第一章求极限的十六种方法

合集下载

16种求极限的方法及一般题型解题思路分享

16种求极限的方法及一般题型解题思路分享

千里之行,始于足下。

16种求极限的方法及一般题型解题思路共享求极限是微积分中格外重要的概念,它可以挂念我们争辩函数的性质以及解决各种数学问题。

在求极限的过程中,有很多种不同的方法可以使用。

本文将介绍16种常见的求极限的方法,并共享一般题型的解题思路。

1. 代入法:将变量的值直接代入函数中,求出函数在该点的函数值。

这种方法适用于对于给定的变量值函数值可以直接计算的状况。

2. 合并同类项法:对于多项式函数,可以将同类项合并,化简为简洁的表达式,使得求极限更加便利。

3. 分子有理化法:对于分式函数,可以通过有理化分子的方法将其转化为整式的形式,使得求极限更加便利。

4. 凑微分法:对于含有微分的项,可以通过凑微分的方法将其转化为可求极限的形式。

5. 分部积分法:对于不定积分的形式,可以通过分部积分的方法将其转化为可求极限的形式。

6. 换元法:通过适当的变量替换,将原函数转化为简洁函数的形式,使得求极限更加便利。

7. 反函数法:对于已知函数,可以通过找到其反函数,将原函数的极限转化为反函数的极限来求解。

第1页/共3页锲而不舍,金石可镂。

8. 夹逼定理:假如一个函数在某点四周的两个函数夹住,并且这两个函数的极限都存在且相等,那么该点的极限存在且等于这两个函数的极限。

9. 洛必达法则:对于两个函数的极限,假如它们的导数的极限都存在且有限,那么这两个函数的极限相等。

这个法则对于解决0/0和∞/∞型的极限问题格外有用。

10. 先有界后无穷法则:假如一个函数在某个点四周有界,并且向正无穷或负无穷趋于极限,那么该点的极限等于无穷。

11. 拆分法则:假如一个极限可以通过拆分成多个极限来求解,那么可以分别求解这些极限,然后将结果合并。

12. 开放法则:对于含有无穷小量的表达式,可以将其开放成多项式的形式,然后求极限。

13. 不等式法则:可以通过利用一些不等式关系来限定函数的范围,从而求出极限的范围。

14. 递推法:对于递归定义的序列或函数,可以通过递推关系式来求出其极限。

16种求极限的方法

16种求极限的方法

16种求极限的方法在微积分中,求极限是一项重要的技巧和方法,用于研究函数在其中一点或趋于其中一点时的行为。

求极限的方法有很多种,下面将介绍16种常见的求极限方法。

1.代入法:将待求极限中的变量替换成极限点处的值,如果代入后得到一个有界的数或者可数收敛,则该极限存在。

2.四则运算法则:利用加法、减法、乘法和除法的性质进行极限运算。

例如,如果两个函数的极限都存在,则它们的和、差、积以及商(除数非零)的极限均存在。

3.夹逼定理:如果两个函数在其中一点附近夹住一个函数,并且夹住的函数的极限存在,则被夹住的函数的极限也存在,并且等于夹住的函数的极限。

4.极限的唯一性:如果存在一个数L是函数f在其中一点的极限,那么该极限是唯一的。

5.极限的有界性:如果函数f在其中一点的极限存在,则函数f在该点附近必定有界。

反之,如果函数f在其中一点附近有界,那么该点处的极限必定存在。

6.无穷小量和无穷大量:无穷小量是指当自变量趋于其中一点时,函数值趋近于零的量,无穷大量是指当自变量趋于其中一点时,函数值趋近于无穷的量。

利用无穷小量和无穷大量的性质,可以简化极限的求解过程。

7. 根式求极限:使用L'Hopital法则来解决根式的极限问题,即将根式转化为分式,再求导数。

8.多项式求极限:将多项式的极限转化为无穷小量的极限,利用低阶无穷小量和高阶无穷小量的性质进行极限计算。

9.取对数法:将函数取对数后,利用对数的性质进行极限计算。

10.换元法:通过进行合适的变量替换,将待求极限转化为更容易求解的形式。

11.不等式运算法:通过使用不等式的性质,对函数进行合理的估计,从而求解极限。

12.导数法则:利用导数的性质,对函数进行极限计算。

例如,利用导数的定义和求导法则可以方便地求解一些函数的极限。

13.递推法:对于一些递归定义的数列或函数,可以通过递推法求解其极限。

14.泰勒展开法:利用函数对应点附近的泰勒展开式,将函数的极限转化为级数的极限,进而求解极限。

16种求极限的方法及一般题型解题思路分享

16种求极限的方法及一般题型解题思路分享

首先说下我的感觉,假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。

树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。

为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。

函数的性质表现在各个方面:首先对极限的总结如下:极限的保号性很重要,就是说在一定区间内函数的正负与极限一致。

极限分为一般极限,还有个数列极限,(区别在于数列极限是发散的,是一般极限的一种)。

解决极限的方法如下:(我能列出来的全部列出来了!你还能有补充么?)1、等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用,前提是必须证明拆分后极限依然存在,e的X次方-1或者(1+x)的a次方-1等价于Ax等等。

