九年级下册数学二次函数课件

合集下载

北师大版九年级数学下册.2二次函数的图象与性质课件

北师大版九年级数学下册.2二次函数的图象与性质课件

3
y 2x2
y 2x 2 1 向上
y轴
(0,1) 当x=0时, y随x的增 ymin 1 大而增大
y随x的增 大而减小
-4 -2
o2 4
y 2x2 1
x y 2x 2 1 向上
y轴
(0,-1)
当x=0时, ymin 1
y随x的增 大而增大
y随x的增 大而减小
任务二:二次函数 y ax 2 c 的图象与性质(指向目标二) 二次函数 y ax2与 y ax 2 c 的图象的关系: 二次函数 y ax 2 c 的图象可以由 y ax2 的图象平移得到:
任务一:二次函数 y ax2的图象与性质(指向目标一)
猜想:二次函数 y 1 x2 ,y 2x 2 ,y x 2 的图象是什么样的呢? 2
其开口大小与a又有什么关系呢?
y
-4 -2 0 2 4 x
当a<0时,a越小,开口越小.
-3
y 1 x2 2
-6
y -92x 2 y x2
总结: a决定了抛物线的开口方向和开口大 小,a>0,图象开口向上,a<0,图象 开口向下,|a|越大,开口越小.
x<0递减 x>0递增
x<0递增 x>0递减
任务一:二次函数 y ax2的图象与性质(指向目标一) 画二次函数 y 2x 2的图象. 1.列表:完成下表:
x ··· -2 -1 0 1 2 ··· y ··· 8 2 0 2 8 ···
坐标
(-2,8) (-1,2) (0,0) (1,2) (2,8)
答案:1m > 1 2m < 2 3m 1或m 3 4m 2
2
评价标准: 答案正确加4分.

九年级数学《二次函数y=a(x+h)2的图象与性质》课件

九年级数学《二次函数y=a(x+h)2的图象与性质》课件

(1,0)
对称轴 最值
变化趋势
直线x=0
直线x=1
当x=0时,最小值为0.
在对称轴左侧,y随x的增 大而减小 在对称轴右侧,y随x的增 大而增大
当x=1时,最小值为0.
在对称轴左侧,y随x的增 大而减小 在对称轴右侧,y随x的增 大而增大
向上
(-1,0)
直线x=-1
当x=-1时,最小值为0.
在对称轴左侧,y随x的增 大而减小 在对称轴右侧,y随x的增 大而增大
2.二次函数y=-3(x-4)2的图像是由抛物线y= -3x2 向 右 平移 4
个单位得到的;开口 向下 ,对称轴是直线x= 4 ,当x= 4 时,
y有最 大 值,是 0
.
3.将二次函数y=2x2的图像向右平移3个单位后得到函数 y=2(x-3)2 的图像 ,其对称轴是 直线x=3 ,顶点是 (3,0) , 当x >3 时,y随x的增大而增大;当x <3 时,y随x的增大 而减小
3.将函数y=3(x-4)2的图象沿x轴对折后得到的函数解 析式是 y=-3(x-4)2 ;将函数y=3(x-4)2的图象 沿y轴对折后得到的函数解析式是 y=3(x+4)2;
本节课学习了什么内容?
交流收获
1.顶点坐标与对称轴
2.位置与开口方向 3.增减性与最值 根据图形填表:
y ax h2
小组展示
它们的位置关系: y=x2
向左平移1个单位
y=x2 y=(x+1)2
y=(x+1)2
y=(x1)2
...
小组展示
它们的位置关系:
y=x2
向右平移1个单位
y=x2 y=(x+1)2
y=(x-1)2

