ,1 的大小关系是 .(2)有理数a 、b 在数轴上的对应的位置如图所示: 则( ) 0-11a bA .a + b <0B .a + b >0C .a -b = 0D .a -b >0知识点4:绝对值例:1.若∣a ∣=-a ,则a ,若∣a ∣=a ,则a , 若a 为有理数,且1,a b c a b c ++==1,则a 0,若a ∠0,则1,a b c a b c++== . 2.∣3-π∣= .3.若用A 、B 、C 分别表示有理数a ,b ,c ,O 为原点,如下图所示:化简:2c+|a+b|+|c-b|-|c-a|= .4.绝对值为2的数是 ,绝对值小于6的所有整数是 .5.若∣x ∣=3,∣-y ∣=3,则x+y= .6.若∣a ∣=3,∣b ∣=5, 且ab>0,则∣a+b ∣= .若|X|=2,则X= ,若|X —3|=0,则X= ,|X —3|=6, 则X= .若∣a ∣=∣b ∣,则a 与b ,即 .7.∣a+2∣+∣b-3∣=0,a+b= .知识点5:加减运算1.加减混合运算:先去括号,再把同号的相加,最后异号两数相加。

初中数学知识点总结加例题

初中数学知识点总结加例题

初中数学知识点总结加例题一、数与代数。

(一)有理数。

1. 概念。

- 有理数包括整数和分数。

整数又分为正整数、0、负整数;分数分为正分数和负分数。

- 数轴:规定了原点、正方向和单位长度的直线。

- 相反数:绝对值相等,符号相反的两个数。

例如,3和 - 3互为相反数。

- 绝对值:一个数在数轴上所对应的点与原点的距离。

正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

2. 有理数的运算。

- 加法:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0,绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

- 减法:减去一个数等于加上这个数的相反数。

- 乘法:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。

- 除法:除以一个不等于0的数,等于乘这个数的倒数。

例题1:计算:(-2)+3 - (-5)解析:- 根据有理数的减法法则,(-2)+3 - (-5)=(-2)+3 + 5。

- 然后,按照有理数的加法法则,先计算(-2)+3 = 1。

- 计算1 + 5=6。

(二)实数。

1. 无理数:无限不循环小数,如√(2)、π等。

2. 实数的运算:实数的运算顺序是先算乘方、开方,再算乘除,最后算加减,有括号的先算括号里面的。

例题2:计算:√(4)+3 - π(精确到0.1)解析:- 先计算√(4)=2。

- 然后计算2 + 3-π=5-π。

- 因为π≈3.14,所以5 - π≈5 - 3.14 = 1.86≈1.9。

(三)代数式。

1. 整式。

- 单项式:由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式。

- 多项式:几个单项式的和叫做多项式。

- 整式的加减:实质是合并同类项,同类项是指所含字母相同,并且相同字母的指数也相同的项。

2. 整式的乘除。

- 同底数幂相乘,底数不变,指数相加,即a^m· a^n=a^m + n。

七年级有理数知识点小结与练习

七年级有理数知识点小结与练习

第一章《有理数》知识点有理数的分类分数:有限小数,无限循环小数,百分数。

特别的,π不是分数也不是有理数。

一、基本概念1、正数与负数①表示大小②在实际中表示意义相反的量:上升5米记为5; -8则表示下降8米。

③带“-”号的数并不都是负数,如-a可以是正数、负数或0.④0既不是正数也不是负数。

0是整数,也是自然数。

例.某圆形零件的直径要求是(30±0.1mm),下表中6个已生产出来的零件圆孔直径的检测结(2)哪些零件的误差最小?2、数轴(1)三要素:原点、正方向、单位长度;(2)数轴上的点与有理数:①数轴上的点与有理数一一对应②右边的数>左边的数;例1:数轴上的两点A、B分别表示-6和-3,那么A、B两点间的距离是()A、-6+(-3)B、-6-(-3)C、|-6+(-3)|D、|-3-(-6)|例2数轴上表示整数的点称为整点某数轴的单位长度为1cm,若在数轴上随意画出一条长2005cm长的线段AB,则线段AB盖住的的整点有()个A、2003或2004B、2004或2005;C、2005或2006;D、2006或20073、相反数①只有符号不同的两个数,叫做互为相反数,0的相反数是0 ②a的相反数-a③a与b互为相反数:a+b=0 ④a-b的相反数是:-a+b或b-a⑤a+b的相反数是:-a-b ⑥求一个数的相反数方法:在这个数的前面加“-”号.⎧⎨⎩⑦在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。

例:(- 2)2004+(- 2)2005=4、绝对值①一般地,数轴上表示数a 的点与原点距离,表示成|a |。

几何意义:从数轴上看,一个实数的绝对值是表示这个数的点离开原点距离。

a (a ≥0) 绝对值是它本身的数是非负数(正数和0)②|a |= -a (a ≤0) 绝对值是它相反的数是非正数(负数和0) 其它简单变形:|a+b |=a+b,则a+b 为正数 例 若|-2a |=-2a,则a 为:③|a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a ·b|;例1:若ab ≠0,则ba ab +的取值不可能是( )A 0B 1C 2D -2例2:如果有理数a,b 满足∣ab -2∣+(1-b)2=0,试求1111(1)(1)(2)(2)(2007)(2007)ab a b a b a b ++++++++++的值。

有理数的加减知识点巩固及参考答案

有理数的加减知识点巩固及参考答案

有理数的加减知识点一、有理数加法法则:①同号相加:取相同符号,两数绝对值相加。

②异号相加:取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;绝对值相等时,和为0。

③一个数同 0 相加等于它本身。

计算步骤:1.判断符号;2.选择法则;3.加减计算。

归纳:一定二求三加减例:8+(-5)解:|+8|>|-5|,取“+”号;异号相加,取法则②;8+(-5)=+(|+8|-|-5|)=+(8-5)=+3=3运算律:加法的交换律:a+b=b+a加法的结合律:(a+b) +c=a+ (b+c)运算技巧:1.同号结合;2.凑零法;3.凑整法;3.同整数(分母/小数)结合法。