全部熟记(x趋近无穷的时候还原成无穷小)。

2、洛必达法则(大题目有时候会有暗示要你使用这个方法)。

首先他的使用有严格的使用前提!必须是X趋近而不是N趋近!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的,不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用,无疑于找死!!)必须是0比0无穷大比无穷大!当然还要注意分母不能为0。

洛必达法则分为3种情况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。

通项之后这样就能变成第一种的形式了;0的0次方,1的无穷次方,无穷的0次方。

对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候,LNX趋近于0)。

3、泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特变注意!)E 的x展开sina,展开cosa,展开ln1+x,对题目简化有很好帮助。

16种求极限方法及一般题型解题思路分享

16种求极限方法及一般题型解题思路分享

16种求极限方法及一般题型解题思路分享求极限是微积分中的重要内容之一,常见于各种数学和工程科学中。

为了求出一个函数在某一点的极限,需要使用合适的方法。

下面介绍16种常用的求极限方法,以及一般题型解题思路。

一、直接代入法对于多项式函数和分式函数,可以直接将自变量代入函数表达式中计算极限。

例如,求函数 f(x) = 2x + 3 在 x = 1 处的极限,直接代入即可得到结果。

二、分解因式法对于分式函数,可以通过分解因式来简化计算,特别适用于分子和分母都是多项式的情况。

例如,求函数 f(x) = (x^2 - 1)/(x - 1) 在 x = 1 处的极限,可以将分子进行因式分解,得到 f(x) = (x - 1)(x + 1)/(x - 1),然后约去公因式,即可得到结果。

三、夹逼定理夹逼定理用于解决复杂函数在某一点处的极限问题。

如果一个函数在某一点附近被两个其他函数夹住,并且这两个函数的极限都存在且相等,那么原函数的极限也存在且等于这个相等的极限。

例如,对于函数 f(x) = x*sin(1/x),当 x 趋近于 0 时,f(x) 被两个函数 g(x) = x 和 h(x) = -x 夹住,且 g(x) 和 h(x) 的极限都是 0,所以 f(x) 的极限也是 0。

四、变量代换法第1页/共5页对于一些特殊的函数,可以通过变量代换来简化计算。

例如,对于函数f(x) = sin(1/√x),当 x 趋近于 0 时,可以将√x = t,那么 x = t^2,且当 x 趋近于 0 时,t 也趋近于 0,所以求 f(x) 在 x = 0 处的极限可以转化为求 g(t) = sin(1/t) 在 t = 0 处的极限。

五、洛必达法则洛必达法则是一种常用的求函数极限的方法,特别适用于形如 0/0 或∞/∞的不定式。

根据洛必达法则,如果一个不定式的分子和分母的极限都存在且为 0 或∞,那么可以分别对分子和分母求导后再次求极限,直到找到一个不是 0/0 或∞/∞的形式。

高数中求极限的16种方法

高数中求极限的16种方法

高数中求极限的16种方法第一篇:高数中求极限的16种方法高数中求极限的16种方法——好东西假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。

树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。

为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。

函数的性质表现在各个方面首先对极限的总结如下: 极限的保号性很重要就是说在一定区间内函数的正负与极限一致极限分为一般极限还有个数列极限,(区别在于数列极限时发散的,是一般极限的一种)2解决极限的方法如下:(我能列出来的全部列出来了你还能有补充么)等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。

全部熟记(x趋近无穷的时候还原成无穷小)LHopital 法则(大题目有时候会有暗示要你使用这个方法)首先他的使用有严格的使用前提必须是X趋近而不是N趋近(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!必须是0比0 ,无穷大比无穷大当然还要注意分母不能为0 LHopital法则分为3中情况1, 0比0 ,无穷比无穷时候直接用2,0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。

通项之后这样就能变成1中的形式了 3, 0的0次方1的无穷次方无穷的0次方对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近0)3, 泰勒公式(含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!!)E的x展开sina 展开cos 展开ln1+x展开对题目简化有很好帮助4面对无穷大比上无穷大形式的解决办法取大头原则最大项除分子分母看上去复杂处理很简单5,无穷小于有界函数的处理办法面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。