26.2.2 第1课时 二次函数y=ax_ k的图象和性质 课件华东师大版数学九年级下册

26.2.2 第1课时 二次函数y=ax_ k的图象和性质  课件华东师大版数学九年级下册
|a|越大,抛物线的开口越小 .
y
8
6
4
2 O -4 -2 -2
-4
-6
-8
y=ax2 2 4x
二次函数y = ax2 +k的图象的画法
例2 在同一直角坐标系中,画出二次函数 y =
1 2
x2

y
=
1 2
x2 +1 的图象。
解:先列表:
然后描点画图:
观察所画图象,有什么异同? 它们的开口方向、对称轴、 顶点坐标是什么?
–1
–2
开口方向都是向下 对称轴都是 y 轴
–3
y = - 1 x2 的顶点坐标是(0,0)
–4
3
–5
y = - 1 x2 - 2 的顶点坐标是(0,-2)
3
123
y = - 1 x2 - 2 3
4x教材P10 练习 第2题】
2. 试说明:通过怎样的平移,可以由抛物线
2
y = 1 x2 2
的图象,再作比较,指出它们的
联系与区别.
y
6 y = 1 x2
5
2
4
y = 1 x2 - 2
3
2
2
1
–4 –3 –2 –1 –1
–2
1234x
函数 y = 1 x2 - 2 的图象可以看成是
2
由函数 y = 1 x2 的图象经过怎样的
2
平移得到的?试说出它的开口方向、
y
6 y = 1 x2
y
4
3
2
y = - 1 x2 +4
3
1
–4 –3 –2 –1
1234x
–1
–2

湘教版九年级数学下册.1二次函数的图象和性质课件

湘教版九年级数学下册.1二次函数的图象和性质课件
对称轴与图象的交点是__O_(_0_,_0_)_;
图象的开口向____上____; 图象在对称轴左边的部分, 函数值随自变量取值的增 大而___减__小____,简称为 “左降”; 当 x =___0_时,函数值最__小__.
类似地,当a>0时,y=ax2的图象也具有上述性质, 于是我们在画y=ax2(a>0)的图象时,可以先画 出图象在y轴右边的部分,然后利用对称性,画 出图象在y轴左边的部分,在画右边部分时,只 要“列表、描点、连线”三个步骤就可以了(因 为我们知道了图象的性质).
2.图象在对称轴右边的部分,函数值随自变量取值的增大而 ____增__大______,简称为右___升__;
3.图象在对称轴左边的部分,函数值随自变量取值的增大而 ____减__小______,简称为左____降___;
4.当x=____0_时,函数值最___小____.
ቤተ መጻሕፍቲ ባይዱ
1、已知抛物线y=ax2经过点A(-2,8)。 (1)求此抛物线的函数解析式; (2)判断点B(-1,- 4)是否在此抛
二次函数
y x2
y=x2的图象
形如物体抛
射时所经过
的路线,我们 这条抛物线关于
把它叫做抛 y轴对称,y轴就
物线
是它的对称轴.
.
典例解析:
例1: 画二次函数 y 1 x2 的图象.
2
解:因为二次函数的图像关于y轴对称,因此列 表时,自变量x应该从原点的横坐标0开始取值。
x
0
1
2
3 ...
y 1 x2 2
我猜想都有这一性质.
可以证明上述两个猜测都是正确的,即y=x2的图象关于
y轴对称;图象在y轴右边的部分,函数值随自变量取

北师大版九年级数学下册第3课时二次函数y=a(x-h)2的图象与性质课件

北师大版九年级数学下册第3课时二次函数y=a(x-h)2的图象与性质课件

想一想:抛物线 y = ax2 还可以怎样平移,平移 后会得到新的抛物线吗?
1 二次函数 y = a(x - h)2 的图象和性质
例1 画出二次函数 y = 2(x - 1)2 的图象,并分别指出它
们的开口方向、对称轴和顶点.
解:列表如下:
x
−4 −3 −2 −1 0 1 2 3 4
2x2
32 18 8 2
yO
x
-4 -2
24
(1) 顶点都是最_高___点,函数都
-2
有最_大___值,都为__y_=__0__;y 1 x 1 2 -4
(2)
y
函数的增减性: 1 x 1 2 当 x<-1
时,y
2

x
y
增大而增大
1 2
x
12
2
当 x>-1 时,y 随 x 增大而减小
y 1 x 12
2
当 x<1 时,y 随 x 增大而增大 当 x>1 时,y 随 x 增大而减小
2(x - 1)2 50 32 18 8
02 20
8 18 32 0 8 18
你能发现 2(x - 1)2 与 2x2 的值有什么关系?
描点、连线,如图所示: 根据图象回答下列问题:
(1) 图象的形状都是 抛物线 ;
(2) 图形的开口方向 向上 ;
(3) 从左到右对称轴分别是都 是 x = 0,x = 1 ;
(4) 从左到右顶点坐标分别是 _(_0_,__0_)_,__(_1_,__0_)___;
y = 2x2
y = 2(x - 1)2
(5) 顶点都是最_低___点,函数都有 y = 2x2 最__小__值,都为__y_=__0__; (6) 函数 y = 2(x - 1)2 的增减性 :

