悬索桥和斜拉桥的简单构造
单跨式悬索桥斜拉桥
上承式拱桥桥梁 中承式拱桥桥梁
下承式拱桥桥梁
悬索桥:传统的悬索桥(也称吊桥)均用悬挂在两边塔架上的强大缆索作 为主要承重结构。在竖向荷载作用下,通过吊杆使缆索承受很大的拉力, 通常就需要在两岸桥台的后方修筑非常巨大的锚碇结构。悬索桥也是具 有水平反力(拉力)的结构。现代的悬索桥上,广泛采用高强度的钢丝 成股编制的钢缆,以充分发挥其优异的抗拉性能,因此结构自重较轻, 就能以较小的建筑高度跨越其它任何桥型无与伦比的特大跨度。悬索桥 的另一特点是:成卷的钢缆易于运输,结构的组成构件较轻,便于无支 架悬吊拼装。我国在西南山岭地区和在遭受山洪泥石冲击等威胁的山区 河流上,以及对于大跨径桥梁,当修建其他桥梁有困难的情况下,往往 采用吊桥(如润扬大桥)。悬索桥的样式图见下图所示:
竖琴形斜拉桥 放射形 斜拉桥 扇形斜拉桥
日本设计师设计的纸桥
问题提出
为什么看似柔弱 的纸张能承受这 么重的重量? 我们如何来设计 承重的纸结构?
纸张的特性
抗拉性较强
抗压性较弱
理论探究
纸结构的基本形状:
理论探究
纸结构的其他形状:
……
理论探究
纸结构的组合:
单跨式悬索桥
斜拉桥:斜拉桥由斜索、塔柱和主梁所组成。用高强钢材 制成的斜索将主粱多点吊起,并将主梁的恒载和车辆荷载 传至塔柱,再通过塔柱基础传至地基。这样,跨度较大的 主梁就象一根多点弹性支承(吊起)的连续梁一样工作,从 而可使主梁尺寸大大减小,结构自重显著减轻,既节省了 结构材料,又大幅度地增大桥梁的跨越能力。此外,与悬 索桥相比,斜拉桥的结构刚度大,即在荷载作用下的结构 变形小得多,且其抵抗风振的能力也比悬索桥好,这也是 在斜拉桥可能达到大跨度情况下使悬索桥逊色的重要因素。 斜索在立面上也可布置成不同型式。
斜拉桥和悬索桥的总体布置和结构体系
主跨跨径
索 塔 高 度
索面形式(辐射式、竖琴式或扇式) 双塔:H/l2=0.18~0.25
拉索的索距
单塔:H/l2=0.30~0.45
拉索的水平倾角
6
拉索布置
斜拉索横向布置
空间布置形式
单索面
竖直双索面 双索面
倾斜双索面
7
拉索在平面内的布置型式
辐射式 竖琴式 扇式
拉索间距
早期:稀索
混凝土达 15m~30m 钢斜拉桥达 30m~50m
31
1)斜拉桥施工的理论计算
斜拉桥施工的理论计算方法主要有以下几种:1、倒拆法;2)正算法
倒拆法从斜拉桥成桥状态出发(即理想的恒载状态出发)用与实际施工 步骤相反的顺序,进行逐步倒退计算来获得各施工节段的控制参数,根据 这些参数对施工进行控制与调整,并按正装顺序施工。
正算法是按斜拉桥的施工顺序,依次计算出各施工节段架设时的内力和 位移。并依据一定的计算原则,选定相应的计算参数作为未知变量,通过 求解方程得到相应的控制参数。
1)主梁的边跨和主跨比 2) 主梁端部处理 3) 主梁高度沿跨长的变化
混凝土主梁横截面形式
1)实体双主梁截面;2)板式边主梁截面;3)分 离双箱截面;4)整体箱形截面;5)板式梁截面
双索面钢主梁横截面形式
双主梁、单箱单室钢梁、两个单箱单室钢梁、 多室钢梁和钢桁梁
21
3、主梁构造特点(续)
主要尺寸拟定
混凝土斜拉桥的拉索一般为柔性索,高强钢丝外包的索套仅作为保护材 料,不参加索的受力,在索的自重作用下有垂度,垂度对索的受拉性能有影 响,同时索力大小对垂度也有影响。 为了简化计算,在实际计算中索一般采 用一直杆表示,以索的弦长作为杆长。关健 问题是考虑索垂度效应对索的伸长与轴力的 关系影响,这种影响采用修正弹性模量来考 虑。
斜拉桥&悬索桥
第六章悬索桥及斜拉桥第一节悬索桥及斜拉桥的分类及构造一、悬索桥、斜拉桥的分类(一)悬索桥悬索桥也称吊桥,是指利用主缆和吊索作为加劲梁的悬挂体系,将桥跨所承受的荷载传递到桥塔、锚碇的桥梁。
其主要结构由主缆、索塔、锚碇、吊索、加劲梁组成。
悬索桥的类型可根据悬吊跨数、主缆锚固方式及悬吊方式等方面加以划分。
1.按悬吊跨数分类其结构形式如图6-1。
其中单跨悬索桥和三跨悬索桥最为常用。
图6-1 悬吊跨数不同的悬索桥a)单跨悬索桥;b)三跨悬索桥;c)四跨悬索桥;d)五跨悬索桥1)单跨悬索桥2)三跨悬索桥3)多跨悬索桥图6-2 联袂布置的悬索桥2.按主缆的锚固方式分类按主缆的锚固形式划分,可分为地锚式悬索桥和自锚式悬索桥。