考研数学:求极限的16种方法1500字

考研数学:求极限的16种方法1500字

考研数学:求极限的16种方法1500字极限是数学中的重要概念,是解析数学中很多问题的基础。

求极限的方法有很多种,下面就介绍一下求极限的16种常用方法。

1. 直接代入法:对于某个函数在某个点的极限,如果可以直接将极限点代入函数中计算出极限值,则可以使用直接代入法。

2. 连续性法则:如果一个函数在某个点处连续,那么该点的极限值就是函数在该点的函数值。

3. 无穷小量的性质:利用无穷小量的性质对极限进行求解,例如利用已知的极限,对函数进行分子分母的化简、展开等操作。

4. 夹逼法:当一个函数夹在两个函数之间时,利用两个函数的极限值可以求出该函数的极限值。

5. 单调有界原理:对于单调有界的函数,可以通过证明上下确界得到极限值。

6. 极限的四则运算法则:对于两个函数的极限,可以利用四则运算法则求出其和、差、积、商的极限。

7. 换元法:通过对函数进行变量替换,将原来的极限问题转化为更简单的问题求解。

8. 泰勒级数展开法:对于某些函数,可以利用泰勒级数展开的性质,将函数进行级数展开,然后求出极限值。

9. 符号常用极限法:对于一些特殊的函数,例如正弦函数、指数函数等,可以通过符号常用极限值来求出其极限。

10. 隐函数极限法:对于隐函数的极限问题,需要通过隐函数求导的方式来求出极限值。

11. 单调列法:对于一个递增(递减)且有上(下)界的序列,可以通过极限的单调列法求出极限。

12. Stolz定理:当一个数列为无穷大与无穷小的极限的商时,可以利用Stolz定理求出极限。

13. 递推法:对于递归定义的数列,可以通过递推的方式求出极限。

14. 分部积分法:对于一些函数的积分,可以通过分部积分法转化为极限问题求解。

15. L'Hospital法则:对于一些不定型的极限问题,可以通过L'Hospital法则来求出其极限。

16. 堪培拉法则:对于一些含有多个变量的函数,可以利用堪培拉法则求出其极限。

以上是求解极限的16种常用方法,掌握这些方法可以更好地应对极限求解问题。

高等数学求极限的17种常用方法(附例题和详解)

高等数学求极限的17种常用方法(附例题和详解)
(ii)
(iii)
(iv)单调有界准则
(v)两边夹挤准则(夹逼定理/夹逼原理)
(vi)柯西收敛准则(不需要掌握)。极限 存在的充分必要条件是:
二.解决极限的方法如下:
1.等价无穷小代换。只能在乘除时候使用。例题略。
2.洛必达(L’hospital)法则(大题目有时候会有暗示要你使用这个方法)
它的使用有严格的使用前提。首先必须是X趋近,而不是N趋近,所以面对数列极限时候先要转化成求x趋近情况下的极限,数列极限的n当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f(x)、g(x),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况:

cos=
ln(1+x)=x-
(1+x) =
以上公式对题目简化有很好帮助
4.两多项式相除:设 ,
P(x)= ,
(i) (ii)若 ,则
5.无穷小与有界函数的处理办法。例题略。
面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数可能只需要知道它的范围结果就出来了。
(i)“ ”“ ”时候直接用
(ii)“ ”“ ”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。通项之后,就能变成(i)中的形式了。即 ;
(iii)“ ”“ ”“ ”对于幂指函数,方法主要是取指数还取对数的方法,即 ,这样就能把幂上的函数移下来了,变成“ ”型未定式。
3.泰勒公式(含有 的时候,含有正余弦的加减的时候)
例1已知A={x -2≤x<3},B={x -1<x≤5},求A B,A B

求极限的16个方法总结

求极限的16个方法总结

求极限的16个方法总结求极限的16个方法总结总结是把一定阶段内的有关情况分析研究,做出有指导性的经验方法以及结论的书面材料,它可以帮助我们有寻找学习和工作中的规律,是时候写一份总结了。

但是总结有什么要求呢?以下是小编为大家收集的求极限的16个方法总结,欢迎阅读,希望大家能够喜欢。

首先对极限的总结如下。

极限的保号性很重要就是说在一定区间内函数的正负与极限一致。

1、极限分为一般极限,还有个数列极限(区别在于数列极限时发散的,是一般极限的一种)。

2、解决极限的方法如下1)等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1或者(1+x)的a次方-1等价于Ax等等。