二、有理数的减法法则:减去一个数,等于加上这个数的相反数。

即a-b=a+(-b)计算步骤:①化减法运算为加法运算;②按加法法则和加法运算律进行计算。

知识巩固一、填空(1)(+8)+(+10)= (2)(-10)+(-10)=(3)(-6)+(+4)= (4)(+17)+(-13)=(5)19+(-8)= (6)(+5)+(-12)=(7)(+4)+(-6)= (8)-14+(-6)=(9)5-9= (10)20+(-8)=二、选择题11. 如果两个数的和是负数,那么这两个数()A.同是正数 B.同为负数 C.至少有一个为正数 D.至少有一个为负数12. 下列说法正确的是()A.两个有理数相加,和一定大于每一个加数B.异号两数相加,取较大数的符号C.同号两数相加,取相同的符号,并把绝对值相加D.异号两数相加,用绝对值较大的数减去绝对值较小的数13.下列说法正确的是()A.两个负数相减,等于绝对值相减B.两个负数的差一定大于零C.负数减去正数,等于负数加上正数的绝对值D.绝对值等于它的相反数的数不一定是负数14.计算(﹣2)﹣(﹣7)的结果等于()A.-9 B.9 C.5 D.-515.比-2024大2018 的数是()A.-2042 B.2042 C.-6 D.6三、计算(1)(﹣12)+3+10+(﹣6)+8+(﹣4);(2)(+36)+(﹣12)+(﹣16)+(+8)(3)-3.6+1.5+1.4 +(﹣2.7)+3.8;(4)342 25773 -++(-1)+(5)1331130.25 3.750.5244-+---(6)110.7521448+--(7)0.5-0.85+1.2-3+1.05 (8)311 822424 --++(9)-4.2+(-5.78)-(-2.15)+|-10| (10)3111 12 4632 --+(11)22221415315315-+-(-12)-14+(-11)(12)-20+(+11)-19-(-18)(13)3221412332-+-(-2)+(-11)(14)211|1|524---(+4)-(-2.75)知识巩固参考答案一、填空(1)(+8)+(+10)= 18 (2)(-10)+(-10)= -20(3)(-6)+(+4)= -2 (4)(+17)+(-13)= 4(5)19+(-8)= 11 (6)(+5)+(-12)= -7(7)(+4)+(-6)= -2 (8)-14+(-6)= -20(9)5-9= -4 (10)20+(-8)= 12二、选择题11. 如果两个数的和是负数,那么这两个数( D )A.同是正数 B.同为负数 C.至少有一个为正数 D.至少有一个为负数12. 下列说法正确的是( C )A.两个有理数相加,和一定大于每一个加数B.异号两数相加,取较大数的符号C.同号两数相加,取相同的符号,并把绝对值相加D.异号两数相加,用绝对值较大的数减去绝对值较小的数13.下列说法正确的是( D )A.两个负数相减,等于绝对值相减B.两个负数的差一定大于零C.负数减去正数,等于负数加上正数的绝对值D.绝对值等于它的相反数的数不一定是负数14.计算(﹣2)﹣(﹣7)的结果等于( C )A.-9 B.9 C.5 D.-515.比-2024大2018 的数是( C )A.-2042 B.2042 C.-6 D.6三、计算(1)(﹣12)+3+10+(﹣6)+8+(﹣4);(2)(+36)+(﹣12)+(﹣16)+(+8);(1)解:原式=-1 (2)解:原式=16(3)-3.6+1.5+1.4 +(﹣2.7)+3.8;(4)34225773-++(-1)+;(3)解:原式=0.4 (4)解:原式=5 3(5)1331130.25 3.750.5244-+---;(6)110.7521448+--;(5)解:原式=-1 (6)解:原式=17 8 -(7)0.5-0.85+1.2-3+1.05;(8)311 822424--++;(7)解:原式=-1.1 (8)解:原式=-8(9)-4.2+(-5.78)-(-2.15)+|-10|;(10)3111124632 --+;(9)解:原式=2.17 (10)解:原式=9 4 -(11)22221415315315-+-(-12)-14+(-11);(12)-20+(+11)-19-(-18);(11)解:原式=-12 (12)解:原式=-10(13)1221412332-+-(-2)+(-11);(14)211|1|524---(+4)-(-2.75);(13)解:原式=353-(14)解:原式=135-。

七年级有理数经典例题

七年级有理数经典例题

七年级有理数经典例题一、有理数的概念相关例题例1:判断下列数哪些是有理数:公式, -3, 0,公式,公式, 0.333…(循环节为3), -0.1212212221…(相邻两个1之间2的个数逐次加1)。

解析:有理数是整数(正整数、0、负整数)和分数的统称。

-3是负整数,属于有理数。

0是整数,属于有理数。

公式是分数,属于有理数。

0.333…(循环节为3)是无限循环小数,可化为分数公式,属于有理数。

而公式是无限不循环小数,公式也是无限不循环小数, -0.1212212221…(相邻两个1之间2的个数逐次加1)是无限不循环小数,它们都不是有理数。

所以有理数有 -3,0,公式,0.333…(循环节为3)。

二、有理数的分类相关例题例2:把下列有理数分类: -1,公式,0, -0.5,3, -2.5,公式解析:1. 按整数和分数分类整数有: -1,0,3。

分数有:公式, -0.5, -2.5,公式。

2. 按正有理数、负有理数和0分类正有理数有:公式,3,公式。

负有理数有: -1, -0.5, -2.5。

0单独一类。

三、有理数的数轴表示相关例题例3:在数轴上表示下列有理数: -2,公式,0, -1.5,1解析:1. 画数轴,确定原点(表示0)、正方向(一般向右为正方向)和单位长度。

2. -2在原点左边2个单位长度处。

3. 公式,在原点右边1.5个单位长度处。

4. 0就在原点处。

5. -1.5在原点左边1.5个单位长度处。

6. 1在原点右边1个单位长度处。

四、有理数的大小比较相关例题例4:比较下列有理数的大小: -3与 -2.5,0与 -1,公式与公式解析:1. 对于 -3与 -2.5:两个负数比较大小,绝对值大的反而小。

公式,公式。

因为3>2.5,所以 -3< -2.5。

2. 对于0与 -1:0大于负数,所以0> -1。

3. 对于公式与公式:先通分,公式,公式。

因为公式,所以公式。

五、有理数的运算相关例题例5:计算:1. 公式2. 公式3. 公式4. 公式解析:1. 对于公式:异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。

有理数知识点及典型例题

有理数知识点及典型例题

第1章:有理数知识点及典型例题(一)数的分类(强化记忆)⎧⎧⎧⎪⎪⎨⎨⎪⎩⎪⎪⎩⎪⎪⎨⎪⎧⎧⎪⎪⎨⎪⎨⎩⎪⎪⎪⎩⎩正整数正有理数正实数正分数正无理数实数负整数负有理数负实数负分数负无理数 ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 (按符号分) (按定义分、按性质分)注意点:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数 (2)正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.(3)0即不是正数,也不是负数。

