利用空间向量证明面面平行垂直
32(二)向量方法证明空间线面垂直关系
学习目标 1.能用向量法判断一些简单线线、线面、面面垂直关系.2.能用向量语言表述直线与直线、直线与平面、平面与平面的垂直关系.3.能用向量方法证明空间线面垂直关系的有关定理.知识点一 向量法判断线线垂直思考 若直线l 1的方向向量为μ1=(1,3,2),直线l 2的方向向量为μ2=(1,-1,1),那么两直线是否垂直?用向量法判断两条直线垂直的一般方法是什么?答案 l 1与l 2垂直,因为μ1·μ2=1-3+2=0,所以μ1⊥μ2,又μ1,μ2是两直线的方向向量,所以l 1与l 2垂直.判断两条直线是否垂直的方法:(1)在两直线上分别取两点A 、B 与C 、D ,计算向量AB →与CD →的坐标,若AB →·CD →=0,则两直线垂直,否则不垂直.(2)判断两直线的方向向量的数量积是否为零,若数量积为零,则两直线垂直,否则不垂直. 梳理 设直线l 的方向向量为a =(a 1,a 2,a 3),直线m 的方向向量为b =(b 1,b 2,b 3),则l ⊥m ⇔a·b =0⇔a 1b 1+a 2b 2+a 3b 3=0. 知识点二 向量法判断线面垂直思考 若直线l 的方向向量为μ1=⎝⎛⎭⎫2,43,1,平面α的法向量为μ2=⎝⎛⎭⎫3,2,32,则直线l 与平面α的位置关系是怎样的?如何用向量法判断直线与平面的位置关系?答案 垂直,因为μ1=23μ2,所以μ1∥μ2,即直线的方向向量与平面的法向量平行,所以直线l 与平面α垂直.判断直线与平面的位置关系的方法:(1)直线l 的方向向量与平面α的法向量共线⇒l ⊥α.(2)直线的方向向量与平面的法向量垂直⇒直线与平面平行或直线在平面内. (3)直线l 的方向向量与平面α内的两相交直线的方向向量垂直⇒l ⊥α.梳理 设直线l 的方向向量a =(a 1,b 1,c 1),平面α的法向量μ=(a 2,b 2,c 2),则l ⊥α⇔a ∥μ⇔a =k μ(k ∈R ).知识点三 向量法判断面面垂直思考 平面α,β的法向量分别为μ1=(x 1,y 1,z 1),μ2=(x 2,y 2,z 2),用向量坐标法表示两平面α,β垂直的关系式是什么? 答案 x 1x 2+y 1y 2+z 1z 2=0.梳理 若平面α的法向量为μ=(a 1,b 1,c 1),平面β的法向量为ν=(a 2,b 2,c 2),则α⊥β⇔μ⊥ν⇔μ·ν=0⇔a 1a 2+b 1b 2+c 1c 2=0.类型一 证明线线垂直例1 已知正三棱柱ABC -A 1B 1C 1的各棱长都为1,M 是底面上BC 边的中点,N 是侧棱CC 1上的点,且CN =14CC 1.求证:AB 1⊥MN .证明 设AB 中点为O ,作OO 1∥AA 1.以O 为坐标原点,OB 为x 轴,OC 为y 轴,OO 1为z 轴建立如图所示的空间直角坐标系.由已知得A ⎝⎛⎭⎫-12,0,0,B ⎝⎛⎭⎫12,0,0,C ⎝⎛⎭⎫0,32,0,N ⎝⎛⎭⎫0,32,14,B 1⎝⎛⎭⎫12,0,1, ∵M 为BC 中点, ∴M ⎝⎛⎭⎫14,34,0.∴MN →=⎝⎛⎭⎫-14,34,14,AB 1→=(1,0,1),∴MN →·AB 1→=-14+0+14=0.∴MN →⊥AB 1→, ∴AB 1⊥MN .反思与感悟 证明两直线垂直的基本步骤:建立空间直角坐标系→写出点的坐标→求直线的方向向量→证明向量垂直→得到两直线垂直.跟踪训练1 如图,在直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4,求证:AC ⊥BC 1.证明 ∵直三棱柱ABC -A 1B 1C 1底面三边长AC =3,BC =4,AB =5, ∴AC 、BC 、C 1C 两两垂直.如图,以C 为坐标原点,CA 、CB 、CC 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系.则C (0,0,0),A (3,0,0),C 1(0,0,4),B (0,4,0), ∵AC →=(-3,0,0),BC 1→=(0,-4,4), ∴AC →·BC 1→=0.∴AC ⊥BC 1. 类型二 证明线面垂直例2 如图所示,正三棱柱ABC -A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .证明 如图所示,取BC 的中点O ,连接AO .因为△ABC 为正三角形,所以AO ⊥BC .因为在正三棱柱ABC -A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1, 所以AO ⊥平面BCC 1B 1.取B 1C 1的中点O 1,以O 为原点,以OB →,OO 1→,OA →分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,则B (1,0,0),D (-1,1,0),A 1(0,2,3),A (0,0,3),B 1(1,2,0). 所以AB 1→=(1,2,-3),BA 1→=(-1,2,3),BD →=(-2,1,0). 因为AB 1→·BA 1→=1×(-1)+2×2+(-3)×3=0. AB 1→·BD →=1×(-2)+2×1+(-3)×0=0.所以AB 1→⊥BA 1→,AB 1→⊥BD →,即AB 1⊥BA 1,AB 1⊥BD . 又因为BA 1∩BD =B ,所以AB 1⊥平面A 1BD . 反思与感悟 用坐标法证明线面垂直的方法及步骤 方法一:(1)建立空间直角坐标系. (2)将直线的方向向量用坐标表示.(3)找出平面内两条相交直线,并用坐标表示它们的方向向量. (4)分别计算两组向量的数量积,得到数量积为0. 方法二:(1)建立空间直角坐标系. (2)将直线的方向向量用坐标表示. (3)求出平面的法向量.(4)判断直线的方向向量与平面的法向量平行.跟踪训练2 如图,在长方体ABCD -A 1B 1C 1D 1中,AB =AD =1,AA 1=2,点P 为DD 1的中点.求证:直线PB 1⊥平面P AC .证明 如图建系,C (1,0,0),A (0,1,0),P (0,0,1),B 1(1,1,2),PC →=(1,0,-1),P A →=(0,1,-1),PB 1→=(1,1,1),B 1C →=(0,-1,-2),B 1A →=(-1,0,-2).PB 1→·PC →=(1,1,1)·(1,0,-1)=0, 所以PB 1→⊥PC →,即PB 1⊥PC .又PB 1→·P A →=(1,1,1)·(0,1,-1)=0, 所以PB 1→⊥P A →,即PB 1⊥P A .又P A ∩PC =P ,所以PB 1⊥平面P AC . 类型三 证明面面垂直例3 在三棱柱ABC -A 1B 1C 1中,AA 1⊥平面ABC ,AB ⊥BC ,AB =BC =2,AA 1=1,E 为BB 1的中点,求证:平面AEC 1⊥平面AA 1C 1C .证明 由题意知直线AB ,BC ,B 1B 两两垂直,以点B 为原点,分别以BA ,BC ,BB 1所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系,则A (2,0,0),A 1(2,0,1),C (0,2,0),C 1(0,2,1),E (0,0,12),故AA 1→=(0,0,1),AC →=(-2,2,0),AC 1→=(-2,2,1),AE →=(-2,0,12).设平面AA 1C 1C 的法向量为n 1=(x ,y ,z ), 则⎩⎪⎨⎪⎧n 1·AA 1→=0,n 1·AC →=0,即⎩⎪⎨⎪⎧z =0,-2x +2y =0.令x =1,得y =1,故n 1=(1,1,0). 设平面AEC 1的法向量为n 2=(a ,b ,c ), 则⎩⎪⎨⎪⎧ n 2·AC 1→=0,n 2·AE →=0,即⎩⎪⎨⎪⎧-2a +2b +c =0,-2a +12c =0. 令c =4,得a =1,b =-1,故n 2=(1,-1,4). 因为n 1·n 2=1×1+1×(-1)+0×4=0, 所以n 1⊥n 2.所以平面AEC 1⊥平面AA 1C 1C . 反思与感悟 证明面面垂直的两种方法(1)常规法:利用面面垂直的判定定理转化为线面垂直、线线垂直去证明.(2)向量法:证明两个平面的法向量互相垂直.跟踪训练3 在四面体ABCD 中,AB ⊥平面BCD ,BC =CD ,∠BCD =90°,∠ADB =30°,E 、F 分别是AC 、AD 的中点,求证:平面BEF ⊥平面ABC .证明 以B 为原点建立如图所示的空间直角坐标系,设A (0,0,a ),则易得B (0,0,0),C ⎝⎛⎭⎫32a ,32a ,0,D (0,3a ,0),E ⎝⎛⎭⎫34a ,34a ,a 2,F (0,32a ,a 2),故AB →=(0,0,-a ),BC →=⎝⎛⎭⎫32a ,32a ,0.设平面ABC 的法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n 1·AB →=0,n 1·BC →=0,即⎩⎪⎨⎪⎧-az 1=0,x 1+y 1=0,取x 1=1,∴n 1=(1,-1,0)为平面ABC 的一个法向量. 设n 2=(x 2,y 2,z 2)为平面BEF 的一个法向量, 同理可得n 2=(1,1,-3).∵n 1·n 2=(1,-1,0)·(1,1,-3)=0, ∴平面BEF ⊥平面ABC .1.下列命题中,正确命题的个数为( )①若n 1,n 2分别是平面α,β的法向量,则n 1∥n 2⇔α∥β; ②若n 1,n 2分别是平面α,β的法向量,则α⊥β ⇔ n 1·n 2=0; ③若n 是平面α的法向量,a 与平面α平行,则n ·a =0; ④若两个平面的法向量不垂直,则这两个平面不垂直. A.1 B.2 C.3 D.4 答案 C解析 ①中平面α,β可能平行,也可能重合,结合平面法向量的概念,易知②③④正确. 2.已知两直线的方向向量为a ,b ,则下列选项中能使两直线垂直的为( ) A.a =(1,0,0),b =(-3,0,0) B.a =(0,1,0),b =(1,0,1) C.a =(0,1,-1),b =(0,-1,1)D.a=(1,0,0),b=(-1,0,0)答案 B解析因为a=(0,1,0),b=(1,0,1),所以a·b=0×1+1×0+0×1=0,所以a⊥b,故选B.3.若直线l的方向向量为a=(1,0,2),平面α的法向量为μ=(-2,0,-4),则()A.l∥αB.l⊥αC.l⊂αD.l与α斜交答案 B解析∵a∥μ,∴l⊥α.4.平面α的一个法向量为m=(1,2,0),平面β的一个法向量为n=(2,-1,0),则平面α与平面β的位置关系是()A.平行B.相交但不垂直C.垂直D.不能确定答案 C解析∵(1,2,0)·(2,-1,0)=0,∴两法向量垂直,从而两平面垂直.5.已知平面α与平面β垂直,若平面α与平面β的法向量分别为μ=(-1,0,5),ν=(t,5,1),则t的值为________.答案 5解析∵平面α与平面β垂直,∴平面α的法向量μ与平面β的法向量ν垂直,∴μ·ν=0,即(-1)×t+0×5+5×1=0,解得t=5.空间垂直关系的解决策略40分钟课时作业一、选择题1.设直线l 1,l 2的方向向量分别为a =(-2,2,1),b =(3,-2,m ),若l 1⊥l 2,则m 等于( ) A.-2 B.2 C.6 D.10 答案 D解析 因为a ⊥b ,故a ·b =0,即-2×3+2×(-2)+m =0,解得m =10.2.若平面α,β的法向量分别为a =(-1,2,4),b =(x ,-1,-2),并且α⊥β,则x 的值为( )A.10B.-10C.12D.-12答案 B解析 因为α⊥β,则它们的法向量也互相垂直, 所以a ·b =(-1,2,4)·(x ,-1,-2)=0, 解得x =-10.3.已知点A (0,1,0),B (-1,0,-1),C (2,1,1),P (x ,0,z ),若P A ⊥平面ABC ,则点P 的坐标为( )A.(1,0,-2)B.(1,0,2)C.(-1,0,2)D.(2,0,-1) 答案 C解析 由题意知AB →=(-1,-1,-1),AC →=(2,0,1),AP →=(x ,-1,z ),又P A ⊥平面ABC ,所以有AB →·AP →=(-1,-1,-1)·(x ,-1,z )=0,得-x +1-z =0, ① AC →·AP →=(2,0,1)·(x ,-1,z )=0,得2x +z =0,②联立①②得x =-1,z =2,故点P 的坐标为(-1,0,2).4.在正方体ABCD -A 1B 1C 1D 1中,若E 为A 1C 1的中点,则直线CE 垂直于( ) A.AC B.BD C.A 1D D.A 1A 答案 B解析 建立如图所示的空间直角坐标系.设正方体的棱长为1,则A (0,1,0),B (1,1,0),C (1,0,0),D (0,0,0),A 1(0,1,1),C 1(1,0,1),E ⎝⎛⎭⎫12,12,1,∴CE →=⎝⎛⎭⎫-12,12,1,AC →=(1,-1,0), BD →=(-1,-1,0),A 1D →=(0,-1,-1),A 1A →=(0,0,-1), ∵CE →·BD →=(-1)×(-12)+(-1)×12+0×1=0,∴CE ⊥BD .5.若平面α,β垂直,则下面可以作为这两个平面的法向量的是( ) A.n 1=(1,2,1),n 2=(-3,1,1) B.n 1=(1,1,2),n 2=(-2,1,1) C.n 1=(1,1,1),n 2=(-1,2,1) D.n 1=(1,2,1),n 2=(0,-2,-2) 答案 A解析 ∵1×(-3)+2×1+1×1=0, ∴n 1·n 2=0,故选A.6.两平面α,β的法向量分别为μ=(3,-1,z ),v =(-2,-y ,1),若α⊥β,则y +z 的值是( )A.-3B.6C.-6D.-12 答案 B解析 α⊥β⇒μ·v =0⇒-6+y +z =0,即y +z =6. 二、填空题7.在三棱锥S -ABC 中,∠SAB =∠SAC =∠ACB =90°,AC =2,BC =13,SB =29,则异面直线SC 与BC 是否垂直________.(填“是”或“否”) 答案 是解析 如图,以A 为原点,AB ,AS 分别为y 轴,z 轴建立空间直角坐标系,则由AC =2,BC =13,SB =29, 得B (0,17,0),S (0,0,23),C ⎝ ⎛⎭⎪⎫21317,417,0, SC →=⎝⎛⎭⎪⎫21317,417,-23,CB →=⎝⎛⎭⎪⎫-21317,1317,0. 因为SC →·CB →=0,所以SC ⊥BC .8.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP →∥BD →.其中正确的是________.(填序号) 答案 ①②③解析 ∵AP →·AB →=(-1,2,-1)·(2,-1,-4)=-1×2+2×(-1)+(-1)×(-4)=0,∴AP ⊥AB ,即①正确;∵AP →·AD →=(-1,2,-1)·(4,2,0)=(-1)×4+2×2+(-1)×0=0,∴AP ⊥AD ,即②正确; 又∵AB ∩AD =A , ∴AP ⊥平面ABCD ,即AP →是平面ABCD 的一个法向量,即③正确; ∵AP →是平面ABCD 的法向量, ∴AP →⊥BD →,即④不正确.9.在空间直角坐标系Oxyz 中,已知点P (2cos x +1,2cos 2x +2,0)和点Q (cos x ,-1,3),其中x ∈[0,π].若直线OP 与直线OQ 垂直,则x 的值为________. 答案 π2或π3解析 由题意得OP →⊥OQ →,∴cos x ·(2cos x +1)-(2cos 2x +2)=0. ∴2cos 2x -cos x =0, ∴cos x =0或cos x =12.又x ∈[0,π], ∴x =π2或x =π3.10.在△ABC 中,A (1,-2,-1),B (0,-3,1),C (2,-2,1).若向量n 与平面ABC 垂直,且|n |=21,则n 的坐标为________________. 答案 (-2,4,1)或(2,-4,-1)解析 据题意,得AB →=(-1,-1,2),AC →=(1,0,2).设n =(x ,y ,z ),∵n 与平面ABC 垂直,∴⎩⎪⎨⎪⎧ n ·AB →=0,n ·AC →=0,即⎩⎪⎨⎪⎧ -x -y +2z =0,x +2z =0,可得⎩⎪⎨⎪⎧y =4z ,y =-2x . ∵|n |=21,∴x 2+y 2+z 2=21,解得y =4或y =-4.当y =4时,x =-2,z =1;当y =-4时,x =2,z =-1.三、解答题11.如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AB =4,BC =3,AD =5,∠DAB =∠ABC =90°,E 是CD 的中点.证明:CD ⊥平面P AE .证明 如图,以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.设P A =h ,则相关各点的坐标为A (0,0,0),B (4,0,0),C (4,3,0),D (0,5,0),E (2,4,0),P (0,0,h ).易知CD →=(-4,2,0),AE →=(2,4,0),AP →=(0,0,h ).因为CD →·AE →=-8+8+0=0,CD →·AP →=0,所以CD ⊥AE ,CD ⊥AP ,而AP ,AE 是平面P AE 内的两条相交直线,所以CD ⊥平面P AE .12.如图,在四棱锥P -ABCD 中,底面ABCD 是矩形,P A ⊥底面ABCD ,P A =AB =1,AD =3,点F 是PB 的中点,点E 在边BC 上移动.求证:无论点E 在BC 边的何处,都有PE ⊥AF .证明 建立如图所示空间直角坐标系,则P (0,0,1),B (0,1,0),F ⎝⎛⎭⎫0,12,12,D ()3,0,0,设BE =x (0≤x ≤3),则E (x ,1,0),PE →·AF →=(x ,1,-1)·⎝⎛⎭⎫0,12,12=0, 所以x ∈[0, 3 ]时都有PE ⊥AF ,即无论点E 在BC 边的何处,都有PE ⊥AF .13.已知正方体ABCDA 1B 1C 1D 1中,E 为棱CC 1上的动点.(1)求证:A 1E ⊥BD ;(2)若平面A 1BD ⊥平面EBD ,试确定E 点的位置.(1)证明 以D 为坐标原点,以DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.设正方体棱长为a ,则 A (a ,0,0),B (a ,a ,0),C (0,a ,0),A 1(a ,0,a ),C 1(0,a ,a ).设E (0,a ,e ) (0≤e ≤a ),A 1E →=(-a ,a ,e -a ),BD →=(-a ,-a ,0),A 1E →·BD →=a 2-a 2+(e -a )·0=0,∴A 1E →⊥BD →,即A 1E ⊥BD .(2)解 设平面A 1BD ,平面EBD 的法向量分别为n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2). ∵DB →=(a ,a ,0),DA 1→=(a ,0,a ),DE →=(0,a ,e ),∴⎩⎪⎨⎪⎧ ax 1+ay 1=0,ax 1+az 1=0,⎩⎪⎨⎪⎧ ax 2+ay 2=0,ay 2+ez 2=0. 取x 1=x 2=1,得n 1=(1,-1,-1),n 2=(1,-1,a e), 由平面A 1BD ⊥平面EBD 得n 1⊥n 2,∴2-a e =0,即e =a 2. ∴当E 为CC 1的中点时,平面A 1BD ⊥平面EBD .。
利用空间向量证明空间位置关系