九下数学课件 二次函数y=ax^2+k的图像与性质 (课件)

九下数学课件 二次函数y=ax^2+k的图像与性质 (课件)

(2) BF=BC 理由:在y=kx+2中,令x=0,得y=2.∴ 点F的坐标为(0,2).
∴ OF=2.过点F作FH⊥BC,垂足为H.设点B的坐标为 t, 1 t2 + 1 ,
4
∵ 易知四边形OFHC为矩形,∴ OF=CH,FH=OC=t,BC=14t2+1.

BH

BC

CH

BC

OF

1 4
当x<0时,y随x增大而减小.
抛物线关于y轴对称.
图像有最低点,过(0,0) y有最小值.
当x>0时,y随x增大而增大.
抛物线开口向上.
那么y=x2+1的图像与y=x2的图像有什么关系?
在同一坐标系中画出函数y=x2和y=x2+1的图像. (1)列表.
x
… -3 -2 -1 0 1 2 3 …
y=x2 … 9
位置上下平移规律,即:抛物线y=ax2+k 是由抛物线 y=ax2 上下平移| k |个单位长度得到的,“上加”表 示当k 为正数时,向上平移;“下减”表示当k为负数时, 向下平移;
“纵变横不变”表示坐标的平移规律,即:抛物线平 移时其对应点的纵坐标改变而横坐标不变.
l 归纳:
2. 二次函数y=ax2+k 的图像
l 归纳:
3. 二次函数y=ax2+k 的性质 (1)当a>0时,函数有最小值k,当a<0时,函数有 最大值k; (2)如果a>0,当x<0时,y随x的增大而减小,当 x>0时,y随x的增大而增大;如果a<0,当x<0 时,y随x的增大而增大,当x>0时,y随x的增 大而减小.
l 归纳:
4. 二次函数y=ax2+k 的图象的画法 (1)描点法:类比作二次函数y=ax2 图象的描点法,

苏科版九年级下册61二次函数ppt课件

苏科版九年级下册61二次函数ppt课件

THANK YOU
感谢聆听
二次函数的表达式
总结词
二次函数的表达式是描述函数与自变量之间关系的数学式子 。
详细描述
二次函数的表达式是用来描述函数与自变量之间关系的数学式 子。对于一般的二次函数,其表达式为$y=ax^2+bx+c$,其 中$a$、$b$、$c$是常数,且$a neq 0$。这个表达式可以用 来计算任意自变量值对应的函数值。
详细描述
二次函数的顶点坐标可以通过公式(-b/2a, c-b^2/4a)计算得出。其中,b和a是二次函数的一般形式 y=ax^2+bx+c中的系数。顶点是抛物线的最低点或最高点,也是抛物线与对称轴的交点。
二次函数的对称轴
总结词
对称轴的方程是x=-b/2a。
详细描述
二次函数的对称轴是一条垂直于x轴的直线,其方程是x=-b/2a。对称轴是抛物线与x轴平行的线,它 穿过抛物线的顶点,并且将抛物线平分为两个对称的部分。
04
习题与练习
基础习题
基础习题1
已知二次函数$y = ax^2 + bx + c$的图象经过点$(1,0)$,且$a + b + c = 0$,求证: 这个二次函数的图象必与$x$轴相交于两点。
基础习题2
已知二次函数$y = ax^2 + bx + c$的图象经过点$(0,2)$,且$a - b + c = 0$,求证: 这个二次函数的图象必与$x$轴相交于一点。
矩形面积问题
在二次函数图像上选择合适的点 作为矩形的顶点,可以计算出矩 形的面积。
利用二次函数解决实际问题
抛物线拱桥问题
在实际生活中,抛物线拱桥的形状可 以通过二次函数来描述,从而解决与 拱桥相关的问题。

