(优选)信道与信道容量

合集下载

光通信中的信道建模与信道容量分析

光通信中的信道建模与信道容量分析

光通信中的信道建模与信道容量分析光通信是一项现代通信技术,它采用光作为信号传输介质,其速度快、带宽宽、并且不受电磁干扰的特点使得其在很多应用场景中得到了广泛的应用。

如何对光通信中的信道进行建模和分析,是光通信领域的研究热点之一。

本文将阐述光通信中的信道建模和信道容量分析的相关内容。

一、光通信中的信道建模信道建模是对通信信道的特性进行描述和抽象的过程。

在光通信中,信道包含光纤、空气等传输介质。

光纤是光通信中最常用的传输介质之一。

根据信道的不同特点,光通信中的信道建模可以分为线性模型和非线性模型两种。

在光纤通信中,信道传输会受到各种噪声的影响,包括热噪声、自发噪声等。

为了对光纤通信中的信道进行建模,研究者通常采用线性模型。

线性模型是将光纤通信中的信号当成一个线性系统,其输入输出过程满足线性定理。

基于线性模型,研究者通常采用瑞利衰落模型或高斯白噪声模型进行分析,瑞利衰落模型适用于描述室内环境或者非常短距离的光纤传输,而高斯白噪声模型适用于描述长距离的光纤传输。

基于线性模型的推导,可以得到光强度和相位的三级统计特性,包括均值、方差和自相关函数等。

在某些情况下,非线性模型可能更适合描述光纤通信中的信道特性。

例如在光纤的高功率传输中,非线性效应会给信道带来一定影响。

非线性模型通常可以建立在薛定谔方程的基础上,对于一些常见的非线性效应,例如半波电流调制效应、自相位调制效应等,都可以采用非线性模型进行建模。

二、光通信中的信道容量分析信道容量是指单位时间内,发送端和接收端之间可以传输的有效信息量。

在光通信中,信道容量分析是评估光通信系统传输性能的重要指标。

光通信中信道容量分析的方法包括香农容量计算法和基于信息论的分析方法。

香农容量是指在理想情况下,对于一定的信道带宽和信道传输速率,通信系统可以最大化信息传输速率的极大值。

在光通信中,香农容量可以通过奈奎斯特公式进行计算。

该公式指出,当信道带宽为B,信号的传输速率为R时,理论最大的信息传输率C为2B log2 (1+SNR)。

第3章信道与信道容量32

第3章信道与信道容量32
j i j
普通高等教育“十五”国家级规划教材《信息论与编码》 曹雪虹等编著
14
3.2离散单个符号信道及其容量
信道容量
C= max I ( X ; Y )
p ( ai )
= max[ H (Y ) − H (Y | X )]
p ( ai ) p ( ai )
= max H (Y ) − H (Y / X )
第3章信道与信道容量
3.1信道分类和表示参数 3.2离散单个符号信道及其容量
离散无记忆信道:对称、准对称
3.4连续信道及其容量
普通高等教育“十五”国家级规划教材《信息论与编码》 曹雪虹等编著
1
3.1信道分类和表示参数
信道分类
用户数量:单用户、多用户 输入端和输出端关系:无反馈、有反馈 信道参数与时间的关系:固参、时变参 噪声种类: 随机差错、突发差错 输入输出特点:离散、连续、半离散半 连续、波形信道
• 信道种类
1 无干扰信道 2 有干扰无记忆信道 3 有干扰有记忆信道
普通高等教育“十五”国家级规划教材《信息论与编码》 曹雪虹等编著 3
信道参数
无干扰(无噪声)信道
1, y = f (x) p ( Y / X) = 0, y ≠ f (x)
普通高等教育“十五”国家级规划教材《信息论与编码》 曹雪虹等编著
13
3.2离散单个符号信道及其容量

输入对称
∑ p(b j / ai ) log p(b j / ai )与i无关
j
H (Y / X ) = −∑ p(ai )∑ p(b j / ai ) log p(b j / ai ) = −∑ p(b j / ai ) log p (b j / ai ) = H (Y / xi )