利用空间向量证明立体几何中的平行与垂直问题[考纲要求]1.了解空间直角坐标系,会用空间直角坐标表示点的位置.会简单应用空间两点间的距离公式.2.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.3.掌握空间向量的线性运算及其坐标表示.掌握空间向量的数量积及其坐标表示.能用向量的数量积判断向量的共线和垂直.4.理解直线的方向向量及平面的法向量.能用向量语言表述线线、线面、面面的平行和垂直关系.5.能用向量方法证明立体几何中有关线面位置关系的一些简单定理(包括三垂线定理).知识点一:空间向量及其运算1.空间向量及其有关概念(1)空间向量的有关概念(2)2.(1)非零向量a,b的数量积a·b=|a||b|cos〈a,b〉.(2)空间向量数量积的运算律①结合律:(λa)·b=λ(a·b);②交换律:a·b=b·a;③分配律:a·(b+c)=a·b+a·c.3.空间向量的运算及其坐标表示设a=(a1,a2,a3),b=(b1,b2,b3).[基本能力]1.如图,已知空间四边形ABCD ,则13AB ―→+13BC ―→+13CD ―→等于________.答案:13AD ―→2.已知i ,j ,k 为标准正交基底,a =i +2j +3k ,则a 在i 方向上的投影为________. 答案:13.若空间三点A (1,5,-2),B (2,4,1),C (p,3,q +2)共线,则p =________,q =________. 答案:3 24.已知向量a =(-1,0,1),b =(1,2,3),k ∈R ,若k a -b 与b 垂直,则k =________. 答案:7考法一 空间向量的线性运算[例1] 已知四边形ABCD 为正方形,P 是ABCD 所在平面外一点,P 在平面ABCD 上的射影恰好是正方形的中心O .Q 是CD 的中点,求下列各题中x ,y 的值: (1)O Q ―→=P Q ―→+x PC ―→+y PA ―→; (2)PA ―→=x PO ―→+y P Q ―→+PD ―→.[解] (1)如图,∵O Q ―→=P Q ―→-PO ―→=P Q ―→-12(PA ―→+PC ―→)=P Q ―→-12PA ―→-12PC ―→,∴x =y =-12.(2)∵PA ―→+PC ―→=2PO ―→, ∴PA ―→=2PO ―→-PC ―→.又∵PC ―→+PD ―→=2P Q ―→,∴PC ―→=2P Q ―→-PD ―→.从而有PA ―→=2PO ―→-(2P Q ―→-PD ―→)=2PO ―→-2P Q ―→+PD ―→. ∴x =2,y =-2.考法二 共线、共面向量定理的应用[例2] 已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点,用向量方法求证:(1)E ,F ,G ,H 四点共面; (2)BD ∥平面EFGH .[证明] (1)如图,连接BG ,则EG ―→=EB ―→+BG ―→=EB ―→+12(BC ―→+BD ―→)=EB ―→+BF ―→+EH ―→=EF ―→+EH ―→,由共面向量定理知:E ,F ,G ,H 四点共面.(2)因为EH ―→=AH ―→-AE ―→=12AD ―→-12AB ―→=12(AD ―→-AB ―→)=12BD ―→,因为E ,H ,B ,D 四点不共线,所以EH ∥BD . 又EH ⊂平面EFGH ,BD ⊄平面EFGH , 所以BD ∥平面EFGH . [方法技巧]1.证明空间三点P ,A ,B 共线的方法 (1)PA ―→=λPB ―→(λ∈R );(2)对空间任一点O ,OP ―→=OA ―→+t AB ―→(t ∈R ); (3)对空间任一点O ,OP ―→=x OA ―→+y OB ―→(x +y =1). 2.证明空间四点P ,M ,A ,B 共面的方法 (1)MP ―→=xMA ―→+yMB ―→;(2)对空间任一点O ,OP ―→=OM ―→+xMA ―→+yMB ―→;(3)对空间任一点O ,OP ―→=xOM ―→+y OA ―→+z OB ―→(x +y +z =1); (4)PM ―→∥AB ―→ (或PA ―→∥MB ―→或PB ―→∥AM ―→).考法三 空间向量数量积的应用[例3] 如图,正方体ABCD -A1B 1C 1D 1中,E ,F 分别是C 1D 1,D 1D 的中点.若正方体的棱长为1.求cos 〈CE ―→,AF ―→〉. [解] ∵|CE ―→|=C 1E 2+CC 21=14+1=52=|AF ―→|, ∴CE ―→·AF ―→=|CE ―→||AF ―→|cos 〈CE ―→,AF ―→〉=54cos 〈CE ―→,AF ―→〉.又∵CE ―→=CC 1―→+C 1E ―→,AF ―→=AD ―→+DF ―→, ∴CE ―→·AF ―→=(CC 1―→+C 1E ―→)·(AD ―→+DF ―→)=CC 1―→·AD ―→+C 1E ―→·AD ―→+CC 1―→·DF ―→+C 1E ―→·DF ―→=|CC 1―→||DF ―→|=1×12=12.∴cos 〈CE ―→,AF ―→〉=25.[方法技巧] 空间向量数量积的3个应用[集训冲关]OA ―→=a ,OB ―→=b ,1.[考法一]已知三棱锥O -ABC ,点M ,N 分别为AB ,OC 的中点,且OC ―→=c ,用a ,b ,c 表示MN ―→,则MN ―→等于( ) A.12(b +c -a ) B.12(a +b +c ) C.12(a -b +c ) D.12(c -a -b ) 解析:选D MN ―→=MA ―→+AO ―→+ON ―→=12BA ―→+AO ―→+12OC ―→=12(OA ―→-OB ―→)+AO ―→+12OC ―→=-12OA ―→-12OB ―→+12OC ―→=12(c -a -b ).2.[考法二]O 为空间任意一点,若OP ―→=34OA ―→+18OB ―→+18OC ―→,则A ,B ,C ,P 四点( )A .一定不共面B .一定共面C .不一定共面D .无法判断解析:选B 因为OP ―→=34OA ―→+18OB ―→+18OC ―→,且34+18+18=1.所以P ,A ,B ,C 四点共面.∠AOC =π3,3.[考法三]如图所示,已知空间四边形OABC ,OB =OC ,且∠AOB =则cos 〈OA ―→,BC ―→〉的值为________. 解析:设OA ―→=a ,OB ―→=b ,OC ―→=c , 由已知条件,得〈a ,b 〉=〈a ,c 〉=π3,且|b |=|c |,OA ―→·BC ―→=a ·(c -b )=a ·c -a ·b =12|a ||c |-12|a ||b |=0, ∴OA ―→⊥BC ―→,∴cos 〈OA ―→,BC ―→〉=0. 答案:0知识点二: 利用空间向量证明平行与垂直1.两个重要向量2.空间中平行、垂直关系的向量表示设直线l ,m 的方向向量分别为a ,b ,平面α,β的法向量分别为n 1,n 2,则一、判断题(对的打“√”,错的打“×”) (1)直线的方向向量是唯一确定的.( )(2)已知AB ―→=(2,2,1),AC ―→=(4,5,3),则平面ABC 的单位法向量是n 0=±⎝⎛⎭⎫13,-23,23.( ) (3)两条不重合的直线l 1和l 2的方向向量分别为v 1=(1,0,-1),v 2=(-2,0,2),则l 1与l 2的位置关系是平行.( ) (4)若n 1,n 2分别是平面α,β的法向量,则n 1∥n 2⇔α∥β.( ) 答案:(1)× (2)√ (3)√ (4)× 二、填空题1.已知直线l 1的一个方向向量为(-7,3,4),直线l 2的一个方向向量为(x ,y,8),且l 1∥l 2,则x =________, y =________. 答案:-14 62.若平面α的一个法向量为n 1=(-3,y,2),平面β的一个法向量为n 2=(6,-2,z ),且α∥β,则y +z =________. 答案:-33.若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-3,0,-6),则l 与α的位置关系是________. 答案:l ⊥α考法一 向量法证明平行与垂直关系[例1] 如图,在四棱锥P -ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC ,E 是PC 的中点,作EF ⊥PB 于点F . (1)证明:PA ∥平面EDB ; (2)证明:PB ⊥平面EFD .证明:如图所示,建立空间直角坐标系,D 是坐标原点, 设DC =a .(1)连接AC 交BD 于G ,连接EG .依题意得A (a,0,0),P (0,0,a ),E ⎝⎛⎭⎫0,a 2,a2.∵底面ABCD 是正方形, ∴G 是此正方形的中心. 故点G 的坐标为⎝⎛⎭⎫a 2,a 2,0,且PA ―→=(a,0,-a ),EG ―→=⎝⎛⎭⎫a2,0,-a 2, ∴PA ―→=2EG ―→,∴PA ∥EG .又∵EG ⊂平面EDB 且PA ⊄平面EDB , ∴PA ∥平面EDB .(2)依题意得B (a ,a,0),PB ―→=(a ,a ,-a ),DE ―→=⎝⎛⎭⎫0,a 2,a 2, 故PB ―→·DE ―→=0+a 22-a 22=0,∴PB ⊥DE ,又∵EF ⊥PB ,且EF ∩DE =E , ∴PB ⊥平面EFD . [方法技巧]1.利用空间向量证明平行的方法2.[提醒]来证明线面平行时,仍需强调直线在平面外. [针对训练]已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F 分别是BB 1,DD 1的中点,求证: (1)FC 1∥平面ADE ; (2)平面ADE ∥平面B 1C 1F . 证明:建立空间直角坐标系如图,则有D (0,0,0),A (2,0,0),C (0,2,0),C 1(0,2,2),E (2,2,1),F (0,0,1),B 1(2,2,2),所以FC 1―→=(0,2,1),DA ―→=(2,0,0),AE ―→=(0,2,1). (1)设n 1=(x 1,y 1,z 1)是平面ADE 的法向量,则⎩⎪⎨⎪⎧ n 1⊥DA ―→,n 1⊥AE ―→,即⎩⎪⎨⎪⎧n 1·DA ―→=2x 1=0,n 1·AE ―→=2y 1+z 1=0,得⎩⎪⎨⎪⎧x 1=0,z 1=-2y 1,令z 1=2,则y 1=-1,所以n 1=(0,-1,2). 因为FC 1―→·n 1=-2+2=0,所以FC 1―→⊥n , 又因为FC 1⊄平面ADE ,所以FC 1∥平面ADE . (2)∵C 1B 1―→=(2,0,0),设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的一个法向量,由⎩⎪⎨⎪⎧ n 2⊥FC 1―→,n 2⊥C 1B 1―→,得⎩⎪⎨⎪⎧n 2·FC 1―→=2y 2+z 2=0,n 2·C 1B 1―→=2x 2=0,得⎩⎪⎨⎪⎧x 2=0,z 2=-2y 2.令z 2=2,得y 2=-1,所以n 2=(0,-1,2),因为n 1=n 2, 所以平面ADE ∥平面B 1C 1F .考法二 向量法解决垂直、平行关系中的探索性问题[例2] 如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 是棱DD 1的中点.在棱C 1D 1上是否存在一点F ,使B 1F ∥平面A 1BE ?证明你的结论. [解] 依题意,建立如图所示的空间直角坐标系, 设正方体ABCD -A 1B 1C 1D 1的棱长为1,则A 1(0,0,1),B (1,0,0),B 1(1,0,1),E ⎝⎛⎭⎫0,1,12,BA 1―→=(-1,0,1),BE ―→=⎝⎛⎭⎫-1,1,12. 设n =(x ,y ,z )是平面A 1BE 的一个法向量, 则由⎩⎪⎨⎪⎧ n ·BA 1―→=0,n ·BE ―→=0,得⎩⎪⎨⎪⎧-x +z =0,-x +y +12z =0. 所以x =z ,y =12z .取z =2,得n =(2,1,2).设棱C 1D 1上存在点F (t,1,1)(0≤t ≤1)满足条件,又因为B 1(1,0,1), 所以B 1F ―→=(t -1,1,0). 而B 1F ⊄平面A 1BE ,于是B 1F ∥平面A 1BE ⇔B 1F ―→·n =0⇔(t -1,1,0)·(2,1,2)=0⇔2(t -1)+1=0⇔t =12⇔F 为C 1D 1的中点.这说明在棱C 1D 1上存在点F (C 1D 1的中点),使B 1F ∥平面A 1BE . [方法技巧]向量法解决与垂直、平行有关的探索性问题的思路(1)根据题设条件中的垂直关系,建立适当的空间直角坐标系,将相关点、相关向量用坐标表示.(2)假设所求的点或参数存在,并用相关参数表示相关点的坐标,根据线、面满足的垂直、平行关系,构建方程(组)求解,若能求出参数的值且符合该限定的范围,则存在,否则不存在. [针对训练]在正方体ABCD -A 1B 1C 1D 1中,E 是棱BC 的中点,则在线段CC 1上是否存在一点P ,使得平面A 1B 1P ⊥平面C 1DE ?证明你的结论.解:存在点P ,当点P 为CC 1的中点时,平面A 1B 1P ⊥平面C 1DE .证明如下:如图,以D 点为原点,建立空间直角坐标系. 设正方体的棱长为1,P (0,1,a )(0≤a ≤1),则D (0,0,0),A 1(1,0,1),B 1(1,1,1),E ⎝⎛⎭⎫12,1,0,C 1(0,1,1), ∴A 1B 1―→=(0,1,0),A 1P ―→=(-1,1,a -1), DE ―→=⎝⎛⎭⎫12,1,0,DC 1―→=(0,1,1). 设平面A 1B 1P 的一个法向量n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n 1·A 1B 1―→=0,n 1·A 1P ―→=0,∴⎩⎪⎨⎪⎧y 1=0,-x 1+y 1+(a -1)z 1=0,令z 1=1,则x 1=a -1, ∴n 1=(a -1,0,1).设平面C 1DE 的一个法向量n 2=(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧ n 2·DE ―→=0,n 2·DC 1―→=0,∴⎩⎪⎨⎪⎧12x 2+y 2=0,y 2+z 2=0.令y 2=1,得x 2=-2,z 2=-1, ∴n 2=(-2,1,-1). 若平面A 1B 1P ⊥平面C 1DE ,则n 1·n 2=0,∴-2(a -1)-1=0,解得a =12.∴当P 为C 1C 的中点时,平面A 1B 1P ⊥平面C 1DE .[课时跟踪检测]1.在下列命题中:①若向量a ,b 共线,则向量a ,b 所在的直线平行;②若向量a ,b 所在的直线为异面直线,则向量a ,b 一定不共面; ③若三个向量a ,b ,c 两两共面,则向量a ,b ,c 共面;④已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p 总存在实数x ,y ,z 使得p =x a +y b +z c . 其中正确命题的个数是( ) A .0 B .1 C .2D .3解析:选A a 与b 共线,a ,b 所在直线也可能重合,故①不正确;根据自由向量的意义知,空间任意两向量a ,b 都共面,故②错误;三个向量a ,b ,c 中任意两个一定共面,但它们三个却不一定共面,故③不正确;只有当a ,b ,c 不共面时,空间任意一向量p 才能表示为p =x a +y b +z c ,故④不正确,综上可知四个命题中正确的个数为0,故选A.的交点.若AB ―→=a ,2.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1AD ―→=b ,AA 1―→=c ,则下列向量中与BM ―→相等的向量是( ) A .-12a +12b +c B.12a +12b +cC .-12a -12b +c D.12a -12b +c解析:选A BM ―→=BB 1―→+B 1M ―→=AA 1―→+12(AD ―→-AB ―→)=c +12(b -a )=-12a +12b +c .3.已知空间任意一点O 和不共线的三点A ,B ,C ,若OP ―→=x OA ―→+y OB ―→+z OC ―→(x ,y ,z ∈R ),则“x =2,y =-3,z =2”是“P ,A ,B ,C 四点共面”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分也不必要条件解析:选B 当x =2,y =-3,z =2时,OP ―→=2OA ―→-3OB ―→+2OC ―→.则AP ―→-AO ―→=2OA ―→-3(AB ―→-AO ―→)+2(AC ―→-AO ―→),即AP ―→=-3AB ―→+2AC ―→,根据共面向量定理知,P ,A ,B ,C 四点共面;反之,当P ,A ,B ,C 四点共面时,根据共面向量定理,设AP ―→=m AB ―→+n AC ―→ (m ,n ∈R ),即OP ―→-OA ―→=m (OB ―→-OA ―→)+n (OC ―→-OA ―→),即OP ―→=(1-m -n )OA ―→+m OB ―→+n OC ―→,即x =1-m -n ,y =m ,z =n ,这组数显然不止2,-3,2.故“x =2,y =-3,z =2”是“P ,A ,B ,C 四点共面”的充分不必要条件.4.已知a =(2,1,-3),b =(-1,2,3),c =(7,6,λ),若a ,b ,c 三向量共面,则λ=( ) A .9 B .-9 C .-3D .3解析:选B 由题意设c =x a +y b ,则(7,6,λ)=x (2,1,-3)+y (-1,2,3), ∴⎩⎪⎨⎪⎧2x -y =7,x +2y =6,-3x +3y =λ,解得λ=-9.5.(2019·东营质检)已知A (1,0,0),B (0,-1,1),OA ―→+λOB ―→与OB ―→的夹角为120°,则λ的值为( ) A .±66B .66C .-66D .±6解析:选C OA ―→+λOB ―→=(1,-λ,λ),cos 120°=λ+λ1+2λ2·2=-12,得λ=±66.经检验λ=66不合题意,舍去,所以λ=-66. 6.在空间四边形ABCD 中,则AB ―→·CD ―→+AC ―→·DB ―→+AD ―→·BC ―→的值为( ) A .-1 B .0 C .1D .2解析:选B 法一:如图,令AB ―→=a ,AC ―→=b ,AD ―→=c ,则AB ―→·CD ―→+AC ―→·DB ―→+AD ―→·BC ―→=AB ―→·(AD ―→-AC ―→)+AC ―→·(AB ―→-AD ―→)+AD ―→·(AC ―→-AB ―→) =a ·(c -b )+b ·(a -c )+c ·(b -a ) =a ·c -a ·b +b ·a -b ·c +c ·b -c ·a =0.法二:在三棱锥A -BCD 中,不妨令其各棱长都相等,则正四面体的对棱互相垂直. 所以AB ―→·CD ―→=0,AC ―→·DB ―→=0,AD ―→·BC ―→=0. 所以AB ―→·CD ―→+AC ―→·DB ―→+AD ―→·BC ―→=0.7.△ABC 的顶点分别为A (1,-1,2),B (5,-6,2),C (1,3,-1),则AC 边上的高BD 等于________. 解析:设AD ―→=λAC ―→,D (x ,y ,z ), 则(x -1,y +1,z -2)=λ(0,4,-3), ∴x =1,y =4λ-1,z =2-3λ, ∴D (1,4λ-1,2-3λ), ∴BD ―→=(-4,4λ+5,-3λ), ∴4(4λ+5)-3(-3λ)=0,解得λ=-45,∴BD ―→=⎝⎛⎭⎫-4,95,125,∴|BD ―→|=(-4)2+⎝⎛⎭⎫952+⎝⎛⎭⎫1252=5.答案:5 8.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB ―→=(2,-1,-4),AD ―→=(4,2,0),AP ―→=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP ―→是平面ABCD 的法向量;④AP ―→∥BD ―→.