0是正数与负数的分界;0不仅表示没有,还表示某种量的基准。

如0不能理解为没有温度。

(4)初中范围内 数是指实数 正数是指正实数 负数是指负实数(5)对于正数和负数,不能简单理解为带“+”号的数是正数,带“—”号的数是负数误认为凡带正号的数就是正数,误认为凡带负号的数就是负数例-a 不一定是负数,+a 也不一定是正数;(6)π不是有理数,而是无理数;(7)非负整数应理解成“非负的整数”,不能理解成“‘非'负整数”,即正整数与零。

{}⎧⎧⎧⎫⎪⎪⎪⎪⎨⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎨⎪⎪⎪⎭⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数有限小数或无限循环小数正分数实数分数负分数正无理数无理数无限不循环小数 负无理数例1、把下列各数填在相应的集合里5,-2,4.6,,0,-2.25,1,+0.34,+13,-3.1416,整数集合{ 5,-2,0,+13,…}非负整数集合{5,0,+13,… }负分数集合{,-2.25, -3.1416,…}正有理数集合{5, 4.6,1,+0.34,+13,}例2:一种商品的标准价格是200元,但是随着季节的变化商品的价格可浮动±10%,(1)±10%的含义是什么?(2)请你计算出该商品的最高价格和最低价格。

初一数学有理数知识点与经典例题

初一数学有理数知识点与经典例题

初一数学有理数知识点与经典例题一、有理数知识点。

(一)有理数的概念。

1. 有理数的定义。

- 整数和分数统称为有理数。

整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。

例如:5是正整数,属于有理数; - 3是负整数,属于有理数;(1)/(2)是分数,属于有理数;0.25(有限小数,可化为(1)/(4))也是有理数。

2. 有理数的分类。

- 按定义分类:- 有理数整数正整数 0 负整数分数正分数负分数- 按性质符号分类:- 有理数正有理数正整数正分数 0 负有理数负整数负分数(二)数轴。

1. 数轴的定义。

- 规定了原点、正方向和单位长度的直线叫做数轴。

2. 数轴上的点与有理数的关系。

- 所有的有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数(例如√(2)等无理数也可以用数轴上的点表示)。

一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;表示数 - a的点在原点的左边,与原点的距离是a个单位长度。

(三)相反数。

1. 相反数的定义。

- 只有符号不同的两个数叫做互为相反数。

特别地,0的相反数是0。

例如,3和 - 3互为相反数,-(1)/(2)和(1)/(2)互为相反数。

2. 相反数的性质。

- 互为相反数的两个数的和为0,即若a与b互为相反数,则a + b=0。

(四)绝对值。

1. 绝对值的定义。

- 一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作| a|。

2. 绝对值的性质。

- 当a>0时,| a|=a;当a = 0时,| a|=0;当a<0时,| a|=-a。

例如,|3| = 3,| - 3|=3,|0| = 0。

- 非负性:| a|≥s lant0。

(五)有理数的大小比较。

1. 法则。

- 正数大于0,0大于负数,正数大于负数。

- 两个负数,绝对值大的反而小。

例如,比较 - 2和 - 3,| - 2|=2,| - 3| = 3,因为2<3,所以 - 2>- 3。

有理数 知识点+经典例题

有理数 知识点+经典例题

有理数考点1、正数和负数 正数:大于零的数负数:小于零的数(在正数前面加上负号“—”的数) 注意:(1)0既不是正数也不是负数,它是正负数的分界点(2)对于正数和负数,不能简单理解为带“+”号的数是正数,带“—”号的数是负数例1、 向北走2000米与向南走1000米,若规定向北走为正,则向北走2000米可记作 ,向南走1000米记作 ,原地不动课记作例2、 七年级一班第一小组五名同学某次数学测验的平均成绩为85分,一名同学以平均成绩为标准,超过平均分记正,将五名同学的成绩分别记作—15分,—4分,0分,4分,15分。

这五名同学的实际成绩分别是多少分?例3、 观察下面依次排列的一列数,请接着写出后面的数,你能说出第15个、第101个、第2010个的数是什么?1)、—1、—2、+3、—4、—5、+6、—7、—8、 、 、 …… 2)、—1、21、—3、41、—5、61、—7、81、 、 、 ……易错点:1)误认为凡带正号的数就是正数,误认为凡带负号的数就是负数 例:a 一定是正数吗?2)对于“0”的含义理解不准确 例:下列说法错误的是( )A 、0是自然数B 、0是整数C 、0是偶数D 、海拔0米表示没有海拔 考点2、有理数 1、有理数的分类按定义分:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数正整数整数有理数0 按性质符号分:有理数⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数正分数正整数正有理数0 注意:1、有理数只包括整数和分数,无限不循环小数不是有理数,如圆周率就不是有理数了。

2、0是整数不是分数例1、把下列各数填在相应的集合内: π,41-错误!未找到引用源。

,-3,2,-1,-0.58,0,-3.14,错误!未找到引用源。

,0.618,10 整数集合:{ …} 分数集合:{ …} 非负数集合:{ …} 例2、下列说法正确的是( )A 有理数分为正数和负数B 有理数-a 一定表示负数C 正整数、正分数、负整数、负分数统称为有理数D 有理数包括整数和分数2、数轴(重点)定义:规定了原点、正方向、单位长度的直线 数轴的含义:(1)数轴是一条直线,可以向两边无限延伸(2)数轴的三要素:原点、正方向、单位长度、这三者缺一不可(3)数轴一般取右(或向上)为正方向,数轴的原点的选定,正方向的取向,单位长度大小的确定都是根据实际需要规定的。