与信道容量

与信道容量

Department of Communication China Ji Liang University
25
第 三 章 信 道 与 信 道 容 量
③ 具有归并性能的无噪信道
这种信道如下图所示。 这种信道如下图所示。 n>m,输入 的符号集个数大于输出 的符号集个数。 的符号集个数大于输出Y的符号集个数 ,输入X的符号集个数大于输出 的符号集个数。
2012-4-6
Department of Communication China Ji Liang University
24
第 三 章 信 道 与 信 道 容 量
信道疑义度 H(X/Y)=0, I(X;Y)= H(X) -H(X/Y)= H(X) 。 ,
信道容量为: 信道容量为:
2012-4-6
2012-4-6
Department of Communication China Ji Liang University
10
第 三 章 信 道 与 信 道 容 量
b)二进制对称信道 ) (简称为 BSC信道 ) 信道
0 输入 p 1-p 0 输出
p 1 1-p 1
二进制对称信道
2012-4-6
Department of Communication China Ji Liang University
2012-4-6
Department of Communication China Ji Liang University
26
第 三 章 信 道 与 信 道 容 量
信道噪声熵 H(Y/X)=0。 信道容量为:
2012-4-6
Department of Communication China Ji Liang University

第三章 信道模型和信道容量

第三章 信道模型和信道容量

这是可知疑义度H(X/Y)=0,平均交互信息量达到最大值 I(X,Y)=H(X),C=logr。从平均意义上讲,这种信道可以把信源 的信息全部传递道信宿。这种每列只有一个非0元素的信道也 是一种无噪声信道,称为无噪声信道。
确定信道
这类信道的转移概率等于1或者等于0, 每一列的元素可有一个或多个1,可知其 噪声熵H(Y/X)=0,此时的平均交互信息 量达到最大值。
离散信道
X
P(Y/X)
Y
离散信道分类: 无干扰信道 有干扰无记忆信道 有干扰有记忆信道
离散信道三种表达方式
概率空间描述 X={a1,a2,……ar} P(Y/X)={p(bj/ai)}
j=1,2,……s) Y={b1,b2,……bs} 0≤p(bj/ai)≤1
(i=1,2,……r;
转移矩阵描述
信道组合
串联信道 并联信道
4.4 时间离散的无记忆连续 信道
可加噪声信道
P(y|x)=p(y-x)=p(z)
Hc (Y | X ) Hc (Z ) I (X ;Y ) Hc (Y ) Hc (Z )
可加噪声信道
高斯噪声信道
I
(X
;Y
)
H
(Y
)
Hc
(X
)
1 2
log(1
2 x 2 z
)
例已知一个二元信源连接一个二元信道, 如图给出。X={x1,x2}, [p(xi)]={1/2,1/2}
求I(X;Y),H(X,Y),H(X/Y),和H(Y/X)。
信道容量
C max R max I (X ;Y )bit / 符号
PX
PX
1
Ct
max PX
Rt

信道与信道容量部分例题

信道与信道容量部分例题
例题
信道与信道容量
BSC信道容量
• 例1 设二进制对称信道的输入概率空间 X 0 1 P • 信道矩阵:
1 p p p p P p 1 p p p
p(b 0) p(ai ) p(b0 | ai ) p p
18
• BSC信道容量
C 1 H ( p)
• 当p固定时,I (X;Y) 是ω的 型上凸函数。 • I (X;Y) 对ω存在一 个极大值。
I (X;Y) 1-H( p )
ω
4
BSC信道容量
• BSC信道容量
C 1 H ( p)
• 当固定信源的概率分布ω时,I (X;Y) 是p的 型下 凸函数。 信道无噪声 • 当p = 0, C C =1-0 = 1bit = H(X) 信道强噪声
1 8 1 8
1 8 P2 1 8
• 计算得:N1 =3/4, N2 = 1/4, M1=3/4, M2 = 1/4
C log n H ( p1 , p2 pm ) N k log M k
k 1 r
1 1 1 1 3 3 1 1 log 2 H ( , , , ) ( log log ) 2 4 8 8 4 4 4 4 1 1.75 0.811 0.061 (比特 / 信道符号)
10
串联信道
• 由信息不增原理
H ( X ) I ( X ; Y ) I ( X ; Z ) I ( X ;W ) C (1,2) max I ( X ; Z ) C (1,2,3) max I ( X ;W )
• 可以看出,串接的信道越多,其信道容量可能会越 小,当串接信道数无限大时,信道容量可能会趋于0

4.信道及其容量

4.信道及其容量

第4章 离散信道及其容量4.1节离散无记忆信道(DMC, Discrete Memoryless Channel )什么是 “信道”?通信的基本目标是将信源发出的消息有效、可靠地通过“信道”传输到目的地,即信宿(sink )。

但什么是“信道”?Kelly 称信道是通信系统中“不愿或不能改变的部分”。

比如CDMA 通信中,设备商只能针对给定的频谱范围进行设备开发,而运营商可能出于成本的考虑,不愿意进行新的投资,仍旧采用老的设备。

通信是对随机信号的通信,因此信源必须具有可选的消息,因此不可能利用一个sin(·)信号进行通信,而是至少需要两个可供发射机进行选择。

一旦选择了信息传输所采用的信号,信道决定了从信源到信宿的过程中信号所受到的各种影响。

从数学上理解,信道指定了接收机接收到各种信号的条件概率(conditional probability),但输入信号的先念概念(prior probability )则由使用信道的接收机指定。

