场效应管工作原理
场效应管工作原理及应用
场效应管工作原理(1)场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管。
一般的晶体管是由两种极性的载流子,即多数载流子和反极性的少数载流子参与导电,因此称为双极型晶体管,而FET仅是由多数载流子参与导电,它与双极型相反,也称为单极型晶体管。
它属于电压控制型半导体器件,具有输入电阻高(108~109Ω)、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点,现已成为双极型晶体管和功率晶体管的强大竞争者。
一、场效应管的分类场效应管分结型、绝缘栅型两大类。
结型场效应管(JFET)因有两个PN结而得名,绝缘栅型场效应管(JGFET)则因栅极与其它电极完全绝缘而得名。
目前在绝缘栅型场效应管中,应用最为广泛的是MOS场效应管,简称MOS管(即金属-氧化物-半导体场效应管MOSFET);此外还有PMOS、NMOS和VMOS 功率场效应管,以及最近刚问世的πMOS场效应管、VMOS功率模块等。
按沟道半导体材料的不同,结型和绝缘栅型各分沟道和P沟道两种。
若按导电方式来划分,场效应管又可分成耗尽型与增强型。
结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。
场效应晶体管可分为结场效应晶体管和MOS场效应晶体管。
而MOS场效应晶体管又分为N沟耗尽型和增强型;P沟耗尽型和增强型四大类。
见下图。
二、场效应三极管的型号命名方法现行有两种命名方法。
第一种命名方法与双极型三极管相同,第三位字母J代表结型场效应管,O代表绝缘栅场效应管。
第二位字母代表材料,D是P型硅,反型层是N沟道;C是N型硅P沟道。
例如,3DJ6D是结型N沟道场效应三极管,3DO6C 是绝缘栅型N沟道场效应三极管。
第二种命名方法是CS××#,CS代表场效应管,××以数字代表型号的序号,#用字母代表同一型号中的不同规格。
例如CS14A、CS45G等。
场效应管工作原理
场效应管工作原理1.什么叫场效应管?FET是Field-Effect-Transistor的缩写,即为场效应晶体管。
一般的晶体管是由两种极性的载流子,即多数载流子和反极性的少数载流子参与导电,因此称为双极型晶体管,而FET仅是由多数载流子参与导电,它与双极型相反,也称为单极型晶体管。
FET应用范围很广,但不能说现在普及的双极型晶体管都可以用FET替代。
然而,由于FET的特性与双极型晶体管的特性完全不同,能构成技术性能非常好的电路。
2. 场效应管的工作原理:(a) JFET的概念图(b) JFET的符号图1(b)门极的箭头指向为p指向 n方向,分别表示内向为n沟道JFET,外向为p沟道JFET。
图1(a)表示n沟道JFET的特性例。
以此图为基础看看JFET的电气特性的特点。
首先,门极-源极间电压以0V时考虑(VGS =0)。
在此状态下漏极-源极间电压VDS 从0V增加,漏电流ID几乎与VDS 成比例增加,将此区域称为非饱和区。
VDS 达到某值以上漏电流ID 的变化变小,几乎达到一定值。
此时的ID 称为饱和漏电流(有时也称漏电流用IDSS 表示。
与此IDSS 对应的VDS 称为夹断电压VP ,此区域称为饱和区。
其次在漏极-源极间加一定的电压VDS (例如0.8V),VGS 值从0开始向负方向增加,ID 的值从IDSS 开始慢慢地减少,对某VGS 值ID =0。
将此时的VGS 称为门极-源极间遮断电压或者截止电压,用VGS (off)示。
n沟道JFET的情况则VGS (off) 值带有负的符号,测量实际的JFET对应ID =0的VGS 因为很困难,在放大器使用的小信号JFET时,将达到ID=0.1-10μA 的VGS 定义为VGS (off) 的情况多些。
关于JFET为什么表示这样的特性,用图作以下简单的说明。
场效应管工作原理用一句话说,就是"漏极-源极间流经沟道的I,用以D"。
更正确地说,ID 流经通门极与沟道间的pn结形成的反偏的门极电压控制ID路的宽度,即沟道截面积,它是由pn结反偏的变化,产生耗尽层扩展变化控制的缘故。
场效应管 开关 原理
场效应管开关原理
场效应管(Field Effect Transistor,简称FET)是一种半导体
器件,具有电子控制的特性,常被用作开关。
其工作原理是通过控制栅极电压来改变漏极和源极之间的电流流动。
相比于另一种常见的功率管——双极型晶体管(BJT),场效应管具有
更高的输入阻抗和更低的功耗。
场效应管通常有三种类型:MOSFET(金属-氧化物-半导体场
效应管)、JFET(结型场效应管)和IGBT(绝缘栅双极型晶
体管)。
其中,MOSFET是最常见和最广泛使用的一种。
MOSFET由一块绝缘层(氧化层)分隔成的金属栅极和半导
体材料中的N型或P型区域组成。