其中正确的是________.解析:∵AP ―→·AB ―→=-2-2+4=0,∴AP ⊥AB ,故①正确;AP ―→·AD ―→=-4+4+0=0,∴AP ⊥AD ,故②正确;由①②知AP ⊥平面ABCD ,故③正确,④不正确.答案:①②③9.(2019·南昌调研)已知空间四边形OABC ,其对角线为OB ,AC ,M ,N 分别是OA ,BC 的中点,点G 在线段MN 上,且MG ―→=2GN ―→,现用基底{OA ―→,OB ―→,OC ―→}表示向量OG ―→,有OG ―→=x OA ―→+y OB ―→+z OC ―→,则x ,y ,z 的值分别为________.解析:∵OG ―→=OM ―→+MG ―→=12OA ―→+23MN ―→ =12OA ―→+23(ON ―→-OM ―→) =12OA ―→+23⎣⎡⎦⎤12(OB ―→+OC ―→)-12OA ―→ =16OA ―→+13OB ―→+13OC ―→, ∴x =16,y =13,z =13. 答案:16,13,1310.在长方体ABCD -A 1B 1C 1D 1中,AB =3,AD =4,AA 1=2.点M 在棱BB 1上,且BM =2MB 1,点S 在DD 1上,且SD 1=2SD ,点N ,R 分别为A 1D 1,BC 的中点.求证:MN ∥平面RSD .M ⎝⎛⎭⎫3,0,43,证明:法一:如图所示,建立空间直角坐标系,根据题意得N (0,2,2),R (3,2,0),S ⎝⎛⎭⎫0,4,23. ∴MN ―→=⎝⎛⎭⎫-3,2,23,RS ―→=⎝⎛⎭⎫-3,2,23,MN ―→=RS ―→. ∴MN ―→∥RS ―→.∵M ∉RS .∴MN ∥RS .又RS ⊂平面RSD ,MN ⊄平面RSD ,∴MN ∥平面RSD .法二:设AB ―→=a ,AD ―→=b ,AA 1―→=c ,则MN ―→=MB 1―→+B 1A 1―→+A 1N ―→=13c -a +12b , RS ―→=RC ―→+CD ―→+DS ―→=12b -a +13c , ∴MN ―→=RS ―→,∴MN ―→∥RS ―→,又∵R ∉MN ,∴MN ∥RS .又RS ⊂平面RSD ,MN ⊄平面RSD ,∴MN ∥平面RSD .11.三棱锥被平行于底面ABC 的平面所截得的几何体如图所示,截面为A 1B 1C 1,∠BAC=90°,A 1A ⊥平面ABC ,A 1A =3,AB =AC =2A 1C 1=2,D 为BC 中点. 求证:平面A 1AD ⊥平面BCC 1B 1.证明:如图,建立空间直角坐标系,则A (0,0,0),B (2,0,0),C (0,2,0),A1(0,0,3),C 1(0,1,3),∵D 为BC 的中点,∴D 点坐标为(1,1,0).∴AA 1―→=(0,0,3),AD ―→=(1,1,0),BC ―→=(-2,2,0),CC 1―→=(0,-1,3).设平面A 1AD 的法向量n 1=(x 1,y 1,z 1),平面BCC 1B 1的法向量为n 2=(x 2,y 2,z 2).由⎩⎪⎨⎪⎧n 1·AA 1―→=0,n 1·AD ―→=0,得⎩⎨⎧ 3z 1=0,x 1+y 1=0. 令y 1=-1,则x 1=1,z 1=0,∴n 1=(1,-1,0).由⎩⎪⎨⎪⎧ n 2·BC ―→=0,n 2·CC 1―→=0,得⎩⎨⎧-2x 2+2y 2=0,-y 2+3z 2=0. 令y 2=1,则x 2=1,z 2=33, ∴n 2=⎝⎛⎭⎫1,1,33. ∵n 1·n 2=1-1+0=0,∴n 1⊥n 2.∴平面A 1AD ⊥平面BCC 1B 1.面边长的2倍,12.如图所示,四棱锥S -ABCD 的底面是正方形,每条侧棱的长都是底点P 为侧棱SD 上的点.(1)求证:AC ⊥SD ;(2)若SD ⊥平面PAC ,则侧棱SC 上是否存在一点E ,使得BE ∥平面PAC .若存在,求SE ∶EC 的值;若不存在,试说明理由.解:(1)证明:连接BD ,设AC 交BD 于点O ,则AC ⊥BD .连接SO ,由题意知SO ⊥平面ABCD .以O 为坐标原点,OB ―→,OC ―→,OS ―→所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,如图.设底面边长为a ,则高SO =62a , 于是S ⎝⎛⎭⎫0,0,62a ,D ⎝⎛⎭⎫-22a ,0,0,B ⎝⎛⎭⎫22a ,0,0,C ⎝⎛⎭⎫0,22a ,0, OC ―→=⎝⎛⎭⎫0,22a ,0,SD ―→=⎝⎛⎭⎫-22a ,0,-62a , 则OC ―→·SD ―→=0.故OC ⊥SD .从而AC ⊥SD .(2)棱SC 上存在一点E ,使BE ∥平面PAC .理由如下:由已知条件知DS ―→是平面PAC 的一个法向量,且DS ―→=⎝⎛⎭⎫22a ,0,62a ,CS ―→=⎝⎛⎭⎫0,-22a ,62a ,BC ―→=⎝⎛⎭⎫-22a ,22a ,0. 设CE ―→=t CS ―→,则BE ―→=BC ―→+CE ―→=BC ―→+t CS ―→=⎝⎛⎭⎫-22a ,22a (1-t ),62at , 而BE ―→·DS ―→=0⇒t =13. 即当SE ∶EC =2∶1时,BE ―→⊥DS ―→.而BE ⊄平面PAC ,故BE ∥平面PAC .。
用向量证明线面平行
用向量证明线面平行用向量证明线面平行面垂直就是说直线是面的法向量。
单位法向量当然平行这条直线,不过要排除与0向量的讨论。
0向量与任何向量都平行。
但0向量不垂直与面。
比如单位法向量是(x,y,z)直线的方向向量是m=(a,b,c)那么m=a(x,y,z) 这不完全对。
比如单位法向量是(0,1,0),难道m=0吗?只能是a≠0是可以这样。
面面平行:可以证明两个平面的法向量平行。
不过不一定是单位法向量,单位法向量是模等于1的法向量,其实只需证明两平面的法向量垂直就可以了。
当然你要证明分别平行于两平面的直线平行,或平行一平面的直线与另一平面的法向量垂直也未尝不可。
2三维空间上一平面上一活动点钟(x,y, z) 而(m,n,p )是在原点与平面的垂线的交点, 我们得[(x,y,z) - (m,n,p) ] * (m,n,p) = 0m(x-m)+n(y-n)+p(z-p)=0mx+ny+pz=m^2+n^2+p^2所以ax+by+cz=d 中的a=m, b= n, c=p , d=m^2+n^2+p^2= 原点与平面的垂直距离x+y+z=1是一个面它垂直和相交(1,1,1) 这支向量[1,8,-3]×[4,-5,9]≠[0,0,0]所以两直线的方向向量不平行即两直线不平行但是书后的答案说两直线是平行的。
你确定题没有写错吗?其实直线很简单[x,y,z]=[4,-3,2]+ t[1,8,-3]表示通过点[4,-3,2],沿着方向[1,8,-3]延伸而[1,8,-3]跟[4,-5,9]方向不一样,两直线不平行平行向量平行向量(也叫共线向量):方向相同或相反的非零向量a、b叫做平行向量,记作:a∥b,规定零向量和任何向量平行。
加法运算AB+BC=AC,这种计算法则叫做向量加法的三角形法则。
已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。
专题08 利用空间向量证明平行、垂直(解析版)
2020年高考数学立体几何突破性讲练08利用空间向量证明平行、垂直一、考点传真:能用向量语言表述线线、线面、面面的平行和垂直关系二、知识点梳理:证明平行、垂直问题的思路(1)恰当建立空间直角坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.(2)证明直线与平面平行,只需证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算.3其一证明直线与直线垂直,只需要证明两条直线的方向向量垂直;其二证明线面垂直,只需证明直线的方向向量与平面内不共线的两个向量垂直即可,当然,也可证直线的方向向量与平面的法向量平行;其三证明面面垂直:①证明两平面的法向量互相垂直;②利用面面垂直的判定定理,只要能证明一个平面内的一条直线的方向向量为另一个平面的法向量即可.三、例题:例1. (2019江苏卷)如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.【解析】证明:(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC-A1B1C1中,AB∥A1B1,所以A 1B 1∥ED .又因为ED ⊂平面DEC 1,A 1B 1⊄平面DEC 1, 所以A 1B 1∥平面DEC 1.(2)因为AB =BC ,E 为AC 的中点,所以BE ⊥AC . 因为三棱柱ABC-A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC . 又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C , 所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .例2.(2016年北京卷) 如图,在四棱锥中,平面PAD ⊥平面,,,,,,(1)求证:平面;(2)求直线与平面所成角的正弦值;(3)在棱上是否存在点,使得平面?若存在,求的值;若不存在,说明理由.【解析】(1)∵面PAD面ABCD AD =,面PAD ⊥面ABCD ,∵AB ⊥AD ,AB ⊂面ABCD ,∴AB ⊥面PAD ,P ABCD -ABCD PA PD ⊥PA PD =AB AD ⊥1AB =2AD =AC CD ==PD ⊥PAB PB PCD PA M //BM PCD AMAP∵PD ⊂面PAD , ∴AB ⊥PD , 又PD ⊥PA ,∴PD ⊥面PAB , (2)取AD 中点为O ,连结CO ,PO ,∵CD AC == ∴CO ⊥AD , ∵PA PD =, ∴PO ⊥AD ,以O 为原点,如图建系易知(001)P ,,,(110)B ,,,(010)D -,,,(200)C ,,,则(111)PB =-,,,(011)PD =--,,,(201)PC =-,,,(210)CD =--,,, 设n 为面PDC 的法向量,令00(,1)n x y =,.011,120n PD n n PC ⎧⋅=⎪⎛⎫⇒=-⎨⎪⎝⎭⋅=⎪⎩,,则PB 与面PCD 夹角θ有,sin cos ,1n PB n PB n PBθ⋅=<>== (3)假设存在M 点使得BM ∥面PCD , 设AMAPλ=,()0,','M y z , 由(2)知()0,1,0A ,()0,0,1P ,()0,1,1AP =-,()1,1,0B ,()0,'1,'AM y z =- 有()0,1,AM AP M λλλ=⇒- ∴()1,,BM λλ=--∵BM ∥面PCD ,n 为PCD 的法向量, ∴0BM n ⋅=,即102λλ-++=,∴1=4λ∴综上,存在M 点,即当14AM AP =时,M 点即为所求. 例3.(2011安徽)如图,ABCDEFG 为多面体,平面ABED 与平面AGFD 垂直,点O 在线段AD 上,1,2,OA OD ==OAB ∆,OAC ∆,ODE ∆,ODF ∆都是正三角形. (Ⅰ)证明直线BC ∥EF ; (Ⅱ)求棱锥F OBED -的体积.【解析】(Ⅰ)(综合法)证明:设G 是线段DA 与EB 延长线的交点. 由于OAB ∆与ODE∆都是正三角形,所以OB ∥DE 21,OG=OD=2, 同理,设G '是线段DA 与线段FC 延长线的交点,有.2=='OD G O 又由于G 和G '都在线段DA 的延长线上,所以G 与G '重合.在GED ∆和GFD 中,由OB ∥DE 21和OC ∥DF 21,可知B 和C 分别是GE 和GF 的中点,所以BC 是GEF ∆的中位线,故BC ∥EF .(向量法)过点F 作AD FQ ⊥,交AD 于点Q ,连QE ,由平面ABED ⊥平面ADFC ,知FQ ⊥平面ABED ,以Q 为坐标原点,QE 为x 轴正向,QD 为y 轴正向,QF 为z 轴正向,建立如图所示空间直角坐标系. 由条件知).23,23,0(),0,23,23(),3,0,0(),0,0,3(--C B F E则有33(,0,),(3,0,BC EF =-=- 所以,2=即得BC ∥EF .(Ⅱ)由OB=1,OE=2,23,60=︒=∠EOB S EOB 知,而O E D ∆是边长为2的正三角形,故.3=OED S 所以.233=+=OED EOB OBED S S S过点F 作FQ ⊥AD ,交AD 于点Q ,由平面ABED ⊥平面ACFD 知,FQ 就是四棱锥F —OBED 的高,且FQ=3,所以.2331=⋅=-OBED OBED F S FQ V 例4.(2011江苏)如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD ,AB AD =,BAD ∠=60°,E 、F 分别是AP 、AD 的中点. 求证:(Ⅰ)直线EF ∥平面PCD ;(Ⅱ)平面BEF ⊥平面PAD .【证明】(Ⅰ)在△PAD 中,因为E 、F 分别为AP ,AD 的中点,所以EF//PD .又因为EF ⊄平面PCD ,PD ⊂平面PCD ,所以直线EF//平面PCD .(Ⅱ)连结DB ,因为AB=AD ,∠BAD=60°,所以ABD ∆为正三角形,因为F 是AD 的中点,所以BF ⊥AD .因为平面PAD ⊥平面ABCD ,BF ⊂平面ABCD ,平面PAD 平面ABCD=AD ,所以BF ⊥平面PAD .又因为BF ⊂平面BEF ,所以平面BEF ⊥平面PAD .例5.(2010广东)如图,¼AEC 是半径为a 的半圆,AC 为直径,点E 为»AC 的中点,点B 和点C 为线段AD 的三等分点,平面AEC 外一点F 满足FB FD ==,EF =.(Ⅰ)证明:EB FD ⊥;(Ⅱ)已知点,Q R 为线段,FE FB 上的点,23FQ FE =,23FR FB =,求平面BED 与平面RQD 所成二面角的正弦值.【证明】:(Ⅰ)连结CF ,因为¼AEC 是半径为a 的半圆,AC 为直径,点E 为»AC 的中点,所以EB AC ⊥.在RT BCE ∆中,EC ===.在BDF ∆中,BF DF ==,BDF ∆为等腰三角形, 且点C 是底边BD 的中点,故CF BD ⊥.在CEF ∆中,222222)(2)6CE CF a a EF +=+==,所以CEF ∆为Rt ∆,且CF EC ⊥.因为CF BD ⊥,CF EC ⊥,且CE BD C =I ,所以CF ⊥平面BED , 而EB ⊂平面BED ,CF EB ∴⊥.因为EB AC ⊥,EB CF ⊥,且AC CF C =I ,所以EB ⊥平面BDF , 而FD ⊂平面BDF ,EB FD ∴⊥.(Ⅱ)设平面BED 与平面RQD 的交线为DG .由23FQ FE =,23FR FB =,知//QR EB . 而EB ⊂平面BDE ,∴//QR 平面BDE , 而平面BDE I 平面RQD = DG , ∴////QR DG EB .由(Ⅰ)知,BE ⊥平面BDF ,∴DG ⊥平面BDF , 而,DR DB ⊂平面BDF ,∴DG DR ⊥,DG DQ ⊥, ∴RDB ∠是平面BED 与平面RQD 所成二面角的平面角. 在Rt BCF ∆中,2CF a ===,sin FC RBD BF ∠===cos RBD ∠==. 在BDR ∆中,由23FR FB =知,133BR FB ==,由余弦定理得,RD== 由正弦定理得,sin sin BR RD RDB RBD=∠∠,即332sin RDB =∠,sin RDB ∠=故平面BED 与平面RQD 所成二面角的正弦值为29.为GC 的中点,FO =3,且FO ⊥平面ABCD .(1)求证:AE ∥平面BCF ; (2)求证:CF ⊥平面AEF .【解析】证明 取BC 中点H ,连接OH ,则OH ∥BD ,又四边形ABCD 为正方形, ∴AC ⊥BD ,∴OH ⊥AC ,故以O 为原点,建立如图所示的直角坐标系,则A (3,0,0),C (-1,0,0),D (1,-2,0),F (0,0,3),B (1,2,0).BC →=(-2,-2,0),CF →=(1,0,3),BF →=(-1,-2,3). (1)设平面BCF 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·BC →=0,n ·CF →=0,即⎩⎨⎧-2x -2y =0,x +3z =0,取z =1,得n =(-3,3,1). 又四边形BDEF 为平行四边形, ∴DE →=BF →=(-1,-2,3), ∴AE →=AD →+DE →=BC →+BF →=(-2,-2,0)+(-1,-2,3)=(-3,-4,3), ∴AE →·n =33-43+3=0,∴AE →⊥n , 又AE ⊄平面BCF ,∴AE ∥平面BCF .(2)AF →=(-3,0,3),∴CF →·AF →=-3+3=0,CF →·AE →=-3+3=0, ∴CF →⊥AF →,CF →⊥AE →, 即CF ⊥AF ,CF ⊥AE , 又AE ∩AF =A , AE ,AF ⊂平面AEF , ∴CF ⊥平面AEF .2.如图所示,在直三棱柱ABC -A 1B 1C 1中,侧面AA 1C 1C 和侧面AA 1B 1B 都是正方形且互相垂直,M 为AA 1的中点,N 为BC 1的中点.求证:(1)MN ∥平面A 1B 1C 1; (2)平面MBC 1⊥平面BB 1C 1C .【解析】证明 由题意知AA 1,AB ,AC 两两垂直,以A 为坐标原点建立如图所示的空间直角坐标系.不妨设正方形AA 1C 1C 的边长为2,则A (0,0,0),A 1(2,0,0),B (0,2,0),B 1(2,2,0),C (0,0,2),C 1(2,0,2),M (1,0,0),N (1,1,1).(1)因为几何体是直三棱柱,所以侧棱AA 1⊥底面A 1B 1C 1.因为AA 1→=(2,0,0),MN →=(0,1,1),所以MN →·AA 1→=0,即MN →⊥AA 1→.MN ⊄平面A 1B 1C 1,故MN ∥平面A 1B 1C 1.(2)设平面MBC 1与平面BB 1C 1C 的法向量分别为 n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2). 因为MB →=(-1,2,0),MC 1→=(1,0,2), 所以⎩⎪⎨⎪⎧n 1·MB →=0,n 1·MC 1→=0,即⎩⎪⎨⎪⎧-x 1+2y 1=0,x 1+2z 1=0,,令x 1=2,则平面MBC 1的一个法向量为n 1=(2,1,-1).同理可得平面BB 1C 1C 的一个法向量为n 2=(0,1,1).因为n 1·n 2=2×0+1×1+(-1)×1=0,所以n 1⊥n 2,所以平面MBC 1⊥平面BB 1C 1C . 3.如图,在多面体ABCDEF 中,底面ABCD 是边长为2的菱形,∠BAD =60°,四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,DE =2,M 为线段BF 的中点.(1)求M 到平面DEC 的距离及三棱锥M -CDE 的体积; (2)求证:DM ⊥平面ACE .【解析】(1)设AC ∩BD =O ,以O 为原点,OB 为x 轴,OC 为y 轴,过O 作平面ABCD 的垂线为z 轴,建立空间直角坐标系,则C (0,3,0),D (-1,0,0),E (-1,0,2),M (1,0,1), DE →=(0,0,2),DC →=(1,3,0),DM →=(2,0,1), ∵DE →·DC →=0, ∴DE ⊥DC ,∴S △DEC =12×DE ×DC =12×2×2=2,设平面DEC 的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DE →=2z =0,n ·DC →=x +3y =0,取x =3,得n =(3,-1,0),∴M 到平面DEC 的距离h =|DM →·n ||n |=233+1=3,∴三棱锥M -CDE 的体积V =13×S △CDE ×h =13×2×3=233.