全部熟记。

(x趋近无穷的时候还原成无穷小)2)洛必达法则(大题目有时候会有暗示要你使用这个方法)首先他的使用有严格的使用前提。

必须是X趋近而不是N趋近。

(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件。

还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用无疑是死路一条)必须是0比0无穷大比无穷大!当然还要注意分母不能为0。

洛必达法则分为三种情况1)0比0无穷比无穷时候直接用2)0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。

通项之后这样就能变成1中的`形式了3)0的0次方1的无穷次方无穷的0次方对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0当他的幂移下来趋近于无穷的时候LNX趋近于0)3、泰勒公式(含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!)e的x展开sina展开cos展开ln1+x展开对题目简化有很好帮助4、面对无穷大比上无穷大形式的解决办法。

求极限的16个方法总结

求极限的16个方法总结

求极限的16个方法总结假如高等数学是棵树木得话,那么极限就是它的根,函数就是它的皮。

树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。

为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。

函数的性质表现在各个方面。

下面为大家搜索整理了求极限的16个方法总结。

首先对极限的总结如下。

极限的保号性很重要就是说在一定区间内函数的正负与极限一致。

1、极限分为一般极限,还有个数列极限(区别在于数列极限时发散的,是一般极限的一种)。

2、解决极限的方法如下1)等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1或者(1+x)的a次方-1等价于Ax等等。

全部熟记。

(x趋近无穷的时候还原成无穷小)2)洛必达法则(大题目有时候会有暗示要你使用这个方法)首先他的使用有严格的使用前提。

必须是X趋近而不是N 趋近。

(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件。

还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用无疑是死路一条)必须是0比0无穷大比无穷大!当然还要注意分母不能为0。

洛必达法则分为三种情况1)0比0无穷比无穷时候直接用2)0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。

通项之后这样就能变成1中的形式了3)0的0次方1的无穷次方无穷的0次方对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0当他的幂移下来趋近于无穷的时候LNX趋近于0)3、泰勒公式(含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!)e的x展开sina展开cos展开ln1+x 展开对题目简化有很好帮助4、面对无穷大比上无穷大形式的解决办法。

高等数学中求极限方法总结

高等数学中求极限方法总结

高等数学中求极限方法总结高等数学第一章在整个高等数学的学习中都占有相当重要的地位,特别是极限,原因就是后续章节本质上都是极限。

一个经典的形容就是假如高等数学是棵树木的话,那么极限就是它的根,函数就是它的皮。

树没有跟,活不下去,没有皮,只能枯萎,可见极限的重要性。

故在这里总结了10种常用的求极限的方法并举例说明。

1、利用等价无穷小的转化求极限例:求极限x x x x 1cossin lim 20→。

解:x x x x 1cossin lim 20→x x x x 1cos lim 20→=xx x 1cos lim 0→==2注:通常在乘除时候使用,但是不是说一定在加减时候不能用,但是前提是必须证明拆分后极限依然存在,要记住常用的等价无穷小,例如当0→x 时,).(0~sin ,21~sin ,~3x x x x x tgx x tgx −−。

2、罗比达法则例:求极限∫→x x tdtx 020arctan 1lim 解:∫→x x tdt x 020arctan 1lim 21211lim 2arctan lim 200=+==→→x x t x x 例:求极限⎟⎠⎞⎜⎝⎛−−→11ln 1lim 1x x x 解:x x x x x x x x ln )1(ln 1lim 11ln 1lim 11−−−=⎟⎠⎞⎜⎝⎛−−→→21111lim 1ln 11lim 2211=+=−+−=→→xx x x x x x x x …注:使用罗比达法则必须满足使用条件,要注意分母不能为零,导数存在。

罗比达法则分为三种情况(1)0比0和无穷比无穷时候直接分子分母求导;(2)0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。

通项之后这样就能变成1的形式;(3)0的0次方,1的无穷次方,无穷的0次方,对于(指数幂数)方程,方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,)3、利用2个重要极限求极限例:求极限2)11(lim 22x x x x +−∞→解:211(lim 22x x x x +−∞→2)121(lim 2x x x +−+=∞→12212222])121[(lim +−−+∞→+−+=x x x x x 12lim 22+−∞→=x x x e 2−=e 。

