各类有机化合物红外吸收
物质的红外吸收峰
第四节各类有机化合物红外吸收光谱σ伸缩振动,δ面内弯曲振动,γ面外弯曲振动一、烷烃饱和烷烃IR光谱主要由C-H键的骨架振动所引起,而其中以C-H键的伸缩振动最为有用。
在确定分子结构时,也常借助于C-H键的变形振动和C-C 键骨架振动吸收。
烷烃有下列四种振动吸收。
1、σC-H在2975—2845 cm-1范围,包括甲基、亚甲基和次甲基的对称与不对称伸缩振动2、δC-H在1460 cm-1和1380 cm-1处有特征吸收,前者归因于甲基及亚甲基C-H的σas,后者归因于甲基C-H的σs。
1380 cm-1峰对结构敏感,对于识别甲基很有用。
共存基团的电负性对1380 cm-1峰位置有影响,相邻基团电负性愈强,愈移向高波数区,例如,在CH3F中此峰移至1475 cm-1。
异丙基1380 cm-1裂分为两个强度几乎相等的两个峰1385 cm-1、1375 cm-1叔丁基1380 cm-1裂分1395 cm-1、1370cm-1两个峰,后者强度差不多是前者的两倍,在1250 cm-1、1200 cm-1附近出现两个中等强度的骨架振动。
3、σC-C在1250—800 cm-1范围内,因特征性不强,用处不大。
4、γC-H分子中具有—(CH2)n—链节,n大于或等于4时,在722 cm-1有一个弱吸收峰,随着CH2个数的减少,吸收峰向高波数方向位移,由此可推断分子链的长短。
二、烯烃烯烃中的特征峰由C=C-H键的伸缩振动以及C=C-H键的变形振动所引起。
烯烃分子主要有三种特征吸收。
1、σC=C-H 烯烃双键上的C-H键伸缩振动波数在3000 cm-1以上,末端双键氢C=CH2在3075—3090 cm-1有强峰最易识别。
2、σC=C 吸收峰的位置在1670—1620 cm-1。
随着取代基的不同,σC=C吸收峰的位置有所不同,强度也发生变化。
3、δC=C-H烯烃双键上的C-H键面内弯曲振动在1500—1000 cm-1,对结构不敏感,用途较少;而面外摇摆振动吸收最有用,在1000—700 cm-1范围内,该振动对结构敏感,其吸收峰特征性明显,强度也较大,易于识别,可借以判断双键取代情况和构型。
各类化合物的红外光谱特征讲解
各类化合物的红外光谱特征讲解红外光谱是一种广泛应用于化学、生物、材料科学等领域的分析技术,通过检测样品吸收或散射的红外辐射来获取样品的结构信息。
不同类型的化合物在红外光谱中表现出不同的特征,下面将分别讲解有机化合物、无机化合物和生物大分子的红外光谱特征。
1.有机化合物有机化合物在红外光谱中显示出多个特征峰,主要包括C-H伸缩振动和C=O伸缩振动。
C-H伸缩振动出现在2800-3000 cm-1的范围内,不同类型的C-H键有不同的峰位,例如烷基的C-H伸缩振动通常在2850-3000 cm-1之间,而芳香族的C-H伸缩振动在3000-3100 cm-1之间。
C=O伸缩振动出现在1650-1800 cm-1的范围内,不同类型的C=O键有不同的峰位,酮和醛的C=O伸缩振动通常在1700-1750 cm-1之间,羧酸的C=O伸缩振动在1700-1725 cm-1之间。
除了C-H伸缩和C=O伸缩振动,有机化合物还表现出其他特征峰。
N-H伸缩振动通常出现在3100-3500 cm-1之间,-O-H伸缩振动通常出现在3200-3600 cm-1之间。
C-C键伸缩振动和C-C键弯曲振动出现在1200-1700 cm-1之间,其峰位和强度可以提供有关分子结构和取代基的信息。
2.无机化合物无机化合物的红外光谱特征主要来自于它们的晶格振动。
晶体振动通常发生在低频区域,比如300-400 cm-1之间的范围。
晶体振动提供了关于化学键的存在和类型的信息,比如金属-氧化物和金属-氮化物的化学键常常表现出特征峰。
此外,一些无机离子的拉曼活动频率也可以通过红外光谱观察到。
3.生物大分子生物大分子包括蛋白质、核酸和糖类等,它们在红外光谱中显示出独特的特征。
蛋白质和核酸的红外光谱特征主要来自于其各种化学键的振动。
蛋白质中的肽键C=O伸缩振动通常在1650-1675 cm-1之间,背景中峰位较强。
糖类的伸缩振动一般在1000-1200 cm-1之间,不同类型的糖类有不同的峰位和强度。
各类有机物的红外特征吸收5-4
续前
(二)酰胺
C O (酰胺) 1680 ~ 1630 cm1(强)
NH (酰胺)3500 ~ 3100 cm (强)
1
注: 共轭 > 诱导 → 波数↓
伯酰胺:双峰
特征区分→ 仲酰胺: 尖锐单峰
叔酰胺:无 NH 峰
NH (酰胺)1640 ~ 1550 cm
1
示例
as s NH 3350, NH 3180 CO 1680 ~ 1630 C C 双 NH 1640 ~ 1550
一、脂肪烃类化合物
(一)烷烃 1. C-H伸缩振动
as CH 3
C H (饱和) 3000 ~ 2850 cm1 (强) s ~ 2960 cm1 (很强) CH 3 ~ 2870 cm1 (很强)
s 1 CH 2 ~ 2850 cm(强)
as 1 CH 2 ~ 2925 cm(强)
醇: 1100~1050 cm-1,强 酯: 1250~1100 cm-1,反对称 1160~1050 cm-1,对称 C—X C—F 1400~1000
酚: 1250~1100 cm-1,强 强
cm-1
C—Br C—I
700~500 cm-1 610~485 cm-1
C—Cl
800~600 cm-1
OH伸缩: NH伸缩: CH伸缩:
3200-3650cm-1 3300-3500cm-1 3000cm-1
饱和C的CH:<3000cm-1 不 饱 和C的CH:>3000cm-1
OH伸缩振动
游离 OH
缔合 OH
3600 (中)
3300 (强,宽)
NH伸缩振动
NH2
红外--各类有机物的红外吸收峰
各类有机化合物红外吸收光谱σ伸缩振动,δ面内弯曲振动,γ面外弯曲振动一、烷烃饱与烷烃IR光谱主要由C-H键得骨架振动所引起,而其中以C—H键得伸缩振动最为有用、在确定分子结构时,也常借助于C-H键得变形振动与C -C键骨架振动吸收。
烷烃有下列四种振动吸收。
1、σC-H在2975—2845cm-1范围,包括甲基、亚甲基与次甲基得对称与不对称伸缩振动2、δC—H在1460 cm—1与1380cm-1处有特征吸收,前者归因于甲基及亚甲基C—H得σas,后者归因于甲基C—H得σs。