3.根据悬吊方式分类1)采用竖直吊索并以钢桁架作加劲梁,如图6-4所示。
2)采用三角布置的斜吊索,并以扁平流线形钢箱梁作加劲梁,如图6-5所示。
3)混合式,即采用竖直吊索和斜吊索,流线形钢箱梁作加劲梁。
如图6-6所示。
图6-4 采用竖直吊索桁式加劲梁悬索桥图6-5 采用斜吊索钢箱加劲梁的悬索桥图6-6 带斜拉索的悬索桥4.按支承结构分类图6-7 按支承构造划分悬索桥形式a)单跨两铰加劲梁;b)三跨两铰加劲梁;c)三跨连续加劲梁(二)斜拉桥斜拉桥的主要组成部分为主梁、索塔及拉索。
1.按索塔布置方式分1)单塔式斜拉桥采用图6-8-b)的单塔式斜拉桥。
2)双塔式斜拉桥桥下净空要求较大时,多采用图6-8 a)所示的双塔式斜拉桥。
图6-8 斜拉桥跨径布置3)多塔式斜拉桥在跨越宽阔水面时,由于桥梁长度大,可采用图6-8c)所示的多塔斜拉桥。
2.按主梁的支承条件分1)连续梁式斜拉桥如图6-9 a)。
2)单悬臂式斜拉桥如图6-9 b)。
3)T形刚架式斜拉桥如图6-9 c)。
图 6-9按主梁支承条件划分斜拉桥形式二、悬索桥、斜拉桥的构造(一)悬索桥上部结构的主要形式和构造特点现代悬索桥通常主要由主缆、主塔、锚碇与加劲梁等四大主体结构以及塔顶主索鞍、锚口散索鞍座或散索箍和悬吊系统等重要附属系统组成。
斜拉桥与悬索桥简介
建成年份 1998 1994 2001 2000 2000 1993 1996 1997 1991 1999 1991 2000 1991 1999 1993 1999 1986 1989 1992 1996
世界第一斜拉桥-多多罗大桥
位于日本Nishi-Seto高速公路上的Tatara桥
法国Normandy桥
斜拉桥
由斜拉索与主梁共同承受荷载,斜拉索的纵桥向水平分力在主梁中 引起较大的轴向力,恒载内力所占比重很大。
悬索桥只有通过调整垂跨比才能改变主缆的恒载内力, 而斜拉桥可直接通过张拉斜拉索就能调整索、梁的恒载内力。
(2)材料方面
◎(大跨度)悬索桥 加劲梁多采用自重较轻的钢材。 ◎斜拉桥 主梁材料可以是钢、混凝土或钢-混凝土结合。
e· 自锚式悬索桥:
~与组合体系中的系杆拱相似, ~悬索水平拉力不传给锚碇而传给加劲 梁。
f·缆索中段同加劲桁架的上弦合为一体。
汕头海湾大桥
广东虎门大桥
厦门海沧大桥(主跨648m)
主 跨 一 三 七 七 米 公 铁 两 用 桥
香 港 青 马 大 桥
江阴长江大桥
润扬长江大桥(主跨1490m)
桥名 南京长江第二大桥 青州闽江大桥 武汉白沙洲大桥 杨浦大桥 徐浦大桥 汕头大桥 荆沙长江公路大桥 鄂黄长江公路大桥 军山长江公路大桥 润阳长江公路大桥 汲水门桥 海口世纪大桥 珠海淇澳大桥 高平大桥(台湾) 广东会马大桥 重庆石门大桥
结构型式 双塔双索面钢箱梁 双塔双索面叠合梁 双塔双索面混合梁 双塔双索面叠合梁 双塔双索面叠合梁 双塔双索面混合梁 双塔双索面PC梁 双塔双索面PC梁 双塔双索面钢箱梁 双塔双索面钢箱梁 双塔双索面钢桁梁 双塔双索面PC梁 双塔单索面PC梁 单塔双索面混合梁 单塔双索面PC梁 单塔单索面Pc梁
《斜拉桥与悬索桥》课件
ห้องสมุดไป่ตู้
《斜拉桥与悬索桥》PPT 课件
本课件将介绍斜拉桥与悬索桥的不同之处,让您深入了解世界上最著名的桥 梁类型之一。
引言
1 什么是斜拉桥
斜拉桥是一种利用倾斜拉 索来支撑主跨径的桥梁。
2 什么是悬索桥
悬索桥是一种利用吊索来 支撑主跨径的桥梁。
3 斜拉桥与悬索桥的区
别
斜拉桥和悬索桥的主要区 别在于它们支撑桥面的方 式不同。
参考文献
• Wai-Fah C hen, Lian D uan. Bridg e Eng ineering H andbook, Second Edition: Fundam entals
• D avid P. Billing to n. The To wer and the Brid g e: The N ew A rt of Structural Eng ineering
斜拉桥适用于大跨度的桥梁,悬索桥适用于中长跨度的桥梁。
结论
1