当栅极上施加正向电压时,形成电场,改变了N型或P型区域中的电荷分布,形成了一
个导电通道,使得漏极和源极之间的电流流动。
栅极电压越高,导电通道越强,电流越大。
基于这种工作原理,MOSFET可以被用作电子开关。
当栅极
电压为0V时,不会有导电通道形成,MOSFET处于关断状态,没有电流流过。
而当栅极电压高于某个阈值电压时,导电通道形成,MOSFET处于导通状态,电流可以流过。
因此,通过
控制栅极电压的高低,可以实现对MOSFET的开关控制。
在实际应用中,MOSFET常常用于各种电子设备和电路中,
例如功率放大器、逆变器、电源开关等。
由于其优秀的性能和可靠性,MOSFET成为了现代电子技术中不可或缺的部分。
mos场效应管工作原理
mos场效应管工作原理
场效应管(又称为MOSFET, Metal-Oxide-Semiconductor Field-Effect Transistor)是一种三极管,它是由金属-氧化物-半导体结
构组成的。
MOS场效应管的工作原理基于其门电压对导电状态的控制。
它主要由四个部分组成:栅极(gate)、漏极(drain)、源极(source)和绝缘层(insulating layer)。
栅极和源极之间绝缘层两侧有一个
半导体通道。
当没有电压应用在栅极时,绝缘层将阻止电流在通道中的流动,MOSFET处于关断状态,导电性排斥。
但是,当正电压应用
在栅极上时,它会形成一个电场,这个电场会吸引并导致半导体通道中的载流子(电子或空穴)向栅极周围移动。
这将导致通
道处于导通状态,由源极到漏极流动的电流增加。
根据栅极与源极之间的电压,MOSFET可以操作在三个不同
的工作区域:截止区、线性区和饱和区。
- 截止区:当栅极电压低于门阈电压时,MOSFET处于截止状态,没有电流流过整个器件。
- 线性区:当栅极电压高于门阈电压时,MOSFET处于线性区,电流的大小与栅极电压的差值成正比。
- 饱和区:当栅极电压进一步增加,使得MOSFET工作在饱和区,此时电流基本保持不变。
通过调整栅极电压,可以控制MOSFET的导通和截止,从而
实现对电流的控制和放大功能。
因此,MOSFET被广泛应用于电子设备,如放大器、开关和逻辑电路等。
场效应管的基础知识
场效应管的基础知识:
场效应管(Field Effect Transistor,FET)是一种利用电场效应来控制半导体器件中的电流流动的半导体器件。
以下是场效应管的基础知识:
1.工作原理:场效应管利用电场效应原理,通过控制栅极电压来控制源极和漏极之间
的电流。
当栅极电压为零时,源极和漏极之间没有电流。
当栅极电压不为零时,电场效应使得半导体内的电子聚集在沟道的一侧,形成导电沟道,从而使得源极和漏极之间有电流流动。
2.结构:场效应管的结构包括源极(Source)、漏极(Drain)、栅极(Gate)三个电
极。
源极和漏极之间是半导体材料,称为沟道。
栅极位于源极和漏极之间,通过控制栅极电压来控制沟道的通断。
3.类型:场效应管有N沟道和P沟道两种类型。
N沟道场效应管的源极和漏极之间是
N型半导体,P沟道场效应管的源极和漏极之间是P型半导体。
4.特性曲线:场效应管的特性曲线包括转移特性曲线和输出特性曲线。
转移特性曲线
表示栅极电压对漏极电流的影响,输出特性曲线表示漏极电流与漏极电压之间的关系。
5.应用:场效应管广泛应用于电子设备中,如放大器、振荡器、开关等。
由于场效应
管具有体积小、重量轻、寿命长等优点,因此在便携式设备、移动通信等领域得到广泛应用。
场效应管工作原理
场效应管⼯作原理场效应管⼯作原理MOS场效应管电源开关电路。
这是该装置的核⼼,在介绍该部分⼯作原理之前,先简单解释⼀下MOS 场效应管的⼯作原理。
MOS 场效应管也被称为MOS FET,既Metal Oxide Semiconductor Field EffectTransistor(⾦属氧化物半导体场效应管)的缩写。
它⼀般有耗尽型和增强型两种。
本⽂使⽤的为增强型MOS场效应管,其内部结构见图5。
它可分为NPN型PNP型。
NPN型通常称为N沟道型,PNP型也叫P沟道型。
由图可看出,对于N沟道的场效应管其源极和漏极接在N型半导体上,同样对于P沟道的场效应管其源极和漏极则接在P型半导体上。
我们知道⼀般三极管是由输⼊的电流控制输出的电流。
但对于场效应管,其输出电流是由输⼊的电压(或称电场)控制,可以认为输⼊电流极⼩或没有输⼊电流,这使得该器件有很⾼的输⼊阻抗,同时这也是我们称之为场效应管的原因。
为解释MOS场效应管的⼯作原理,我们先了解⼀下仅含有⼀个P—N结的⼆极管的⼯作过程。
如图6所⽰,我们知道在⼆极管加上正向电压(P端接正极,N端接负极)时,⼆极管导通,其PN结有电流通过。
这是因为在P型半导体端为正电压时,N型半导体内的负电⼦被吸引⽽涌向加有正电压的P型半导体端,⽽P型半导体端内的正电⼦则朝N型半导体端运动,从⽽形成导通电流。