1380 cm—1峰对结构敏感,对于识别甲基很有用。
共存基团得电负性对1380cm-1峰位置有影响,相邻F中此峰移至1475cm-1。
基团电负性愈强,愈移向高波数区,例如,在CH3异丙基1380 cm—1裂分为两个强度几乎相等得两个峰1385cm-1、1375 cm—1叔丁基1380 cm—1裂分1395 cm-1、1370cm-1两个峰,后者强度差不多就是前者得两倍,在1250 cm-1、1200 cm—1附近出现两个中等强度得骨架振动。
-1范围内,因特征性不强,用处不大。
3、σC-C在1250—800cm4、γC—H分子中具有—(CH2)n—链节,n大于或等于4时,在722cm-1有一个弱吸收峰,随着CH2个数得减少,吸收峰向高波数方向位移,由此可推断分子链得长短。
二、烯烃烯烃中得特征峰由C=C-H键得伸缩振动以及C=C-H键得变形振动所引起。
烯烃分子主要有三种特征吸收。
1、σC=C-H烯烃双键上得C-H键伸缩振动波数在3000cm-1以上,末端双键氢在3075—3090 cm-1有强峰最易识别。
2、σC=C 吸收峰得位置在1670—1620cm-1。
随着取代基得不同,σC=C吸收峰得位置有所不同,强度也发生变化。
3、δC烯烃双键上得C-H键面内弯曲振动在1500-1000cm—1,对结=C—H构不敏感,用途较少;而面外摇摆振动吸收最有用,在1000—700cm—1范围内,该振动对结构敏感,其吸收峰特征性明显,强度也较大,易于识别,可借以判断双键取代情况与构型。
红外--各类有机物的红外吸收峰
各类有机化合物红外吸收光谱σ伸缩振动,δ面内弯曲振动,γ面外弯曲振动一、烷烃饱和烷烃IR光谱主要由C-H键的骨架振动所引起,而其中以C-H键的伸缩振动最为有用。
在确定分子结构时,也常借助于C-H键的变形振动和C-C 键骨架振动吸收。
烷烃有下列四种振动吸收。
1、σC-H在2975—2845 cm-1范围,包括甲基、亚甲基和次甲基的对称与不对称伸缩振动2、δC-H在1460 cm-1和1380 cm-1处有特征吸收,前者归因于甲基及亚甲基C-H的σas,后者归因于甲基C-H的σs。
1380 cm-1峰对结构敏感,对于识别甲基很有用。
共存基团的电负性对1380 cm-1峰位置有影响,相邻基团电负性愈强,愈移向高波数区,例如,在CH3F中此峰移至1475 cm-1。
异丙基1380 cm-1裂分为两个强度几乎相等的两个峰1385 cm-1、1375 cm-1叔丁基1380 cm-1裂分1395 cm-1、1370cm-1两个峰,后者强度差不多是前者的两倍,在1250 cm-1、1200 cm-1附近出现两个中等强度的骨架振动。
3、σC-C在1250—800 cm-1范围内,因特征性不强,用处不大。
4、γC-H分子中具有—(CH2)n—链节,n大于或等于4时,在722 cm-1有一个弱吸收峰,随着CH2个数的减少,吸收峰向高波数方向位移,由此可推断分子链的长短。
二、烯烃烯烃中的特征峰由C=C-H键的伸缩振动以及C=C-H键的变形振动所引起。
烯烃分子主要有三种特征吸收。
1、σC=C-H 烯烃双键上的C-H键伸缩振动波数在3000 cm-1以上,末端双键氢C=CH2在3075—3090 cm-1有强峰最易识别。
2、σC=C 吸收峰的位置在1670—1620 cm-1。
随着取代基的不同,σC=C吸收峰的位置有所不同,强度也发生变化。
3、δC=C-H烯烃双键上的C-H键面内弯曲振动在1500—1000 cm-1,对结构不敏感,用途较少;而面外摇摆振动吸收最有用,在1000—700 cm-1范围内,该振动对结构敏感,其吸收峰特征性明显,强度也较大,易于识别,可借以判断双键取代情况和构型。
各类有机物的红外特征吸收
汇报人:XX
目录
• 红外光谱基本原理 • 烷烃类有机物红外特征吸收 • 烯烃类有机物红外特征吸收 • 炔烃和芳香烃类有机物红外特征吸收 • 含氧官能团有机物红外特征吸收 • 其他类型有机物红外特征吸收
01
红外光谱基本原理
红外光谱定义及作用
定义
红外光谱(Infrared Spectroscopy, IR)是研究物质在红外光区的吸收和 发射特性的光谱学分支。
实例分析:典型烯烃类有机物红外光谱图
• 以乙烯为例,其红外光谱图在1650cm-1处出现强吸收峰,对 应于C=C伸缩振动;在3020cm-1处出现中等强度吸收峰,对 应于C-H伸缩振动;在1460cm-1处出现弱吸收峰,对应于CC伸缩振动;在965cm-1和870cm-1处出现弱吸收峰,分别 对应于面外弯曲振动。这些特征吸收峰可用于鉴别乙烯及其 他烯烃类有机物。
C-C伸缩振动
位于约1460-1380 cm^-1^和 1100-1000 cm^-1^范围内,表 现为中等强度吸收峰。随着碳链 长度的增加,吸收峰向低波数方 向移动。
C-H弯曲振动
位于约1460-1380 cm^-1^范围 内,表现为弱吸收峰。随着碳链 长度的增加,吸收峰向低波数方 向移动。
实例分析:典型烷烃类有机物红外光谱图
02
烷烃类有机物红外特征吸 收
烷烃类有机物概述
烷烃类有机物定义
烷烃是一类仅由碳和氢两种元素 组成的有机化合物,分子中的碳 原子之间以单键相连,其余价键 均与氢原子结合。
烷烃类有机物种类
根据碳链的长度和形状,烷烃可 分为直链烷烃、支链烷烃和环烷 烃等。
红外特征吸收峰位置及强度
C-H伸缩振动
位于约3000-2800 cm^-1^范围 内,表现为强吸收峰。随着碳链 长度的增加,吸收峰向低波数方 向移动。
各类物质的红外吸收峰
C=CH2 在 3075—3090 cm-1 有强峰最易识别。 2、σC=C 吸收峰的位置在 1670—1620 cm-1。随着取代基的不同,σC=C 吸收 峰的位置振动在 1500—1000 cm-1,对结构不 敏感,用途较少;而面外摇摆振动吸收最有用,在 1000—700 cm-1 范围内,该 振动对结构敏感,其吸收峰特征性明显,强度也较大,易于识别,可借以判
1,4-二取代苯 860~800 cm-1(VS) 五、卤化物