斜拉桥和悬索桥的发展和趋势
随着科技的进步,斜拉桥和悬索桥的跨度
斜拉桥和悬索桥的重要性
2
越来越长,设计和建造也越来越精细。
斜拉桥和悬索桥是连接城市和地区的重要
桥梁,对经济社会的发展有着至关重要的
作用。
3
斜拉桥和悬索桥的未来前景
未来斜拉桥和悬索桥将不断发展完善,同 时也将面临更大的挑战和变革。
悬索桥的荷载能力强,制作和安 装成本相对较低,但建造和维护 难度较大。
应用场合
悬索桥适用于中长跨度桥梁,如 金门大桥、拉斯维加斯吊桥等。
斜拉桥与悬索桥的比较
相似之处
斜拉桥和悬索桥都可以跨越大跨度的河流、海峡或山谷。
悬索桥斜拉桥sy
2006年9月
6
(1) 双塔三跨式
这是一种最常见的斜拉桥孔跨布置方式,主跨跨径较大,一般可适 用于跨越较大的河流。如图所示,边跨跨径L1与中跨跨径L2之间的比例 关系一般为: 钢斜拉桥: L1=(0.4~0.45) L2 其他斜拉桥: L1=(0.33~0.5) L2 一般接近于L1=0.4 L2
斜拉桥与悬索桥
一 斜拉桥
东北林业大学土木工程学院 2007年9月
1 斜拉桥的力学特点 2 斜拉桥的结构构造与型式 3 斜拉桥的非线性问题和最佳成桥状态的确定
4 存在的问题
5 斜拉桥实例
1 斜拉桥的力学特点
斜拉桥主要由主梁、斜拉索和索塔三大部分组成。主梁以承受压力和 弯矩为主,属于偏心受压构件。斜拉索以受拉为主,为主梁提供弹性支承。 索塔以受压为主,承受索力。 斜拉桥中荷载传递路径是:斜拉索的两端分别锚固在主梁和索塔上, 将主梁的恒载和车辆荷载传递至索塔,再通过索塔传至地基。因而主梁在 斜拉索的各点支承作用下,像多跨弹性支承的连续梁一样,使弯矩值得以 大大的降低,这不但可以使主梁尺寸大大的减小(梁高一般为跨度的 1/50~1/200,甚至更小),而且由于结构自重显著减轻,既节省了结构材 料,又能大幅度的增大了桥梁的跨越能力。值得指出的一点是:斜拉索对 主梁的多点弹性支承作用,只有在拉索始终处于拉紧状态时才能得到充分 发挥。因此,在主梁承受荷载之前对斜拉索要进行预张拉。 下图表示三跨连续梁典型的恒载弯矩图和三跨斜拉桥的恒载弯矩图。 从图中可以看出,由于斜拉索的支承作用,使主梁恒载弯矩显著减小。 ·
斜拉桥和悬索桥施工
第8章 斜拉桥和悬索桥施工
8.5.4 主缆紧缆
悬索桥主缆的施工
第8章 斜拉桥和悬索桥施工
悬索桥主缆的施工
第8章 斜拉桥和悬索桥施工
悬索桥主缆的施工
第8章 斜拉桥和悬索桥施工
8.5.5 索夹、吊索安装和缠丝
悬索桥主缆的施工
第8章 斜拉桥和悬索桥施工
8.6 悬索桥加劲梁的架设
1.架设方法
悬索桥加劲梁的架设
悬索桥主缆的施工
第8章 斜拉桥和悬索桥施工
•门架式牵引系统
悬索桥主缆的施工
第8章 斜拉桥和悬索桥施工
•轨道小车牵引系统
• 架空索道牵引系统
悬索桥主缆的施工
第8章 斜拉桥和悬索桥施工
(2)主缆成形夹及压紧梁
(3)丝股整形
悬索桥主缆的施工
第8章 斜拉桥和悬索桥施工
(4)丝股线形调整
悬索桥主缆的施工
桥塔的施工
鄂黄长江大桥
第8章 斜拉桥和悬索桥施工
桥塔的施工
鹅公岩大桥
第8章 斜拉桥和悬索桥施工
悬索桥锚碇的施工
8.2 悬索桥锚碇的施工 —大体积混凝土
重力式锚总体结构示意图
第8章 斜拉桥和悬索桥施工
海沧大桥锚碇构造
悬索桥锚碇的施工
第8章 斜拉桥和悬索桥施工
鹅 公 岩 大 桥 的 锚 碇
悬索桥锚碇的施工
斜拉桥斜拉索的施工
8.4 斜拉桥斜拉索的施工
基本工序:设置锚固部件、架设斜拉索、张拉斜拉索、 防护•架设斜拉索
斜拉索的基本类型
第8章 斜拉桥和悬索桥施工
张 拉 斜 拉 索
•
斜拉桥斜拉索的施工
第8章 斜拉桥和悬索桥施工
斜拉桥斜传感器测定法、频率振动法
第八章 斜拉桥与悬索桥
(b,c)双面索
图8-16 斜拉索横向布置方式
连续体系和非连续体 系。
图8-17
四川三台涪江桥
图8-18 非连续体系
2)主梁的跨高比 现代密索式斜拉桥主梁的跨高比为100~200。 3)主梁横截面
图8-19 主梁横截面
(4)索塔
图8-20
索塔的纵向布置
图8-21 索塔的横向布置
图8-21 索塔的横向布置
2)斜拉索立面布置方式
(a)辐射形
(b)竖琴形