七年级有理数知识点及典型例题

七年级有理数知识点及典型例题

1.1 有理数【知识点清单】〔一〕学习温故小学里学过的数可分为三类: 、 和 ,它们都是由于实际需要而产生的。

〔二〕正数 1、正数:大于0的数叫做正数。

如:2,0.6,37,,…… ※正数都比0要 。

2、正数的表示方法:在正数前面加上一个“+〞,读作“正〞号。

如:3+,1110+, 1.9+,……其中“+〞号可以省略。

〔三〕负数1、负数:在正数前面加上一个“-〞号,这样的数叫做负数。

如:2-,0.6-,37-,……※负数都比0要 。

2、负数的表示方法:一个负数前的“-〞号不可以省略。

3、0既不是正数也不是负数。

4、正数和负数的意义在同一个问题中,分别用正数与负数表示的量具有的意义。

如:如果80m 表示向东走80m ,那么-60m 表示:。

〔四〕有理数1、有理数的概念:整数和分数统称为有理数。

【经典例题:】例 1:把以下各数分别填在题后相应的集合中:25-,0,1-,,2,5-,87,52.29-,+28,27-,8,-311,-3.5,102.3,-35,1〔1〕整数集合: { ……} 〔2〕负整数集合:{ ……} 〔3〕负分数集合:{ ……} 〔4〕自然数集合:{ ……} 〔5〕非负数集合:{ ……}例 2:在下面每个集合中任意写出3个符合条件的数:例 3:以下选项中均为负数的是〔 〕A .2-, 1.9-,0B .0.3,5-, 3.3-C .19-,1-,0.6- D .6-,…… …正数集 负数集 整数集例 4:以下说法中正确的选项是〔〕A. 整数又叫自然数B. 0是整数C. 一个数不是正数就是负数D. 0不是自然数例 5:以下说法正确的个数是〔〕。

①一个有理数不是整数就是分数;②一个有理数不是正数就是负数;③一个整数不是正的就是负的;④一个分数不是正的就是负的。

A.1 B.2 C.3 D.4例 6:把以下各数填在相应的集合中:1.2 数轴【学习目标】一、认识数轴1、数轴的三要素: , , 。

有理数的概念知识点归纳及练习题

有理数的概念知识点归纳及练习题

(1)为了强调,正数前面有时也可以加上“+”(读 作正)号,有理数的概念及其分类, 相反数的概念及求法, 绝 对值的概念及求法, 数轴的概念及应用; 有理数比较大 小 难点: 绝对值的概念及求法, 尤其是用字母表示的时候 的意义。

运用数轴理解绝对值的几何意义。

大小的方法的掌握。

例如: 3 、 1.5 、 也可以写作+ 3 、+ 1.5 、+ 。

2)对于正数和负数的概念,不能简单理解为:带+”号的数是正数,带“-”号的数是负数。

例如:- a 一定是负数吗?答案是不一定。

因为字 母 a 可以表示任意的数,知识点二:正数和负数的概念有理数的概念知识梳理(1) 像 3、1.5 、 在小学学过的数,除、584等大于 0 的数,叫做正数, 0 以外都是正数,正数比 0 大。

有理数的概念 一、目标认知 学习目标: 了解正数、负数、有理数的概念,会用正数和负数 表示相反意义的量。

掌握一个数的相反数的求法和性 质,学习使用数轴,借助数轴理解相反数的几何意义, 会借助数轴比较有理数的大小。

掌握一个数的绝对值的 求法和性质, 进一步学习使用数轴, 借助数轴理解绝对 值的几何意义。

、- 584 等在正数前面加“-” ( 读 作负) 号的数,叫做负数。

负数比 0小。

2)像- 3、- 1.5 、 3) 零既不是正数也不是负数, 零是正数和负数的分界。

注意:二、知识要点梳理 知识点一:负数的引入 若 a 表示的是正数,则- a 是负数;若 a 表 示的是0,则- a 仍是 0;要点诠释: 当 a 表示负数时,- a 就不是负数了(此时 -a 是正数)。

正数和负数是根据实际需要而产生的, 发展, 小学学过的自然数、 分数和小数已不能满足实际 的需要,比如一些有相反意义的量: 收入 200 元和支出 100元、零上6C 和零下6C 等等,它们不但意义相反, 而且表示一定的数量, 怎样表示它们呢?我们把一种意 义的量规定为正的, 把另一种和它意义相反的的量规定 为负的,这样就产生了正数和负数。

有理数知识点及练习题

有理数知识点及练习题

第二章有理数及其运算第一讲正数、负、0【引入】欧洲人的盲目:古代印度人创造了阿拉伯数字后.大约到了公元7世纪的时候.这些数字传到了阿拉伯地区.来.这些数字又从阿拉伯地区传到了欧洲.欧洲人只知道这些数字是从阿拉伯地区传入的.所以便把这些数字叫做阿拉伯数字.以后.这些数字又从欧洲传到世界各国.刘徽的先见与德∙摩根的固执:1、1831年英国数学家德∙摩根认为负数是“虚构”的,他还特意举了一个“特例”来说明他的观点:“父亲56岁,他儿子29岁,问什么时候父亲的岁数将是儿子的两倍?”,通过列方程解得x=―2,他认为这个结果是荒唐的,他不懂得x=―2正是说明两年前父亲的岁数将是儿子的两倍。

2、你看过电视或听过广播中的天气预报吗?中国地形图上的温度阅读。

(可让学生模拟预报)请大家来当小小气象员,记录温度计所示的气温25ºC,10ºC,零下10ºC,零下30ºC。

为书写方便,将测量气温写成25,10,―10,―30。

3、最早的负教定义三国时期著名数学家刘徽在负数概念的建立上贡献最大.刘徽第一次给出了正负数的定义,他说:“今两算得失相反,要令正负以名之意思就是说,在计算过程中遇到具有相反意义的量,要用正数和负数来区分它们。

【讲解】1.相反意义的量:在日常生活中,常会遇到这样一些量(事情):例1:汽车向东行驶3千米和向西行驶2千米。

例2:温度是零上10℃和零下5℃。

例3:收入500元和支出237元。

例4:水位升高1.2米和下降0.7米。

例5:买进100辆自行车和买出20辆自行车。

试着让学生考虑这些例子中出现的每一对量,有什么共同特点?(具有相反意义。

向东和向西、零上和零下、收入和支出、升高和下降、买进和卖出都具有相反意义)2.正数和负数:①能用我们已经学的来很好的表示这些相反意义的量吗?例如,零上5℃用5来表示,零下5℃呢?也用5来表示,行吗?说明:在天气预报图中,零下5℃是用―5℃来表示的。