随着卤素原子的增加,σC-X 降低。如 C-F(1100~1000 cm-1);C-C(l 750~700 cm-1);C-Br(600~500 cm-1);C-I(500~200 cm-1)。此外,C-X 吸收峰的频率 容易受到邻近基团的影响,吸收峰位置变化较大,尤其是含氟、含氯的化合 物变化更大,而且用溶液法或液膜法测定时,常出现不同构象引起的几个伸 缩吸收带。因此 IR 光谱对含卤素有机化合物的鉴定受到一定限制。 六、醇和酚 醇和酚类化合物有相同的羟基,其特征吸收是 O-H 和 C-O 键的振动频率。 1、 σO-H 一般在 3670~3200 cm-1 区域。游离羟基吸收出现在 3640~3610 cm-1, 峰形尖锐,无干扰,极易识别(溶剂中微量游离水吸收位于 3710 cm-1)。OH 是个强极性基团,因此羟基化合物的缔合现象非常显著,羟基形成氢键的缔 合峰一般出现在 3550~3200 cm-1。
第四节 各类有机化合物红外吸收光谱
σ伸缩振动,δ面内弯曲振动,γ面外弯曲振动 一、烷烃
各类有机化合物的红外光谱
4. 芳烃
芳烃的特征吸收:(与烯烃类似) 芳烃的特征吸收:(与烯烃类似) :(与烯烃类似
• υ=C-H 3000~3100 cm-1 (芳环C-H伸缩振动) 3000~ 芳环C 伸缩振动) =C- • υC=C =C 1650~ 芳环骨架伸缩振动) 1650~1450 cm-1(芳环骨架伸缩振动) • γ面外=C-H 900~650 cm-1 用于确定芳烃取代类型 900~ 用于确定 确定芳 取代类型 C 芳环取代基性质无关 而与取代个数有关, 取代基性质无关, (与芳环取代基性质无关,而与取代个数有关,取代 基个数越多, 芳环上氢数目越少, 基个数越多,即芳环上氢数目越少,振动频率越 低。) • γ面外=C-H C 2000~ 倍频 2000~1600 cm-1(w) 用于确定芳 用于确定芳烃取代类型
C4H9-O-C4H9 -
丁醚的红外光谱图
1210-1000cm –1是醚键的不对称伸缩振动 υC-O-C 是醚键的不对称伸缩振动 -
7. 胺和铵盐
CH3CH2CH2CH2NH2
丙胺的红外光谱图
CH3CH2CH2NH3+Cl-
丙胺盐的红外光谱图
8.羰基化合物 8.羰基化合物 • 因υC=O 非常特征,羰基化合物易与其他 非常特征, 有机物区分。 有机物区分。 • 不同的羰基化合物的区分主要依据: 不同的羰基化合物的区分主要依据: • υC=O 位置 • 其他辅助信息
3. 炔烃
端基炔烃有两个主要特征吸收峰: 端基炔烃有两个主要特征吸收峰: 一是叁键上不饱和C 伸缩振动υ 约在3300cm 一是叁键上不饱和C-H伸缩振动υ≡C-H约在3300cm-1处产 叁键上不饱和 生一个中强的尖锐峰 二是C 伸缩振动υ 吸收峰在2140 二是C≡C伸缩振动υ≡C-C吸收峰在2140 ~2100cm-1。 位于碳链中间则只有υ 若C≡C位于碳链中间则只有υ≡C-C在2200cm-1左右一个尖 在对称结构中, 峰,强度较弱。如果在对称结构中,则该峰不出现。 强度较弱。如果在对称结构中 则该峰不出现。
各类化合物的红外光谱特征
各类化合物的红外光谱特征红外光谱是一种常用的分析技术,可以用于识别和表征不同化合物的结构和功能团。
不同类型的化合物在红外光谱中显示出特定的吸收峰,这些峰对应于特定的振动模式和化学键。
有机化合物的红外光谱特征:1. 烷烃:烷烃的红外光谱特征主要包括C-H伸缩振动峰和C-H弯曲振动峰。
在3000-2850 cm-1区域,烷烃显示出强的C-H伸缩振动峰。
在1450-1375 cm-1区域,烷烃显示出C-H弯曲振动峰。
2. 卤代烃:卤代烃的红外光谱特征主要包括C-X伸缩振动峰和C-H弯曲振动峰。
在3000-2850 cm-1区域,卤代烃显示出C-H伸缩振动峰。
在700-600 cm-1区域,卤代烃会显示出C-X伸缩振动峰(X表示卤素)。
3. 醇:醇的红外光谱特征主要包括O-H伸缩振动峰和C-O伸缩振动峰。
在3650-3200 cm-1区域,醇显示出非常强的O-H伸缩振动峰。
在1050-1000 cm-1区域,醇会显示出C-O伸缩振动峰。
4. 酸:酸的红外光谱特征主要包括O-H伸缩振动峰和C=O伸缩振动峰。
在3650-3200 cm-1区域,酸显示出非常强的O-H伸缩振动峰。
在1750-1690 cm-1区域,酸会显示出C=O伸缩振动峰。
5. 醛和酮:醛和酮的红外光谱特征主要包括C=O伸缩振动峰和C-H伸缩振动峰。
在1750-1690 cm-1区域,醛和酮会显示出强的C=O伸缩振动峰。
在3000-2850 cm-1区域,醛和酮显示出C-H伸缩振动峰。
6. 酯:酯的红外光谱特征主要是C=O伸缩振动峰和C-O伸缩振动峰。
在1750-1690 cm-1区域,酯显示出强的C=O伸缩振动峰。
在1250-1100 cm-1区域,酯会显示出C-O伸缩振动峰。
7. 醚:醚的红外光谱特征主要是C-O伸缩振动峰。
在1250-1100cm-1区域,醚会显示出C-O伸缩振动峰。
8. 腈:腈的红外光谱特征主要是C≡N伸缩振动峰。
在2250-2100cm-1区域,腈会显示出C≡N伸缩振动峰。
各类有机化合物的红外吸收
一、第一峰区(4000 ~2500 cm-1)
为X-H伸缩振动区,X可以是O、N、 C 或 S 等原子。
1、O--H的伸缩振动
出现在3650 ~3200 cm-1 范围内,它可以 作为判断有无醇类、酚类和有机酸类的重要 依据。
(1)醇和酚 游离态:在3650 ~3590 cm-1 处出现中等强 度吸收带,峰形尖锐。 缔合态:在3350 cm-1 出现一个宽而强的吸 收峰。 (2) 羧酸 缔合态:在3300~2500 cm-1 出现一个宽吸 收峰。
甲苯
四、第四峰区( 1500 ~ 600 cm-1)
为X-C(X≠H)键的伸缩振动及各类 弯曲振动区。 1、C-H弯曲振动 烷烃:
-CH3 as 1450 cm-1(m), s 1380 cm-1(w)
烯烃:
=C-H的面外弯曲振动 对判断双键的取代类型有用 CH面外弯曲振动吸收位置 (cm-1) 990(反),910(顺) 890 730-650 970
1-己炔
正丁腈
三、第三峰区(2000~1500 cm-1)
为双键伸缩振动区和N-H的弯曲振动区。
该区域主要包括三种伸缩振动: 1、C=O伸缩振动 出现在1900~1650 cm-1 ,是红外光谱中特 征的且往往是最强的吸收,以此很容易判断酮 类、醛类、酸类、酯类以及酸酐等有机化合物。
羰基化合物的C=O伸缩振动吸 收峰位置
2、 N-H伸缩振动
胺和酰胺的N-H伸缩振动出现在 3500~3150 cm-1 弱或中等强度的吸收带。 胺类: 伯胺----- 3500,3400 cm-1 仲胺----- 3400 cm-1 酰胺类: 伯酰胺----- 3350,3150 cm-1 仲酰胺----- 3200 cm-1 铵盐:3200~2200 cm-1 强、宽、散吸收带