(2)证明:A (0,-3,0),AC →=(0,23,0),AE →=(-1,3,2), AC →·DM →=0,AE →·DM →=-2+2=0, ∴AC ⊥DM ,AE ⊥DM ,∵AC ∩AE =A ,∴DM ⊥平面ACE .4.如图,在四棱锥P -ABCD 中,底面ABCD 是边长为a 的正方形,侧面P AD ⊥底面ABCD ,且P A =PD =22AD ,设E ,F 分别为PC ,BD 的中点.(1)求证:EF ∥平面P AD ; (2)求证:平面P AB ⊥平面PDC .【解析】证明 (1)如图,取AD 的中点O ,连接OP ,OF .因为P A =PD ,所以PO ⊥AD .因为侧面P AD ⊥底面ABCD ,平面P AD ∩平面ABCD =AD ,PO ⊂平面P AD , 所以PO ⊥平面ABCD .又O ,F 分别为AD ,BD 的中点, 所以OF ∥AB .又ABCD 是正方形,所以OF ⊥AD . 因为P A =PD =22AD , 所以P A ⊥PD ,OP =OA =a2.以O 为原点,OA ,OF ,OP 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系, 则A ⎝⎛⎭⎫a 2,0,0,F ⎝⎛⎭⎫0,a 2,0,D ⎝⎛⎭⎫-a2,0,0, P ⎝⎛⎭⎫0,0,a 2,B ⎝⎛⎭⎫a 2,a ,0,C ⎝⎛⎭⎫-a2,a ,0. 因为E 为PC 的中点,所以E ⎝⎛⎭⎫-a 4,a 2,a4. 易知平面P AD 的一个法向量为OF →=⎝⎛⎭⎫0,a 2,0, 因为EF →=⎝⎛⎭⎫a 4,0,-a 4,且OF →·EF →=⎝⎛⎭⎫0,a 2,0·⎝⎛⎭⎫a4,0,-a 4=0, 又因为EF ⊄平面P AD , 所以EF ∥平面P AD .(2)因为P A →=⎝⎛⎭⎫a 2,0,-a 2,CD →=(0,-a,0), 所以P A →·CD →=⎝⎛⎭⎫a2,0,-a 2·(0,-a,0)=0, 所以P A →⊥CD →,所以P A ⊥CD . 又P A ⊥PD ,PD ∩CD =D , PD ,CD ⊂平面PDC , 所以P A ⊥平面PDC . 又P A ⊂平面P AB , 所以平面P AB ⊥平面PDC .5.如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)若点M 是线段AP 上一点,且AM =3.试证明平面AMC ⊥平面BMC .【解析】证明 如图所示,以O 为坐标原点,以射线OP 为z 轴的正半轴建立空间直角坐标系Oxyz .则O (0,0,0),A (0,-3,0),B (4,2,0),C (-4,2,0),P (0,0,4).(1)∵AP →=(0,3,4),BC →=(-8,0,0),∴AP →·BC →=(0,3,4)·(-8,0,0)=0,AP →⊥BC →,即AP ⊥BC . (2)由(1)知|AP |=5,又|AM |=3,且点M 在线段AP 上, ∴AM →=35AP →=⎝⎛⎭⎫0,95,125. 又AC →=(-4,5,0),BA →=(-4,-5,0), ∴BM →=BA →+AM →=⎝⎛⎭⎫-4,-165,125, 则A P →·BM →=(0,3,4)·⎝⎛⎭⎫-4,-165,125=0, ∴AP →⊥BM →,即AP ⊥BM ,又根据(1)的结论知AP ⊥BC ,BM ∩BC =B , ∴AP ⊥平面BMC ,于是AM ⊥平面BMC . 又AM ⊂平面AMC ,故平面AMC ⊥平面BCM .6. 如图所示,已知四棱锥P -ABCD 的底面是直角梯形,∠ABC =∠BCD =90°,AB =BC =PB =PC =2CD ,侧面PBC ⊥底面ABCD .证明:(1)P A ⊥BD ;(2)平面P AD ⊥平面P AB .【解析】证明 (1)取BC 的中点O ,连接PO ,△PBC 为等边三角形,即PO ⊥BC , ∵平面PBC ⊥底面ABCD ,BC 为交线,PO ⊂平面PBC , ∴PO ⊥底面ABCD .以BC 的中点O 为坐标原点,以BC 所在直线为x 轴,过点O 与AB 平行的直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,如图所示.不妨设CD =1,则AB =BC =2,PO = 3.∴A (1,-2,0),B (1,0,0),D (-1,-1,0),P (0,0,3). ∴BD →=(-2,-1,0),P A →=(1,-2,-3). ∵BD →·P A →=(-2)×1+(-1)×(-2)+0×(-3)=0, ∴P A →⊥BD →, ∴P A ⊥BD .(2)取P A 的中点M ,连接DM ,则M ⎝⎛⎭⎫12,-1,32.∵DM →=⎝⎛⎭⎫32,0,32,PB →=(1,0,-3),∴DM →·PB →=32×1+0×0+32×(-3)=0,∴DM →⊥PB →,即DM ⊥PB .∵DM →·P A →=32×1+0×(-2)+32×(-3)=0,∴DM →⊥P A →,即DM ⊥P A .又∵P A ∩PB =P ,P A ,PB ⊂平面P AB , ∴DM ⊥平面P AB . ∵DM ⊂平面P AD , ∴平面P AD ⊥平面P AB .7.如图所示,在四棱柱ABCD -A 1B 1C 1D 1中,A 1D ⊥平面ABCD ,底面ABCD 是边长为1的正方形,侧棱A 1A =2.(1)证明:AC ⊥A 1B ;(2)是否在棱A 1A 上存在一点P ,使得AP →=λP A 1→且面AB 1C 1⊥面PB 1C 1.【解析】 如图所示,以DA ,DC ,DA 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则D (0,0,0),A (1,0,0),C (0,1,0),A 1(0,0,3),B (1,1,0),D 1(-1,0,3),B 1(0,1,3),C 1(-1,1,3).(1)证明:AC →=(-1,1,0),A 1B →=(1,1,-3), ∴AC →·A 1B →=0,∴AC ⊥A 1B . (2)假设存在, ∵AP →=λP A 1→, ∴P ⎝⎛⎭⎪⎫11+λ,0,3λ1+λ. 设平面AB 1C 1的一个法向量为n 1=(x 1,y 1,z 1), ∵AB 1→=(-1,1,3),AC 1→=(-2,1,3), ∴⎩⎪⎨⎪⎧n 1·AB 1→=-x 1+y 1+3z 1=0,n 1·AC 1→=-2x 1+y 1+3z 1=0.令z 1=3,则y 1=-3,x 1=0.∴n 1=(0,-3,3).同理可求面PB 1C 1的一个法向量为n 2=⎝ ⎛⎭⎪⎫0,3λ+1,-1, ∴n 1·n 2=0.∴-331+λ-3=0,即λ=-4.∵P 在棱A 1A 上,∴λ>0,矛盾. ∴这样的点P 不存在.8.如图,棱柱ABCD -A 1B 1C 1D 1的所有棱长都等于2,∠ABC 和∠A 1AC 均为60°,平面AA 1C 1C ⊥平面ABCD .(1)求证:BD ⊥AA 1;(2)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1,若存在,求出点P 的位置,若不存在,请说明理由.【解析】(1)证明 设BD 与AC 交于点O ,则BD ⊥AC ,连接A 1O ,在△AA 1O 中,AA 1=2,AO =1,∠A 1AO =60°,∴A 1O 2=AA 21+AO 2-2AA 1·AO cos 60°=3, ∴AO 2+A 1O 2=AA 21, ∴A 1O ⊥AO .由于平面AA 1C 1C ⊥平面ABCD ,且平面AA 1C 1C ∩平面ABCD =AC ,A 1O ⊂平面AA 1C 1C ,∴A 1O ⊥平面ABCD .以OB ,OC ,OA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (0,-1,0),B (3,0,0),C (0,1,0),D (-3,0,0),A 1(0,0,3),C 1(0,2,3).由于BD →=(-23,0,0),AA 1→=(0,1,3), AA 1→·BD →=0×(-23)+1×0+3×0=0, ∴BD →⊥AA 1→,即BD ⊥AA 1.(2)解 假设在直线CC 1上存在点P ,使BP ∥平面DA 1C 1, 设CP →=λCC 1→,P (x ,y ,z ),则(x ,y -1,z )=λ(0,1,3).从而有P (0,1+λ,3λ),BP →=(-3,1+λ,3λ). 设平面DA 1C 1的法向量为n 3=(x 3,y 3,z 3), 则⎩⎪⎨⎪⎧n 3⊥A 1C 1→,n 3⊥DA 1→,又A 1C 1→=(0,2,0),DA 1→=(3,0,3),则⎩⎨⎧2y 3=0,3x 3+3z 3=0,取n 3=(1,0,-1),因为BP ∥平面DA 1C 1, 则n 3⊥BP →,即n 3·BP →=-3-3λ=0,得λ=-1, 即点P 在C 1C 的延长线上,且C 1C =CP .。
立体几何中的向量方法——证明平行及垂直
立体几何中的向量方法(一)——证明平行与垂直1.直线的方向向量与平面的法向量的确定(1)直线的方向向量:在直线上任取一非零向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎨⎧n ·a =0,n ·b =0.2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数x ,y ,使v =x v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u .(4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1 ∥u 2.3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.(2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u .(3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)直线的方向向量是唯一确定的.( )(2)平面的单位法向量是唯一确定的.( )(3)若两平面的法向量平行,则两平面平行.( )(4)若两直线的方向向量不平行,则两直线不平行.( )(5)若a ∥b ,则a 所在直线与b 所在直线平行.( )(6)若空间向量a 平行于平面α,则a 所在直线与平面α平行.( )1.下列各组向量中不平行的是( )A .a =(1,2,-2),b =(-2,-4,4)B .c =(1,0,0),d =(-3,0,0)C .e =(2,3,0),f =(0,0,0)D .g =(-2,3,5),h =(16,24,40)2.已知平面α有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则下列点P 中,在平面α的是( )A .P (2,3,3)B .P (-2,0,1)C .P (-4,4,0)D .P (3,-3,4)3.已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则实数x ,y ,z 分别为______________.4.若A (0,2,198),B (1,-1,58),C (-2,1,58)是平面α的三点,设平面α的法向量n =(x ,y ,z ),则x ∶y ∶z =________.题型一 证明平行问题例1 (2013·改编)如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC .证明:PQ ∥平面BCD .如图,在棱长为2的正方体ABCD-A1B1C1D1中,E,F,M,N分别是棱AB,AD,A1B1,A1D1的中点,点P,Q分别在棱DD1,BB1上移动,且DP=BQ=λ(0<λ<2).(1)当λ=1时,证明:直线BC1∥平面EFPQ;(2)是否存在λ,使平面EFPQ与平面PQMN所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.题型二证明垂直问题例2如图所示,正三棱柱(底面为正三角形的直三棱柱)ABC—A1B1C1的所有棱长都为2,D为CC1的中点.求证:AB1⊥平面A1BD.如图所示,在四棱锥P-ABCD中,PC⊥平面ABCD,PC =2,在四边形ABCD中,∠B=∠C=90°,AB=4,CD=1,点M在PB上,PB=4PM,PB与平面ABCD成30°角.(1)求证:CM∥平面PAD;(2)求证:平面PAB⊥平面PAD.题型三解决探索性问题例3 如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC和∠A1AC均为60°,平面AA1C1C⊥平面ABCD.(1)求证:BD⊥AA1;(2)求二面角D-A1A-C的余弦值;(3)在直线CC1上是否存在点P,使BP∥平面DA1C1,若存在,求出点P的位置,若不存在,请说明理由.如图所示,四棱锥S—ABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(1)求证:AC⊥SD.(2)若SD⊥平面PAC,则侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE∶EC的值;若不存在,试说明理由.利用向量法解决立体几何问题典例:如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C为60°,AP=1,AD=3,求三棱锥E-ACD的体积.A 组 专项基础训练1.若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-2,0,-4),则( )A .l ∥αB .l ⊥αC .l ⊂αD .l 与α相交2.若AB →=λCD →+μCE →,则直线AB 与平面CDE 的位置关系是( )A .相交B .平行C .在平面D .平行或在平面3.已知A (4,1,3),B (2,-5,1),C (3,7,-5),则平行四边形ABCD 的顶点D 的坐标是( )A .(2,4,-1)B .(2,3,1)C .(-3,1,5)D .(5,13,-3)4.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三向量共面,则实数λ等于( )A.627B.637C.607D.6575.如图,在长方体ABCD —A 1B 1C 1D 1中,AB =2,AA 1=3,AD =22,P 为C 1D 1的中点,M 为BC 的中点.则AM 与PM 所成的角为( )A .60°B .45°C .90°D .以上都不正确6.已知平面α的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是________.7.设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确定的平面上,则a =________.8.如图,在正方体ABCD —A 1B 1C 1D 1中,棱长为a ,M 、N 分别为A 1B 和AC 上的点,A 1M =AN =2a 3,则MN 与平面BB 1C 1C 的位置关系是________. 9.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .证明:平面PQC ⊥平面DCQ .10.如图,在底面是矩形的四棱锥P -ABCD 中,PA ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,PA =AB =1,BC =2.(1)求证:EF ∥平面PAB ;(2)求证:平面PAD ⊥平面PDC .B 组 专项能力提升11.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则M 点的坐标为( )A .(1,1,1)B .(23,23,1)C .(22,22,1) D .(24,24,1) 12.设u =(-2,2,t ),v =(6,-4,4)分别是平面α,β的法向量,若α⊥β,则t 等于( )A .3B .4C .5D .613.在正方体ABCD —A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD 的中心,M ,N 分别为AB ,BC 的中点,点Q 为平面ABCD 一点,线段D 1Q 与OP 互相平分,则满足MQ →=λMN →的实数λ有________个.14.如图所示,已知直三棱柱ABC —A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D 、E 、F 分别为B 1A 、C 1C 、BC的中点.求证:(1)DE ∥平面ABC ;(2)B 1F ⊥平面AEF .15.在四棱锥P—ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E、F分别是AB、PB的中点.(1)求证:EF⊥CD;(2)在平面PAD求一点G,使GF⊥平面PCB,并证明你的结论.。
证明面面平行的方法
证明面面平行的方法证明面面平行的方法利用向量方法判断空间位置关系,其难点是线面平行与面面垂直关系问题.应用下面的两个定理,将可建立一种简单的程序化的解题模式.定理1设MA→、MB→不共线,PQ→=xMA→+yMB →(x,y∈R),则①P∈平面MAB PQ平面MAB;②P平面MAB PQ∥平面MAB.定理2设向量AB→、AC→不共线,DE→、DF→垂直于同一平面的两个平面互相平行这个是错误的,比如立方体相邻三个面,两两垂直,显然不符合你说的平行条件,证明面面平行可以用垂直于同一直线来证,但垂直于同一平面是错的21,线面垂直到面面垂直,直线a垂直于平面1,直线a平行与或包含于平面2,所以平面1垂直于平面22,(最白痴的一个)平面1垂直于平面2,平面1平行于平面3,所以平面3垂直于平面23,通过2面角的夹角,如果2面角的夹角是90度,那么两个平面也是垂直的这些方法前面都要通过其他方法证明,一步步才能证到这儿,譬如方法1,要先证明线面垂直,所以你也得知道线面垂直的证法有哪些。
学立体几何,重要的是空间感,没事多揣摩揣摩比划比划,把每个定理的内容用图形表示出来,并记在脑子中,这样考试的时候才能看到图和题就会知道用什么定理了,熟记并熟练掌握哪些定理的运用才行。
还有像这样比较好,证明每个东西都有哪些方法,有几种途径,那么做题的时候想不起来用哪个就可以根据题目条件一步步排除,并选择对的方法,一般老师上课都会总结的。
还是好好听课吧~~3判定:平面平行的判定一如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
平面平行的判定二垂直于同一条直线的两个平面平行。
性质:平面平行的性质一如果两个平行平面同时与第三个平面相交,那么它们的交线平行。
平面平行的性质二如果一条直线在一个平面内,那么与此平面平行的平面与该直线平行。
这五个条件?哪五个?判定一中:两条相交的直线是可以确定一个平面的,所以“两条相交直线都平行于另一个平面,那么这两个平面平行。
高中数学第三章空间向量与立体几何3.2立体几何中的向量方法3.2.2利用向量解决平行、垂直问题讲义