七年级数学上册“有理数的运算”知识点梳理

七年级数学上册“有理数的运算”知识点梳理

七年级数学上册“有理数的运算”知识点梳理导图知识点一、有理数的加法(1)同号两数相加,和取相同的符号,且和的绝对值等于加数的绝对值的和;例:1+2=3(1和2都是正数,和取正号;|3|=|1|+|2|)﹣2+(﹣3)=﹣5(﹣2和﹣3都是负数,和取负号;|﹣5|=|﹣2|+|﹣3|)(2)绝对值不相等的异号两数相加,和取绝对值较大的加数的符号,且和的绝对值等于加数的绝对值中较大者与较小者的差;例:2+(﹣1)=1(|2|>|﹣1|,和取正号;|1|=|2|-|﹣1|)2+(﹣3)=﹣1(|﹣3|>|2|,和取﹣号;|﹣1|=|﹣3|-|2|)(3)互为相反数的两个数相加得0;例:1+(﹣1)=0;﹣2+2=0(4)一个数与0相加,仍得这个数;例:1+0=1;﹣2+0=﹣2(5)两个数相加,交换加数的位置,和不变;例:1+2=2+1=3;1+(﹣2)=(﹣2)+1=﹣1;(﹣1)+(﹣2)=(﹣2)+(﹣1)=﹣3(6)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变;例:1+2+3=1+(2+3)=(1+2)+3=6;(﹣1)+(﹣2)+(﹣3)=(﹣1)+[(﹣2)+(﹣3)]=[(﹣1)+(﹣2)]+(﹣3)=﹣6习题1:计算(1):3+4; (2):﹣4+(﹣5); (3):5+(﹣6);(4):﹣7+8; (5):9+0; (6):﹣10+0;(7):10+11+12; (8):(﹣11)+(﹣12)+(﹣13); (9):12+(﹣13)+(﹣14)知识点二、有理数的减法(1)减去一个数,等于加这个数的相反数例:1-2=1+(﹣2)=﹣1;(﹣2)-3=(﹣2)+(﹣3)=﹣50-5=0+(﹣5)=﹣5习题2:计算(1):3-4; (2)5-4; (3)(﹣6)-5; (4)(﹣6)-(﹣7);(5):8-7; (6)0-9 (4)0-(﹣10)知识点三、有理数的乘法(1)两数相乘,同号得正,异号得负,且积的绝对值等于乘数的绝对值的积; 例:1×2=2(1和2都是同号,积为正;|2|=|1|×|2|)(﹣2)×(﹣3)=6(﹣2和﹣3都是同号,积为正;|6|=|﹣2|×|﹣3|) 2×(﹣3)=﹣6(2和﹣3是异号,积为负;|﹣6|=|﹣2|×|﹣3|)(2)任何数与0相乘,都得0;例:0×0=0;1×0=0;(﹣2)×0=0(3)乘积是1的两个数互为倒数;例: 2×12=1(2与12互为倒数)(﹣3)×(﹣13)=1(﹣3与﹣13互为倒数)(4)两个数相乘,交换乘数的位置,积不变;例:1×2=2×1=2;5×(﹣6)=(﹣6)×5=﹣30(5)三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变;例:﹣1×2×3=﹣1×(2×3)=(﹣1×2)×3=﹣6;(6)一个数与两个数的和相乘,等于把这个数分别与这两个数相乘,再把积相加; 例:2×(1+3)=2×1+2×3=8(7)α×b 也可以写为α·b 或αb ;当用字母表示乘数时,“×”可以写成“·”或省略; 例:5×α可以写成5·α或5α习题3:计算(1)2×3; (2):(﹣3)×(﹣4); (3):4×(﹣5);(4):0×100; (5):1×2×3; (6):(﹣2)×(﹣3)×(﹣4);(7):(﹣3)×(﹣4)×5;(8):2×(2+3);(9):3×(4-5);(10)4×[(﹣3)+(﹣4)]知识点四、有理数的除法(1)除以一个不等于0的数,等于乘这个数的倒数例:4÷(﹣2)=4×(﹣1)=22(2)两数相除,同号得正,异号得负,且商的绝对值等于被除数的绝对值除以除数的绝对值的商例:(﹣8)÷(﹣2)=4(﹣8和﹣2都是同为负号,商为正;|4|=|﹣8|÷|﹣2|)8÷(﹣2)=﹣4(8和﹣2一正一负为异号,商为负;|﹣4|=|8|÷|﹣2|)(3)0除以任何一个不等于0的数,都得0例:0÷(﹣9)=0;0÷9=0习题4:计算(1):6÷(﹣3);(2):(﹣10)÷(﹣2);(3):10÷(﹣10);(4):0÷4知识点五、有理数的乘方(1)求n个相同乘数的积的运算,叫作乘方,乘方的结果叫作幂。