(c)扇形
(a) 平行钢丝 (b) 钢铰线
图8-14 斜拉索横断面 图8-15 斜拉索立面布置方式
3)斜拉索的横向布置方式
4)斜拉索的倾角 采用竖琴形布置时倾角 取 26 ~ 38实例较多。
(a)单面索
采用辐射形或扇形布 置时,其最小倾角大 多为 21 ~ 30,而以 左右 25居多。 (3)主梁 1)主梁的力学体系
图8-31 桁架式加劲梁
图8-32 虎门大桥的扁平钢箱加劲梁示意图
(5)吊杆
图8-33 吊索与索夹的联接
(6)索鞍
图8-34 塔顶主索鞍
图8-35 散索鞍
图8-36 虎门大桥散索鞍
8.2.2斜拉桥与悬索桥的区别
(1)结构刚度有较大的差别。 (2)斜拉桥中,主梁承受轴力;悬索桥中,主梁 不承受轴力。 (3)斜拉桥通过调整斜拉索的拉力大小对主梁 内力进行调整,借以获得合理的内力分布,悬索桥 则无法办到。 (4)斜拉桥的刚度在很大程度上取决于斜拉索 的刚度,可通过调整,悬索桥刚度则不易改变。
(5)斜拉桥的结构体系 斜拉桥的结构体系有飘浮体系、支承体系、塔梁 固结体系和刚构体系。
图8-22 斜拉桥的结构体系
8.2 悬索桥 8.2.1 结构构造
斜拉桥与悬索桥之比较
斜拉桥与悬索桥之比较斜拉桥与悬索桥作为现代桥梁的主要建筑方式,二者之间又存在着怎样的区别与联系呢?下面我们通过结构力学的方法对其进行受力方面的定性分析,来解决一些现实中的现象。
首先我们来了解一下他们的定义:斜拉桥又称斜张桥,是将主梁用许多拉索直接拉在桥塔上的一种桥梁,是由承压的塔、受拉的索和承弯的梁体组合起来的一种结构体系。
其可看作是拉索代替支墩的多跨弹性支承连续梁。
其可使梁体内弯矩减小,降低建筑高度,减轻了结构重量,节省了材料。
斜拉桥由索塔、主梁、斜拉索组成。
悬索桥,又名吊桥(suspen sionbridge)指的是以通过索塔悬挂并锚固于两岸(或桥两端)的缆索(或钢链)作为上部结构主要承重构件的桥梁。
其缆索几何形状由力的平衡条件决定,一般接近抛物线。
从缆索垂下许多吊杆,把桥面吊住,在桥面和吊杆之间常设置加劲梁,同缆索形成组合体系,以减小活载所引起的挠度变形。
斜拉桥与悬索桥的结构简图如图a,b所示。
下面对一些现实现象进行定性分析。
1.为什么斜拉桥和悬索桥可以比其他桥梁的跨度大很多?通过斜拉桥和悬索桥的结构简图可以看出,斜拉桥和悬索桥都是通过钢索的拉力来代替了桥墩的支持力。
因此可以减少桥墩的数量,实现桥梁的大跨度。
2.为什么悬索桥可以比斜拉桥的跨度更大?通过斜拉桥和悬索桥的结构简图可以看出,斜拉桥的钢索是斜着的,以a图C点进行受力分析,为了在C点提供足够的竖直拉力Fcy随着AC距离的增加,Fc和Fcx将会不断增大,这样会不断增大钢索的拉力和桥面的轴向压力,这也是为什么斜拉桥的钢索大多集中在索塔的上端的原因。
因此AC之间的距离不能太大,即斜拉桥的跨度不能太大。
而通过悬索桥的结构简图可以看出,悬索桥的钢索受力是竖直方向的,随着跨度的增加并不会增加钢索的受力。
悬索桥和斜拉桥的区别
悬索桥和斜拉桥的区别斜拉桥,又称斜张桥,是将桥面用许多拉索直接拉在桥塔上的一种桥梁,是由承压的塔,受拉的索和承弯的梁体组合起来的一种结构体系。
其可看作是拉索代替支墩的多跨弹性支承连续梁。
其可使梁体内弯矩减小,降低建筑高度,减轻了结构重量,节省了材料。
斜拉桥由索塔、主梁、斜拉索组成。
桥的主要承重并非它上面的汽车或者火车,而是它本身,也即我们看的的路面。
现在我们就分析这个:我们以一个索塔来分析。
索塔两侧是对称的斜拉索,通过斜拉索将索塔主梁连接在一起。
现在假设索塔两侧只有两根斜拉索,左右对称各一条,这两根斜拉索受到主梁的重力作用,对索塔产生两个对称的沿着斜拉索方向的拉力,根据受力分析,左边的力可以分解为水平向向左的一个力和竖直向下的一个力;同样的右边的力可以分解为水平向右的一个力和竖直向下的一个力;由于这两个力是对称的,所以水平向左和水平向右的两个力互相抵消了,最终主梁的重力成为对索塔的竖直向下的两个力,这样,力又传给索塔下面的桥墩了。
斜拉索数量再多,道理也是一样的。
之所以要很多条,那是为了分散主梁给斜拉索的力而已。
斜拉桥作为一种拉索体系,比梁式桥的跨越能力更大,是大跨度桥梁的最主要桥型。