红外各类有机物的红外吸收峰
各类有机化合物红外吸收光谱σ伸缩振动,δ面内弯曲振动,γ面外弯曲振动一、烷烃饱和烷烃IR光谱主要由C-H键的骨架振动所引起,而其中以C-H键的伸缩振动最为有用;在确定分子结构时,也常借助于C-H键的变形振动和C-C键骨架振动吸收;烷烃有下列四种振动吸收;1、σC-H在2975—2845 cm-1范围,包括甲基、亚甲基和次甲基的对称与不对称伸缩振动2、δC-H在1460 cm-1和1380 cm-1处有特征吸收,前者归因于甲基及亚甲基C-H的σas,后者归因于甲基 C-H的σs;1380 cm-1峰对结构敏感,对于识别甲基很有用;共存基团的电负性对1380 cm-1峰位置有影响,相邻基团电负性愈强,愈移向高波数区,例如,在CH3F中此峰移至1475 cm-1;异丙基 1380 cm-1裂分为两个强度几乎相等的两个峰 1385 cm-1、1375 cm-1叔丁基 1380 cm-1裂分1395 cm-1、1370cm-1两个峰,后者强度差不多是前者的两倍,在1250 cm-1、1200 cm-1附近出现两个中等强度的骨架振动;3、σC-C在1250—800 cm-1范围内,因特征性不强,用处不大;4、γC-H 分子中具有—CH2n—链节,n大于或等于4时,在722 cm-1有一个弱吸收峰,随着CH2个数的减少,吸收峰向高波数方向位移,由此可推断分子链的长短;二、烯烃烯烃中的特征峰由C=C-H键的伸缩振动以及C=C-H键的变形振动所引起;烯烃分子主要有三种特征吸收;1、σC=C-H 烯烃双键上的C-H 键伸缩振动波数在3000 cm -1以上,末端双键氢在3075—3090 cm -1有强峰最易识别;2、σC=C 吸收峰的位置在1670—1620 cm -1;随着取代基的不同,σC=C 吸收峰的位置有所不同,强度也发生变化;3、δC=C-H 烯烃双键上的C-H 键面内弯曲振动在1500—1000 cm -1,对结构不敏感,用途较少;而面外摇摆振动吸收最有用,在1000—700 cm -1范围内,该振动对结构敏感,其吸收峰特征性明显,强度也较大,易于识别,可借以判断双键取代情况和构型; RHC=CH 2 995~985cm -1=CH,S 915~905 cm -1=CH 2,S R 1R 2C=CH 2 895~885 cm -1S顺-R 1CH=CHR 2 ~690 cm -1 反-R 1CH=CHR 2 980~965 cm -1S R 1R 2C=CHR 3 840~790cm -1 m三、炔烃在IR 光谱中,炔烃基团很容易识别,它主要有三种特征吸收;1、σ该振动吸收非常特征,吸收峰位置在3300—3310 cm -1,中等强度;σN-H 值与σC-H值相同,但前者为宽峰、后者为尖峰,易于识别;2、σ一般 键的伸缩振动吸收都较弱;一元取代炔烃 σ 出现在2140—2100 cm -1,二元取代炔烃在2260—2190 cm -1,当两个取代基的性质相差太大时,炔化物极性增强,吸收峰的强度增大;当 处于分子的对称中心时,σ 为红外非活性;C C H C C C C RC CH C C C CC=CH 23、σ炔烃变形振动发生在680—610 cm-1;四、芳烃芳烃的红外吸收主要为苯环上的C-H键及环骨架中的C=C键振动所引起;芳族化合物主要有三种特征吸收;1、σAr-H芳环上C-H吸收频率在3100~3000 cm-1附近,有较弱的三个峰,特征性不强,与烯烃的σC=C-H频率相近,但烯烃的吸收峰只有一个;2、σC=C芳环的骨架伸缩振动正常情况下有四条谱带,约为1600,1585,1500,1450 cm-1,这是鉴定有无苯环的重要标志之一;3、δAr-H 芳烃的C-H变形振动吸收出现在两处;1275—960 cm-1为δAr-H,由于吸收较弱,易受干扰,用处较小;另一处是900—650 cm-1的δAr-H吸收较强,是识别苯环上取代基位置和数目的极重要的特征峰;取代基越多,δAr-H频率越高,见表3-10;若在1600—2000 cm-1之间有锯齿壮倍频吸收C-H面外和C=C面内弯曲振动的倍频或组频吸收,是进一步确定取代苯的重要旁证;苯 670cm-1S 单取代苯 770~730 cm-1VS,710~690 cm-1S1,2-二取代苯 770~735 cm-1VS1,3-二取代苯 810~750 cm-1VS,725~680 cm-1m~S1,4-二取代苯 860~800 cm-1VS五、卤化物随着卤素原子的增加,σC-X 降低;如C-F1100~1000 cm-1;C-Cl750~700 cm-1;CC HC-Br600~500 cm-1;C-I500~200 cm-1;此外,C-X吸收峰的频率容易受到邻近基团的影响,吸收峰位置变化较大,尤其是含氟、含氯的化合物变化更大,而且用溶液法或液膜法测定时,常出现不同构象引起的几个伸缩吸收带;因此IR光谱对含卤素有机化合物的鉴定受到一定限制;六、醇和酚醇和酚类化合物有相同的羟基,其特征吸收是O-H和C-O键的振动频率;1、σO-H一般在3670~3200 cm-1区域;游离羟基吸收出现在3640~3610 cm-1,峰形尖锐,无干扰,极易识别溶剂中微量游离水吸收位于3710 cm-1;OH是个强极性基团,因此羟基化合物的缔合现象非常显着,羟基形成氢键的缔合峰一般出现在3550~3200 cm-1;1,2-环戊二醇顺式异构体 P47L CCl43633 cm-1游离,3572 cm-1分子内氢键;mol/L CCl43633 cm-1游离,3572 cm-1分子内氢键~3500cm-1分子间氢键;2、σC-O 和δO-HC-O键伸缩振动和O-H面内弯曲振动在1410—1100 cm-1处有强吸收,当无其它基团干扰时,可利用σC-O的频率来了解羟基的碳链取代情况伯醇在1050cm-1,仲醇在1125cm-1,叔醇在1200cm-1,酚在1250cm-1;七、醚和其它化合物醚的特征吸收带是C-O-C不对称伸缩振动,出现在1150~1060cm-1处,强度大,C-C骨架振动吸收也出现在此区域,但强度弱,易于识别;醇、酸、酯、内酯的σC-O吸收在此区域,故很难归属;八、醛和酮醛和酮的共同特点是分子结构中都含有C=O,σC=O 在1750~1680cm -1范围内,吸收强度很大,这是鉴别羰基的最明显的依据;临近基团的性质不同,吸收峰的位置也有所不同;羰基化合物存在下列共振结构:A BC=O 键有着双键性 强的A 结构和单键性强的B 结构两种结构;共轭效应将使σC=O 吸收峰向低波数一端移动,吸电子的诱导效应使σC=O 的吸收峰向高波数方向移动;α,β不饱和的羰基化合物,由于不饱和键与C=O 的共轭,因此C=O 键的吸收峰向低波数移动 σC=O 1685~1665cm -1 1745~1725cm -1苯乙酮 对氨基苯乙酮 对硝基苯乙酮 σC=O 1691cm -1 1677cm -1 1700cm -1σ 一般在2700~2900cm -1 区域内,通常在~2820 cm -1、~2720 cm -1附近各有一个中等强度的吸收峰,可以用来区别醛和酮;九、羧酸1、σO-H 游离的O-H 在~3550 cm -1,缔合的O-H 在3300~2500 cm -1,峰形宽而散,强度很大;2、σC=O 游离的C=O 一般在~1760 cm -1附近,吸收强度比酮羰基的吸收强度大,但由于羧酸分子中的双分子缔合,使得C=O 的吸收峰向低波数方向移动,一般在1725~1700 cm -1,如果发生共轭,则C=O 的吸收峰移到1690~1680 cm -1;3、σC-O 一般在1440~1395 cm -1,吸收强度较弱;C OH4、δO-H 一般在1250 cm-1附近,是一强吸收峰,有时会和σC-O重合;十、酯和内酯1、σC=O 1750~1735 cm-1处出现饱和酯σC=O位于1740cm-1处,受相邻基团的影响,吸收峰的位置会发生变化;2、σC-O一般有两个吸收峰,1300~1150 cm-1,1140~1030 cm-1十一、酰卤σC=O由于卤素的吸电子作用,使C=O双键性增强,从而出现在较高波数处,一般在~1800cm-1处,如果有乙烯基或苯环与C=O共轭,,会使σC=O变小,一般在1780~1740cm-1处;十二、酸酐1、σC=O 由于羰基的振动偶合,导致σC=O有两个吸收,分别处在1860~1800 cm-1和1800~1750 cm-1区域,两个峰相距60 cm-1;2、σC-O 为一强吸收峰,开链酸酐的σC-O在1175~1045 cm-1处,环状酸酐1310~1210 cm-1处;十三、酰胺1、σC=O 酰胺的第ⅠⅡⅢ谱带,由于氨基的影响,使得σC=O向低波数位移,伯酰胺1690~1650 cm-1,仲酰胺 1680~1655 cm-1,叔酰胺1670~1630 cm-1;2、σN-H一般位于3500~3100 cm-1,伯酰胺游离位于~3520 cm-1和~3400 cm-1,形成氢键而缔合的位于~3350 cm-1和~3180 cm-1,均呈双峰;仲酰胺游离位于~3440 cm-1,形成氢键而缔合的位于~3100 cm-1,均呈单峰;叔酰胺无此吸收峰;3、δN-H 酰胺的第Ⅱ谱带,伯酰胺δN-H位于1640~1600 cm-1;仲酰胺1500~1530 cm-1,强度大,非常特征;叔酰胺无此吸收峰;4、σC-N酰胺的第Ⅲ谱带,伯酰胺1420~1400 cm-1,仲酰胺 1300~1260 cm-1,叔酰胺无此吸收峰;十四、胺1、σN-H游离位于3500~3300 cm-1处,缔合的位于3500~3100 cm-1处;含有氨基的化合物无论是游离的氨基或缔合的氨基,其峰强都比缔合的OH峰弱,且谱带稍尖锐一些,由于氨基形成的氢键没有羟基的氢键强,因此当氨基缔合时,吸收峰的位置的变化不如OH那样显着,引起向低波数方向位移一般不大于100cm-1;伯胺 3500~3300 cm-1有两个中等强度的吸收峰对称与不对称的伸缩振动吸收,仲胺在此区域只有一个吸收峰,叔胺在此区域内无吸收;2、σC-N脂肪胺位于1230~1030 cm-1处,芳香胺位于1380~1250 cm-1处;3、δN-H 位于1650~1500 cm-1处,伯胺的δN-H吸收强度中等,仲胺的吸收强度较弱;4、γN-H位于900~650 cm-1处,峰形较宽,强度中等只有伯胺有此吸收峰;。
各类化合物的红外光谱特征讲解
各类化合物的红外光谱特征讲解红外光谱是一种重要的分析技术,可以用于确定化合物的结构和化学键的类型。
在红外光谱图中,横坐标表示波数(单位为cm⁻¹),纵坐标表示吸收强度或透射率。
有机化合物:1. 烷烃:烷烃的红外光谱图通常没有明显的峰。
C-H键的拉伸振动一般在3000-2900 cm⁻¹范围内,C-H键的弯曲振动通常在1450 cm⁻¹附近。
2. 烯烃:烯烃的红外光谱图中通常有一个称为"C=C"伸缩振动的特征峰,在1650-1600 cm⁻¹范围内。
C-H键的拉伸振动和弯曲振动与烷烃类似。
3. 芳香烃:芳香烃的红外光谱图中通常有一个称为"C=C"伸缩振动的特征峰,在1600-1475 cm⁻¹范围内。
C-H键的拉伸和弯曲振动在3100-3000 cm⁻¹和1500-1000 cm⁻¹范围内。
4. 醇和酚:醇和酚的红外光谱图中通常有一个称为-OH伸缩振动的特征峰,在3500-3200 cm⁻¹范围内。
C-O键的拉伸振动通常在1300-1000 cm⁻¹范围内。
5. 酮:酮的红外光谱图中通常有一个称为"C=O"伸缩振动的特征峰,在1750-1650 cm⁻¹范围内。
C-C和C-H键的伸缩振动可以在3000-2850cm⁻¹范围内观察到。
6. 醛:醛的红外光谱图中通常有一个称为"C=O"伸缩振动的特征峰,在1750-1650 cm⁻¹范围内。
C-H键的拉伸振动通常在2850-2700 cm⁻¹范围内。
7. 酸:酸的红外光谱图中通常有一个称为-OH伸缩振动的特征峰,在3500-2500 cm⁻¹范围内。
C=O伸缩振动通常在1800-1600 cm⁻¹范围内。
9. 酯:酯的红外光谱图中通常有一个称为C=O伸缩振动的特征峰,在1750-1735 cm⁻¹范围内。
各类有机物的红外特征吸收5-4
• 共轭效应使吸收峰→低波数区
• 双峰原因→费米共振 C(H O)二倍频 C(H O)峰 28c与 5m 0 1
3.酰氯
接 近 分裂成双峰
CO (酰~氯 18c) 0m 01
• 诱导效应使吸收峰→高波数区
示例
C( O 酮1) 715 C( O 醛1) 725 C( O 酰氯 18) 00 CCO 900
as CH 2
2925
s CH3
2870
s CH 2
2850
as CH3
1460
s CH3
1390