同理,当⼆极管加上反向电压(P端接负极,N端接正极)时,这时在P型半导体端为负电压,正电⼦被聚集在P型半导体端,负电⼦则聚集在N型半导体端,电⼦不移动,其PN结没有电流通过,⼆极管截⽌。
对于场效应管(见图7),在栅极没有电压时,由前⾯分析可知,在源极与漏极之间不会有电流流过,此时场效应管处与截⽌状态(图7a)。
当有⼀个正电压加在N沟道的MOS 场效应管栅极上时,由于电场的作⽤,此时N型半导体的源极和漏极的负电⼦被吸引出来⽽涌向栅极,但由于氧化膜的阻挡,使得电⼦聚集在两个N沟道之间的P型半导体中(见图7b),从⽽形成电流,使源极和漏极之间导通。
场效应管转移曲线滞后电压
场效应管转移曲线滞后电压1、场效应管的基本原理场效应管,也称为FET(Field Effect Transistor),是一种具有放大功能的电子元件。
它由源极、漏极及栅极组成,其工作原理是利用栅电场控制电荷载流子在介质中移动,从而改变漏极与源极之间的电阻值,实现信号放大或开关控制等功能。
2、场效应管的转移曲线场效应管的转移曲线是指在一定栅极电压下,漏极电流与源极电压的关系曲线。
在实际应用中,我们一般使用场效应管的输出特性曲线和输入特性曲线来描述其工作状态。
3、场效应管转移曲线的滞后电压现象在场效应管的转移曲线中,当电压从正向到负向时,漏极电流不会立即减小,而是会留有一定量的电流,直到电压达到一定幅度,电流才会迅速下降。
这种现象就是场效应管转移曲线的滞后电压。
4、产生滞后电压的原因场效应管转移曲线的滞后电压是由于栅极电荷储存在栅极-源极介质中,这些电荷会影响到漏极电流的变化速度。
当栅极电压从正向变为负向时,栅极-源极之间的电场会使介质中的电子和空穴运动,导致栅极电荷不能立即消失,从而延迟了漏极电流的下降。
5、滞后电压的影响场效应管转移曲线的滞后电压会对放大器的频率响应产生影响。
在高频信号下,由于栅极电荷不能及时地消失,导致输出信号的相位与输入信号的相位发生了差异,从而影响信号的增益和频率响应。
6、减小滞后电压的方法为了减小场效应管转移曲线的滞后电压,可以采用以下几种方法:(1)提高栅极电压,加快栅极电荷的消失速度;(2)减小栅极-源极之间的介质厚度,缩短电荷传输距离;(3)使用高速场效应管,它具有更高的电子迁移率和短通道长度,可以减小滞后电压的影响。
7、总结场效应管的转移曲线是其工作状态的重要描述方式,其中滞后电压现象会对放大器的频率响应产生影响。
了解滞后电压的原因以及如何减小滞后电压对于设计高性能放大器至关重要。
场效应管工作原理
场效应管工作原理(1)场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管。
一般的晶体管是由两种极性的载流子,即多数载流子和反极性的少数载流子参与导电,因此称为双极型晶体管,而FET仅是由多数载流子参与导电,它与双极型相反,也称为单极型晶体管。
它属于电压控制型半导体器件,具有输入电阻高(108~109Ω)、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点,现已成为双极型晶体管和功率晶体管的强大竞争者。
一、场效应管的分类场效应管分结型、绝缘栅型两大类。
结型场效应管(JFET)因有两个PN结而得名,绝缘栅型场效应管(JGFET)则因栅极与其它电极完全绝缘而得名。
目前在绝缘栅型场效应管中,应用最为广泛的是MOS场效应管,简称MOS管(即金属-氧化物-半导体场效应管MOSFET);此外还有PMOS、NMOS和VMOS功率场效应管,以及最近刚问世的πMOS场效应管、VMOS功率模块等。
按沟道半导体材料的不同,结型和绝缘栅型各分沟道和P沟道两种。
若按导电方式来划分,场效应管又可分成耗尽型与增强型。
结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。
场效应晶体管可分为结场效应晶体管和MOS场效应晶体管。
而MOS场效应晶体管又分为N沟耗尽型和增强型;P沟耗尽型和增强型四大类。
见下图。
二、场效应三极管的型号命名方法现行有两种命名方法。
第一种命名方法与双极型三极管相同,第三位字母J代表结型场效应管,O代表绝缘栅场效应管。
第二位字母代表 材料,D是P型硅,反型层是N沟道;C是N型硅P沟道。
例如,3DJ6D是结型N沟道场效应三极管,3DO6C 是绝缘栅型N沟道场效应三极管。
第二种命名方法是CS××#,CS代表场效应管,××以数字代表型号的序号,#用字母代表同一型号中的不同规格。
例如CS14A、CS45G等。
n沟道场效应管工作原理
n沟道场效应管工作原理
场效应管(FET)是一种三极管,其工作原理是基于半导体材料中的电子和空穴的导电性质。
沟道式场效应管(MOSFET)是其中一种常见的类型。
沟道场效应管由一片N型或P型半导体材料构成,上面覆盖着一层绝缘层,然后在绝缘层上加一层金属电极,称为栅极。