斜拉桥是由许多直接连接到塔上的钢缆吊起桥面,斜拉桥由索塔、主梁、斜拉索组成。
索塔型式有A型、倒Y型、H型、独柱,材料有钢和混凝土的。
斜拉索布置有单索面、平行双索面、斜索面等。
第一座现代斜拉桥始建于1955年的瑞典,跨径为182米。
目前世界上建成的最大跨径的斜拉桥为法国的诺曼底桥,主跨径为856米。
1993年建成的上海杨浦大桥是我国目前最大的斜拉桥,主跨径为602米斜拉桥是将梁用若干根斜拉索拉在塔柱上的桥。
它由梁、斜拉索和塔柱三部分组成。
斜拉桥是一种自锚式体系,斜拉索的水平力由梁承受、梁除支承在墩台上外,还支承在由塔柱引出的斜拉索上。
按梁所用的材料不同可分为钢斜拉桥、结合梁斜拉桥和混凝土梁斜拉桥。
斜拉桥是我国大跨径桥梁最流行的桥型之一。
悬索桥和斜拉-悬索协作体系桥的比较
悬索桥和斜拉-悬索协作体系桥的比较悬索桥(suspension bridge)是利用主缆及吊索作为加劲梁的悬挂体系,将荷载作用经桥塔、锚碇传递到地基的桥梁。
悬索桥主要由缆索系统、塔墩、加劲梁及附属结构四大部分组成。
地锚式悬索桥中锚碇、桥塔和主缆是主要的承载结构,吊索与加劲梁则主要起传递直接作用其上的荷载的作用;自锚式悬索桥中锚碇、桥塔、主缆、加劲梁都是主要的承载结构。
斜拉-悬索协作体系桥(cable-stayed-suspension bridge)是在悬索桥上增加斜拉索,或者在斜拉桥上增加主缆,故斜拉-悬索协作体系桥也是主要由缆索系统、桥塔、加劲梁及附属结构四大部分组成。
其中锚碇、桥塔、主缆、斜拉索、主梁是主要的承载结构。
日本明石海峡桥纽约布鲁克林桥一、悬索桥和斜拉-悬索协作体系桥的优缺点悬索桥的优点:(1)受力非常合理:悬索桥的主要受力构件为缆索,缆索主要受拉,次弯矩非常小,应力在截面上分布比较均匀;桥塔以受压为主,弯矩也较小;加劲梁只作为桥面来传递荷载,不是主受力构件,就静力来说,梁高与跨度无关而只与吊索间距有关。
(2)跨越能力大:在大跨度悬索桥中,缆索的恒载拉力远大于活载值,因此一般疲劳的影响较小。
(3)桥型优美;悬索桥加劲梁的梁高比同跨度的梁桥的梁高小得多,所以建筑高度较小,具有优美的曲线,外形比较美观,在城市中采用此种桥式将为城市增加风景点。
如美国旧金山的金门大桥。
(4)抗震能力强:悬索桥是轻而柔的桥梁,刚度较小,在地震作用下,受地震惯性力较小,往往位移大而内力小,消能能力强,因此抗震能力强。
(5)施工方便:悬索桥施工时是先架设好桥塔,然后利用桥塔架设牵引索和施工猫道等,利用猫道来架设主缆,然后再架设加劲梁和桥面系,施工方便;在交通不便的山区,修建悬索桥较为有利;在交通方便的江河湖海和城市外,悬索桥除了开始架设先导索外,不会中断交通。
悬索桥的缺点:(1)荷载作用下变形较大:由于缆索是柔性结构,当活载作用时,会改变几何形状,会引起桥跨结构较大的变形。
悬索桥和斜拉桥分类及构造
设。。
及竖直向分散开的
支撑鞍座,并导引 各索股入锚固部分。
二、悬索桥和斜拉桥的构造
1、悬索桥上部结构的主要形式和构造特点 4)索鞍
主索鞍
散索鞍
二、悬索桥和斜拉桥的构造
1、悬索桥上部结构的主要形式和构造特点
5)加劲梁
加劲梁是提供桥面直接承受荷载的梁体结构。
作用:加劲梁主要起支承和传递荷载的作用。
形式:
1997年 450米
一、悬索桥和斜拉桥的分类
1、悬索桥 (2)悬索桥的结构体系
单跨悬索桥 三跨悬索桥 多跨悬索桥
按悬吊跨数分
一、悬索桥和斜拉桥的分类
1、悬索桥 (2)悬索桥的结构体系
按主缆 锚固方
式分
地锚式悬索桥:主缆通过重力式锚 碇或岩隧式锚碇将荷载产生的拉力 传至大地达到全桥受力平衡。
自锚式悬索桥:主缆在边跨两端将 主缆直接锚固于加劲梁上,主缆的 水平拉力由加劲梁提供轴压力自相 平衡,不需另设置锚碇。
形式:
①按横向结构形式: 刚构式、桁架式、混 合式
二、悬索桥和斜拉桥的构造
1、悬索桥上部结构的主要形式和构造特点 7)索塔
形式: ②按纵向结构形式:刚性塔、柔性塔、摇柱塔
二、悬索桥和斜拉桥的构造
1、悬索桥上部结构的主要形式和构造特点 8)锚碇
基本组成:主缆的锚碇架及固定装置、锚块、锚块基础。 基本分类:重力式锚碇、隧道式锚碇、岩锚。