北师大版数学九年级下册课件二次函数

北师大版数学九年级下册课件二次函数
x/棵 1 2 3 4 5 6 7 8 9 10 11 12 13 14
6 6 66 6 6 6 6 6 6 6 6 6 6 0 0 00 0 0 0 0 0 0 0 0 0 0 y/个 0 1 2 3 3 4 4 4 4 5 4 4 4 4 9 8 52 7 2 5 8 9 0 9 8 5 2 5 0 50 5 0 5 0 5 0 5 0 5 0 答:种10棵橙子树,果园橙子的总产量最多.
新知探究
做一做:银行的储蓄利率是随时间的变化而变化的,也就是说,利率是一个变量. 在我国,利率的调整是由中国人民银行根据国民经济发展的情况而决定的.
银行储蓄利率表
2012-7-6


利率
三个月
2.85

半年
3.05

一年
3.25

二年
3.75

三年
4.25
五年
4.75
零存整取
一年
2.85
整存零取
三年
解:S=a( -a)=a(30-a)=30a-a²=-a²+30a . 是函数关系且为二次函数关系.
新知探究
3.已知函数y=(m2+m) xm2-2m+2 (1)当函数是二次函数时,求m的值.
是二次函数的条件是m2-2m+2=2且m2+m≠0. (2)当函数是一次函数时,求m的值.
是一次函数的条件是m2-2m+2=1且m2+m≠0.
九年级数学北师版·下册
第二章 二次函数
2.1 二次函数
教学目标
1.探索并归纳二次函数的定义.(重点) 2.能够表示简单变量之间的二次函数关系.(难点)
新课导入

2.2.2 二次函数的图象与性质(课件)九年级数学下册课件(北师大版)

2.2.2 二次函数的图象与性质(课件)九年级数学下册课件(北师大版)
的值和函数解析式 m+1>0 ①
解: 依题意有: m2+m=2 ②
解②得:m1=-2, m2=1
由①得:m>-1
∴ m=1 此时,二次函数为: y=2x2.
随堂练习
1.若二次函数y=axa2-2 的图象开口向下,则a 的值为( )
A.2
B. -2
C.4
D. -4
2.已知二次函数y=(2-a)xa2-14,在其图象对称轴的左侧,y
问题1. 抛物线y=2x2+1,y=2x2-1的开口方向、对称轴和顶点各是什么

二次函数 开口 方向
顶点 坐标
对称轴
10 8
y =2x2 向上 (0,0) y轴
6
y =2x2+ 1
向上 (0,1)
y轴
4 2
y=2x2-1 向上 (0,-1) y轴 -4 -2 -2
y = 2x2+1 y = 2x2-1
开口方向 对称轴 顶点
a>0,开口向上, a<0,开口向下
y轴
原点(0,0)
(0,c)
增减性
a>0时,在对称轴左侧递 a>0时,在对称轴左侧递减, 减,在对称轴右侧递增; 在对称轴右侧递增;a<0时, a<0时,在对称轴左侧递 在对称轴左侧递增,在对 增,在对称轴右侧递减 称轴右侧递减
最值 最大(小)值是0 最大(小)值是c
(1)比较a,b,c,d 的大小; (2)说明a与c,b与d的数量关系.
解:(1)由抛物线的开口方向, 知a > 0,b > 0,c < 0,d < 0. 由抛物线的开口大小,知|a| > |b|,|c| > |d|, 因此a > b,c < d.∴ a > b > d > c. (2)∵①与③,②与④分别关于x 轴对称, ∴①与③,②与④的开口大小相同,方向相反. ∴ a+c=0,b+d=0.

人教版九年级数学下册第26章《二次函数》二次函数ya(xh)^2的图象与性质课件(21张)