有理数知识点及经典题型

有理数知识点及经典题型

有理数知识点及经典题型有理数知识点及经典题型正数和负数1.正数和负数的概念负数表示比0小的数,正数表示比0大的数。

如果a表示正数,那么-a就是负数;如果a表示负数,那么-a就是正数。

注意,带正号的数不一定是正数,带负号的数也不一定是负数。

2.具有相反意义的量如果正数表示某种意义的量,那么负数可以表示具有相反意义的量。

比如,零上8℃可以表示为+8℃,零下8℃可以表示为-8℃。

3.0表示的意义0可以表示“没有”,也是正数和负数的分界线,既不是正数,也不是负数。

有理数1.有理数的概念正整数、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数。

只有能化成分数的数才是有理数。

有限小数和无限循环小数都可以化成分数,也是有理数。

但π是无限不循环小数,不能写成分数形式,因此不是有理数。

2.有理数的分类按有理数的意义分类,有正整数、负整数、正分数、负分数。

按正负来分,有非负整数、非正整数、非负有理数、非正有理数。

其中,非负整数也称为自然数。

数轴1.数轴的概念数轴是一条向两端无限延伸的直线,规定了原点、正方向和单位长度。

2.数轴上的点与有理数的关系所有的有理数都可以用数轴上的点来表示,正有理数用原点右边的点表示,负有理数用原点左边的点表示,0用原点表示。

但数轴上的点不都表示有理数,有理数与数轴上的点不是一一对应关系。

3.利用数轴表示两数大小可以通过数轴上两数所对应的点的位置关系来判断它们的大小。

如果两数所对应的点在数轴上的同一侧,离原点越远的数越大;如果它们所对应的点在数轴上的异侧,正数大于负数,距离原点越远的数越大。

1.在数轴上,右边的数总比左边的数大,因此可以通过数轴上的位置来比较数的大小关系。

正数大于负数,而两个负数比较时,距离原点远的数比距离原点近的数小。

4.在数轴上,有一些特殊的最大或最小数。

最小的自然数是1,而没有最大的自然数。

最小的正整数是1,而没有最大的正整数。

最大的负整数是-1,而没有最小的负整数。

有理数知识点及经典题型

有理数知识点及经典题型

有理数知识点及经典题型有理数的基本知识点及经典题型如下:1. 有理数定义:有理数是可以表示为两个整数的比值的数。

包括整数、分数和小数。

2. 有理数的加减乘除:- 加法:同号相加,异号相减取绝对值相加,结果取两数的符号。

- 减法:加上被减数的相反数即可。

- 乘法:符号相同时,两数相乘的结果是正数;符号不同时,两数相乘的结果是负数。

- 除法:符号相同时,两数相除的结果是正数;符号不同时,两数相除的结果是负数。

注意除数不能为0。

3. 有理数的比较:- 同号两数比较大小,绝对值大的数更大。

- 异号两数比较大小,正数大于负数。

4. 有理数的绝对值:- 正数的绝对值就是它本身。

- 负数的绝对值是其相反数。

5. 有理数的约分:- 化简分数,将分子和分母的最大公约数约去。

6. 有理数的四则混合运算:- 先进行括号内的运算,再进行乘除法运算,最后进行加减法运算。

7. 解有理数的应用问题:- 求两个有理数的和、差、积或商。

- 求多个有理数的和、差、积或商。

- 根据已知条件设置方程并求解。

经典题型示例:1. 求两个有理数的和:已知 a = -5/6,b = 2/3,求 a + b。

解答:a + b = (-5/6) + (2/3) = (-5/6) + (4/6) = -1/6。

2. 求两个有理数的差:已知 a = 2/3,b = 5/6,求 a - b。

解答:a - b = (2/3) - (5/6) = (2/3) - (10/6) = -4/6 = -2/3。

3. 求两个有理数的积:已知 a = -1/2,b = 3/4,求 a * b。

解答:a * b = (-1/2) * (3/4) = (-1 * 3) / (2 * 4) = -3/8。

4. 求两个有理数的商:已知 a = -5/6,b = 2/3,求 a / b。

解答:a / b = (-5/6) / (2/3) = (-5/6) * (3/2) = (-5 * 3) / (6 * 2) = -15/12 = -5/4。

有理数复习知识点+例题

有理数复习知识点+例题

有理数复习知识点+例题按足义分r~-正需理数分类Z------ I按符号分p) 「TN有理数相反数;只有符号不I可的两牛数戛为相反数倒数:乘积是1的厲个数互为倒数绝对值:数轴上表示散口的点勾原肚止数的绝对值是其本身的距离叫做立的绝对值]O的绝对值是0I负數的绝对值是它的相反数利学记数法*把一个絶时值大于10的数表示X 10n的形式(l<|a|<!0) i有效数字:从•争散的左边第一牛不为0的数字起*到末位数宝止,所疳的數宇都是这个数的有敷数字袪则互为相反数的呼个数相加为G一个数間0相扁仍得送不更同号两数材抓,取界[冋的符〉胞对值柚加京号两诵贰取绝对值大的样号.绝对值細减减法:减去一个数,導于加上这牛数的相反数冋号得正,绝对值榻乘I蕖法1界号得如地对值相耒 (任何数同0相乘,都得0I除苗;除以一个不等于O的数,等干乘这个散的樋数运禅止数的任何次算郁垦正数奇次鬲是负数唳戰/ --------------L…《偶次誓鱼近数D的任何正懿數次算都題0I运算律结合律加法交换律沁+0"乜交换律y 乘法交换律护加法结含律池+g+切■血+b>p 乘法结合律;abc=aibc)= t血號I 金配律ae+e)=ali+ac例题精讲板块一、正数、负数、有理数有理数:按定义整数与分数统称有理有理数(按定义分类)负整数正有理数正整数正分数有理数(按符号分类)零(零既不是正数,也不是负数)注:⑴正数和零统称为非负数; 称为非正数;⑶正整数和零统称为非负整数; 统称为非正整数.在下表适当的空格里打上“/”号.正整数整数 零自然数【例1】下列说法中正确的个数是()分数正分数 负分数负有理数负整数 负分数⑵负数和零统⑷负整数和零①当一个数由小变大时,它的绝对值也由小变大;②没有最大的非负数,也没有最小的非负数;③不相等的两个数,它们的绝对值一定也不相等;④只有负数的绝对值等于它的相反数.A. 0B. 1C. 2D. 3在下列各数:(2), ( 22), 2, ( 2)2, ( 2)2中,负数的个数为个.①a10;②a21 ;③a ;④(a 1)2一定是负数的是(填序号).下列说法正确的个数是()①互为相反数的两个数一定是一正一负②0没有倒数③如果a是有理数,那么a一定是正数,a一定是负数④一个数的相反数一定比原数小⑤a一定不是负数⑥有最小的正数,没有最小的负数A. o个B. 1个C.2个D. 4个下列说法正确的是()A . a 表示负有理数B. —个数的绝对值一定不是负数C. 两个数的和一定大于每个加数D. 绝对值相等的两个有理数相等两数相加,其和小于其中一个加数而大于另一个加数,那么()A.这两个加数的符号都是正的B.这两个加数的符号都是负的C ・这两个加数的符号不能相同 D.这两个加数的符号不能确定板块二、倒数【例2】有理数a 等于它的倒数,有理数b 等于它的相反数, 贝ya 2002b 2003【例4】在一列数a i电® ••中,已知a i1,从第二个数起,每个 数都等于“ 1与它前面的那个数的差的倒数” ⑴ 求a 2怎宀的值 ⑵ 根据以上计算结果,求a20 , a2007白勺^值板块三数轴数轴:规定了原点、正方向和单位长度的直线•数轴画法的常见错误举例:【例3】若a b,a b 2 m cd a b cc和d 互为倒数, 的值m的绝对值为2 , 求代数式有理数与数轴的关系:一切有理数都可以用数轴上的点表示出来. 在数轴上,右边的点所对应的数总比左边的点所对应的数大.正数都大于0,负数都小于0,正数大于一切负数注意:数轴上的点不都代表有理数,如•利用数轴比较有理数的大小:数轴上右边的数总大于左边的数•因此,正数总大于零,负数总小于零,正数大于负数•⑴在数轴上表示下列各数,再按大小顺序用“V 号连接起【例5】来•1 14,0, 4.5,1—,2,3.5,1,22 2⑵如右图所示,数轴的一部分被墨水污染了,被污染的部分内含有的整数为___________数轴上有一点A它表示的有理数是3,将点A向左移动【例6】3个单位得到点B,再向右移动8个单位,得到点C,则点B表示的数是________ ,点C表示的数是________ ・【巩固】如右图所示,数轴上的点M和N分别对应有理数,那么以下结论正确的是()A m 0 , n 0 , m n B. m 0 ,C mO , n0 , mn D. m 0 ,【例7】数a,b,cd所对应的点A,B,C,D在数轴上的位置如图所示,那么 a c与b d的大小关系为()A. a c b dB.C.D.不确定的【巩固】如图,数轴上标出若干个点,每相邻两点相距1个单位,点A,B ,C,D对应的数分别为整数a,b,d,并且b 2a 9,那么数轴的原点对应点为()A.A点B.B点C.C点D.D点I I I I I II I I IA B C D【巩固】数轴上的一个点表示一个数,当这个点表示的是整数时,我们称它是整数点•如果有一条数轴的单位长度是1厘米时,有一条2米长的线段放在数轴上它可以盖住多少个整数点?【巩固】已知数轴上有A ,B两点,A,B之间的距离为1,点A与【例8】【巩固】【例9】原点0的距离为3,那么点B所对应的数为____________一辆货车从超市出发,向东走了3km到达小彬家,继续向前走了 1.5km到达小颖家,然后向西走了9.5km到达小明家,最后回到超市⑴以超市为原点,向东作为正方向,用1个单位长度表示1km,在数轴上表示出小明,小彬,小颖家的位置⑵小明家距离小彬家多远?⑶货车一共行驶了多少千米?在数轴上,点A和点B都在与芍对应的点上,若点A以每秒3个单位长度的速度向右运动,点B以每秒2个单位长度的速度向左运动,则7秒之后,点A和点B所处的位置对应的数是什么?这时线段AB的长度是多少?在数轴上任取一条长度为1999*的线段,则此线段在这条数轴上最多能盖住的整数点的个数为—是1【巩固】数轴上表示整数的点称为整点。