加劲梁的布置:双铰加劲梁简支体系和连续加劲梁 的连续体系。
双铰加劲梁简支 体系:构造简单 、制造和架设时 的误差对加劲梁 无影响,适用于 中小跨径和大跨 径悬索桥。
连续加劲梁:在 桥塔处内力达到 最大值,适于铁 路悬索桥或公铁 两用悬索桥。
斜拉桥与悬索桥之比较
斜拉桥与悬索桥之比较斜拉桥与悬索桥作为现代桥梁的主要建筑方式,二者之间又存在着怎样的区别与联系呢?下面我们通过结构力学的方法对其进行受力方面的定性分析,来解决一些现实中的现象。
首先我们来了解一下他们的定义:斜拉桥又称斜张桥,是将主梁用许多拉索直接拉在桥塔上的一种桥梁,是由承压的塔、受拉的索和承弯的梁体组合起来的一种结构体系。
其可看作是拉索代替支墩的多跨弹性支承连续梁。
其可使梁体内弯矩减小,降低建筑高度,减轻了结构重量,节省了材料。
斜拉桥由索塔、主梁、斜拉索组成。
悬索桥,又名吊桥(suspension bridge)指的是以通过索塔悬挂并锚固于两岸(或桥两端)的缆索(或钢链)作为上部结构主要承重构件的桥梁。
其缆索几何形状由力的平衡条件决定,一般接近抛物线。
从缆索垂下许多吊杆,把桥面吊住,在桥面和吊杆之间常设置加劲梁,同缆索形成组合体系,以减小活载所引起的挠度变形。
斜拉桥与悬索桥的结构简图如图a,b所示。
下面对一些现实现象进行定性分析。
1.为什么斜拉桥和悬索桥可以比其他桥梁的跨度大很多?通过斜拉桥和悬索桥的结构简图可以看出,斜拉桥和悬索桥都是通过钢索的拉力来代替了桥墩的支持力。
因此可以减少桥墩的数量,实现桥梁的大跨度。
2.为什么悬索桥可以比斜拉桥的跨度更大?通过斜拉桥和悬索桥的结构简图可以看出,斜拉桥的钢索是斜着的,以a图C点进行受力分析,为了在C点提供足够的竖直拉力Fcy随着AC距离的增加,Fc和Fcx将会不断增大,这样会不断增大钢索的拉力和桥面的轴向压力,这也是为什么斜拉桥的钢索大多集中在索塔的上端的原因。
因此AC之间的距离不能太大,即斜拉桥的跨度不能太大。
而通过悬索桥的结构简图可以看出,悬索桥的钢索受力是竖直方向的,随着跨度的增加并不会增加钢索的受力。
因此悬索桥的跨度可以比斜拉桥更大。
3.为什么斜拉桥比悬索桥稳定?由斜拉桥的结构简图可以看出绷紧的钢索与索塔及桥面根据三钢片原则构成了不变体系,而有悬索桥的结构简图不难看出悬索桥的主索、细钢索、索塔及桥面之间构成的是可变体系。
10月斜拉桥与悬索桥的构造设计及结构计算课件
主要尺寸拟定 主梁高度h:h=1/50~1/200, 主梁宽度B:主梁宽与主跨的比值宜大于1/30,与
主梁高的比宜大于8, 主梁各细部尺寸:主要根据轴力来确定, 截面调试。 钢筋布置 普通钢筋的配置 纵向预应力筋:分段布置,一般在主跨跨中和边
跨端部 横向预应力筋
32
一、实体梁式和板式主梁
实体梁式和板式截面的主梁一般仅适用于双索面斜拉桥, 因为这种截面具有构造简单和施工方便的优点,特别 是斜索在实体的边主梁中锚固时,锚固构造非常简单, 而且在索面内具有一定的抗弯刚度,在锚固点处可以 避免产生大的横向力流。
由力学知识可知:在截面相同的情况下,塔的抗水平位移 刚度与塔高的三次方成反比,因而塔高降低则塔身刚度迅 速提高,但塔高降低后拉索的水平倾角也将减小,拉索对 主梁的支撑作用减弱,而水平压力增大,这相当于拉索对 主梁施加了一个较大的体外预应力。矮塔部分斜拉桥由于 拉索不能提供足够的支撑刚度,故要求主梁的刚度较大。
V形凸纹或圆形凹点的非光滑表面。 2、阻尼减振法 作用机理就是通过安装阻尼装置,提高拉索的阻尼比从
而抑制拉索的振动。 3、改变拉索动力特性法 采用联结器(索夹)或辅助索将若干根索相互联结起来,
辅助索可以采用直径比主要索小的多的索,作用机理: 通过联结将长索转换成为相对较短的短索,使拉索的 振动基频提高,从而抑制索的振动。
具有以下特点(1)塔较矮,(2)梁的无索区较长,没有端 锚索,(3)边跨与主跨的比值较大,一般大于0.5,(4) 梁高较大,高跨比为1/30~1/40,甚至做成高度梁,(5) 拉索对竖向恒活载的分担率小于30%,受力以梁为主,索 为辅,(6)由于梁的刚度大,活载作用下斜拉索的应力 变幅较小,可按体外预应力索设计。
25
五、T构体系 T构体系斜拉桥与刚构体系的区别主要是主梁跨