高等数学 第一章 第五节 极限运算法则

高等数学 第一章 第五节 极限运算法则

3 2 3 2 2x 3x 5 x lim 3 lim x 7 x 4 x 2 1 x 4 7 x

5 3 x 2. 1 7 x3
4 x2 2 例. lim 3 。 答:[ ]型, I 0 。 2 x 7 x 5 x 3 2 x3 x 2 5 例. lim 2 。 答:[ ]型, I 。 x 3 x 2 x 1
2

x 时, 两个因子的极限分别是 0、.
通过分子有理化,先将极限式变成分式,然后 再求极限。
x[( x 2 2 x 3 ) 2 ( x 1) 2 ] 原式 lim x [ x 2 2 x 3 ( x 1)] 2x x lim x 2 2 x 3 ( x 1) (分子分母同除x) 2 x lim 1 2 3 1 1 2 (1 ) x x x
x 1
一般:
设 f ( x) a0 xn a1x n1
x x0 x x0
n
an , 则有
x x0
lim f ( x ) a0 ( lim x ) n a1 ( lim x ) n 1 a n
a0 x0 a1 x0
n 1
an
f ( x0 ).
f ( x ) A lim f ( x ) ( 3) lim , 其中B 0. g( x ) B lim g( x )
教学:展开讨论,条件与结论,例外情形与结论,作用意义。
证明的三种方法:用极限定义证明、用极限与无穷小 的关系证明、用无穷小性质 证明(2)用极限定义,
0, fg AB fg Ag Ag AB g f A A gB

第一章 极限与连续(汇总)

第一章 极限与连续(汇总)
������→0 1 ������ 1 ������
解题思路:在 x→ 0的时候,x→0,sin 接等于 0.
为有界函数,按照无穷小量性质直
解题步骤:结果直接等 0 即可/由无穷小量性质(无穷小量(0)与有界函数的 乘积仍是无穷小)可得极限值为 0. 练习(思路指引) 求
������→0 ������
2) 、f(sinx)
已知函数 f(2x+4)定义域为[0,1],则函数 f(x)的定义域是
极限存在问题
1, ������ > 0 ������ = 0 ,研究当 x→ 0时,f(x)的极限是否存在 例题:设 f(x)={ 0, −1, ������ < 0 解题步骤 第一步:求左极限(小于������0 一侧的极限值)
������→0−
lim ������(������)= lim−(−1)=-1
������→0
第二步:求右极限(大于������0 一侧的极限值)
������→0+
lim ������(������)= lim+(1)=1
������→0
第三步:比较左右极限是否相等(相等则极限存在,不相等则极限不存在)
1 (−������) =[ lim (1 + (− ������)) ] ������→∞
(−1)
第四步:求值 =������ −1
������→∞ 3+2∗0−0
=
2 3
练习: 1、求
������→∞ ������ 2 −������+2
lim
2������ 2 −1
2、求
������→∞ ������ 2 −������+2
lim

第一章、第六节 极限的运算性质

第一章、第六节 极限的运算性质

其中 lim 0
x x0
证明:仅证明结论(3),并考虑极限过程为 x x0 由极限与无穷小的关系,要证明
f ( x) A g( x) B
x x0
f ( x) A 或 g( x) B
其中 lim 0
x x0
lim f ( x ) A, f ( x ) A ,
例4
1 2 n 求 lim ( 2 2 2 ). n n n n
n 时, 是无限多个无穷小之和.

先变形再求极限.
1 2 n 1 2 n lim( 2 2 2 ) lim n n n n n n2
1 n( n 1) 1 1 1 2 lim lim (1 ) . 2 n n 2 n n 2
解 lim( x 2 2 x 3) 0,
x 1
商的法则不能用
又 lim (4 x 1) 3 0,
x 1
x 2x 3 0 lim 0. x 1 4x 1 3
2
由无穷小与无穷大的关系,得
4x 1 lim 2 . x 1 x 2 x 3
常数因子可以提到极限记号外面.
推论2 如果 lim f ( x )存在, 而n是正整数, 则
lim[ f ( x )] [lim f ( x )] .
n n
说明: (1)上述关于函数极限的四则运算法则 对数列极限同样成立。 (2)上述运算法则可推广到多个函数的情形.
定理 如果 ( x ) ( x ), 而 lim ( x ) a, lim ( x ) b,
ua
则复合函数 f [ ( x )] 当 x x0 时的极限也存在 ,

求极限方法总结

求极限方法总结

求极限方法总结求极限方法总结一,求极限的方法横向总结:1带根式的分式或简单根式加减法求极限:1)根式相加减或只有分子带根式:用平方差公式,凑平方(有分式又同时出现未知数的不同次幂:将未知数全部化到分子或分母的位置上)2)分子分母都带根式:将分母分子同时乘以不同的对应分式凑成完全平方式(常用到2分子分母都是有界变量与无穷大量加和求极限:分子与分母同时除以该无穷大量凑出无穷小量与有界变量的乘积结果还是无穷小量。