3.2.2 利用向量解决平行、垂直问题1.用向量方法证明空间中的平行关系(1)证明线线平行设直线l,m的方向向量分别是a=(a1,b1,c1),b=(a2,b2,c2),则l∥m⇔□01a∥b⇔□02 a=λb⇔□03a1=λa2,b1=λb2,c1=λc2(λ∈R).(2)证明线面平行设直线l的方向向量为a=(a1,b1,c1),平面α的法向量为u=(a2,b2,c2),则l∥α⇔□04a⊥u⇔□05a·u=0⇔□06a1a2+b1b2+c1c2=0.(3)证明面面平行①设平面α,β的法向量分别为u=(a1,b1,c1),v=(a2,b2,c2),则α∥β⇔□07u∥v⇔u=λv⇔□08a1=λa2,b1=λb2,c1=λc2(λ∈R).②由面面平行的判定定理,要证明面面平行,只要转化为相应的线面平行、线线平行即可.2.用向量方法证明空间中的垂直关系(1)证明线线垂直设直线l1的方向向量u1=(a1,b1,c1),直线l2的方向向量u2=(a2,b2,c2),则l1⊥l2⇔□09u1⊥u2⇔□10u1·u2=0⇔□11a1a2+b1b2+c1c2=0.(2)证明线面垂直设直线l的方向向量是u=(a1,b1,c1),平面α的法向量v=(a2,b2,c2),则l⊥α⇔□12 u∥v⇔□13u=λv(λ∈R)⇔□14a1=λa2,b1=λb2,c1=λc2(λ∈R).(3)证明面面垂直若平面α的法向量u=(a1,b1,c1),平面β的法向量v=(a2,b2,c2),则α⊥β⇔□15u ⊥v⇔□16u·v=0⇔□17a1a2+b1b2+c1c2=0.1.判一判(正确的打“√”,错误的打“×”)(1)若两直线方向向量的数量积为0,则这两条直线一定垂直相交.( )(2)若一直线与平面垂直,则该直线的方向向量与平面内的所有直线的方向向量的数量积为0.( )(3)两个平面垂直,则其中一平面内的直线的方向向量与另一平面内的直线的方向向量垂直.( )答案 (1)× (2)√ (3)×2.做一做(请把正确的答案写在横线上)(1)若直线l 1的方向向量为u 1=(1,3,2),直线l 2上有两点A (1,0,1),B (2,-1,2),则两直线的位置关系是________.(2)若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-2,0,-4),则直线l 与平面α的位置关系为________.(3)已知两平面α,β的法向量分别为u 1=(1,0,1),u 2=(0,2,0),则平面α,β的位置关系为________.(4)若平面α,β的法向量分别为(-1,2,4),(x ,-1,-2),并且α⊥β,则x 的值为________.答案 (1)垂直 (2)垂直 (3)垂直 (4)-10探究1 利用空间向量解决平行问题例1 已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F 分别是BB 1,DD 1的中点,求证: (1)FC 1∥平面ADE ; (2)平面ADE ∥平面B 1C 1F .[证明] (1)如图所示,建立空间直角坐标系Dxyz ,则有D (0,0,0),A (2,0,0),C 1(0,2,2),E (2,2,1),F (0,0,1),B 1(2,2,2), 所以FC 1→=(0,2,1),DA →=(2,0,0),AE →=(0,2,1).设n 1=(x 1,y 1,z 1)是平面ADE 的法向量,则n 1⊥DA →,n 1⊥AE →, 即⎩⎪⎨⎪⎧n 1·DA →=2x 1=0,n 1·AE →=2y 1+z 1=0,得⎩⎪⎨⎪⎧x 1=0,z 1=-2y 1,令z 1=2,则y 1=-1,所以n 1=(0,-1,2). 因为FC 1→·n 1=-2+2=0,所以FC 1→⊥n 1.又因为FC 1⊄平面ADE ,所以FC 1∥平面ADE . (2)因为C 1B 1→=(2,0,0),设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的一个法向量. 由n 2⊥FC 1→,n 2⊥C 1B 1→,得 ⎩⎪⎨⎪⎧n 2·FC 1→=2y 2+z 2=0,n 2·C 1B 1→=2x 2=0,得⎩⎪⎨⎪⎧x 2=0,z 2=-2y 2.令z 2=2,得y 2=-1,所以n 2=(0,-1,2), 因为n 1=n 2,所以平面ADE ∥平面B 1C 1F . 拓展提升利用向量法证明平行问题的两种途径(1)利用三角形法则和平面向量基本定理实现向量间的相互转化,得到向量的共线关系; (2)通过建立空间直角坐标系,借助直线的方向向量和平面的法向量进行平行关系的证明.【跟踪训练1】 在长方体ABCD -A 1B 1C 1D 1中,AB =4,AD =3,AA 1=2,P ,Q ,R ,S 分别是AA 1,D 1C 1,AB ,CC 1的中点.求证:PQ ∥RS .证明 证法一:以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系Dxyz .则P (3,0,1),Q (0,2,2),R (3,2,0),S (0,4,1), PQ →=(-3,2,1),RS →=(-3,2,1),∴PQ →=RS →,∴PQ →∥RS →,即PQ ∥RS . 证法二:RS →=RC →+CS →=12DC →-DA →+12DD 1→,PQ →=PA 1→+A 1Q →=12DD 1→+12DC →-DA →,∴RS →=PQ →,∴RS →∥PQ →,即RS ∥PQ . 探究2 利用空间向量解决垂直问题例2 如图,在四棱锥E -ABCD 中,AB ⊥平面BCE ,CD ⊥平面BCE ,AB =BC =CE =2CD =2,∠BCE =120°.求证:平面ADE ⊥平面ABE .[证明] 取BE 的中点O ,连接OC ,则OC ⊥EB , 又AB ⊥平面BCE .∴以O 为原点建立空间直角坐标系Oxyz .如图所示.则由已知条件有C (1,0,0),B (0,3,0),E (0,-3,0),D (1,0,1),A (0,3,2). 设平面ADE 的法向量为n =(a ,b ,c ),则n ·EA →=(a ,b ,c )·(0,23,2)=23b +2c =0,n ·DA →=(a ,b ,c )·(-1,3,1)=-a +3b +c =0.令b =1,则a =0,c =-3, ∴n =(0,1,-3).∵AB ⊥平面BCE ,∴AB ⊥OC ,又OC ⊥EB ,且EB ∩AB =B ,∴OC ⊥平面ABE , ∴平面ABE 的法向量可取为m =(1,0,0). ∵n ·m =(0,1,-3)·(1,0,0)=0, ∴n ⊥m ,∴平面ADE ⊥平面ABE . 拓展提升利用向量法证明几何中的垂直问题的两条途径(1)利用三角形法则和平面向量基本定理实现向量间的相互转化,得到向量的垂直关系. (2)通过建立空间直角坐标系,借助直线的方向向量和平面的法向量进行证明.证明线面垂直时,只需直线的方向向量与平面的法向量平行或直线的方向向量与平面内两相交的直线的方向向量垂直.在判定两个平面垂直时,只需求出这两个平面的法向量,再看它们的数量积是否为0.【跟踪训练2】 如右图所示,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,D 1B 1的中点.求证:EF ⊥平面B 1AC .证明 证法一:设AB →=a ,AD →=c ,AA 1→=b ,则EF →=EB 1→+B 1F →=12(BB 1→+B 1D 1→)=12(AA 1→+BD →)=12(AA 1→+AD →-AB →)=12(-a +b +c ),∵AB 1→=AB →+AA 1→=a +b .∴EF →·AB 1→=12(-a +b +c )·(a +b )=12(b 2-a 2+c ·a +c ·b ) =12(|b |2-|a |2+0+0)=0. ∴EF →⊥AB 1→,即EF ⊥AB 1,同理,EF ⊥B 1C . 又AB 1∩B 1C =B 1, ∴EF ⊥平面B 1AC .证法二:设正方体的棱长为2,以DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立如图所示的直角坐标系,则A (2,0,0),C (0,2,0),B 1(2,2,2),E (2,2,1),F (1,1,2).∴EF →=(1,1,2)-(2,2,1) =(-1,-1,1).AB 1→=(2,2,2)-(2,0,0)=(0,2,2),AC →=(0,2,0)-(2,0,0)=(-2,2,0),∴EF →·AB 1→=(-1,-1,1)·(0,2,2)=(-1)×0+(-1)×2+1×2=0.EF →·AC →=(-1,-1,1)·(-2,2,0)=2-2+0=0, ∴EF →⊥AB 1→,EF →⊥AC →, ∴EF ⊥AB 1,EF ⊥AC . 又AB 1∩AC =A , ∴EF ⊥平面B 1AC .证法三:同法二得AB 1→=(0,2,2),AC →=(-2,2,0), EF →=(-1,-1,1).设面B 1AC 的法向量n =(x ,y ,z ), 则AB →1·n =0,AC →·n =0,即⎩⎪⎨⎪⎧2y +2z =0,-2x +2y =0,取x =1,则y =1,z =-1,∴n =(1,1,-1),∴EF →=-n ,∴EF →∥n ,∴EF ⊥平面B 1AC . 探究3 与平行、垂直有关的探索性问题例3 如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上,已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)在线段AP 上是否存在点M ,使得平面AMC ⊥平面BMC ?若存在,求出AM 的长;若不存在,请说明理由.[解] (1)证明:如图,以O 为原点,以射线OD 为y 轴的正半轴,射线OP 为z 轴的正半轴,建立空间直角坐标系Oxyz .则O (0,0,0),A (0,-3,0),B (4,2,0),C (-4,2,0),P (0,0,4), AP →=(0,3,4),BC →=(-8,0,0),由此可得AP →·BC →=0,所以AP →⊥BC →,即AP ⊥BC .(2)假设存在满足题意的M ,设PM →=λPA →,λ≠1,则PM →=λ(0,-3,-4).BM →=BP →+PM →=BP →+λPA →=(-4,-2,4)+λ(0,-3,-4)=(-4,-2-3λ,4-4λ),AC →=(-4,5,0).设平面BMC 的法向量n 1=(x 1,y 1,z 1), 平面APC 的法向量n 2=(x 2,y 2,z 2). 由⎩⎪⎨⎪⎧BM →·n 1=0,BC →·n 1=0,得⎩⎪⎨⎪⎧-4x 1-(2+3λ)y 1+(4-4λ)z 1=0,-8x 1=0,即⎩⎪⎨⎪⎧x 1=0,z 1=2+3λ4-4λy 1,可取n 1=⎝ ⎛⎭⎪⎫0,1,2+3λ4-4λ.由⎩⎪⎨⎪⎧AP →·n 2=0,AC →·n 2=0,即⎩⎪⎨⎪⎧3y 2+4z 2=0,-4x 2+5y 2=0,得⎩⎪⎨⎪⎧x 2=54y 2,z 2=-34y 2,可取n 2=(5,4,-3),由n 1·n 2=0,得4-3×2+3λ4-4λ=0,解得λ=25,故PM →=⎝ ⎛⎭⎪⎫0,-65,-85,AM →=AP →+PM →=⎝ ⎛⎭⎪⎫0,95,125,所以AM =3.综上所述,存在点M 符合题意,AM =3. 拓展提升利用向量解决探索性问题的方法对于探索性问题,一般先假设存在,利用空间坐标系,结合已知条件,转化为代数方程是否有解的问题,若有解满足题意则存在,若没有满足题意的解则不存在.【跟踪训练3】 如图,直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4.(1)求证:BC 1⊥平面AB 1C ;(2)在AB 上是否存在点D ,使得AC 1∥平面CDB 1.解 (1)证明:由已知AC =3,BC =4,AB =5,因而△ABC 是∠ACB 为直角的直角三角形,由三棱柱是直三棱柱,则CC 1⊥平面ABC ,以CA ,CB ,CC 1分别为x ,y ,z 轴建立空间直角坐标系,从而CA →=(3,0,0),BC 1→=(0,-4,4),则BC 1→·CA →=(0,-4,4)·(3,0,0)=0,则BC 1→⊥AC →,所以BC 1⊥AC .又四边形BCC 1B 1为正方形,因而BC 1⊥B 1C .又∵B 1C ∩AC =C ,∴BC 1⊥平面AB 1C .(2)假设存在点D (x ,y,0),使得AC 1∥平面CDB 1,CD →=(x ,y,0),CB 1→=(0,4,4), 设平面CDB 1的法向量m =(a ,b ,c ),则⎩⎪⎨⎪⎧m ·CD →=0,m ·CB 1→=0,即⎩⎪⎨⎪⎧xa +yb =0,4b +4c =0.令b =-x ,则c =x ,a =y ,所以m =(y ,-x ,x ),而AC 1→=(-3,0,4),则AC 1→·m =0,得-3y +4x =0.① 由D 在AB 上,A (3,0,0),B (0,4,0)得x -3-3=y4,即得4x +3y =12,② 联立①②可得x =32,y =2,∴D ⎝ ⎛⎭⎪⎫32,2,0,即D 为AB 的中点. 综上,在AB 上存在点D ,使得AC 1∥平面CDB 1,点D 为AB 的中点.1.利用向量证明线线平行的两种思路一是建立空间直角坐标系,通过坐标运算,利用向量平行的坐标表示证明;二是用基底思路,通过向量的线性运算,利用共线向量定理证明.2.向量法证明线线垂直的方法用向量法证明空间中两条直线相互垂直,其主要思路是证明两条直线的方向向量相互垂直.具体方法为:(1)坐标法:根据图形的特征,建立适当的空间直角坐标系,准确地写出相关点的坐标,表示出两条直线的方向向量,证明其数量积为0.(2)基向量法:利用向量的加减运算,结合图形,将要证明的两条直线的方向向量用基向量表示出来.利用数量积运算说明两向量的数量积为0.3.向量法证明线面垂直的方法(1)向量基底法,具体步骤如下:①设出基向量,用基向量表示直线的方向向量;②找出平面内两条相交直线的方向向量并分别用基向量表示;③分别计算直线的方向向量与平面内两条相交直线的方向向量的数量积.(2)坐标法,具体方法如下:方法一:①建立空间直角坐标系;②将直线的方向向量用坐标表示;③将平面内任意两条相交直线的方向向量用坐标表示;④分别计算直线的方向向量与平面内两条相交直线的方向向量的数量积.方法二:①建立空间直角坐标系;②将直线的方向向量用坐标表示;③求平面的法向量;④说明平面的法向量与直线的方向向量平行.4.证明面面垂直的两种思路一是证明其中一个平面过另一个平面的垂线,即转化为线面垂直;二是证明两平面的法向量垂直.1.已知线段AB的两端点坐标为A(9,-3,4),B(9,2,1),则线段AB与坐标平面( ) A.xOy平行B.xOz平行C.yOz平行D.yOz相交答案 C解析 因为AB →=(9,2,1)-(9,-3,4)=(0,5,-3),所以AB ∥平面yOz .2.若两个不同平面α,β的法向量分别为u =(1,2,-1),v =(-3,-6,3),则( ) A .α∥β B .α⊥βC .α,β相交但不垂直D .以上均不正确 答案 A解析 ∵v =-3u ,∴α∥β.3.已知直线l 与平面α垂直,直线l 的一个方向向量为u =(1,-3,z ),向量v =(3,-2,1)与平面α平行,则z 等于( )A .3B .6C .-9D .9 答案 C解析 ∵l ⊥α,v 与平面α平行,∴u ⊥v ,即u ·v =0,∴1×3+3×2+z ×1=0,∴z =-9.4.在三棱锥P -ABC 中,CP ,CA ,CB 两两垂直,AC =CB =1,PC =2,在如图所示的空间直角坐标系中,下列向量中是平面PAB 的法向量的是( )A.⎝⎛⎭⎪⎫1,1,12 B .(1,2,1) C .(1,1,1) D .(2,-2,1) 答案 A解析 PA →=(1,0,-2),AB →=(-1,1,0),设平面PAB 的一个法向量为n =(x ,y,1),则x -2=0,即x =2;-x +y =0,即y =x =2.所以n =(2,2,1).因为⎝⎛⎭⎪⎫1,1,12=12n ,所以A正确.5.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 为棱BB 1的中点,在棱DD 1上是否存在点P ,使MD ⊥平面PAC?解 如图,建立空间直角坐标系,则A (1,0,0),C (0,1,0),D (0,0,0),M ⎝⎛⎭⎪⎫1,1,12.假设存在P (0,0,x )满足条件,则PA →=(1,0,-x ),AC →=(-1,1,0).设平面PAC 的法向量为n =(x 1,y 1,z 1),则由⎩⎪⎨⎪⎧ PA →·n =0,AC →·n =0,得⎩⎪⎨⎪⎧ x 1-xz 1=0,-x 1+y 1=0.令x 1=1得y 1=1,z 1=1x ,即n =⎝ ⎛⎭⎪⎫1,1,1x , 由题意MD →∥n ,由MD →=⎝⎛⎭⎪⎫-1,-1,-12,得x =2, ∵正方体棱长为1,且2>1,∴棱DD 1上不存在点P ,使MD ⊥平面PAC .。
高考理科数学必考——几何证明与利用空间向量求线面角、面面角
高考理科数学必考——几何证明与利用空间向量求线面角、面
面角
时间过的飞快,距离高考的时间就只剩76天了,同学和老师也越来越紧张了,有些地方欠缺的同学开始寝食难安,老师也赶快奉献点干货来帮助几何证明欠缺的学生。
立体几何其实难度不大,只要你会空间向量,会建系,一切就自然而然水到渠成了。
在这先分析这些立体几何的解题思路。
在立体几何中,第一问一般会让你证明线面平行、线面垂直、面面平行、面面垂直
1、证明线面平行的方法1、平移的方法,找到直线与平面内一条直线平行
2、利用面面平行、证明线面平行
2、证明线面垂直的方法1、证明直线与平面内相交的两直线垂直
3、证明面面平行的方法1、证明一个平面内两相交的直线与另一个平面内两相交的直线互相平行
2、证明平面内两相交的直线分别平行另一个平面
4、证明面面垂直的方法1、先证明一条直线垂直于一个平面,这条直线还在另一个平面内
利用这些方法第一问就可以轻松解决了。
在立体几何第二中,会求线面角、面面角,在第二步中,利用空间向量解决就可以
利用空间向量解决第二问的步骤1、找三垂,建立空间直角坐标系
2、写出各个点的坐标
3、求出直线向量、面的法向量
4、利用夹角公式算出余弦值
下面通过两个例题说明一下这个空间几何。
空间向量线面和面面平行与垂直(周清)
图形语言
符号语言
PO ⊥ , A , a
PO = , a ⊥
OOA
a
⊥
PA
PO ⊥ , A , a
PO, a =⊥OPA
a
⊥
OA
2
3
m = n m ∥ n 直线 m ⊥平面
(1) 直线 m 方向向量 m ; m • AB =0 m ⊥AB
(2) 平面内两相交直线
的方向向量 AB , CD
m • CD =0 m ⊥CD m ⊥
AB,CD 且AB CD=P
(1) 平面的法向量 m (2) 平 面 的法向量 n
m•n=0 m⊥n
直线 m ∥平面
(1) 平面的法向量 m (2) 平 面 的法向量 n
m = n m ∥ n 平面∥平面
线线 垂直
垂 直 线面 的 垂直 证 明
面面 垂直
(1) 直线 m 方向向量 m ; (2) 直线 n 方向向量 n
m•n=0m⊥nm⊥ n
(1) 直线 m 方向向量 m ;
(2) 平面的法向量 n
条直线垂直于这个平面。
平面互相垂直。
个平面内的任意一条直线。
判 图形 定 语言 定 符号 理 语言
文字语言
a a
c
⊥
ab,=,cbP⊥b
c
⊥
三垂线定理
a a
⊥
⊥
b a ⊥ a ⊥ b
三垂线逆定理
在平面内的一条直线,如果它和这个平面内的一条 在平面内的一条直线,如果它和这个平面内的 一条斜线 斜线的射影垂直,那么它也和这条斜线垂直。 垂直,那么它也和这条斜线在平面内的 射影垂直。
有 两 条 相 交 直 线 分 别 条相交直线分别平行于另外
空间向量与立体几何:第5讲利用空间向量证明平行与垂直问题
()
A.相交
B.平行
C.在平面内
D.平行或在平面内
→ → → →→ → 解析 ∵AB=λCD+μCE,∴AB,CD,CE共面.则 AB 与平面 CDE 的位置关系是平行或在平面内.