CH2 1465
CH2 723
CH3000
CC ~1650
CH 1010 CH2 912
CH 3300 CC ~2200
CH 1238
二、芳香族化合物
1.芳氢伸缩振动 H 31~ 0300c0m ( 1 0 弱 中)
3700-2500cm-1 X-H伸缩振动(X=O、N、C)
OH伸缩:
3200-3650cm-1
NH伸缩:
3300-3500cm-1
CH伸缩:
3000cm-1
饱和C的CH:<3000cm-1
不饱和C的CH:>3000cm-1
OH伸缩振动 游离 OH
缔合 OH
3600 (中)
3300 (强,宽)
NH伸缩振动
(CH2)n当 n≥4时: 在740~720cm-1会产生吸收峰。
ν (二)、烯烃 1. =C-H
3100
δ 3. =C-H (面外)
2. νC= C
1680-1620
990和910两个峰
890
970
1—辛烯的红外光谱图
主要基团的红外特征吸收峰
主要基团的红外特征吸收峰红外光谱是一种常用的分析方法,可用于确定分子中不同基团的存在与否以及它们的结构。
每个基团在红外光谱上都有特征吸收峰,通过分析这些吸收峰的位置和强度,可以确定分子中不同基团的类型和数量。
本文将介绍一些常见主要基团的红外特征吸收峰。
1. 羧基(COOH):羧基是有机化合物中常见的一个基团,其红外吸收峰通常出现在1700-1750 cm-1范围内。
这个吸收峰的强度通常较高,特征明显。
2. 羰基(C=O):羰基是许多有机化合物中都存在的一个重要基团,其红外吸收峰通常出现在1650-1750 cm-1范围内。
酮和醛中的羰基吸收峰位置大致相同,但醛的吸收峰强度通常较高。
3. 羟基(OH):羟基是醇、酚和羧酸等化合物中的一个常见基团,其红外吸收峰通常出现在3200-3600 cm-1范围内。
醇中的羟基吸收峰位置比酚和羧酸中的羟基吸收峰位置更低。
4. 氨基(NH2):氨基是氨和氨基酸等化合物中的一个重要基团,其红外吸收峰通常出现在3300-3500 cm-1范围内。
氨基的吸收峰呈现为两个峰,其中一个位于3200-3400 cm-1范围内,另一个位于1500-1600 cm-1 范围内。
5. 烷基(C-H):烷基是烷烃(如甲烷、乙烷等)中的基团,其红外吸收峰通常出现在2850-3000 cm-1范围内。
饱和烃的烷基呈现为一个宽而强烈的吸收峰,不饱和烃的烷基吸收峰会显示出分裂。
6. 苯环的C-H:苯环的C-H键是芳香化合物中的一个重要基团,其红外吸收峰通常出现在3020-3100 cm-1范围内。
这个吸收峰是一个强而尖锐的峰。
以上所列举的是一些常见的主要基团的红外特征吸收峰,它们在红外光谱分析中起着重要的作用。
当我们测试一个化合物的红外光谱时,可以通过与这些特征吸收峰的对比来确定分子中存在哪些基团,并据此推测化合物的结构。
需要指出的是,红外光谱的解读需要综合考虑各个吸收峰的位置、强度和形状,因此在实际分析中还需进一步结合其他信息进行准确定性的判断。
各类物质的红外吸收峰
九、羧酸
1、σO-H 游离的 O-H 在~3550 cm-1,缔合的 O-H 在 3300~2500 cm-1,峰形宽
而散,强度很大。
2、σC=O 游离的 C=O 一般在~1760 cm-1 附近,吸收强度比酮羰基的吸收强度 大,但由于羧酸分子中的双分子缔合,使得 C=O 的吸收峰向低波数方向移动,
一般在 1725~1700 cm-1,如果发生共轭,则 C=O 的吸收峰移到 1690~1680 cm-1。
3、σC-O 一般在 1440~1395 cm-1,吸收强度较弱。 4、δO-H 一般在 1250 cm-1 附近,是一强吸收峰,有时会和σC-O 重合。
十、酯和内酯
1、σC=O 1750~1735 cm-1 处出现(饱和酯σC=O 位于 1740cm-1 处),受相邻基
在 IR 光谱中,炔烃基团很容易识别,它主要有三种特征吸收。 1、σC C H 该振动吸收非常特征,吸收峰位置在 3300—3310 cm-1,中等强度。 σN-H 值与σC-H 值相同,但前者为宽峰、后者为尖峰,易于识别。 2、σ C C 一般 C C键的伸缩振动吸收都较弱。一元取代炔烃 RC CH σC C 出现在 2140—2100 cm-1,二元取代炔烃在 2260—2190 cm-1,当两个 取代基的性质相差太大时,炔化物极性增强,吸收峰的强度增大。当 处于分子的对称中心时,σC C 为红外非活性。 3、σC C H 炔烃变形振动发生在 680—610 cm-1。 四、芳烃
1,2-环戊二醇 顺式异构体 P47 0.005mol/L (CCl4) 3633 cm-1(游离),3572 cm-1(分子内氢键)。 0.04 mol/L (CCl4) 3633 cm-1(游离),3572 cm-1(分子内氢键)~3500cm-1(分 子间氢键)。 2、σC-O 和δO-H C-O 键伸缩振动和 O-H 面内弯曲振动在 1410—1100 cm-1 处有强吸收,当无其它基团干扰时,可利用σC-O 的频率来了解羟基的碳链取 代情况(伯醇在 1050cm-1,仲醇在 1125cm-1,叔醇在 1200cm-1,酚在 1250cm-1)。 七、醚和其它化合物
红外--各类有机物的红外吸收峰
各类有机化合物红外吸收光谱σ伸缩振动,δ面内弯曲振动,γ面外弯曲振动一、烷烃饱和烷烃IR 光谱主要由C-H 键的骨架振动所引起,而其中以C-H 键的伸缩振动最为有用。
在确定分子结构时,也常借助于C-H 键的变形振动和C-C 键骨架振动吸收。
烷烃有下列四种振动吸收。
1、σC-H 在2975—2845cm -12、δC-H 在1460cm -1和1380cm -1于甲基C-H 的σs 。
1380cm -1峰对结构敏感,1380cm -1-1。
异丙基1380cm -1叔丁基1380cm -1裂分1395cm -1、1370cm -1-1、1200cm -1附近出现两个中等强度的骨架振动。
3、σC-C4、γC-H CH 2 二、烯烃C=C-H 键的变形振动所引起。
烯烃分子主要有1、σC=C-H -1以上,末端双键氢在3075—3090cm -1有强2、σC=C C=C 吸收峰的位置有所不同,强度也发生变化。
3、δC=C-H 烯烃双键上的C-H 键面内弯曲振动在1500—1000cm -1,对结构不敏感,用途较少;而面外摇摆振动吸收最有用,在1000—700cm -1范围内,该振动对结构敏感,其吸收峰特征性明显,强度也较大,易于识别,可借以判断双键取代情况和构型。