有理数知识点归纳及典型例题

有理数知识点归纳及典型例题

有理数知识点归纳及典型例题一、正负数有理数分为正数、负数和0,其中正整数、负整数、0都属于整数;分数属于有理数。

有理数是指可以表示成两个整数比值的数,例如2、-5/3都是有理数。

基础练:1.正整数集{1.25.6/7};正有理数集{1.25.6/7};负有理数集{-789.-20.-590};负整数集{-789.-20};自然数集{1.25};正分数集{6/7};负分数集{-5/3}。

2.元表示价格上涨,原价为76元的食用油现在的卖价无法确定,需要给出更多信息。

二、数轴数轴是一条直线,上面的每个点都表示一个实数。

在数轴上,规定原点为0,正方向为右,负方向为左。

基础练:1.图中正确的数轴为D。

2.-|2|-4>1.3.数轴上的点可以表示有理数。

4.(1) 比-3大的负整数是-2;(2) -3,-2,-1,0,1,2;(3) 最大的负整数是-1,最小的正整数是1,最大的非正数是0;(4) 6个点,分别表示-3,-2,-1,1,2,3.5.点A表示-3.三、相反数相反数指的是互为相反的两个数,例如2和-2.一个数a的相反数为-a,互为相反数的两个数和为0.基础练:1.-(-5)=5;-(-(-8))=-8;-1/2的相反数是1/2;a的相反数是-a;-的相反数的倒数是-1/2.2.a和b互为相反数,则a+b=0.3.(1) -(-13)=13;(2) a=-1;(3) x=6;(4) x=-9.1.A。

-52 = 25.B。

(-1)1996 = -1.C。

(-1)2003 - (-1) = -1.D。

(-1)99 - 1 = -2正确答案:A2.此题需要讨论符号优先级,按照先乘除后加减的原则,应该先算32×(-6),再加上2,即:2+32×(-6)=2-192=-190.3.小幅度改写:① -3×[-5-(2/9)] = -3×[-45/9-(2/9)] = -3×[-47/9] = 141/9 = 47/3② (-1)×2+(-2)÷4 = -1×2+(-0.5) = -2.5③ -5³-3×(-4) = -125+12 = -113④ 4×(-1)×(1/5)÷(-3) = 4/15⑤ (-4)²-(3+3×2) = 16-9 = 7⑥ [-4×(-3)] = 12⑦ [2-(1-(-2/5))]×24 = (9/5)×24 = 216/5⑧ [-10+8×(-2)²-(-4)×(-3)]÷(-5) = [-10+32+12]/(-5) = -2⑨ -0.252÷(-0.5)³+(-1)¹⁰ = -0.252÷(-0.125)+1 = -2.016+1 = -1.016⑩ -3×(-2)²-4×(1-(-1))÷2 = -3×4-4×2/2 = -12-4 = -164.此题需要小幅度改写:1☆ 0 = 0×10⁰。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

()

三、【相反数】 的概念
像 2 和-2 、-5 和 5、和这样, 只有
不同的两个数叫做互为相反数。
0 的相反数是
。一般地:若 a 为任一有理数,则 a 的相反数为 -a
相反数的相关性质:
1、相反数的几何意义 :
表示互为相反数的两个点(除 0 外)分别在原点 O的两边,并且到原点的距离相等。
2、互为相反数的两个数,和为 0。
[ 基础练习 ] 1☆— 2 的绝对值表示它离开原点的距离是
个单位,记作
.
2☆ |-8|=
。 -|-5|=
。绝对值等于 4 的数是 ____。
3☆绝对值等于其相反数的数一定是(

·有理数乘除法法则· 同号得 ,异号得 ,
A.负数 B.正数 C.负数或零 D.正数或零
再把绝对值相乘(除) 。
4★ x 7 ,则 x ______ ; x 7 ,则 x ______
的值就变相反了),如:
1 1 1; a
aa
22 2
bb
b
1☆从运算上看式子 an,可以读作
;从结果上看式子 an可以读作
.
2★ 3 3=
;( 1 ) 2=
; -5 2=
; 22 的平方是Fra bibliotek;2
3★下列各式正确的是( )
A.
2
5
2
( 5)
B.
1996
( 1)
4★★下列说法正确的是(
1996
C.
(
2003
1☆如图所示的图形为四位同学画的数轴,其中正确的是(