答案 D
6.已知平面α内有一点 M(1,-1,2),平面α的一个法向量为 n=(6,-3,6),则下列点 P 中,在平面α
内的是
()
A.P(2,3,3)
B.P(-2,0,1)
C.P(-4,4,0)
D.P(3,-3,4)
→ 解析 逐一验证法,对于选项 A,MP=(1,4,1),
→
→
∴MP·n=6-12+6=0,∴MP⊥n,
∴点 P 在平面α内,同理可验证其他三个点不在平面α内.
答案 A
∵PB⊄面 EFG,∴PB∥平面 EFG.
【变式探究】 如图,平面 PAC⊥平面 ABC,△ABC 是以 AC 为斜边的等腰直角三角形,E,F,O 分别为
PA,PB,AC 的中点,AC=16,PA=PC=10.
【例 2】如图,四棱柱 ABCD-A1B1C1D1 的底面 ABCD 是正方形,O 为底面中心,A1O⊥平面 ABCD,AB =AA1= 2.
号是________.
答案 ①②③
4.若直线 l 的方向向量为 a,平面α的法向量为 n,能使 l∥α的是
()
A.a=(1,0,0),n=(-2,0,0)
B.a=(1,3,5),n=(1,0,1)
C.a=(0,2,1),n=(-1,0,-1)
D.a=(1,-1,3),n=(0,3,1)
→→ → 5.若AB=λCD+μCE,则直线 AB 与平面 CDE 的位置关系是
【规律技巧】 恰当建立坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键. 利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量
立体几何中的向量方法——证明平行及垂直
立体几何中的向量方法(一)——证明平行与垂直1.直线的方向向量与平面的法向量确实定(1)直线的方向向量:在直线上任取一非零向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎨⎧n ·a =0,n ·b =0.2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数*,y ,使v =*v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u .(4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1∥u 2.3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.(2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u .(3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0.【思考辨析】判断下面结论是否正确(请在括号中打"√〞或"×〞)(1)直线的方向向量是唯一确定的.()(2)平面的单位法向量是唯一确定的.()(3)假设两平面的法向量平行,则两平面平行.()(4)假设两直线的方向向量不平行,则两直线不平行.()(5)假设a ∥b ,则a 所在直线与b 所在直线平行.()(6)假设空间向量a 平行于平面α,则a 所在直线与平面α平行.()1.以下各组向量中不平行的是()A .a =(1,2,-2),b =(-2,-4,4)B .c =(1,0,0),d =(-3,0,0)C .e =(2,3,0),f =(0,0,0)D .g =(-2,3,5),h =(16,24,40)2.平面α有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则以下点P 中,在平面α的是()A .P (2,3,3)B .P (-2,0,1)C .P (-4,4,0)D .P (3,-3,4)3.AB →=(1,5,-2),BC →=(3,1,z ),假设AB →⊥BC →,BP →=(*-1,y ,-3),且BP ⊥平面ABC ,则实数*,y ,z 分别为______________.4.假设A (0,2,198),B (1,-1,58),C (-2,1,58)是平面α的三点,设平面α的法向量n =(*,y ,z ),则*∶y ∶z =________.题型一 证明平行问题例1(2013·改编)如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC .证明:PQ ∥平面BCD .如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP =BQ =λ(0<λ<2).(1)当λ=1时,证明:直线BC 1∥平面EFPQ ;(2)是否存在λ,使平面EFPQ 与平面PQMN 所成的二面角为直二面角?假设存在,求出λ的值;假设不存在,说明理由.题型二 证明垂直问题例2 如下图,正三棱柱(底面为正三角形的直三棱柱)ABC —A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .如下图,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠B =∠C =90°,AB =4,CD =1,点M 在PB 上,PB =4PM ,PB 与平面ABCD 成30°角.(1)求证:CM ∥平面PAD ;(2)求证:平面PAB ⊥平面PAD .题型三 解决探索性问题例3 如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC和∠A1AC均为60°,平面AA1C1C⊥平面ABCD.(1)求证:BD⊥AA1;(2)求二面角D-A1A-C的余弦值;(3)在直线CC1上是否存在点P,使BP∥平面DA1C1,假设存在,求出点P的位置,假设不存在,请说明理由.如下图,四棱锥S—ABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(1)求证:AC⊥SD.(2)假设SD⊥平面PAC,则侧棱SC上是否存在一点E,使得BE∥平面PAC.假设存在,求SE∶EC的值;假设不存在,试说明理由.利用向量法解决立体几何问题典例:如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C为60°,AP=1,AD=3,求三棱锥E-ACD的体积.A组专项根底训练1.假设直线l的方向向量为a=(1,0,2),平面α的法向量为n=(-2,0,-4),则()A.l∥αB.l⊥αC.l⊂αD.l与α相交2.假设AB→=λCD→+μCE→,则直线AB与平面CDE的位置关系是()A.相交B.平行C.在平面D.平行或在平面3.A(4,1,3),B(2,-5,1),C(3,7,-5),则平行四边形ABCD的顶点D的坐标是() A.(2,4,-1) B.(2,3,1)C.(-3,1,5) D.(5,13,-3)4.a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),假设a,b,c三向量共面,则实数λ等于()A.627B.637C.607D.6575.如图,在长方体ABCD —A 1B 1C 1D 1中,AB =2,AA 1=3,AD =22,P 为C 1D 1的中点,M 为BC 的中点.则AM 与PM 所成的角为()A .60°B .45°C .90°D .以上都不正确6.平面α的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是________.7.设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确定的平面上,则a =________.8.如图,在正方体ABCD —A 1B 1C 1D 1中,棱长为a ,M 、N 分别为A 1B 和AC 上的点,A 1M =AN =2a 3,则MN 与平面BB 1C 1C 的位置关系是________. 9.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB=12PD .证明:平面PQC ⊥平面DCQ . 10.如图,在底面是矩形的四棱锥P -ABCD 中,PA ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,PA =AB =1,BC =2.(1)求证:EF ∥平面PAB ;(2)求证:平面PAD ⊥平面PDC .B 组 专项能力提升11.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则M 点的坐标为()A .(1,1,1)B .(23,23,1) C .(22,22,1) D .(24,24,1)12.设u =(-2,2,t ),v =(6,-4,4)分别是平面α,β的法向量,假设α⊥β,则t 等于()A .3B .4C .5D .613.在正方体ABCD —A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD 的中心,M ,N 分别为AB ,BC 的中点,点Q 为平面ABCD 一点,线段D 1Q 与OP 互相平分,则满足MQ →=λMN→的实数λ有________个.14.如下图,直三棱柱ABC —A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D 、E 、F 分别为B 1A 、C 1C 、BC 的中点.求证:(1)DE ∥平面ABC ;(2)B 1F ⊥平面AEF .15.在四棱锥P —ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E 、F 分别是AB 、PB 的中点.(1)求证:EF ⊥CD ;(2)在平面PAD 求一点G ,使GF ⊥平面PCB ,并证明你的结论.。
向量法证明平行与垂直-人教版高中数学
知识图谱-利用向量证明空间中的平行关系-利用向量证明空间中的垂直关系直线的方向向量与直线的向量方程利用向量方法证明线面平行关系利用向量方法证明线线与面面的平行关系利用向量方法证明线线垂直平面的法向量利用向量方法证明线面垂直利用向量方法证明面面垂直第02讲_向量法证明平行与垂直错题回顾利用向量证明空间中的平行关系知识精讲一.直线的方向向量与直线的向量方程1.点的位置向量在空间中,我们取一定点作为基点,那么空间中任意一点的位置就可以用向量来表示,我们把向量称为点的位置向量.2.直线的方向向量空间中任一直线的位置可以由上的一个定点以及一个定方向确定,如图,点是直线上的一点,向量表示直线的方向向量,则对于直线上任一点,有,这样点和向量,不仅可以确定直线的位置,还可具体表示出上的任意点;直线上的向量以及与共线的向量叫做的方向向量.3.直线的向量方程直线上任意一点,一定存在实数,使得①,①式可以看做直线的参数方程,直线的参数方程还可以作如下表示:对空间中任意一确定点,点在直线上的充要条件是存在唯一的实数满足等式②,如果在上取,则上式可以化为③;①②③都叫做空间直线的向量参数方程.二.平面的法向量1.平面法向量的定义已知平面,如果向量的基线与平面垂直,则向量叫作平面的法向量或者说向量与平面正交.2.平面法向量的性质(1)平面上的一个法向量垂直于平面共面的所有向量;(2)一个平面的法向量有无限多个,它们互相平行.三.用向量方法证明空间中的平行关系1.线线平行设直线的方向向量分别是,则要证明或与重合,只需要证明,即.2.线面平行(1)设直线的方向向量是,平面的法向量是,要证明,只需要证明;(2)根据线面平行的判定定理:如果直线(平面外)与平面内的一条直线平行,那么这条直线与这个平面平行;所以,要证明一条直线和一个平面平行,也可以在平面内找到一个向量与已知直线的方向向量是共线向量即可;(3)根据共面向量定理可知:如果一个向量和两个不共线的向量是共面向量,那么这个向量与这两个不共面向量确定的平面一定平行.已知两个不共线向量与平面共面,一条直线的一个方向向量为,则由共面向量定理,可得或在内存在两个实数,使.3.面面平行(1)若能求出平面的法向量,要证明,只需要证明即可.(2)由面面平行的判定定理:要证明面面平行,只要转化为相应的线面平行、线线平行即可,已知两个不共线的向量与平面共面,则由两平面平行的判定与性质,得.三点剖析一.方法点拨1.在平面内,直线的向量方程可类比点斜式方程,直线的方向向量、斜率都是刻画直线方向的量,只是从不同角度引入,它们有一定的关系:斜率为的直线,其方向向量为,反之,方向向量为的直线不一定存在斜率;在空间中,用方向向量刻画直线较为方便.2.空间中建系描述选取三条两两相交的直线的交点作为原点,以哪三条直线为轴,建立空间直角坐标系.例如:正方体中,建系的描述为:以点为坐标原点,分别以所在直线为轴,建立空间直角坐标系.3.用空间向量证明平行关系需要注意的问题(1)用空间向量的方法证明立体几何中的平行问题,主要运用了直线的方向向量和平面的法向量,同时也要借助空间中已有的一些关于平行的定理.(2)用向量方法证明平行问题的步骤①建立空间图形与空间向量的关系,用空间向量表示问题中涉及的点、直线、平面;②通过向量运算研究平行问题;③根据运算结果解释相关问题.4.平面法向量的求法(1)建立适当的坐标系;(2)设出平面法向量为;(3)找出(求出)平面内的两个共线的向量的坐标;(4)根据法向量的定义建立关于的方程组;(5)解方程组,取其中的一个解,即得法向量,由于一个平面的法向量有无数个,故可在代入方程组的解中取一个最简单的作为平面的法向量.有时候,题目中的线面垂直条件比较明显,可以将垂线的方向向量作为平面的法向量来解决问题.题模精讲题模一直线的方向向量与直线的向量方程例1.1、已知向量=(2,4,5),=(3,x,y)分别是直线l1、l2的方向向量,若l1∥l2,则()A、x=6,y=15B、x=3,y=C、x=3,y=15D、x=6,y=例1.2、从点沿向量的方向取线段长,则B点的坐标为( )A、B、C、D、题模二平面的法向量例2.1、在空间直角坐标系内,设平面经过点,平面的法向量为,为平面内任意一点,求满足的关系式.例2.2、(1)设平面的法向量为,平面的法向量为,若,则__________;则__________.(2)若的方向向量为,平面的法向量为,若,则__________;若,则__________.题模三利用向量方法证明线面平行关系例3.1、已知正方形和正方形相交于分别在上,且,求证平面.例3.2、在正方体中,的中点,求证:.题模四利用向量方法证明线线与面面的平行关系例4.1、在正方体中,分别是的中点.证明:.例4.2、如右图所示,在平行六面体中,分别是的中点.求证:平面∥平面..随堂练习随练1.1、已知,,则直线的模为的方向向量是________________.随练1.2、已知点若点为直线上任意一点,则直线的向量参数方程为______________,当时,点的坐标为______________.随练1.3、已知,且均与平面平行,直线的方向向量,则()随练1.4、若两个不同平面的法向量分别为,则( )A、B、C、相交但不垂直D、以上均不正确随练1.5、已知平面经过三点,试求平面的一个法向量.随练1.6、在正方体中,分别是的中点,求证:.随练1.7、已知正方体的棱长为2,分别是的中点,求证:(1);(2).利用向量证明空间中的垂直关系知识精讲一.直线方向向量与平面法向量在确定直线、平面位置关系中的应用设空间两条直线的方向向量分别是,两个平面的法向量分别是,则有下表与与与二.用向量方法证明空间中的垂直关系1.线线垂直设直线的方向向量分别是,则要证明,只需要证明,即.2.线面垂直(1)设直线的方向向量是,平面的法向量是,要证明,只需要证明.(2)根据线面垂直的判定定理,转化为直线与平面内的两条相交直线垂直.3.面面垂直(1)根据面面垂直的判定定理转化为证相应的线面垂直,线线垂直;(2)证明两个平面的法向量互相垂直.一、方法点拨1.平面法向量可以不唯一,只要是垂直于平面的直线,其方向向量都可以当作法向量进行运算.2.平面中的平行、垂直关系的向量论证,注意复习线面、面面平行与垂直的判定定理,将这种位置关系的判断转化为向量间的代数运算,体现了向量的工具性功能.题模精讲题模一利用向量方法证明线线垂直例1.1、设的方向向量,的方向向量,若,则( )A、1B、2C、D、3例1.2、在正三棱柱中,.求证:.题模二利用向量方法证明线面垂直若直线的方向向量为,平面的法向量为,则( )A、B、C、D、斜交例2.2、在正方体中,分别是棱的中点,试在棱上找一点,使得.题模三利用向量方法证明面面垂直例3.1、若两个不同平面的法向量分别为,则( )A、B、C、相交但不垂直D、以上均不正确例3.2、在长方体中,,分别是棱的中点.(1)求证:平面;(2)求证:平面平面.随堂练习随练2.1、如图所示,已知空间四边形的各边和对角线的长都等于,点分别是的中点.求证:随练2.2、如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.(1)证明PA∥平面EDB;(2)证明PB⊥平面EFD;(3)求二面角C-PB-D的大小.随练2.3、在正棱锥中,三条侧棱两两互相垂直,的重心,分别为上的点,且(1)求证:平面;(2)求证:的公垂线段.自我总结课后作业作业1、已知,把按向量平移后所得的向量是( )A、B、C、D、作业2、正四面体的高的中点为,则平面的一个法向量可以是________,平面的一个法向量可以是________.作业3、若直线是两条异面直线,它们的方向向量分别是,则直线的公垂线(与两异面直线垂直相交的直线)的一个方向向量是________.作业4、是正四棱柱,侧棱长为3,底面边长为2,E是棱BC的中点,求证:.作业5、如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点,(1)求证:AC⊥BC1;(2)求证:AC1∥平面CDB1;(3)求二面角C1-AB-C的余弦值.作业6、已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5)求:(1)求以向量,为一组邻边的平行四边形的面积S;(2)若向量分别与向量,垂直,且||=,求向量的坐标.作业7、如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC=2,E是PC的中点,作EF⊥PB交PB于点F.(1)证明:PA∥平面EDB;(2)证明:PB⊥平面EFD.作业8、在直三棱柱中,底面是以为直角的等腰直角三角形,,的中点,在线段,使?若存在,求出;若不存在,请说明理由.作业9、如图,平面ABEF⊥平面ABCD,四边形ABEF与ABCD都是直角梯形,∠BA D=∠FAB=90°,BC AD,BE AF,G,H分别为FA,FD的中点(Ⅰ)证明:四边形BCHG是平行四边形;(Ⅱ)C,D,F,E四点是否共面?为什么?(Ⅲ)设AB=BE,证明:平面ADE⊥平面CDE.。
利用空间向量证明平行、垂直问题 课件
答案:(1)l1⊥l2 (2)α∥β (3)l与α斜交 (4)l⊂α或l∥α
题型二 平面法向量的求法
例 2 若 A0,2,189,B1,-1,58,C-2,1,58 是平面 α 内的三点,设平面 α 的法向量 a=(x,y,z),
6.证明两条直线平行,只要证明这两条直线的 方向向量是平__行__(_或__共__线__)_.