RHC=CH 2995~985cm -1(=CH ,S )915~905cm -1(=CH 2,S )R 1R 2C=CH 2895~885cm -1(S )(顺)-R 1CH=CHR 2~690cm -1(反)-R 1CH=CHR 2980~965cm -1(S )C=CH 2R 1R 2C=CHR 3840~790cm -1(m ) 三、炔烃在IR 光谱中,炔烃基团很容易识别,它主要有三种特征吸收。
1、σ该振动吸收非常特征,吸收峰位置在3300—3310cm -1,中等强度。
σN-H 值与σC-H 值相同,但前者为宽峰、后者为尖峰,易于识别。
各类化合物红外光谱特征
各类化合物的红外光谱特征有机化合物的数目非常大,但组成有机化合物的常见元素只有10种左右,组成有机化合物的结构单元即称为基团的原子组合数目约有几十种。
根据上述讨论,基团的振动频率主要取决于组成基团原子质量(即原子种类)和化学键力常数(即化学键的种类)。
一般来说,组成分子的各种基团如C-H、C-N 、C=C、C=O 、C-X等都有特定的红外吸收区域(特征吸收峰),根据特征吸收峰可以推断物质的结构。
所以,有必要对各类有机化合物的光谱特征加以总结。
一、烷烃1. νC-H 3000~2840 C-H伸缩振动频率2. δC-H 1460 和1380 C-H弯曲振动频率3.C-C 1250-800当化合物具有四个以上邻接的CH2基团时,几乎总是在(715-725,通常在720cm-1处)有谱带(CH2以内摇摆),它在鉴别上是有用的。
二、烯烃1. ν=C-H 3010-31002.νC=C1680-16003. δC-H1000-700三、炔烃1. ν≡C-H 3300-3250 峰形较窄,易于OH和NH区别开。
2. δ≡C-H 900-610 宽的谱带3. ν C≡C2140-2100 一元取代炔烃RC≡CH|| 2260-2190 二元取代炔烃四、芳香烃1.νC-H 3080-30102.νC-C 1650-1450 2~4个吸收峰3. 面外弯曲振动(g=C-H ) 900-650五、醇和酚羟基化合物1. νO-H 3700-3500(游离的醇和酚,峰尖、强)|| 3500-3200(缔和的羟基,峰形强而宽)2. δO-H 1500~13003. νC-O 1250~1000六、醚1.脂肪醚1150-10602.芳香醚1270 ~ 1230(为Ar-O 伸缩)1050 ~ 1000 cm-1(为R-O 伸缩)3.乙烯醚:1225-12005、在环氧乙烷类中有三条特征谱带可作为这种基团的存在的标志:1280-1240 环的不对称伸缩振动|| 950-810cm-1 环的对称伸缩振动|| 840-750cm-1七、羰基化合物(包括醛、酮、羧酸、酯、酸酐和酰胺等)1.酮1725-17052.醛1740-1720 2820-2720出现两个强度相等的吸收峰3.羧酸(1)νO-H 3200-2500(液体及固体羧酸)|| 3550(在气相或极稀的非极性溶剂溶液中)(2)nC=O 1730-1700(2)νC-O 1250附近(强峰)(3)δO-H 1400cm-1和920cm-1区域有两个强而宽的吸收峰(4)羧酸盐1580cm-1 和1400cm-1 之间的两个谱带4.酯(1) νC=O1750-1735(2) νC-O-C 1330-10305.酸酐(1)n C=O 在1860-1800cm-1和1800-1750cm-1出现两个强的吸收峰(2) n C-O-C 开链的在1180-1045cm-1,而环状酸酐在1310-1200cm-16.酰胺: 兼有胺和羰基化合物的特点(1)νN-H稀溶液中伯酰胺出现两个中等强度的峰,分别在3500cm-1和3400cm-1附近,浓溶液和固体中由于有氢键发生,将移向3350-3180cm-1低频区仲酰胺在很稀溶液中,在3460-3420cm-1处只出现一个谱带,浓溶液中或固体中缔和体出现在3330cm-1(3)δN-H弯曲振动(酰胺II带)伯酰胺游离态在1600cm-1处,缔合态在1650-1620处,仲酰胺游离态在1550-1510处;缔和体在1570-1515处(4)酰胺还有C-N吸收带(酰胺III带),它们的吸收位置如下:伯酰胺1420-1400cm-1(中);仲酰胺1305-1200cm-1(中)叔酰胺700-620cm-1(中)八、胺和胺盐1.胺:胺有三个特征吸收带即:nNH、δ N-H和nC-N吸收带(1)nNH 3550-3250(2)δ N-H 1650-15402.铵盐伯胺和仲胺的νNH νNH3+ 伯胺盐在3000-2800cm-1之间出现强和宽的吸收带伯胺盐的δNH3+出现在1600-1575cm-1和1550-1504cm-1处两个吸收带仲胺盐的νNH2+ 出现在2700-2250cm-1 区域;δ NH2+ 出现在1620-1560cm-1区域叔胺盐的νNH+ 在2700-2250cm-1 区域出现一个强的宽带或一组较尖的谱带。
红外吸收光谱特征峰点,史上最全
红外吸收光谱特征峰点,史上最全
红外吸收光谱是分析有机物和无机物化学组成的重要手段之一。
其中特征峰点的识别和解析是红外光谱分析的基础。
本文将介绍常
见物质的红外谱图以及显示其特征峰点的位置。
以下为几种有机物
和无机物的特征峰点:
有机物的特征峰点
- 烷基C--H伸缩振动(脂肪族烃):3000~2850 cm^-1
- 烯丙基C--H伸缩振动(卤代烃):3100~3000 cm^-1
- 芳香族C--H伸缩振动:3100~3000 cm^-1、1500~1450 cm^-1
- 烷基C--O拉伸振动(醇、醚):1300~1000 cm^-1
- 腈类分子C---N伸缩振动:2260、2220 cm^-1
无机物的特征峰点
- 含羟基化合物的水分子O--H伸缩振动:3400~3200 cm^-1
- 硫酸盐分子的S--O拉伸振动:1100~1000 cm^-1
- 亚硝酸盐分子的N--O伸缩振动:1550 cm^-1
- 氨基酸盐分子的N--H伸缩振动:3500~3200 cm^-1
- 硫化物离子分子的S--H伸缩振动:2550~2350 cm^-1
在进行红外光谱分析实验前,有必要将待测试物质和标准物质对比,以确定谱图中的特征峰点。
只有正确地识别了特征峰点,才能准确分析样品的组成结构和含量。