人教版九年级数学下册第26章《二次函数》二次函数ya(xh)^2的图象与性质课件(21张)
y a ( x-h )2的 图 象 与 性 质
2020/3/23
在同一直角坐标系中,
画出函 y2 1数 x2与y2 1(x-22)的图象
2020/3/23
2020/3/23
2020/3/23
2020/3/23
2020/3/23
2020/3/23
2020/3/23
函数y=-(x+3)2的图 象可由y=-x2的图象 沿x轴向左平移3个
单位长度得到.
函数y=-(x-2)2的图 象可由y=-x2的图象 沿x轴向右平移2个
单位长度得到.
y=-(x+3)2
y=-x2 y=-(x-2)2
图象向左移还是向右移,移多少个 单位长度,有什么规律吗?
2020/3/23Leabharlann 这两个函数的图象有什么关系?
y
1 2
x2
y
1( 2
x2
)2
但是对称轴和 顶点坐标不同
的图象向右 平移 h个单位得到,当h<0时,
函数y=a(x-h)2的图象可由y=ax2的图象向
平移左个单位得到h 。
(1)函数y=4(x+5)2的图象可由y=4x2的图象 向左 平移5 个单位得到;y=4(x-11)2的图象 可由 y=4x2的图象向右平移11个单位得到。
(2)将函数y=-3(x+4)2的图象向 右 平移4 个单位可得 y=-3x2的图象;将y=2(x-7)2的图象向左平移 7 个 单位得到y=2x2的图象。将y=(x-7)2的图象
向左平移 9 个单位可得到 y=x2+2的图象。
(3)将抛物线y=4x2向左平移3个单位,所得的 抛物线的函数式是 y=4(x+3)2。

湘教版九年级下册数学精品课件 第1章 二次函数 第1课时 二次函数y=ax2(a>0)的图象与性质

湘教版九年级下册数学精品课件 第1章  二次函数 第1课时 二次函数y=ax2(a>0)的图象与性质
1.列表:在 y = x2 中自变量 x 可以是任意实数.让 x 取 0 和一些互为相反数的数,并算出相应的函数值.
x … -3 -2 -1 0 1 2 3 … y = x2 … 9 4 1 0 1 4 9 …
2. 描点:根据表中 x,y 的数值在坐标平面中描点(x,y)
y 9 6 3
-4 -2 o 2 4 x
Ox
3. 若抛物线 y = ax2 (a ≠ 0),过点(-1,2). (1)则 a 的值是 2 ; (2)对称轴是 y 轴 ,开口 向上 . (3)与对称轴的交点是(0,0),该点是图象
上的最 小 值 . (4)若 A(x1,y1),B(x2,y2) 在这条抛物线上,且
x1 < x2 <0,则 y1 > y2.
且 A 点的横坐标是 3,
∴点 A 的纵坐标 y = 2×3+3=9,∴点 A 的坐标为
(3,9),将点 A 的坐标代入 y = ax2 得:a = 1.
∴抛物线的解析式为 y = x2.
y 2x 3
y
x2
解得:xy
3或
9
x
y
1 1
∴点 B 的坐标为 (-1,1).
二次函数y=ax2 的图象及性质
问题1:观察图象,点 A 和点 A' ,点 B 和点 B' ,ቤተ መጻሕፍቲ ባይዱ,
它们有什么关系?由此你可以做出什么猜测?
问题2:从图还可看出,y 轴右边描出的各点,当横坐标
增大时,纵坐标怎样变化?
y
y = x2 的图象关于 y 轴对
A9
A'
称,y轴就是它的对称.
B6
B'
图象在 y 轴右边的部分,函数

二次函数的图象与性质(第一课时) 课件(共34张PPT)北师大版初中数学九年级下册

二次函数的图象与性质(第一课时) 课件(共34张PPT)北师大版初中数学九年级下册
(g为定值)
此外,二次函数在建筑学上也有重要应用,如抛物线型隧道、抛物线型拱桥、抛物线型吊桥、抛物线型弯道等.要确定这些抛物线的形状,需要对地质、地形、气象、水力、材料等因素进行综合分析.
这节课 你学到了什么?
同学们再见!
授课老师:
时间:2024年9月15日
1.某一物体的质量为m,它运动时的能量E与它的运动速度v之间的关系是:
(m为定值)
2.导线的电阻为R,当导线中有电流通过时,单位时间所产生的热量Q与电流强度I之间的关系是:
(R为定值)
Q=RI2
3.g表示重力加速度,当物体自由下落时,下落的距离s与下落时间t之间的关系是:
二次函数y=x2的图象形如物体抛射时所经过的路线,我们把它叫做抛物线 y=x2.
开口向上
(2)图象与x轴有交点吗?如果有,交点坐标是什么?
有,(0,0)
是,对称轴是 y 轴.
(-2,4)和(2,4);
(-3,9)和(3,9)等等.
(-1,1)和(1,1);
(3)图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点.
探究1 请作出二次函数 y=x2 的图象.
x


y


-3
-2
-1
0
1
2
3
(2)在直角坐标系中描点.
(3)用光滑的曲线顺次连接各点,便得到函数 y=x2 的图象.
y=x2
x

-3
-2
-1
0
1
2
3

y

9
4
1
0
1
4
9

(1)你能描述图象的形状吗?