在绝缘层下方,沟道区域与汇极和源极相连。
当没有外加电压施加在栅极上时,沟道中的电子和空穴无法通过绝缘层进行漂移,因此沟道中没有电流流动,沟道是关闭的状态。
当在栅极上施加一正电压时,栅极下方的绝缘层上产生了一个正电荷,这个正电荷将吸引N型半导体中的自由电子,使得栅极下方的区域形成一个N型沟道,这时候沟道中开始有电子流动,也就是形成了一个导电通路。
当在栅极上施加一负电压时,栅极下方的绝缘层上产生了一个负电荷,这个负电荷将排斥N型半导体中的自由电子,使得沟道中断开,导电通路中没有电子流动。
通过控制栅极电压的正负可以实现对导电通路的开闭控制,从而实现对沟道场效应管的导电特性的调节。
栅极电压的变化也会导致沟道电阻的变化,进而影响管子的电流和电压特性。
总的来说,沟道场效应管通过在栅极上施加电压来调控导电通
路中沟道的形成或断开,从而实现对管子的导电特性的控制。
它具有高输入阻抗、低噪声、快速开关速度等优点,在电子设备、通信系统等领域有广泛的应用。
n型场效应管工作原理
n型场效应管工作原理
N型场效应管(N-channel Field Effect Transistor)是一种电子
器件,它是由N型材料构成的。
该管的工作原理是通过施加
电压来控制电流的流动。
在N型场效应管中,导电的载流子
是电子,其流动受到栅电压的影响。
当栅电压低于一定阈值时,N型场效应管处于截止状态,不导电;当栅电压高于阈值时,
N型场效应管进入放大状态,形成电流通路。
N型场效应管的主要构造包括源极、漏极和栅极。
当外部电源施加电压时,形成漏极到源极的电压,通过栅极施加控制电压。
当栅极电压为零或低于阈值时,N型材料中的载流子被阻挡,电流无法通过管道流动。
这种状态称为截止状态。
然而,当栅极电压高于阈值时,电场效应使得栅极附近的N
型材料形成一个导电通道,载流子可以流动。
这种导电通道的形成使得漏极到源极之间的电流得以通过,产生一个放大效应。
因此,当栅极电压高于阈值时,N型场效应管可以被用作放大器、开关等应用。
总之,N型场效应管的工作原理是通过控制栅电压来开关管道中的电流。
栅电压低于阈值时,管道截止不导电;栅电压高于阈值时,管道放大导电,实现信号的放大与控制。
这使得N
型场效应管成为现代电子器件中不可或缺的一部分。
mos场效应管工作原理
mos场效应管工作原理
MOS场效应管(MOSFET)是一种常用的三端可控硅器件,
其工作原理基于金属-氧化物-半导体(Metal-Oxide-Semiconductor)结构。
MOS场效应管的结构包括三层:金属层、绝缘层(通常是二
氧化硅)和半导体层(通常是硅)。
绝缘层将金属层与半导体层隔离开来,形成了一个被控制的电介质层。
MOS场效应管有两种常见的工作模式:增强型(enhancement mode)和耗尽型(depletion mode)。
在增强型MOS场效应管中,当控制端加有正电压时,电子注
入到半导体中,形成一个导电层,从而增强了导电特性。
这时,可以在控制端和源端之间输出一个较大电流。
在耗尽型MOS场效应管中,当控制端加有负电压时,导电特
性被减弱。
这时,控制端和源端之间的电流较小。
MOS场效应管的主要工作原理是通过控制栅电压来改变栅和
源之间的电场,从而控制了栅氧化物与半导体之间的电荷分布。
这种电场效应可以调节通道中的载流子浓度,进而影响了器件的导电特性。
总之,MOS场效应管是通过调节控制栅电压来改变器件导电
特性的三端可控硅器件,其工作原理基于金属-氧化物-半导体
结构和电场效应。
场效应管实现开关的原理
场效应管实现开关的原理
场效应管是一种电子器件,通过控制输入电压来控制输出电流。
它的主要工作原理是利用栅极与沟道之间的电场控制沟道的电阻,从而控制电流的流动。
场效应管一般由栅极、源极和漏极组成。
栅极与源极之间的电压称为栅极-源极电压(Vgs),源极与漏极之间的电压称为源极-漏极电压(Vds)。
当Vgs为零或较小时,场效应管处于关断状态,沟道中没有电流流动。
当Vgs 增大到一定阈值电压(Vth)时,电场会使沟道中的电子受到吸引,形成导电通道,使电流开始流动。
此时,场效应管处于导通状态。
当Vgs继续增大时,沟道中的电子受到更强的吸引,导电通道的电阻减小,电流增大。
当Vgs超过一定值时,沟道中的电子已经被完全吸引,电流达到最大值。
这时,场效应管处于饱和状态。
通过调节Vgs,可以控制场效应管的导通和关断,实现开关功能。
当Vgs为零或较小时,场效应管处于关断状态,没有电流流动;当Vgs为一定值时,场效应管处于导通状态,电流可以流动。
场效应管具有体积小、功耗低、响应速度快等优点,因此被广泛应用于各种电子设备中,如放大器、开关和逻辑门等。
场效应管工作原理是什么
场效应管工作原理是什么场效应管(Field Effect Transistor,FET)是一种基于电场调制导电性的半导体器件。