斜拉桥与悬索桥
13.2.3 构造细节 (1) 主缆 悬索桥主缆构成有3种形式:平行钢丝、平行钢丝索股
和钢丝绳。 主缆在温度变化和荷载作用下,有伸长或缩短,要求
主缆在塔顶处有水平移动:在中、小跨径的悬索桥中,采 用刚性桥塔,塔顶设活动的索鞍;采用摆柱式桥塔,主缆 在塔顶固定,塔脚设铰,塔柱以微小的摆动来满足主缆水 平移动的要求;采用柔性桥塔,主缆与塔顶固结(通过主 缆鞍),塔脚亦与墩身(或基础)固结。
标高加上跨中吊杆高度和矢高来确定。 (3)吊杆间距 吊杆间距与加劲梁局部受力、桥面构造和桥面材料用量有
关,应进行经济比较。100m~400m的悬索桥,吊杆间距5m~8m; 跨径增大,吊杆间距也增大,有时可达20m左右。
(4)锚索倾角
悬索桥锚索(边跨主缆)倾角的确定原则是使主缆在中 跨与边跨内的水平拉力相等或接近。锚索的倾角与中跨主缆 在桥塔处的水平倾角应相等或接近锚索倾角常采用30°~ 40°,受地形限制时两角之差宜控制在10°以内。
a) b) c) d)
⑤辅助墩及外边孔 斜拉桥在边孔设置辅助墩,应根据边孔高度、通航要求、 施工安全、全桥刚度以及经济和使用条件等具体情况而定。 在边孔高度不大或不影响通航时,在边孔设置辅助墩,可 改善结构的受力状态,增加施工期的安全。当辅助墩受压 时,减少边孔主梁弯矩,而受拉时则减少中跨主梁的弯矩 和挠度,从而大大提高了全桥刚度。 辅助墩的位置由跨中挠度影响线确定,同时考虑索距及施 工要求。
(4)加劲梁与支座 1)加劲梁构造 悬索桥的加劲梁可做成钢板梁、钢桁梁和钢箱梁以及
混凝土箱、板梁。
2)加劲梁支座
简支加劲梁的支座与一般简支梁相同,即一端设固定 支座,另一端设活动支座;加劲梁是连续梁时,固定支座 通常布置一个在中间桥塔上,这样可使梁体伸缩变形分散 在加劲梁的两端,并使变形缝构造容易处理。
悬索桥及斜拉桥
The Golden Gate Bridge
金门大桥的巨大桥塔高227米,每根钢索重6412公吨,由27000 根钢丝绞成。1933年1月始建,1937年5月首次建成通车。
于1981年建成,主跨为1410米
英国恒比尔大桥
丹麦大海带桥
主跨1624米
日本明石海峡大桥
(主跨1991米 )
汕头海湾大桥
半漂浮体系
半漂浮体系-青州大桥
塔梁固结体系
塔梁固结体系-上海铆港大桥
刚构体系
刚构体系-长沙湘江北大桥
第二节 悬索桥及斜拉桥的受力特点及设计要点
一、悬索桥和斜拉桥的受力特点
二、悬索桥和斜拉桥的设计要点
一、悬索桥和斜拉桥的受力特点
悬索桥的受力特点 悬索桥的活载和恒载通过吊索和索夹传递至主缆,再经 过鞍座传至桥塔顶,经桥塔传递到下部的塔墩和基础。 斜拉桥的受力特点 斜拉桥从塔柱上伸出并悬吊起主梁的高强度钢索起着主 梁弹性支承的作用,从而大大减小梁内弯矩,使梁截面 尺寸减小,减轻了主梁的重量,加大了桥的跨越能力。
பைடு நூலகம்
密索斜拉桥——Tatara
日本,1999年5月1日建成通车,其主跨长达890米, 主梁为P.C.与钢箱梁混合结构
密索斜拉桥-Normandie
法国,1995年建成的主跨为856米
纵桥向造型
横桥向造型
塔、梁、墩的连接形式
• 漂浮体系
• 半漂浮体系 • 塔梁固结体系 • 刚构体系
漂浮体系
漂浮体系-济南黄河桥
大缆以as法(空中送丝法)或ppws法(预制束股法)制 造,美国、英国、法国、丹麦等国均采用as法,中国、日本 采用ppws法。
塔架型式一般采用门式框架,材料用钢和混凝土,美国、 日本、英国采用钢塔较多,中国、法国、丹麦、瑞典采用混 凝土塔。 加劲梁有钢桁架梁和扁平钢箱梁,美国、日本等国用钢 桁架梁较多,中国、英国、法国、丹麦用钢箱梁较多。 锚碇有重力式锚碇和隧道锚碇,采用重力式锚碇居多。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)独塔双跨式
适用:跨越中、小河流、谷地和城市道路或较大 河流的主航道
边跨l1 / 中跨l2=0.5~0.8,一般取0.66左右
(3)单跨式
(1) 地锚式:独塔单跨式
双塔单跨式
(2) 无背索式:
Alamillo Bridge (Spain 1992) 长沙洪山大桥,跨径206m