3等差数列与等比数列和求极限:用求和公式。

4分母是乘积分子是相同常数的n项的和求极限:列项求和5分子分母都是未知数的不同次幂求极限:看未知数的幂数,分子大为无穷大,分子小为无穷小或须先通分。

6运用重要极限求极限(基本)。

7乘除法中用等价无穷小量求极限。

8函数在一点处连续时,函数的极限等于极限的函数。

9常数比0型求极限:先求倒数的极限。

10根号套根号型:约分,注意别约错了。

11三角函数的加减求极限:用三角函数公式,将sin化cos二,求极限的方法纵向总结:1未知数趋近于一个常数求极限:分子分母凑出(x-常数)的形式,然后约分(因为x不等于该常数所以可以约分)最后将该常数带入其他式子。

2未知数趋近于0或无穷:1)将x放在相同的位置2)用无穷小量与有界变量的乘积3)2个重要极限4)分式解法(上述)高数解题技巧。

高数(上册)期末复习要点高数(上册)期末复习要点第一章:1、极限2、连续(学会用定义证明一个函数连续,判断间断点类型)第二章:1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续2、求导法则(背)3、求导公式也可以是微分公式第三章:1、微分中值定理(一定要熟悉并灵活运用--第一节)2、洛必达法则3、泰勒公式拉格朗日中值定理4、曲线凹凸性、极值(高中学过,不需要过多复习)5、曲率公式曲率半径第四章、第五章:积分不定积分:1、两类换元法 2、分部积分法(注意加C )定积分: 1、定义 2、反常积分第六章:定积分的应用主要有几类:极坐标、求做功、求面积、求体积、求弧长第七章:向量问题不会有很难1、方向余弦2、向量积3、空间直线(两直线的夹角、线面夹角、求直线方程) 3、空间平面4、空间旋转面(柱面)高数解题技巧。

极限方法总结

极限方法总结

8各项的拆分相加 (来消掉中间的大多数) (对付的还是数列极限)
可以使用待定系数法来拆分化简函数
9求左右求极限的方式(对付数列极限) 例如知道Xn与Xn+1的关系, 已知Xn的极限存在的情况下, xn的极限与xn+1的极限时一样的 ,应为极限去掉有限项目极限值不变化
10 2 个重要极限的应用。 这两个很重要 !!!!!对第一个而言是X趋近0时候的sinx与x比值 。 地2个就如果x趋近无穷大 无穷小都有对有对应的形式
2分子分母都是有界变量与无穷大量加和求极限:分子与分母同时除以该无穷大量凑出无穷小量与有界变量的乘积结果还是无穷小量。
3等差数列与等比数列和求极限:用求和公式。
4分母是乘积分子是相同常数的n项的和求极限:列项求和
5分子分母都是未知数的不同次幂求极限:看未知数的幂数,分子大为无穷大,分子小为无穷小或须先通分。
必须是 函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导, 直接用无疑于找死!!)
必须是 0比0 无穷大比无穷大!!!!!!!!!
当然还要注意分母不能为0
落笔他 法则分为3中情况
1 0比0 无穷比无穷 时候 直接用
2 0乘以无穷 无穷减去无穷 ( 应为无穷大于无穷小成倒数的关系)所以 无穷大都写成了无穷小的倒数形式了。通项之后 这样就能变成1中的形式了
首先说下我的感觉, 假如高等数学是棵树木得话,那么 极限就是他的根, 函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎, 可见这一章的重要性。
为什么第一章如此重要? 各个章节本质上都是极限, 是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面
首先 对 极限的总结 如下