它是由美国贝尔实验室的朱恩教授于1959年发明的,是晶体管的一种重要补充和替代。
场效应管的工作原理是通过控制电场在半导体材料中的分布来改变导电性能。
场效应管由三个区域构成:源极(Source)、漏极(Drain)和栅极(Gate)。
其中,源极和漏极之间有一段N或P型半导体作为通道(Channel),而栅极通过绝缘层(如氧化硅)与通道相隔,通过外加电压来调节栅极附近的电场分布情况,从而控制通道电阻的大小。
主要有两种类型的场效应管,即结型场效应管(JFET)和金属-氧化物-半导体场效应管(MOSFET)。
结型场效应管的主要特点是具有双极性,它可以有N型和P型两种。
当栅极电压为零或接近零时,N沟道型JFET导通,P沟道型JFET截止;而当栅极电压增加时,N沟道型JFET逐渐截止,P沟道型JFET逐渐导通。
栅极电压与源极电压之间的关系符合一个指数函数。
当栅极电压达到极限值时,沟道完全关闭,导通状态中断。
MOSFET是当前最主要的场效应管。
它的主要特点是电流输入高阻抗、工作频率高、噪音低、可靠性好等。
MOSFET由两个区域组成:N型或P型的半导体基片,以及与之相连的金属-氧化物层(MOS结构)。
MOSFET的栅极控制电压通过氧化层对电子流的屏蔽作用来调节,进而控制通道的导电能力。
栅极电压足够高时,通道会开启,电流通过;而当栅极电压较低,通道会关闭,电流无法通过。
在MOSFET中,根据栅极结构的不同可以分为MOSFET和IGFET (Insulated Gate Field Effect Transistor)两种。
其中,栅极金属-半导体结构的MOSFET被称为MOSFET,而绝缘栅结构的MOSFET则被称为IGFET。
场效应管的工作原理可以总结如下:1.栅极控制:通过改变栅极电压,控制电场分布并调节通道电阻大小。
场效应管的工作原理
场效应管的工作原理场效应管(Field Effect Transistor,简称FET)是一种半导体器件,它具有高输入阻抗、低噪声、低功耗等特点,在电子电路中有着广泛的应用。
它的工作原理主要是通过控制栅极电场来调节源极和漏极之间的电流,从而实现信号放大、开关控制等功能。
本文将从场效应管的结构、工作原理和特点等方面进行介绍。
1. 结构。
场效应管由栅极、源极和漏极组成。
栅极与源极之间的电场可以控制源极和漏极之间的电流,因此栅极相当于晶体管的控制极,而源极和漏极则相当于晶体管的发射极和集电极。
根据不同的结构和工作原理,场效应管可以分为MOSFET(金属-氧化物-半导体场效应管)和JFET(结型场效应管)两种类型。
2. 工作原理。
MOSFET的工作原理是基于金属-氧化物-半导体结构。
当栅极施加正电压时,在栅极和氧化物之间形成一个电场,这个电场会影响半导体中的载流子密度,从而控制源极和漏极之间的电流。
而JFET的工作原理是基于PN结的结型场效应。
当栅极施加正电压时,栅极与源极之间形成一个反型电场,这个电场会影响沟道中的载流子密度,从而控制源极和漏极之间的电流。
3. 特点。
场效应管具有许多优点,如高输入阻抗、低噪声、低功耗、频率响应好等。
由于栅极与源极之间的电场可以控制电流,因此场效应管的输入阻抗非常高,可以减小输入信号源对电路的影响。
同时,场效应管的噪声水平较低,适合用于放大弱信号。
此外,由于场效应管的控制电压较低,因此功耗也较小。
另外,场效应管的频率响应也很好,适合用于高频电路。
4. 应用。
场效应管在电子电路中有着广泛的应用,如放大器、开关、振荡器等。
在放大器中,场效应管可以用作信号放大器、运算放大器等;在开关电路中,场效应管可以用作数字开关、模拟开关等;在振荡器中,场效应管可以用作正弦波振荡器、方波振荡器等。
此外,场效应管还可以用于集成电路、功率放大器、射频电路等领域。
总结。
场效应管是一种重要的半导体器件,它具有高输入阻抗、低噪声、低功耗等特点,在电子电路中有着广泛的应用。
场效应管工作原理与应用
V DS > VGS – VGS(th)
4V 3.5 V
特点:
O
VDS /V
ID 只受 VGS 控制,而与 VDS 近似无关,表现出类似 三极管的正向受控作用。
考虑到沟道长度调制效应,输出特性曲线随 VDS 的增加略有上翘。
注意:饱和区(又称有源区)对应三极管的放大区。
14
数学模型:
工作在饱和区时,MOS 管的正向受控作用,服从 平方律关系式:
因此,非饱和区又称为可变电阻区。
12
数学模型:
VDS 很小 MOS 管工作在非饱区时,ID 与 VDS 之间呈线性关系:
ID
n C O XW
2l
[2(VGS
VGS (th))VDS
VD2S ]
n C O XW
l
(VGS
VGS (th))VDS
其中,W、l 为沟道的宽度和长度。
COX (= / OX) 为单位面积的栅极电容量。
D
P+ N+
N+
P+ N+
N+
P
P
由图
VGD = VGS - VDS