7.证明两条直线垂直,只要证明这两条直线的 方向向量_垂__直___.
1.若直线l1,l2的方向向量分别为a=(1,2,-2), b=(-2,3,2),则( )B
A.l1∥l2
B.l1⊥l2
C.l1、l2相交但不垂直 D.不能确定
2.若平面α、β的法向量分别为u=(2,-3,5), v=(-3,1,-4),则( ) C
A.α∥β B.α⊥β
C.α、β相交但不垂直 D.以上均不正确
自测 自评
3.平面 α 的法向量 u=(x,1,-2),平面 β 的法向
量 v=-1,y,12,已知 α∥β,则 x+y=(
)
A.
13 4
B.145
(2)①u=(1,-1,2),v=3,2,-12, ∴u·v=3-2-1=0,∴u⊥v,∴α⊥β. ②∵u=(0,3,0),v=(0,-5,0),∴u=-35v, ∴u∥v,∴α∥β. ③∵u=(2,-3,4),v=(4,-2,1), ∴u 与 v 不共线,也不垂直, ∴α 与 β 相交但不垂直. (3)①∵u=(2,2,-1),a=(-3,4,2),
①a=(2,3,-1),b=(-6,-9,3); ②a=(5,0,2),b=(0,4,0); ③a=(-2,1,4),b=(6,3,3). (2)设 u,v 分别是不同的平面 α,β 的法向量,根据下列条 件判断 α,β 的位置关系: ①u=(1,-1,2),v=3,2,-12; ②u=(0,3,0),v=(0,-5,0);
高考数学(理)之立体几何与空间向量 专题06 平面与平面的平行、垂直的判定与性质(解析版)
立体几何与空间向量06 平面与平面的平行、垂直的判定与性质【考点讲解】一、具体目标:1.理解空间直线、平面位置关系的定义,并了解可以作为推理依据的公理和定理;2.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理;3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.二、知识概述:1.面面平行的判定与性质a⊂β,b⊂β,a∩b=P,α∥β,α∩γ=a,(1)定义:两个平面没有公共点,称这两个平面平行;(2)判定定理:a⊂α,b⊂α,a∩b=M,a∥β,b∥β⇒α∥β;(3)推论:a∩b=M,a,b⊂α,a′∩b′=M′,a′,b′⊂β,a∥a′,b∥b′⇒α∥β.3.两个平面平行的性质定理(1)α∥β,a⊂α⇒a∥β;(2)α∥β,γ∩α=a,γ∩β=b⇒a∥b.3.平面与平面垂直的判定与性质(1)平面与平面垂直的判定方法①定义法.②利用判定定理:如果一个平面过另一个平面的一条垂线,则这两个平面互相垂直.(2)平面与平面垂直的性质:如果两平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.4.定义:两个平面相交,如果所成的二面角是直二面角,就说这两个平面互相垂直.5.定理:⎭⎪⎬⎪⎫AB βAB ⊥α⇒β⊥α⎭⎪⎬⎪⎫α⊥βα∩β=MNAB βAB ⊥MN⇒AB ⊥α1.【2019年高考全国Ⅱ卷理数】设α,β为两个平面,则α∥β的充要条件是( ) A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线D .α,β垂直于同一平面【解析】本题考查了空间两个平面的判定与性质及充要条件.由面面平行的判定定理知:α内两条相交直线都与β平行是αβ∥的充分条件,由面面平行性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是αβ∥的必要条件,故选B . 【答案】B2.【2019年高考浙江卷】设三棱锥V –ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P –AC –B 的平面角为γ,则( ) A .β<γ,α<γB .β<α,β<γC .β<α,γ<αD .α<β,γ<β【解析】本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.如图,G 为AC 中点,连接VG ,V 在底面ABC 的投影为O ,则P 在底面的投影D 在线段AO 上,过D 作DE 垂直于AC 于E ,连接PE ,BD ,易得PE VG ∥,过P 作PF AC ∥交VG 于F ,连接BF ,过D 作DH AC ∥,交BG 于H ,则,,BPF PBD PED αβγ=∠=∠=∠,结合△PFB ,△BDH ,△PDB 均为直角三角形,可得cos cos PF EG DH BDPB PB PB PBαβ===<=,即αβ>; 【真题分析】在Rt △PED 中,tan tan PD PDED BDγβ=>=,即γβ>,综上所述,答案为B.【变式1】【2018年高考浙江卷】已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则( )A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ1【解析】设O 为正方形ABCD 的中心,M 为AB 中点,过E 作BC 的平行线EF ,交CD 于F ,过O 作ON 垂直EF 于N ,连接SO ,SN ,SE ,SM ,OM ,OE ,则SO 垂直于底面ABCD ,OM 垂直于AB , 因此123,,,SEN SEO SMO ∠=∠=∠=θθθ从而123tan ,tan ,tan ,SN SN SO SOEN OM EO OM====θθθ 因为SN SO EO OM ≥≥,,所以132tan tan tan ,≥≥θθθ即132≥≥θθθ,故选D. 【答案】D【变式2】【2017年高考浙江卷】如图,已知正四面体–D ABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP=PB ,2BQ CR QC RA==,分别记二面角D –PR –Q ,D –PQ –R ,D –QR –P 的平面角为αβγ,,,则( )A . γαβ<<B .αγβ<<C .αβγ<<D .βγα<<【解析】设O 为三角形ABC 中心,则O 到PQ 距离最小,O 到PR 距离最大,O 到RQ 距离居中,而三棱锥的高相等,因此αγβ<<,所以选B . 【答案】B3.【2018优选题】空间中,设,m n 表示不同的直线, ,,αβγ表示不同的平面,则下列命题正确的是( )A. 若,αγβγ⊥⊥,则//αβB. 若,m m αβ⊥⊥,则//αβC. 若,m βαβ⊥⊥,则//m αD. 若,n m n α⊥⊥,则//m α 【解析】本题考点是面面平行,线面平行的判定.A 项,若,αγβγ⊥⊥,过正方体同一顶点的三个平面分别为,,αβγ,则αβ⊥,故A 项不合题意;B 项,若,m m αβ⊥⊥,根据垂直于同一条直线的两个平面平行,则//αβ,故B 项符合题意;C 项,若,m βαβ⊥⊥,由同时垂直于一个平面的直线和平面的位置关系可以是直线在平面内或平行可知,直线m 在平面α内或平行,故C 项不合题意;D 项,若,n m n α⊥⊥,由同时垂直于一条直线的直线和平面的位置关系可以是直线在平面内或平行可知,直线m 在平面α内或平行,故D 项不合题意. 故选B. 【答案】B4.【2019优选题】在正四面体P -ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,则下面四个结论中不成立的是( ) A .BC ∥平面PDF B .DF ⊥平面P AE C .平面PDF ⊥平面ABCD .平面P AE ⊥平面ABC【解析】画出图形,如图所示,则BC ∥DF ,又DF ⊂平面PDF ,BC ⊄平面PDF ,∴BC ∥平面PDF ,故A 成立;由题意可得AE ⊥BC ,PE ⊥BC ,BC ∥DF ,则DF ⊥AE ,DF ⊥PE ,∴DF ⊥平面P AE ,故B 成立; 又DF ⊂平面ABC ,∴平面ABC ⊥平面P AE ,故D 成立.本题的考点是平面与平面垂直的判定.【答案】C5.【2016全国新课标2】α,β是两个平面,m ,n 是两条直线,有下列四个命题:①如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. ②如果m ⊥α,n ∥α,那么m ⊥n . ③如果α∥β,m ⊂α,那么m ∥β.④如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 .(填写所有正确命题的编号)【解析】对于①,,,//m n m n αβ⊥⊥,则,αβ的位置关系无法确定,故错误;对于②,因为//n α,所以过直线n 作平面γ与平面α相交于直线c ,则//n c ,因为,,m m c m n α⊥⊥⊥所以所以,故②正确;对于③,由两个平面平行的性质可知正确;对于④,由线面所成角的定义和等角定理可知其正确,故正确的命题有②③④.本题考点是空间中的线面关系. 【答案】②③④6.【2019年高考全国Ⅰ卷理数】如图,直四棱柱ABCD–A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求二面角A−MA 1−N 的正弦值.【解析】(1)连结B 1C ,ME .因为M ,E 分别为BB 1,BC 的中点,所以ME ∥B 1C ,且ME =12B 1C . 又因为N 为A 1D 的中点,所以ND =12A 1D .由题设知A 1B 1=P DC ,可得B 1C =P A 1D ,故ME =P ND , 因此四边形MNDE 为平行四边形,MN ∥ED .又MN ⊄平面EDC 1,所以MN ∥平面C 1DE .(2)由已知可得DE ⊥DA .以D 为坐标原点,DA uuu r的方向为x 轴正方向,建立如图所示的空间直角坐标系D −xyz ,则(2,0,0)A ,A 1(2,0,4),2)M ,(1,0,2)N ,1(0,0,4)A A =-u u u r ,1(12)A M =--u u u u r ,1(1,0,2)A N =--u u u u r,(0,MN =u u u u r .设(,,)x y z =m 为平面A 1MA 的法向量,则1100A M A A ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u u rm m ,所以2040x z z ⎧--=⎪⎨-=⎪⎩,.可取=m .设(,,)p q r =n 为平面A 1MN 的法向量,则100MN A N ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u u ur ,.n n所以020p r ⎧=⎪⎨--=⎪⎩,.可取(2,0,1)=-n.于是cos ,||⋅〈〉===‖m n m n m n , 所以二面角1A MA N --的正弦值为5. 7.【2019年高考全国Ⅲ卷理数】图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的二面角B −CG −A 的大小.【解析】(1)由已知得AD P BE ,CG P BE ,所以AD P CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ⊥BE ,AB ⊥BC ,故AB ⊥平面BCGE . 又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE .(2)作EH ⊥BC ,垂足为H .因为EH ⊂平面BCGE ,平面BCGE ⊥平面ABC ,所以EH ⊥平面ABC . 由已知,菱形BCGE 的边长为2,∠EBC =60°,可求得BH =1,EHH 为坐标原点,HC u u u r的方向为x 轴的正方向,建立如图所示的空间直角坐标系H –xyz ,则A (–1,1,0),C (1,0,0),G (2,0),CG uuu r =(1,0),AC uuu r=(2,–1,0).设平面ACGD 的法向量为n =(x ,y ,z ),则0,0,CG AC ⎧⋅=⎪⎨⋅=⎪⎩u u u ru u u r n n即0,20.x x y ⎧+=⎪⎨-=⎪⎩ 所以可取n =(3,6,.又平面BCGE 的法向量可取为m =(0,1,0),所以cos ,||||2⋅〈〉==n m n m n m . 因此二面角B –CG –A 的大小为30°.8.【2019年高考北京卷文数】如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底部ABCD 为菱形,E 为CD 的中点.(1)求证:BD ⊥平面PAC ;(2)若∠ABC =60°,求证:平面PAB ⊥平面PAE ;(3)棱PB 上是否存在点F ,使得CF ∥平面PAE ?说明理由.【解析】本题主要考查线面垂直的判定定理,面面垂直的判定.(1)因为PA ⊥平面ABCD ,所以PA BD ⊥.又因为底面ABCD 为菱形,所以BD AC ⊥. 所以BD ⊥平面PAC .(2)因为PA ⊥平面ABCD ,AE ⊂平面ABCD ,所以PA ⊥AE .因为底面ABCD 为菱形,∠ABC =60°,且E 为CD 的中点,所以AE ⊥CD .所以AB ⊥AE .所以AE ⊥平面PAB .所以平面PAB⊥平面PAE.(3)棱PB上存在点F,使得CF∥平面PAE.取F为PB的中点,取G为PA的中点,连结CF,FG,EG.则FG∥AB,且FG=12 AB.因为底面ABCD为菱形,且E为CD的中点,所以CE∥AB,且CE=12AB.所以FG∥CE,且FG=CE.所以四边形CEGF为平行四边形.所以CF∥EG.因为CF⊄平面PAE,EG⊂平面PAE,所以CF∥平面PAE.9.【2019年高考全国Ⅲ卷文数】图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的四边形ACGD的面积.【解析】本题从多面体折叠开始,考查考生在折叠过程中掌握哪些量的大小与位置关系是不变与变化的,折叠后的多面体的性质解决题中的要求.(1)由已知得AD P BE,CG P BE,所以AD P CG,故AD,CG确定一个平面,从而A,C,G,D四点共面.由已知得AB⊥BE,AB⊥BC,故AB⊥平面BCGE.又因为AB⊂平面ABC,所以平面ABC⊥平面BCGE.(2)取CG的中点M,连结EM,DM.因为AB∥DE,AB⊥平面BCGE,所以DE⊥平面BCGE,故DE⊥CG.由已知,四边形BCGE是菱形,且∠EBC=60°得EM⊥CG,故CG⊥平面DEM.因此DM⊥CG.在Rt△DEM中,DE=1,EM DM=2.所以四边形ACGD的面积为4.10.【2019年高考北京卷理数】如图,在四棱锥P–ABCD中,PA⊥平面ABCD,AD⊥CD,AD∥BC,PA=AD=CD=2,BC =3.E 为PD 的中点,点F 在PC 上,且13PF PC =. (1)求证:CD ⊥平面PAD ; (2)求二面角F –AE –P 的余弦值; (3)设点G 在PB 上,且23PG PB =.判断直线AG 是否在平面AEF 内,说明理由.【解析】(1)因为PA ⊥平面ABCD ,所以PA ⊥CD .又因为AD ⊥CD ,所以CD ⊥平面PAD . (2)过A 作AD 的垂线交BC 于点M .因为PA ⊥平面ABCD ,所以PA ⊥AM ,PA ⊥AD .如图建立空间直角坐标系A −xyz ,则A (0,0,0),B (2,-1,0),C (2,2,0),D (0,2,0), P (0,0,2).因为E 为PD 的中点,所以E (0,1,1).所以(0,1,1),(2,2,2),(0,0,2)AE PC AP ==-=u u u ru u u r u u u r.所以1222224,,,,,3333333PF PC AF AP PF ⎛⎫⎛⎫==-=+= ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r u u u r u u u r .设平面AEF 的法向量为n =(x ,y ,z ),则0,0,AE AF ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r n n 即0,2240.333y z x y z +=⎧⎪⎨++=⎪⎩ 令z =1,则1,1y x =-=-.于是=(1,1,1)--n .又因为平面PAD 的法向量为p =(1,0,0),所以3cos ,||3⋅〈〉==-‖n p n p n p . 由题知,二面角F −AE −P .(3)直线AG 在平面AEF 内.因为点G 在PB 上,且2,(2,1,2)3PG PB PB ==--u u ur ,所以2424422,,,,,3333333PG PB AG AP PG ⎛⎫⎛⎫==--=+=- ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r u u u r u u u r .由(2)知,平面AEF 的法向量=(1,1,1)--n .所以4220333AG ⋅=-++=u u u r n .所以直线AG 在平面AEF 内.11.【2019年高考天津卷文数】如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD △为等边三角形,平面PAC ⊥平面PCD ,,2,3PA CD CD AD ⊥==.(1)设G ,H 分别为PB ,AC 的中点,求证:GH ∥平面PAD ; (2)求证:PA ⊥平面PCD ;(3)求直线AD 与平面PAC 所成角的正弦值.