考研数学:求极限的16种方法

考研数学:求极限的16种方法

考研数学:求极限的16种方法1500字求极限是数学中一个重要的概念和技巧,经常会在高等数学、微积分、函数分析等课程中出现。

在考研数学中,求极限也是一个比较常见的题型,有时候会要求借助不同的方法来求解极限。

以下是16种常见的求极限的方法:方法1:代入法代入法是求极限中最基本的方法之一,特别适用于极限问题中有指定点的情况。

代入的点可以是有限点或无限点,通过将极限值代入原函数中,来求得极限。

方法2:夹逼定理夹逼定理也是一种常用的方法,适用于需要用两个已知函数夹住待求函数的情况。

通过取两个已知函数逐渐逼近待求函数,来求得极限。

方法3:集中取值法集中取值法是一种常用的方法,适用于需要对待求函数的取值进行讨论的情况。

通过将待求函数的取值限制在一个区间内,来求得极限。

方法4:变量代换法变量代换法是一种常用的方法,适用于需要通过变换变量来求得极限的情况。

通过进行恰当的变换变量,将原极限转化为另一个更容易求解的极限。

方法5:公共因子法公共因子法是一种常用的方法,适用于需要将待求函数的表达式进行分解的情况。

通过进行恰当的分解,将待求函数表达式中的公共因子提取出来,来求得极限。

方法6:三角函数极限法三角函数极限法是一种常用的方法,适用于需要进行三角函数的极限转化的情况。

通过使用三角函数的性质和公式,将原极限转化为更容易求解的三角函数极限。

方法7:幂函数极限法幂函数极限法是一种常用的方法,适用于需要进行幂函数的极限转化的情况。

通过使用幂函数的性质和公式,将原极限转化为更容易求解的幂函数极限。

方法8:自然对数极限法自然对数极限法是一种常用的方法,适用于需要进行自然对数的极限转化的情况。

通过使用自然对数的性质和公式,将原极限转化为更容易求解的自然对数极限。

方法9:常数e极限法常数e极限法是一种常用的方法,适用于需要进行常数e的极限转化的情况。

通过使用常数e的性质和公式,将原极限转化为更容易求解的常数e极限。

方法10:斜率法斜率法是一种常用的方法,适用于需要进行斜率的极限转化的情况。

极限求法总结

极限求法总结

极限的求法1、利用极限的定义求极限2、直接代入法求极限3、利用函数的连续性求极限4、利用单调有界原理求极限5、利用极限的四则运算性质求极限 6. 利用无穷小的性质求极限 7、无穷小量分出法求极限 8、消去零因子法求极限 9、 利用拆项法技巧求极限 10、换元法求极限11、利用夹逼准则求极限[3] 12、利用中值定理求极限 13、 利用罗必塔法则求极限 14、利用定积分求和式的极限 15、利用泰勒展开式求极限 16、分段函数的极限1、利用极限的定义求极限用定义法证明极限,必须有一先决条件,即事先得知道极限的猜测值A ,这种情况一般较困难推测出,只能对一些比较简单的数列或函数推测分析出极限值,然后再去用定义法去证明,在这个过程中,放缩法和含绝对值的不等式总是密切相连的。

例:()0lim x x f x A →=的ε-δ 定义是指:∀ε>0, ∃δ=δ(0x ,ε)>0,0<|x-0x |<δ⇒|f(x)-A|<ε 为了求δ 可先对0x 的邻域半径适当限制, 如然后适当放大|f(x)-A |≤φ(x) (必然保证φ(x)为无穷小),此时往往要用含绝对值的不等式:|x+a |=|(x-0x )+(0x +a)|≤|x-0x |+|0x +a|<|0x +a |+δ1 域|x+a|=|(x-0x )+(0x +a)|≥|0x +a|-|x-0x |>|0x +a|-δ1 从φ(x)<δ2,求出δ2后,取δ=min(δ1,δ2),当0<|x-0x |<δ 时,就有|f(x)-A|<ε.例:设lim n n x a →∞=则有12 (i)nn x x x a n→∞++=.证明:因为lim n n x a →∞=,对110()N N εε∀>∃=,,当1n N >时,-2n x a ε∣∣<于是当1n N >时,1212......n n x x x x x x na a n n+++∣+++-∣∣-∣=0ε<<1其中112N A x a x a x =∣-∣+∣-∣+∣-α∣是一个定数,再由2A n ε<,解得2An ε>,故取12max ,A N N ε⎧⎫⎡⎤=⎨⎬⎢⎥⎣⎦⎩⎭12...+=22n x x x n N n εεε+++>-α<当时,。

第一章求极限的十六种方法

第一章求极限的十六种方法

假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。

树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。

为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。

函数的性质表现在各个方面首先对极限的总结如下极限的保号性很重要就是说在一定区间内函数的正负与极限一致1 极限分为一般极限,还有个数列极限,(区别在于数列极限时发散的,是一般极限的一种)2解决极限的方法如下:1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。

全部熟记(x趋近无穷的时候还原成无穷小)2洛必达法则(大题目有时候会有暗示要你使用这个方法)首先他的使用有严格的使用前提!!!!!!必须是X趋近而不是N趋近!!!!!!!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!!)必须是0比0 无穷大比无穷大!!!!!!!!!当然还要注意分母不能为0落笔他法则分为3中情况(1)0比0 无穷比无穷时候直接用(2)0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。