▪ VDS 很小时 → VGD VGS 。此时 W 近似不变,即 Ron 不变。
因此
VDS→ID 线性 。
▪ 若 VDS →则 VGD → 近漏端沟道 → Ron增大。
此时
Ron →ID 变慢。
7
▪ 当 VDS 增加到使 VGD = VGS(th) 时 → A 点出现预夹断
共源组态特性曲线:
IG 0 VG+-S
ID
+
T VDS
-
输出特性: 转移特性:
场效应管的工作原理详解
场效应管的工作原理详解场效应管(Field Effect Transistor,FET)是一种常用的半导体器件,具有广泛的应用领域,如放大器、开关、逆变等。
本文将详细介绍场效应管的工作原理。
一、场效应管的基本结构场效应管由栅极(Gate)、漏极(Drain)和源极(Source)三个部分组成。
其中栅极与源极之间的电压(Vgs)作用于栅极与源极之间的绝缘层,控制电流从漏极到源极的通断状态。
二、N沟道场效应管(N-Channel FET)1. 静态工作原理N沟道场效应管作为一种N型材料构成的器件,其栅极与源极之间的电压(Vgs)为负数时,使得栅极与沟道之间的电场均匀,形成一个浓度较高的N型沟道,使得漏极和源极之间的导通电阻减小。
当Vgs=0时,N沟道场效应管处于截止状态。
2. 动态工作原理当将正向电压(Vds)加到漏极和源极之间时,漏极端的电势较低,而源极端较高。
此时通过漏极和源极之间的电阻小,使得电流从漏极流向源极。
当电压Vds增大时,漏极电势继续下降,导致沟道中的电子浓度减小,电阻增加。
最终,当Vds达到一定值时,沟道中的电阻增大到一定程度,使得电流几乎不再增加,即处于饱和状态。
此时的电流为IDSS,对应的电压为Vp。
三、P沟道场效应管(P-Channel FET)1. 静态工作原理P沟道场效应管作为一种P型材料构成的器件,其栅极与源极之间的电压(Vgs)为正数时,使得栅极与沟道之间的电场均匀,形成一个浓度较高的P型沟道,使得漏极和源极之间的导通电阻减小。
当Vgs=0时,P沟道场效应管处于截止状态。
2. 动态工作原理当将负向电压(Vds)加到漏极和源极之间时,漏极端的电势较高,而源极端较低。
此时通过漏极和源极之间的电阻小,使得电流从源极流向漏极。
当电压Vds增大时,漏极电势继续上升,导致沟道中的空穴浓度减小,电阻增加。
最终,当Vds达到一定值时,沟道中的电阻增大到一定程度,使得电流几乎不再增加,即处于饱和状态。
场效应工作原理
场效应工作原理
场效应是一种基于电场控制电流的效应。
场效应晶体管(Field Effect Transistor,简称FET)利用电场的控制作用来调节电流的特性。
场效应晶体管有三个电极:源极(source)、栅极(gate)和漏极(drain)。
当栅极上加有一定电压时,产生的电场会控制源漏通道中的电荷运动。
栅极电势的变化将影响源漏通道的导电能力,从而控制源漏电流的大小。
在N型场效应管(N-channel FET)中,源极和漏极之间形成一个导电通道,该通道由N型半导体材料构成。
当栅极电势为0时,通道处于截止状态,无法导电。
当栅极电势增加到临界电压以上时,栅极电场能够驱动接近栅极的源极区域的自由电子进入导电通道,形成电流。
增加栅极电势会进一步增加通道内的电子数目,从而增加源漏电流的大小。
类似地,在P型场效应管(P-channel FET)中,源极和漏极之间形成一个由P型半导体材料构成的导电通道。
当栅极电势为0时,通道也处于截止状态。
当栅极电势降低到临界电压以下时,栅极电场能够驱动接近栅极的漏极区域的空穴(带正电荷的缺失电子)进入导电通道,从而导致漏极电流的形成。
因此,场效应晶体管通过控制栅极电势来调节电流的通过,实现对电路的放大、开关等功能。
它具有高输入阻抗、低输出阻抗和大信号增益等特性,在现代电子器件中得到广泛应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
场效应管工作原理(1)场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管。
一般的晶体管是由两种极性的载流子,即多数载流子和反极性的少数载流子参与导电,因此称为双极型晶体管,而FET仅是由多数载流子参与导电,它与双极型相反,也称为单极型晶体管。
它属于电压控制型半导体器件,具有输入电阻高(108~109Ω)、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点,现已成为双极型晶体管和功率晶体管的强大竞争者。
一、场效应管的分类场效应管分结型、绝缘栅型两大类。
结型场效应管(JFET)因有两个PN结而得名,绝缘栅型场效应管(JGFET)则因栅极与其它电极完全绝缘而得名。
目前在绝缘栅型场效应管中,应用最为广泛的是MOS场效应管,简称MOS管(即金属-氧化物-半导体场效应管MOSFET);此外还有PMOS、NMOS和VMOS功率场效应管,以及最近刚问世的πMOS场效应管、VMOS功率模块等。