【解析】(1)连接BD ,易知AC BD H =I ,BH DH =.又由BG=PG ,故GH PD ∥. 又因为GH ⊄平面P AD ,PD ⊂平面P AD ,所以GH ∥平面P AD . (2)取棱PC 的中点N ,连接DN .依题意,得DN ⊥PC ,又因为平面PAC ⊥平面PCD ,平面PAC I 平面PCD PC =,所以DN ⊥平面P AC , 又PA ⊂平面P AC ,故DN PA ⊥.又已知PA CD ⊥,CD DN D =I ,所以PA ⊥平面PCD . (3)连接AN ,由(2)中DN ⊥平面P AC ,可知DAN ∠为直线AD 与平面P AC 所成的角, 因为PCD △为等边三角形,CD =2且N 为PC的中点,所以DN =又DN AN ⊥, 在Rt AND △中,3sinDN DAN AD ∠==.所以,直线AD 与平面P AC 所成角的正弦值为3.12.【2019年高考天津卷理数】如图,AE ⊥平面ABCD ,,CF AE AD BC ∥∥,,AD AB ⊥1,2AB AD AE BC ====.(1)求证:BF ∥平面ADE ;(2)求直线CE 与平面BDE 所成角的正弦值; (3)若二面角E BD F --的余弦值为13,求线段CF 的长.【解析】依题意,可以建立以A 为原点,分别以AB AD AE u u u r u u u r u u u r,,的方向为x 轴,y 轴,z 轴正方向的空间直角坐标系(如图),可得(0,0,0),(1,0,0),(1,2,0),(0,1,0)A B C D ,(0,0,2)E .设(0)CF h h =>>,则()1,2,F h .(1)依题意,(1,0,0)AB =u u u r 是平面ADE 的法向量,又(0,2,)BF h =u u u r ,可得0BF AB ⋅=u u u r u u u r ,又因为直线BF ⊄平面ADE ,所以BF ∥平面ADE . (2)依题意,(1,1,0),(1,0,2),(1,2,2)BD BE CE =-=-=--u u u ru u u r u u u r.设(,,)x y z =n 为平面BDE 的法向量,则0,0,BD BE ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r n n 即0,20,x y x z -+=⎧⎨-+=⎩不妨令1z =,可得(2,2,1)=n .因此有4cos ,9||||CE CE CE ⋅==-u u u ru u u r u u u r n n n .所以,直线CE 与平面BDE 所成角的正弦值为49.(3)设(,,)x y z =m 为平面BDF 的法向量,则0,0,BD BF ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r m m 即0,20,x y y hz -+=⎧⎨+=⎩不妨令1y =,可得21,1,h ⎛⎫=- ⎪⎝⎭m.由题意,有||1cos ,||||3⋅〈〉===m n m n m n ,解得87h =.经检验,符合题意. 所以,线段CF的长为87.【模拟考场】1.设α,β是两个不同的平面,m 是直线且m α⊂.“m β∥”是“αβ∥”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【解析】本题考点是线面平行与面面平行与充要条件的综合应用.因为α,β是两个不同的平面,m 是直线且m α⊂.若“m β∥”,则平面、αβ可能相交也可能平行,不能推出//αβ,反过来若//αβ,m α⊂,则有m β∥,则“m β∥”是“αβ∥”的必要而不充分条件,故选B. 【答案】B2.设,a b 是空间中不同的直线, ,αβ是不同的平面,则下列说法正确的是( )A. //,a b b α⊂,则//a αB. ,,//a b αβαβ⊂⊂,则//a bC. ,,//,//a b b αααββ⊂⊂,则//αβD. //,a αβα⊂,则//a β【解析】本题考点是线面平行,面面平行的判定。
向量法证明平行与垂直-人教版高中数学
第02讲一向量法证明平行与垂直知识图谱-利用向量证明空间中的平行关系-利用向星证明空间中的垂直关系宜线的方向向量与直线的向量方程利用向量方法证明线面平行关系利用向星方法证明线线与面面的平行关系利用向星方法证明线线垂直平面的法向星利用向星方法证明线面垂直利用向量方法证明面面垂直第02讲-向量法证明平行与垂直错题回顾利用向量证明空间中的平行关系知识Si井一・直线的方向向量与直线的向量方程1.点的位置向量在空间中,我们取一定点0作为基点,那么空间中任意一点P的位置就可以用向量成来表示,我们把向量质称为点P的位置向量.2.直线的方向向量空间中任一直线I的位置可以由I上的一个定点A以及一个定方向确定,如图,点村是直线,上的一点,向量或表示直线[的方向向量,则对于直线[上任一点户,有步弟,这样点工和向量成,不仅可以确定直线,的位置,还可具体表示出/上的任意点;直线I上的向量S以及与3共线的向量叫做i的方向向量・3.直线I的向量方程直线上任意一点P定存在实数,,使得衣=龙①,①式可以看做直线[的参数方程,直线f的参数方程还可以作如下表示:对空间中任意一确定点。
,点户在直线[上的充要条件是存在唯一的实数,满足等式灵=鬲*②,如果在,上取后=株,则上式可以化为灸=扇以刀=函硕赤-&)=(1-!)宓H房①;①②③都叫做空间直线的向量参数方程.二•平面的法向量1.平面法向量的定义已知平面a,如果向量成的基线与平面a垂直,则向量成叫作平面”的法向量或者说向量成与平面a正交.2.平面法向量的性质(1)平面“上的一个法向量垂直于平面“共面的所有向量;(2)一个平面的法向量有无限多个,它们互相平行.三.用向量方法证明空间中的平行关系1.牺平行设直线4房的方向向量分别是',5,则要证明4"《或4与"重合,只需要证明加,即M疗.2.线面平行(1)设直线,的方向向量是a,平面。
的法向量是元,要证明〃r/,只需要证明Sz;=o;(2)根据线面平行的判定定理:如果直线(平面夕卜)与平面内的一条直线平行,那么这条直线与这个平面平行;所以,要证明2直线和一个平面平行,也可以在平面内找到一个向量与已知直线的方向向量是共线向量即可;(3)根据共面向量定理可知:如果一个向量和两个不共线的向量是共面向量,那么这个向量与这两个不共面向量确定的平面一定平行.已知两个不共线向量名逡与平面“共面,一条直线]的一个方向向量为亍,则由共面向量定理,可得E或[在位内9存在两个实数W,使土戒+>£.3平行(1借能求出平面s月的法向量元足,要证明耻,只需要证明河即可.(2)由面面平行的判定定理:要证明面面平行,只要转化为相应的线面平行、线线平行即可,已知两个不共线的向量相与与平面“共面,则由两平面平行的判定与性质,得。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用空间向量证明面面平行垂直1.如图所示,在正方体ABCDA1B1C1D1中,E,F,M分别为棱BB1,CD,AA1的中点.证明:平面ADE⊥平面A1D1F.2.如图,在直三棱柱ABC−A1B1C1中,∠ABC=90°,BC=2,CC1=4,点E在棱BB1上,EB1=1,D,F,G分别为CC1,B1C1,A1C1的中点,EF与B1D相交于点H.求证:平面EGF//平面ABD3.如图,在四棱锥P−ABCD中,底面ABCD是边长为1的正方形,PA⊥平面ABCD,PA=1,M为侧棱PD的中点.证明:平面MAC⊥平面PCD4.如图,四边形是矩形,平面,,为中点.证明:平面平面5.如图,在底面是矩形的四棱锥P−ABCD中,PA⊥平面ABCD,PA=AB=2,BC=4,E是PD的中点.求证:平面PDC⊥平面PAD6.如图,在正方体ABCD−A1B1C1D1中,E为棱DD1的中点.求证:平面EAC⊥平面AB1C7.如图,正三棱柱ABC−A1B1C1的所有棱长都为2,D为CC1中点.求证:平面ABB1A1⊥平面A1BDPD。
8.如图,四边形ABCD为正方形,PD⊥平面ABCD,PD//QA,QA=AB=12证明:平面PQC⊥平面DCQ答案和解析1.解:以D 为原点,向量DA ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,DD 1⃗⃗⃗⃗⃗⃗⃗⃗ 的方向分别为x 轴,y 轴,z 轴的正方向建立坐标系如图,设正方体的棱长为1.则D(0,0,0),A(1,0,0),E (1,1,12),C 1(0,1,1),M (1,0,12),DA ⃗⃗⃗⃗⃗ =(1,0,0),DE ⃗⃗⃗⃗⃗⃗ =(1,1,12),C 1M ⃗⃗⃗⃗⃗⃗⃗⃗ =(1,−1,−12). 设平面ADE 的法向量为m⃗⃗⃗ =(a,b ,c), 则{DA ⃗⃗⃗⃗⃗ ·m ⃗⃗⃗ =0DE ⃗⃗⃗⃗⃗⃗ ·m ⃗⃗⃗ =0⇒{a =0,a +b +12c =0.令c =2,得m⃗⃗⃗ =(0,−1,2), 由D 1(0,0,1),A 1(1,0,1),F (0,12,0),得D 1A 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(1,0,0),D 1F ⃗⃗⃗⃗⃗⃗⃗ =(0,12,−1), 设平面A 1D 1F 的法向量为n ⃗ =(x,y ,z),则{D 1A 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·n ⃗ =0D 1F ⃗⃗⃗⃗⃗⃗⃗ ·n ⃗ =0⇒{x =0,12y −z =0. 令y =2,则n⃗ =(0,2,1).∵m ⃗⃗⃗ ·n ⃗ =(0,−1,2)·(0,2,1)=0−2+2=0, ∴m ⃗⃗⃗ ⊥n ⃗ .∴平面ADE ⊥平面A 1D 1F .2.证明:如图所示建立空间直角坐标系,设AB =a ,则A 1(a,0,0),B 1(0,0,0),C 1(0,2,0),F(0,1,0),E(0,0,1), A(a,0,4),B(0,0,4),D(0,2,2),G(a2,1,0).所以B 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =(0,2,2),AB ⃗⃗⃗⃗⃗ =(−a,0,0),BD ⃗⃗⃗⃗⃗⃗ =(0,2,−2).AB ⃗⃗⃗⃗⃗ =(−a,0,0),BD ⃗⃗⃗⃗⃗⃗ =(0,2,−2),GF ⃗⃗⃗⃗⃗ =(−a 2,0,0),EF ⃗⃗⃗⃗⃗ =(0,1,−1),所以AB ⃗⃗⃗⃗⃗ =2GF ⃗⃗⃗⃗⃗ ,BD ⃗⃗⃗⃗⃗⃗ =2EF ⃗⃗⃗⃗⃗ ,所以GF ⃗⃗⃗⃗⃗ //AB ⃗⃗⃗⃗⃗ ,EF ⃗⃗⃗⃗⃗ //BD ⃗⃗⃗⃗⃗⃗ ⋅所以GF // AB ,EF // BD . 又GF ∩EF =F ,AB ∩BD =B ,所以平面EGF //平面ABD .3. 证明:(1)∵PA ⊥平面ABCD ,ABCD 为正方形,以A 点为坐标原点,以AB 所在的直线为x 轴,以AD 所在的直线为y 轴,以AP 所在的直线为z 轴,建立如图所示的坐标系,由已知可得A(0,0,0),B(1,0,0),C(1,1,0),D(0,1,0),P(0,0,1), 因为M 为PD 的中点,且PA =AD =1,所以AM ⊥PD ,M(0,12,12),AM ⃗⃗⃗⃗⃗⃗ =(0,12,12), CM⃗⃗⃗⃗⃗⃗ =(−1,−12,12),所以AM ⃗⃗⃗⃗⃗⃗ ·CM ⃗⃗⃗⃗⃗⃗ =(0,12,12)·(−1,−12,12)=0, 所以AM ⊥CM ,又PD ∩CM =M ,所以AM ⊥平面PCD , 因为AM ⊂平面MAC ,所以平面MAC ⊥平面PCD .4.证明:因为四边形ABCD 是矩形,所以AB ⊥AD .又因为PA ⊥平面ABCD ,AB 、AD ⊂平面ABCD ,所以PA ⊥AB ,PA ⊥AD . 以A 为坐标原点,AB 、AD 、AP 分别为x 、y 、z 轴,建立空间直角坐标系,如图:因为PA =AD =2AB =2,E 为BC 中点,所以A (0,0,0),B (1,0,0),C (1,2,0),E (1,1,0),D (0,2,0),P (0,0,2), 则AP⃗⃗⃗⃗⃗ =(0,0,2),AE ⃗⃗⃗⃗⃗ =(1,1,0),DP ⃗⃗⃗⃗⃗ =(0,−2,2),DE ⃗⃗⃗⃗⃗⃗ =(1,−1,0), 设平面PAE 的法向量为n 1⃗⃗⃗⃗ =(x 1,y 1,z 1),则{AP ⃗⃗⃗⃗⃗ ·n 1⃗⃗⃗⃗ =0AE ⃗⃗⃗⃗⃗ ·n 1⃗⃗⃗⃗ =0,即{2z 1=0x 1+y 1=0,令x 1=1,则y 1=−1,因此n 1⃗⃗⃗⃗ =(1,−1,0), 设平面PDE 的法向量为n 2⃗⃗⃗⃗ =(x 2,y 2,z 2),则{DP ⃗⃗⃗⃗⃗ ·n 2⃗⃗⃗⃗ =0DE ⃗⃗⃗⃗⃗⃗ ·n 2⃗⃗⃗⃗ =0,即{−2y 2+2z 2=0x 2−y 2=0,令x 2=1,则y 2=1,z 2=1,因此n 2⃗⃗⃗⃗ =(1,1,1), 因为n 1⃗⃗⃗⃗ ·n 2⃗⃗⃗⃗ =1−1+0=0,所以n 1⃗⃗⃗⃗ ⊥n 2⃗⃗⃗⃗ ,因此平面PAE ⊥平面PDE .5.(1)证明:如图,以A 为原点,AD 、AB 、AP 所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则依题意可知A(0,0,0),B(0,2,0),C(4,2,0),D(4,0,0),P(0,0,2). ∴PD⃗⃗⃗⃗⃗ =(4,0,−2),CD ⃗⃗⃗⃗⃗ =(0,−2,0),PA ⃗⃗⃗⃗⃗ =(0,0,−2). 设平面PCD 的一个法向量为n →=(x,y,1).则{n ⃗ ·PD ⃗⃗⃗⃗⃗ =4x −2=0n ⃗ ·CD ⃗⃗⃗⃗⃗ =−2y =0⇒{x =12y =0, 所以平面PCD 的一个法向量为n⃗ =(12,0,1). ∵PA ⊥平面ABCD ,AB ⊂平面ABCD ,∴PA ⊥AB ,又∵AB ⊥AD ,PA ∩AD =A ,PA 、AD ⊂平面PAD ,∴AB ⊥平面PAD . ∴平面PAD 的一个法向量为AB ⃗⃗⃗⃗⃗ =(0,2,0).∵n ⃗ ⋅AB ⃗⃗⃗⃗⃗ =0,∴n ⃗ ⊥AB ⃗⃗⃗⃗⃗ . ∴平面PDC ⊥平面PAD .6.解:以D 为原点,建立如图所示的空间直角坐标系D −xyz ,设正方体ABCD −A 1B 1C 1D 1中棱长为2,E(0,0,1),A(2,0,0),C(0,2,0),B 1(2,2,2), AC ⃗⃗⃗⃗⃗ =(−2,2,0),AE ⃗⃗⃗⃗⃗ =(−2,0,1), AB 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(0,2,2),设平面AEC 的法向量n ⃗ =(x,y ,z),则{ n ⃗⃗⃗ ⋅ AE⃗⃗⃗⃗⃗ =−2x +z =0 n ⃗⃗⃗ ⋅ AC ⃗⃗⃗⃗⃗⃗⃗ =−2x +2y =0,取x =1,得 n⃗⃗⃗⃗⃗ =(1,1,2),设平面AB 1C 的法向量 m ⃗⃗⃗⃗⃗⃗ =(x,y ,z),则{m ⃗⃗⃗ ⋅ AC ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =−2x +2y =0m ⃗⃗⃗ ⋅ AB 1 ⃗⃗⃗⃗⃗⃗⃗⃗ =2y +2z =0,取x =1,得 m ⃗⃗⃗⃗⃗⃗ =(1,1,−1). ∵ m ⃗⃗⃗⃗⃗⃗ ⋅ n ⃗⃗⃗⃗⃗ =1+1−2=0,∴平面EAC ⊥平面AB 1C .7.证明:取BC 中点O ,连AO ,∵△ABC 为正三角形,∴AO ⊥BC ,∵在正三棱柱ABC −A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1,平面ABC ∩平面BCC 1B 1=BC ,AO ⊂平面ABC ,∴AO ⊥平面BCC 1B 1, 取B 1C 1中点为O 1,以O 为原点,OB ⃗⃗⃗⃗⃗⃗ ,OO 1⃗⃗⃗⃗⃗⃗⃗⃗ ,OA ⃗⃗⃗⃗⃗ 的方向为x ,y ,z 轴的正方向,建立空间直角坐标系,则B(1,0,0),D(−1,1,0),A 1(0,2,√3),A(0,0,√3),B 1(1,2,0), ∴AB 1⃗⃗⃗⃗⃗⃗⃗ =(1,2,−√3),BD ⃗⃗⃗⃗⃗⃗ =(−2,1,0),BA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(−1,2,√3),∵AB 1⃗⃗⃗⃗⃗⃗⃗ ⋅BD ⃗⃗⃗⃗⃗⃗ =−2+2+0=0, AB 1⃗⃗⃗⃗⃗⃗⃗ ⋅BA 1⃗⃗⃗⃗⃗⃗⃗⃗ =−1+4−3=0.∴AB 1⃗⃗⃗⃗⃗⃗⃗ ⊥BD ⃗⃗⃗⃗⃗⃗ ,AB 1⃗⃗⃗⃗⃗⃗⃗ ⊥BA 1⃗⃗⃗⃗⃗⃗⃗⃗ ,即AB 1⊥BD ,AB 1⊥BA 1, 又BD ∩BA 1=B ,BD ⊂面A 1BD ,BA 1⊂面A 1BD ,∴AB 1⊥面A 1BD , 又AB 1⊂面ABB 1A 1,所以平面ABB 1A 1⊥面A 1BD ;8.证明:如下图,以D 为坐标原点,线段DA 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D −xyz ;依题意有Q(1,1,0),C(0,0,1),P(0,2,0);则DQ ⃗⃗⃗⃗⃗⃗ =(1,1,0),DC ⃗⃗⃗⃗⃗ =(0,0,1),PQ ⃗⃗⃗⃗⃗ =(1,−1,0), 所以PQ ⃗⃗⃗⃗⃗ ⋅DQ ⃗⃗⃗⃗⃗⃗ =0,PQ ⃗⃗⃗⃗⃗ ⋅DC ⃗⃗⃗⃗⃗ =0;即PQ ⊥DQ ,PQ ⊥DC ,故PQ ⊥平面DCQ , 又PQ ⊂平面PQC ,所以平面PQC ⊥平面DCQ。