通项之后这样就能变成1中的形式了(3)0的0次方1的无穷次方无穷的0次方对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近于0)3泰勒公式(含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!!!!)E的x展开sin 展开cos 展开ln(1+x)展开对题目简化有很好帮助4面对无穷大比上无穷大形式的解决办法取大头原则最大项除分子分母!!!!!!!!!!!看上去复杂处理很简单!!!!!!!!!!5无穷小于有界函数的处理办法面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。

高数中求极限的16种方法

高数中求极限的16种方法

高数中求极限的16种方法——李健假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。

树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。

为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。

函数的性质表现在各个方面首先对极限的总结如下极限的保号性很重要就是说在一定区间内函数的正负与极限一致1 极限分为一般极限,还有个数列极限,(区别在于数列极限时发散的,是一般极限的一种)2解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???)1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。

全部熟记(x趋近无穷的时候还原成无穷小)2落笔他法则(大题目有时候会有暗示要你使用这个方法)首先他的使用有严格的使用前提!!!!!!必须是 X趋近而不是N趋近!!!!!!!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n 趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!!)必须是 0比0 无穷大比无穷大!!!!!!!!!当然还要注意分母不能为0落笔他法则分为3中情况1 0比0 无穷比无穷时候直接用2 0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。

通项之后这样就能变成1中的形式了3 0的0次方1的无穷次方无穷的0次方对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx 两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0)3泰勒公式(含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!!!!)E的x展开 sina 展开 cos 展开 ln1+x展开对题目简化有很好帮助4面对无穷大比上无穷大形式的解决办法取大头原则最大项除分子分母!!!!!!!!!!!看上去复杂处理很简单!!!!!!!!!!5无穷小于有界函数的处理办法面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。

树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。

为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。

函数的性质表现在各个方面
首先对极限的总结如下
极限的保号性很重要就是说在一定区间内函数的正负与极限一致
1 极限分为一般极限,还有个数列极限,(区别在于数列极限时发散的,是一般极限的一种)
2解决极限的方法如下:
1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。

全部熟记
(x趋近无穷的时候还原成无穷小)
2洛必达法则(大题目有时候会有暗示要你使用这个方法)
首先他的使用有严格的使用前提!!!!!!
必须是X趋近而不是N趋近!!!!!!!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件
(还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)
必须是函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!!)
必须是0比0 无穷大比无穷大!!!!!!!!!
当然还要注意分母不能为0
落笔他法则分为3中情况
(1)0比0 无穷比无穷时候直接用
(2)0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。

通项之后这样就能变成1中的形式了
(3)0的0次方1的无穷次方无穷的0次方
对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近于0)
3泰勒公式(含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!!!!)E的x展开sin 展开cos 展开ln(1+x)展开
对题目简化有很好帮助
4面对无穷大比上无穷大形式的解决办法
取大头原则最大项除分子分母!!!!!!!!!!!
看上去复杂处理很简单!!!!!!!!!!
5无穷小于有界函数的处理办法
面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。

面对非常复杂的函数可能只需要知道它的范围结果就出来了!!!
6夹逼定理(主要对付的是数列极限!)
这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。

7等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1)
8各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限)
可以使用待定系数法来拆分化简函数
9求左右求极限的方式(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下,xn的极限与xn+1的极限时一样的,应为极限去掉有限项目极限值不变化
10 2 个重要极限的应用。

这两个很重要!!!!!对第一个而言是X趋近0时候的sinx与x 比值。

地2个就如果x趋近无穷大无穷小都有对有对应的形式
(地2个实际上是用于函数是1的无穷的形式)(当底数是1 的时候要特别注意可能是用地2 个重要极限)
11 还有个方法,非常方便的方法
就是当趋近于无穷大时候
不同函数趋近于无穷的速度是不一样的!!!!!!!!!!!!!!!
x的x次方快于x!快于指数函数快于幂数函数快于对数函数(画图也能看出速率的快慢)!!!!!!
当x趋近无穷的时候他们的比值的极限一眼就能看出来了
12 换元法是一种技巧,不会对模一道题目而言就只需要换元,但是换元会夹杂其中
13假如要算的话四则运算法则也算一种方法,当然也是夹杂其中的
14还有对付数列极限的一种方法,
就是当你面对题目实在是没有办法走投无路的时候可以考虑转化为定积分。

一般是从0到1的形式。

15单调有界的性质
对付递推数列时候使用证明单调性!!!!!!
16直接使用求导数的定义来求极限
(一般都是x趋近于0时候,在分子上f(x加减麽个值)加减f(x)的形式,看见了有特别注意)
(当题目中告诉你F(0)=0时候f(0)导数=0的时候就是暗示你一定要用导数定义!!!!
石工121 2013.01.01。

相关文档
最新文档