按沟道半导体材料的不同,结型和绝缘栅型各分沟道和P沟道两种。
若按导电方式来划分,场效应管又可分成耗尽型与增强型。
结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。
场效应晶体管可分为结场效应晶体管和MOS场效应晶体管。
而MOS场效应晶体管又分为N沟耗尽型和增强型;P沟耗尽型和增强型四大类。
见下图。
二、场效应三极管的型号命名方法现行有两种命名方法。
第一种命名方法与双极型三极管相同,第三位字母J 代表结型场效应管,O代表绝缘栅场效应管。
第二位字母代表材料,D是P型硅,反型层是N沟道;C是N型硅P沟道。
例如,3DJ6D是结型N沟道场效应三极管,3DO6C 是绝缘栅型N沟道场效应三极管。
第二种命名方法是CS××#,CS代表场效应管,××以数字代表型号的序号,#用字母代表同一型号中的不同规格。
例如CS14A、CS45G等。
三、场效应管的参数场效应管的参数很多,包括直流参数、交流参数和极限参数,但一般使用时关注以下主要参数:1、I DSS —饱和漏源电流。
是指结型或耗尽型绝缘栅场效应管中,栅极电压U GS=0时的漏源电流。
2、UP —夹断电压。
是指结型或耗尽型绝缘栅场效应管中,使漏源间刚截止时的栅极电压。
3、UT —开启电压。
是指增强型绝缘栅场效管中,使漏源间刚导通时的栅极电压。
4、gM —跨导。
是表示栅源电压U GS —对漏极电流I D的控制能力,即漏极电流I D变化量与栅源电压UGS变化量的比值。
gM 是衡量场效应管放大能力的重要参数。
5、BUDS —漏源击穿电压。
是指栅源电压UGS一定时,场效应管正常工作所能承受的最大漏源电压。
这是一项极限参数,加在场效应管上的工作电压必须小于BUDS。
6、PDSM —最大耗散功率。
也是一项极限参数,是指场效应管性能不变坏时所允许的最大漏源耗散功率。
使用时,场效应管实际功耗应小于PDSM并留有一定余量。
7、IDSM —最大漏源电流。
是一项极限参数,是指场效应管正常工作时,漏源间所允许通过的最大电流。
场效应管的工作电流不应超过IDSM几种常用的场效应三极管的主要参数四、场效应管的作用1、场效应管可应用于放大。
由于场效应管放大器的输入阻抗很高,因此耦合电容可以容量较小,不必使用电解电容器。
2、场效应管很高的输入阻抗非常适合作阻抗变换。
常用于多级放大器的输入级作阻抗变换。
3、场效应管可以用作可变电阻。
4、场效应管可以方便地用作恒流源。
5、场效应管可以用作电子开关。
五、场效应管的测试1、结型场效应管的管脚识别:场效应管的栅极相当于晶体管的基极,源极和漏极分别对应于晶体管的发射极和集电极。
将万用表置于R×1k档,用两表笔分别测量每两个管脚间的正、反向电阻。
当某两个管脚间的正、反向电阻相等,均为数KΩ时,则这两个管脚为漏极D和源极S(可互换),余下的一个管脚即为栅极G。
对于有4个管脚的结型场效应管,另外一极是屏蔽极(使用中接地)。
2、判定栅极用万用表黑表笔碰触管子的一个电极,红表笔分别碰触另外两个电极。
若两次测出的阻值都很小,说明均是正向电阻,该管属于N沟道场效应管,黑表笔接的也是栅极。
制造工艺决定了场效应管的源极和漏极是对称的,可以互换使用,并不影响电路的正常工作,所以不必加以区分。
源极与漏极间的电阻约为几千欧。
注意不能用此法判定绝缘栅型场效应管的栅极。
因为这种管子的输入电阻极高,栅源间的极间电容又很小,测量时只要有少量的电荷,就可在极间电容上形成很高的电压,容易将管子损坏。
3、估测场效应管的放大能力将万用表拨到R×100档,红表笔接源极S,黑表笔接漏极D,相当于给场效应管加上1.5V的电源电压。
这时表针指示出的是D-S极间电阻值。
然后用手指捏栅极G,将人体的感应电压作为输入信号加到栅极上。
由于管子的放大作用,UDS和ID都将发生变化,也相当于D-S极间电阻发生变化,可观察到表针有较大幅度的摆动。
如果手捏栅极时表针摆动很小,说明管子的放大能力较弱;若表针不动,说明管子已经损坏。
由于人体感应的50Hz交流电压较高,而不同的场效应管用电阻档测量时的工作点可能不同,因此用手捏栅极时表针可能向右摆动,也可能向左摆动。
少数的管子RDS减小,使表针向右摆动,多数管子的RDS增大,表针向左摆动。
无论表针的摆动方向如何,只要能有明显地摆动,就说明管子具有放大能力。
本方法也适用于测MOS管。
为了保护MOS场效应管,必须用手握住螺钉旋具绝缘柄,用金属杆去碰栅极,以防止人体感应电荷直接加到栅极上,将管子损坏。
MOS管每次测量完毕,G-S结电容上会充有少量电荷,建立起电压UGS,再接着测时表针可能不动,此时将G-S极间短路一下即可。
目前常用的结型场效应管和MOS型绝缘栅场效应管的管脚顺序如下图所示。