Marian Bridge (the Czech Republic) span=123.3m,pylon=75m
(3)材料:除日本外,多用混凝土 (4)断面:多为箱形
桁架式 刚构式 混合式
四、主缆
(1)作用:主要承重构件 (2)布置形式:一般为平行的两根,个别4根 (3)材料:高强度平行钢丝束 (4)钢丝束股编织方法: 空中编丝组缆(AS法) 预制平行钢丝束股法(PS法或PWS法)
五、吊索
(1)作用:将加劲梁的恒载和活载传到主缆 (2)布置形式:——等间距,等截面 (3)材料:要求有抗拉强度和一定的柔性一般用
桥梁构造
悬索桥构造
悬桥组成
组成:主缆、加劲梁、吊索、索塔、鞍座、锚碇 (下部)及桥面结构
悬索桥的基本类型
1. 按主缆的锚固形式分类 地锚式:主缆的拉力由桥梁端部的重力式锚碇或
隧道式锚碇传递给地基 自锚式:主缆拉力直接传递给它的加劲梁。
2.三跨按悬孔索桥跨:布结置构形形式式最为分合类理,是大跨度悬索
钢桥面板(当前)
七、锚碇
(1)作用:主缆的锚固体,是支承主缆的重要部 分,将主缆的拉力传给地基
(2)形式: 重力式锚碇(重力锚)隧道式锚碇(岩洞锚)
桥梁构造
斜拉桥构造
斜拉桥
图书推荐
国内外斜拉桥建设现状
斜拉桥世界跨径记录
斜拉桥的组成
传力途径及力学特点
一、孔跨布置
斜拉桥孔跨布置主要可分为双塔三跨式、独塔双 跨式和多塔多跨式等三种形式。
莱茵河上最早的斜拉桥(德)
现代:密索
4~12m(混凝土斜拉桥) 8~24m(钢斜拉桥)
上 海 南 浦 大 桥
4、主梁
(1)力学体系 主梁是以承受压力和弯矩为主的偏心受压构件,
力学体系上可分为:连续体系、非连续体系。 (2)主梁的高跨比 等高度梁,h/l=1/100~1/200 (3)材料 钢材、混凝土、结合梁、混合梁
4
( ) 截 面
主塔——主要承受轴力,同
时受弯矩
(1)纵桥向布置:
(2)横桥向布置
(3)高跨比 双塔:H=(1/4~1/6)L2 单塔:H=(1/3~1/4)L2
(4)材料:除日本外,多采用混凝土材料
防护:使用最广泛的措施是用热挤法在钢丝束上包 一层聚氯乙烯套管(简称PE套管)。
3.斜索布置
空间布置形式
单索面 竖直双索面
双索面 倾斜双索面
之间的差异表现在以多下索几面方面:力学,桥面利用 ,施工养护及美学
斜拉索面布置
索内的其他布置形式
拉索间距 早期:稀索
பைடு நூலகம்
15~30m(混凝土斜拉桥) 30~60m(钢斜拉桥)
桥最为常用的桥型。
单跨悬索桥:边跨地面较高,有曲线进入大桥边 跨的情况。
两跨悬索桥:只有一岸边跨地面较高或线路有平 面曲线进入
三跨悬索桥联袂布置:
罕见的独塔悬索桥——西藏达孜桥
三、桥塔
(1)作用:支承主缆,分担大缆所受的竖向力, 在风力和地震力作用下,对总体稳定提供保证。
(2)形式:横桥向:按桥塔外形分,一般有刚构 式、桁架式和混合式三种结构形式;顺桥向:按 力学性质可分刚性塔、柔性塔和摇柱塔三种结构 形式。
在特殊情况下,斜拉桥也可以布置成独塔单跨式 或者混合式。
1、双塔三跨式
最常用,对称式和非对称式 适用:跨越较大的河流、海口及海面 边跨L1与中跨L2之比:
钢斜拉桥: L1=(0.4~0.45)L2 其它:L1=(0.33~0.5)L2 一般:L1=0.4L2
斜拉桥辅助墩的设置
中间辅助墩:缓和端锚索应力集中或减少边跨 主梁弯矩,增大桥梁总体刚度。
(4)多塔多跨式(≥3塔)( ≥4跨)
改进措施: a、做中间刚性塔 b、拉索加劲中间塔 c、增加主梁梁高 d、矮塔部分斜拉桥 体系
希腊里海安 蒂雷翁桥
2. 材料及组成
分两大类:
(1)整体安装的斜拉索:平行钢丝索( φ5~7mm 高强镀锌钢丝);
(2)分散安装的斜拉索:平行钢铰线索(等截面 的钢绞线)
:钢丝绳、钢绞线、平行钢丝束、刚性吊杆(少 ) (4)与主缆的连接
骑跨式,四股
销铰式(双股)
吊索与索夹的连结方式
六. 加劲梁
(1)作用:提供桥面系并防止桥面发生过大的挠 曲和扭曲变形。
(2)材料:多为钢结构 (3)形式: 钢桁梁(早期多用,美) 扁平钢箱梁(今多用,英) 钢板梁(早期个别中小跨径,今不用) (4)加劲梁桥面构件:钢筋砼桥面板(早期),