二次函数的图象与性质 第2课时 二次函数y=ax2+c的图象与性质 课件 数学北师大版九年级下册

二次函数的图象与性质 第2课时 二次函数y=ax2+c的图象与性质  课件 数学北师大版九年级下册


( B )
A. 顶点相同
B. 对称轴相同
C. 开口方向相同
D. 顶点都在 x 轴上
2. 若抛物线 y = x2+3上有三点 A (1, y1), B (5,
y2), C (-2, y3),则 y1, y2, y3的大小关系为
( B )
A. y2< y1< y3
B. y1< y3< y2
C. y2< y3< y1

2
如图,二次函数 y =- x +2的图象与 x 轴、 y 轴分

4.
别交于点 A , B , C .
(1)直接写出抛物线的顶点坐标和对称轴;
解:(1)抛物线的顶点坐标为(0,2),
对称轴为 y 轴.
(第4题)
(2)若y的值随x的值的增大而减小,求x的取值范
围;
解:(2)由图象可知,若 y 的值随 x 的值
入 y = ax2+ c ,
= ,
+ = ,
得ቊ
解得ቊ
= .
+ = ,
∴抛物线的表达式为 y = x2+2.
令 x =0,则 y =2,∴点 C (0,2).
∵ BE ⊥ x 轴,点 B (2,6),∴点 E (2,
0).
∴直线 AE 的表达式为 y =- x +2.
令 x =0,则 y =2,
当 x <0 时, y 的值随 x 值的增大而减小;

(2)抛物线 y = ax2+ b 的形状与函数 y =2 x2的图象的
形状相同,开口方向相反,与 y 轴交于点(0,-2),
2-2
y
=-2
x
则该抛物线的表达式为


(3)已知点(-9, y1),(4, y2),(-2, y3)都

湘教版数学九年级下册第3课时二次函数y=a(x-h)2的图象与性质课件

湘教版数学九年级下册第3课时二次函数y=a(x-h)2的图象与性质课件
把点P 的横坐标a加上1,纵坐标不变,
就得到像点Q 的坐标为
1
( a 1, a 2 )
2
记b=a+1,则a=b-1,从而点Q的坐标为
1
(b, (b 1) 2 )
2
1
2
(
x