总结
本文介绍了常见物质的红外谱图以及显示其特征峰点的位置。
有机物和无机物的特征峰点各不相同,一般通过与标准物质进行比较来确定谱图中的特征峰。
对于分析组成结构和含量非常重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化合物类型
吸收峰位置(cm-1)
醛
1735-1715
酮
1720-1710
酸
1770-1750
酯
1745-1720
酰卤
1800
酸酐
1820和1760
酰卤:1800厘米-1,特征。 金刚烷酰氯
酸酐
有两个羰基伸缩振动偶合产生双峰, 相差60厘米-1,开链酸酐的高波数峰比低 波数峰强,环状酸酐两峰的相对强度正 好相反。
2-戊胺
二己胺
~3310cm-1:弱峰,N—H伸缩振动
三乙胺
吡嗪酰胺(抗结核病药)
3、 C-H伸缩振动
烃类化合物的C-H伸缩振动在3300 ~2700 cm-1。
不饱和烃:3300~3000 cm-1
饱和烃: 3000 ~2700 cm-1
炔烃: 3300 cm-1 (m),谱带尖锐。
烯烃: 3100~3000 cm-1 ,末端= CH2的吸收 出现在3085 cm-1附近。
R1CH=CHR2(反)
970
R1R2C=CHR3
840-800
芳香烃
振动类型
波数(cm-1)
说明Байду номын сангаас
芳环C-H伸缩振 动
骨架振动
C-H弯曲振动 (面外)
3050±50
强度不定
指纹区对于指认结构类似的化合 物很有帮助,而且可以作为化合物存 在某种基团的旁证。
一、第一峰区(4000 ~2500 cm-1)
为X-H伸缩振动区,X可以是O、N、 C 或 S 等原子。
1、O--H的伸缩振动
出现在3650 ~3200 cm-1 范围内,它可以 作为判断有无醇类、酚类和有机酸类的重要 依据。
1、C-H弯曲振动 烷烃:
-CH3 as 1450 cm-1(m), s 1380 cm-1(w)
烯烃:
=C-H的面外弯曲振动 对判断双键的取代类型有用
烯烃类型 R1CH=CH2
CH面外弯曲振动吸收位置 (cm-1)
990(反),910(顺)
R1R2C=CH2
890
R1CH=CHR2(顺)
730-650
为叁键和累积双键的伸缩振动区,谱 带为中等强度吸收或弱吸收。
1、 -CC伸缩振动 炔烃的伸缩振动出现在2280~2100 cm-1。
2、 -CN伸缩振动 腈基化合物中C N 的伸缩振动在
2250~2240 cm-1附近。当与不饱和键或芳 环共轭时,谱带向低波数位移20~30 cm-1。
1-己炔
正丁腈
三、第三峰区(2000~1500 cm-1)
为双键伸缩振动区和N-H的弯曲振动区。
该区域主要包括三种伸缩振动: 1、C=O伸缩振动
出现在1900~1650 cm-1 ,是红外光谱中特 征的且往往是最强的吸收,以此很容易判断酮 类、醛类、酸类、酯类以及酸酐等有机化合物。
羰基化合物的C=O伸缩振动吸 收峰位置
中红外光谱区可分成4000 ~1500cm-1和 1500 ~ 600 cm-1两个区域。
最有分析价值的基团频率在4000 ~ 1500 cm-1 之间,这一区域称为基团频率区、 官能团区或特征区。
区内的峰是由伸缩振动产生的吸收带, 比较稀疏,容易辨认,常用于鉴定官能团。
在1500 ~600 cm-1 区域内,除单键 的伸缩振动外,还有因变形振动产生 的谱带。这种振动与整个分子的结构 有关,称为指纹区。
醛酮
醛氢伸缩振动:2850-2720厘米-1有m或w 吸收,出现1~2条谱带,结合1720厘米-1 吸收,可判断醛基的存在。
正丁醛
~2720cm-1: 醛基C—H伸缩振动,特征;~1730cm-1:—C=O 伸缩振动
苯甲醛
2、 C=C伸缩振动
烯烃的C=C伸缩振动在1680~1610cm-1 , 一般很弱。
第四节 各类有机物的 红外特征吸收
红外光谱的分区
4000-2500cm-1:这是X-H单键的伸缩振动区。 2500-2000cm-1:此处为叁键和累积双键伸缩振动区 2000-1500cm-1:此处为双键伸缩振动区 1500-600cm-1:此区域主要提供C-H弯曲振动的信息
基团频率区和指纹区
3、 芳环骨架振动
芳环的的骨架伸缩振动位于1600 ~1450cm-1范围。于1600,1580,1500和 1450 cm-1附近出现3~4条谱带。常用此范围 的2~3条谱带来判断芳环及杂芳环的存在。
甲苯
四、第四峰区( 1500 ~ 600 cm-1)
为X-C(X≠H)键的伸缩振动及各类 弯曲振动区。
芳烃: 3100~3000 cm-1 多条谱带,比较尖 锐。
1-己炔
醛基: 2850 ~2720 cm-1C-H伸缩振动 1390 cm-1 C-H 弯曲振动 双谱带是醛基的特征吸收谱带。
4、 S-H伸缩振动 巯基: 2600 ~2500 cm-1 S-H伸缩振动, 谱带尖锐。
苯甲醛
二、第二峰区(2500~2000 cm-1 )
三甲基乙酸酐
邻苯二甲酸酐
酯
乙酸甲酯
~1740cm-1:C=O伸缩振动
苯甲酸甲酯
羧酸和羧酸盐
2-甲基丙酸
3300~2500 cm-1:羧酸二聚体的O—H伸缩振动,峰形宽,散;1710 cm-1:C=O伸 缩振动
苯甲酸
3300~2500 cm-1:羧酸二聚体的O—H伸缩振动,峰形宽,散; ~1695 cm-1:C=O伸缩振动。
(1)醇和酚
游离态:在3650 ~3590 cm-1 处出现中等强 度吸收带,峰形尖锐。
缔合态:在3350 cm-1 出现一个宽而强的吸 收峰。
(2) 羧酸
缔合态:在3300~2500 cm-1 出现一个宽吸 收峰。
正丁醇的红外光谱
~3450cm-1:缔合O—H伸缩振动;~1350cm-1:O—H面内弯曲振动
苯酚的红外光谱图
2-甲基丙酸
3300~2500 cm-1:羧酸二聚体的O—H伸缩振动,峰形宽,散;1710 cm-1:C=O 伸缩振动
苯甲酸
3300~2500 cm-1:羧酸二聚体的O—H伸缩振动,峰形宽,散;
2、 N-H伸缩振动
胺和酰胺的N-H伸缩振动出现在 3500~3150 cm-1 弱或中等强度的吸收带。 胺类: 伯胺----- 3500,3400 cm-1 仲胺----- 3400 cm-1 酰胺类: 伯酰胺----- 3350,3150 cm-1 仲酰胺----- 3200 cm-1 铵盐:3200~2200 cm-1 强、宽、散吸收带