六、常用场效用管1、MOS场效应管即金属-氧化物-半导体型场效应管,英文缩写为MOSFET(Metal-Oxide-Semiconductor Field-Effect-Transistor),属于绝缘栅型。
其主要特点是在金属栅极与沟道之间有一层二氧化硅绝缘层,因此具有很高的输入电阻(最高可达1015Ω)。
它也分N沟道管和P沟道管,符号如图1所示。
通常是将衬底(基板)与源极S接在一起。
根据导电方式的不同,MOSFET又分增强型、耗尽型。
所谓增强型是指:当VGS=0时管子是呈截止状态,加上正确的VGS后,多数载流子被吸引到栅极,从而“增强”了该区域的载流子,形成导电沟道。
耗尽型则是指,当VGS=0时即形成沟道,加上正确的VGS时,能使多数载流子流出沟道,因而“耗尽”了载流子,使管子转向截止。
以N沟道为例,它是在P型硅衬底上制成两个高掺杂浓度的源扩散区N+和漏扩散区N+,再分别引出源极S和漏极D。
源极与衬底在内部连通,二者总保持等电位。
图1(a)符号中的前头方向是从外向电,表示从P型材料(衬底)指身N型沟道。
当漏接电源正极,源极接电源负极并使VGS=0时,沟道电流(即漏极电流)ID=0。
随着VGS逐渐升高,受栅极正电压的吸引,在两个扩散区之间就感应出带负电的少数载流子,形成从漏极到源极的N型沟道,当VGS大于管子的开启电压VTN(一般约为+2V)时,N沟道管开始导通,形成漏极电流ID。
国产N沟道MOSFET的典型产品有3DO1、3DO2、3DO4(以上均为单栅管),4DO1(双栅管)。
它们的管脚排列(底视图)见图2。
MOS场效应管比较“娇气”。
这是由于它的输入电阻很高,而栅-源极间电容又非常小,极易受外界电磁场或静电的感应而带电,而少量电荷就可在极间电容上形成相当高的电压(U=Q/C),将管子损坏。
因此了厂时各管脚都绞合在一起,或装在金属箔内,使G极与S极呈等电位,防止积累静电荷。
管子不用时,全部引线也应短接。
在测量时应格外小心,并采取相应的防静电感措施。
MOS场效应管的检测方法(1).准备工作测量之前,先把人体对地短路后,才能摸触MOSFET的管脚。
最好在手腕上接一条导线与大地连通,使人体与大地保持等电位。
再把管脚分开,然后拆掉导线。
(2).判定电极将万用表拨于R×100档,首先确定栅极。
若某脚与其它脚的电阻都是无穷大,证明此脚就是栅极G。
交换表笔重测量,S-D之间的电阻值应为几百欧至几千欧,其中阻值较小的那一次,黑表笔接的为D极,红表笔接的是S极。
日本生产的3SK系列产品,S极与管壳接通,据此很容易确定S极。
(3).检查放大能力(跨导)将G极悬空,黑表笔接D极,红表笔接S极,然后用手指触摸G极,表针应有较大的偏转。
双栅MOS场效应管有两个栅极G1、G2。
为区分之,可用手分别触摸G1、G2极,其中表针向左侧偏转幅度较大的为G2极。
目前有的MOSFET管在G-S极间增加了保护二极管,平时就不需要把各管脚短路了。
MOS场效应晶体管使用注意事项。
MOS场效应晶体管在使用时应注意分类,不能随意互换。
MOS场效应晶体管由于输入阻抗高(包括MOS集成电路)极易被静电击穿,使用时应注意以下规则:(1). MOS器件出厂时通常装在黑色的导电泡沫塑料袋中,切勿自行随便拿个塑料袋装。
也可用细铜线把各个引脚连接在一起,或用锡纸包装(2).取出的MOS器件不能在塑料板上滑动,应用金属盘来盛放待用器件。
(3). 焊接用的电烙铁必须良好接地。
(4). 在焊接前应把电路板的电源线与地线短接,再MOS器件焊接完成后在分开。
(5). MOS器件各引脚的焊接顺序是漏极、源极、栅极。
拆机时顺序相反。
(6).电路板在装机之前,要用接地的线夹子去碰一下机器的各接线端子,再把电路板接上去。
(7). MOS场效应晶体管的栅极在允许条件下,最好接入保护二极管。
在检修电路时应注意查证原有的保护二极管是否损坏。
2、VMOS场效应管VMOS场效应管(VMOSFET)简称VMOS管或功率场效应管,其全称为V型槽MOS场效应管。
它是继MOSFET之后新发展起来的高效、功率开关器件。
它不仅继承了MOS场效应管输入阻抗高(≥108W)、驱动电流小(左右0.1μA左右),还具有耐压高(最高可耐压1200V)、工作电流大(1.5A~100A)、输出功率高(1~250W)、跨导的线性好、开关速度快等优良特性。
正是由于它将电子管与功率晶体管之优点集于一身,因此在电压放大器(电压放大倍数可达数千倍)、功率放大器、开关电源和逆变器中正获得广泛应用。
众所周知,传统的MOS场效应管的栅极、源极和漏极大大致处于同一水平面的芯片上,其工作电流基本上是沿水平方向流动。
VMOS管则不同,从左下图上可以看出其两大结构特点:第一,金属栅极采用V型槽结构;第二,具有垂直导电性。
由于漏极是从芯片的背面引出,所以ID不是沿芯片水平流动,而是自重掺杂N+区(源极S)出发,经过P沟道流入轻掺杂N-漂移区,最后垂直向下到达漏极D。