1
)
这表明:点Q在函数
的图象上,由此得
2
1
出,抛物线F 是函数 y ( x 1) 2 的图象.
2
1
2
y

(
x

3.已知二次函数y=-(x+2)2,下列说法正
确的是( A )
A.当x>-2时,y随x的增大而减小
B.图象与y轴的交点坐标为(0,2)
C.图象的开口向上
D.图象的顶点坐标是(-1,2)
4.将抛物线y=-x2沿x轴向左平移3个单位后
y=-(x+3)2
所得抛物线的函数表达式是___________.
y=ax2
当向右平移 ︱h︱ 时
y=a(x-h)
当向左平移 ︱h︱ 时
y=a(x+h)
左右平移规律:
括号内左加右减;括号外不变.
2
2
例题讲授
例3抛物线y=ax2向右平移2个单位后经过点(-1,4),
求a的值和平移后的函数表达式.
解:二次函数y=ax2的图象向右平移2个单位
后的二次函数表达式可表示为y=a(x-2)2,
要弄错了!
1
2.
(x+2)
2
(2)∵a>0,
∴在对称轴左侧,即当x<-2时,y随x的增大而减小,
∵-5<-3,∴y1>y2.
2
y
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.1二次函数
一般形式
图象
函 数
一次函数 y=kx+b (k≠0) 一条直线 正比例函数 y=kx(k≠0)
k 反比例函数 y = k ≠ 0 双曲线 x
二次函数
喷泉(1)
问题1:用总长为60m的篱笆围成矩形
场地,场地面积S(m² )与矩形一边 长a(m)之间的关系是什么?
解:S=a(
m2 m
(3) m取什么值时,此函数是二次函数?
1、下列函数中,(x是ຫໍສະໝຸດ 变量),是二次函数 的为( C )
A y=ax2+bx+c
C y=x2
B y2=x2-4x+1
D y=2+ √x2+1
2.函数 y=(m-n)x2+ mx+n 是二次函数的条件是( C )
A
C
m,n是常数,且m≠0
m,n是常数,且m≠n
x
二次项系数: 10π 一次项系数: 0 常数项: 0
现在我们学习过的函数有: 一次函数y=ax+b (a ≠0),其中包括正比例函数 y=kx(k≠0), 反比例函数y= 二次函数y=ax2+bx+c(a≠0). 可以发现,这些函数的名称都反映了函数表达 式与自变量的关系.
k x
(k≠0)
例2、y=(m+3)x
• y=(100+x)(600—5x)
2
5x 100 x 60000
二次函数
S= -a² +30a ,
2
y=240x2+120x+976 y=100(x+1)² =100x² +200x+100
y 5x 100 x 60000
定义:一般地,形如y=ax² +bx+c 的函数叫做x的二次函数.
上式表示了多边形的对角线数d与边数n之间的关系
如果函数y= x +kx+1是二次函数, 0,3 则k的值一定是______ 如果函数y=(k-3) x 0 数,则k的值一定是______
k -3k+2
2
k 2 - 3k+ 2
+kx+1是二次函
2 2 y ( m m ) x mx (m 1) m取哪些值时,函数
y 20(1 x)
2
2
y 20x 40x 20
探究 一、观察下列等式,它们有什么共同 特点?
S 6a
2
具备函数特点
1 2 3 d n n 等号右边都是二次式 2 2
y 20x 40x 20
+1 解: (1)y=3(x-1)² =3(x2-2x+1)+1 =3x2-6x+3+1 即 y=3x2-6x+4
(4) y=(x+3)² -x² =x2+6x+9-x2
即 y=6x+9 不是二次函数.
是二次函数. 1 -x __ (5)y= 不是二次函数. 二次项系数: 3 x² 一次项系数: -6 常数项: 4 是二次函数 . (6) v=10π r² 1 (2) y=x+ __ 不是二次函数. (3) s=3-2t² 是二次函数. 二次项系数: -2 一次项系数: 0 常数项: 3
1 (是) (2) y = x + (否) (1) y=3(x-1)² +1 x
1、圆的半径是1cm,假设半径增 加xcm时,圆的面积增加ycm² . (1)写出y与x之间的函数关系表 达式;
(2)当圆的半径分别增加1cm, ,2cm时2cm ,圆的面积增加多少?
2、正方体的六个面是全等的正方形,高正 方体的棱长为x,表面积为y,显然对于x的每一 个值,y都有一个对应值,即y是x的函数,它们的 具体关系可以表示为
是以x为自变量的一次函数? 为自变量的二次函数?
已知函数 y (k k ) x kx 2 k (1) k为何值时,y是x的一次函数? (2) k为何值时,y是x的二次函数?
2 2
解(1)根据题意得
2 k k 0 k 0
∴k=1时,y是x的一次函数。
(2) 当k - k ≠ 0, 即k ≠ 0且k ≠ 1 时 y是x的二次函数