2☆在数轴上画出表示下列各数的点,并按从大到小的顺序排列,用“ 4 ,-|-2| , , 1, 0
>”号连接起来。
3 下列语句中正确的是( )
A数轴上的点只能表示整数
B数轴上的点只能表示分数
C数轴上的点只能表示有理数 D所有有理数都可以用数轴上的点表示出来
∣.
一个正数的绝对值是

一个负数的绝对值是它的

0 的绝对值是
.
C. 负数或零;
D.
【任一个有理数 a 的绝值】用式子表示就是:
(1)当 a 是正数(即 a>0)时,∣a∣ =

(2)当 a 是负数(即 a<0)时,∣a∣ =

(3)当 a=0 时,∣ a∣ = .
绝对值的非负性: 任意有理数 a,有∣ a∣ ≥O
⑧ ( 10) 8 ( 2) 2 ( 4) ( 3)
⑨ 0.252 ( 0.5)3 ( 1 1 ) ( 1)10 82
⑩ 3 ( 2)2 4 (1 2) 8 ( 2)2
3
3
3
7★★已知 a =3, b2 =4,且 a b ,求 a b 的值。
8★★某大楼地上共有 12 层,地下共有 4 层,每层高米,请用正负数表示这栋楼每层的楼层号,某 人乘电梯从地下 3 层升至地上 7 层,电梯一共上了多少米? 9★★★已知 4 a 与 a 2b 2 互为相反数,求 a 2b 的值。
4、★ ①比- 3 大的负整数是 _______; ②已知m是整数且 -4<m<3,则m为 _______________。
③有理数中,最大的负整数是
,最小的正整数是
。最大的非正数是

④与原点的距离为三个单位的点有 _ _ 个,他们分别表示的有理数是 _ 和 _ _ 。
5、★★在数轴上点 A 表示 -4, 如果把原点 O向负方向移动 1 个单位 , 那么在新数轴上点 A 表示的数是
一、【正负数】
有理数的分类:★☆▲
_____________统称 整数 ,试举例说明。
_____________统称 分数 ,试举例说明。 有
____________统称 有理数 。
理 数
有 理
[ 基础练习 ]

1☆把下列各数填在相应额大括号内:
1 ,-, -789 ,25, 0, -20 ,, -590 , 6/7
5★如果 2a 2a ,则 a 的取值范围是( )
A. a > O B . a ≥O C . a ≤O D. a <O.
6★★如果 a 3,则 a 3 ______ , 3 a ______ .
7★★绝对值不大于 11 的整数有(

A.11 个 B.12 个 C.22 个 D.23 个
五、【有理数的运算】

之间 .
9★★用四舍五入法求 30951 的近似值(精确到百位) ,结果是
.
1☆用科学记数数表示: 00=
; -1020=
.
2☆ 水星和太阳的平均距离约为 km 用科学记数法表示为
.
3★ 120 万用科学记数法应写成
;万的原数是
.
4★. 近似数万精确到
位. 5 ★近似数精确到
.
6★× 105精确到
位 7 ★. ×105 精确到千位是
.
8★★某数有四舍五入得到,那么原来的数一定介于
·正整数集{
…};·正有理数集{
…};·负有理数集{
·负整数集{
…};·自然数集{
…};·正分数集{
·负分数集{
…}
2☆ 某种食用油的价格随着市场经济的变化涨落,规定上涨记为正,则元的意义

;如果这种油的原价是 76 元,那么现在的卖价是

…} …}
二 、【数轴】 规定了


的直线,叫数轴
[ 基础练习 ]
、最后算
.

2
2
3[
5 ]
39
②( -1 ) × 10 2+( -2 ) 3÷ 4
③( -5 )3- 3× ( 1 )4 2
④ 11
1 (
1 )
3
5
5 3 2 11 4
3
⑤ (-10 ) 4+[(-4 ) 2-(3+3 2) × 2] ⑥ 23 4 2
93
⑦ 12
51 (
7 ) 24
( 5)
13 8 6 12
(-1) × (-2) ×(-3) ×(+4)=-24 (-1) × (-2) ×(-3) ×(-4)=24
3、负数的乘方 ( 指乘方的指数与 结果符号的关系 ) ,如:
(-2) 3=-8, (-3) 2=9
4、分数的符号法则(指的是分 子、分母及分数本身三个符号
中,同时改变两个,值不变,但 。 改变一个或三个都改变时, 分数
(3) 如果- x=- 6,那么 x= ______;(4) -x=9,那么 x=______.
4★★已知 a、b 都是有理数,且 |a|=a , |b|=-b 、,则 ab 是(

A.负数; 非负数
B. 正数;
四、【 绝对值 】 一般地,数轴上表示数 a 的
点与原点的
叫做数 a 的绝对值,记作∣ a
1)
( 1)
0
D.
99
( 1)
1
0

A. 如果 a b ,那么 a2 b2
B. 如果 a2 b2 ,那么 a b
C.如果 a b ,那么 a2 b2 D. 如果 a b ,那么 a b
5★在 2+32×(- 6)这个算式中,存在着
种运算 . 请你们讨论、交流,上面这个式子应该先

、再算
6 ▲有理数的运算
[ 基础练习 ]
1☆-5 的相反数是
;- (-8 )的相反数是
;- [+ ( -6 )]=
0 的相反数是
; a 的相反数是
; 1 的相反数的倒数是 __ 2
2☆若 a 和 b 是互为相反数,则 a+b=( ) A. – 2a B .2b C. 0 D.
任意有理数
3★(1) 如果 a=- 13,那么- a=______;(2) 如果 -a =-,那么 a=______;
10★★★如果有理数 a 、 b 、 c 在数轴上的位置如图所示,求 a b b 1 a c 1 c 的值 .
五、【科学记数法】 【近似数】
把一个大于 10 的数记成 a ×10n 的形式 ( 其中 a 是整数数位只有一位的数 ) ,叫做 科学记数法 .
其中: a :
n
的两种求法: 1、
2、
[ 基础练习 ]
·有理数加减法法则课本 P-18--22 页· ·有理数乘除法法则课本 P-29--34 页·
·求几个相同因数的积的运算,叫做有理数的乘方
即: a n a ?a ? ? a ( 有 n 个 a)
[ 基础练习 ]
·“奇负偶正”的应用· 1、如下符号的化简(指负号的 个数与结果符号的关系) ,如:
-{+[-(-2)]}= -2 2、连乘式的积(指负因数的个 数与结果符号的关系) ,如:
相关文档
最新文档