y 20 x2 40 x 20③
③式表示了两年后的产量y与计划增产的倍数x之间 的关系,对于x的每一个值, y都有一个对应值,即y是x的 函数.
观察
函数①②③有什么共同点?
y=6x2①
y x 8x
2
y 20 x2 40 x 20③
y是x的函数吗?y是x的一次函数?反比例函数?
二次函数 y ax c , 当x=0时,y=-2;当 y=-1时,x=1,求y=2时,x的值。
2
1、当m为何值时,函数 2 -2 m y=(m-2)x +4x-5是
x的二次函数
2+ m- 4 m 2.y=(m+3)x +(m
+2)x+3, 当m为何值时,y是x的二 次函数?
二次函数(1)
• 3.将进货单价为40元的商品按50元卖 出时,就能卖出500个,已知这种商品每 涨1元,其销售量就会减少10个,设售价 定为X元(x>50)时的利润为Y元。试求 出Y与X的函数关系式,并按所求的函 数关系式计算出售定价为80元时所得 利润。
例4、若二次函数y=2x2+bx+c的图形经 过A(-1,0),B(0,1),二点,求 这个函数的解析式.
?
蓄的年利率是x,一年到期后 ,银行将本金和利息自动按 一年定期储蓄转存.如果存 款是100元,那么请你写出两 年后的本息和y(元)的表达 式(不考虑利息税).
y=100(x+1)² =100x² +200x+100
问题4:某果园有100棵橙子树,每一棵树平均 结600个橙子,现准备多种一些橙子树以提高 产量,但是如果多种树,那么树之间的距离 和每一棵树所接受的阳光就会减少.根据经 验估计,每多种一棵树,平均每棵树就会少 结5个橙子. (1) 问题中有哪些变量 ?其中哪些是自变量 ? y • (3) 如果果园橙子的总产量为 y个,那么请你写出 (2) x棵橙子树,那么果园共有 与假设果园增种 x之间的关系式. 多少棵橙子树 ?这时平均每棵树结多少个橙 • 果园共有(100+x) 棵树,平均每棵树结(600-5x)个 子 ? 橙子,因此果园橙子的总产量
你发现了吗?
60500 60495 60495 60480 60480 60455 60455 60420 60420 60375 60375
小结
拓展
回味无穷
定义中应该注意的几个问题:
1.定义:一般地,形如y=ax² +bx+c(a,b,c是常数,a≠0) 的函数叫做x的二次函数. y=ax² +bx+c(a,b,c是常数,a≠0)的几种不同表示形式: (1)y=ax² (a≠0,b=0,c=0,). (2)y=ax² +c(a≠0,b=0,c≠0). (3)y=ax² +bx(a≠0,b≠0,c=0). 2.定义的实质是:ax² +bx+c是整式,自变量x的最高次数 是二次,自变量x的取值范围是全体实数.
导入 ※、正方体的六个面是全等的正方形, 设正方体的棱长为a,表面积为S ,则 S与a之间有什么关系?
S 6a
2
a
导入 ※、多边形对角线的条数d与边数n之 间有什么关系?
1 d n(n 3) 2 1 2 3 d n n 2 2
导入 ※、某工厂一种产品现在的年产量是 20件,计划今后两年增加产量。如果 每一年都比上一年的产量增加x倍,那 么两年后,这种产品的产量y与x之间 的关系应怎样表示?
在上面的问题中,函数都是用自变量的二次式 表示的,
2、定义:一般地,形如 y=ax² +bx+c(a,b,c是常数,a≠ 0)的函数叫 做x的二次函数。
注意: (1)等号左边是变量y,右边是关于自变量x的 整式
(2)a,b,c为常数,且 a≠0.
(3 )等式的右边最高次数为 2 ,可以没有 一次项和常数项,但不能没有二次项。
(4)x的取值范围是 任意实数 。
二次函数的一般 形式 : 2 y=ax +bx+c (其中a、b、c是常数,a≠0)
a是二次项系数 b是一次项系数 C是常数项
二次函数的特殊形式: 当b=0时, y=ax2+c 当c=0时, y=ax2+bx 当b=0,c=0时, y=ax2
例1、下列函数中,哪些是二次函数?若是, 分别指出二次项系数,一次项系数,常数项. 1 __ (1) y=3(x-1)² +1 (2) y=x+ x (3) s=3-2t² (4) y=(x+3)² -x² 1 __ (5)y= -x (6) v=10π r² x²
m2-7
(1)m取什么值时,此函数是正比例函数?
(2) m取什么值时,此函数是反比例函数?
1 例3、函数y (k ) x 是 2 -1 二次函数,则k _______ . 练习:函数y (m 1) x mx 1是 二次函数,则m 2 _____ .
2 k 2 k 1
60 2
-a)=a(30-a)
=30a-a² = -a² +30a .
问题2:要给边长为x米的正方形房间铺 设地板,已知某种地板的价格为每平方 米240元,踢脚线的价格为每米30元.如 果其他费用为1000元,门宽0.8米,那 么总费用y为多少元?
2 y=240x +120x+976
问题3:设人民币一年教育储
有何特点?
(a,b,c是常数,a≠ 0)
相关文档
最新文档