如果只考虑离散时间信道,则输入、输出均可用随机变量序列进行描述。

输入序列X 1,X 2,……是由发射机进行选择,信道则决定输出序列Y 1, Y 2,……的条件概率。

数学上考虑的最简单的信道是离散无记忆信道。

离散无记忆信道由三部分组成:(1) 输入字符集A ={a 1, a 2, a 3,…}。

该字符集既可以是有限,也可以是可数无限。

其中每个符号a i 代表发射机使用信道时可选择的信号。

(2) 输出字符集B={b 1, b 2, b 3,…}。

该字符集既可以是有限,也可以是可数无限。

其中每个符号bi 代表接收机使用信道时可选择的信号。

(3) 条件概率分布P Y |X (·|X ),该条件分布定义在B 上,其中X ∈A 。

它描述了信道对输入信号的影响。

离散无记忆的假设表明,信道在某一时刻的输出只与该时刻的输入有关,而与该时刻之前的输入无关。

或者:1111|(|,...,,,...,)(|)n n n Y X n n P y x x y y P y x --=,n =1,2,3….Remark: (1) n x 在信道传输时受到的影响与n 时刻以前的输入信号无关。

信道与信道容量

信道与信道容量

1.6.2 信道容量
根据香农信息论,对于连续信道,如果信道带宽为B, 并且受到加性高斯白噪声的干扰,则信道容量的理论公式为
C=B㏒2(1+S/N)(b/s) 式中。 N为白噪声的平均功率; S是信号的平均功率; S/N 为信噪比。信道容量C是指信道可能传输的最大信息速率 (即信道能达到的最大传输能力)。虽然上式是在一定条件 下获得的(要求输入信号也为高斯信号才能实现上述可能 性),但对其他情况也可作为近似式使用。
例1 已知彩色电视图象由5ⅹ105个像素组成。设每个像素有 64种彩色度,每种彩色度有16个亮度等级。设所有彩色度和 亮度等级的组合机会均等,并统计独立。(1)试计算每秒 传送100个画面所需信道容量;(2)如果接受机信噪比为 30dB,为了传送彩色图象所需信道带宽为多少?
例2 设有一个图像要在电话线路中实现传真传输。大约要传输2.25ⅹ106个 像素,每个像素有12个亮度等级。假设所有亮度等级都是等概率的,电 话电路具有3kHz带宽和30dB信噪比。试求在该标准电话线路上传输一 张传真图片需要的最小时间。
在数字通信系统中,如果仅研究编码和解码问题, 可得到另一种广义信道---编码信道。编码信道的范围是 从编码器输出端至解码器输入端。这是因为从编码和解 码角度来看,编码器是把信源产生的消息信号转化为数 字信号。反之,解码器是将数字信号恢复原来的消息信 号;而编码器输出端至解码器输入端之间的一切环节只 是起了传输数字信号的作用,所以可以把它看成一个整 体---编码信道。当然,根据研究问题的不同,还可以定 义其他广义信道。
解: Rb = RBN㏒2N
RBN= Rb/×106 / 29.9 ×103=0.269 ×103s=4.5min
例3 已知八进制数字信号的传输速率为1600波 特。试问变换成二进制数字信号时的传输速率为多 少? 解: Rb = RBN㏒2N = 1600× ㏒28 = 4800 b/s

第三章 信道和信道容量

第三章  信道和信道容量

I(X;Y):接收到Y前、后关于的平均不确定性 的消除 ;或发送X前、后关于Y的平
均不确定性的消除。
可见:熵只是平均不确定性的描述,而不确定性 的消除(两熵之差)才等于接收端所获得的信息 量。获得的信息量不能和不确定性混为一谈。
第三章 信道和信道容量
关于信道容量: 研究:信道中平均每个符号所能传送的信息量,
有损失,是无噪有损信 道,也称确定信道,即: 损失熵:H(X/Y) ≠ 0; 噪声熵:H(Y/X) = 0, I(X;Y)=H(Y)=H(X)-H(X/Y) <H(X)
第三章 信道和信道容量
信道容量仍是最大熵问题(最大H(Y)):
C=max H(Y)=log s bit/符号
P(X)
(设Y有s个符号)
不相交的子集mk,由mk组成的矩阵[P]k是对称矩阵 (具有可排列的性质),则称此信道为准对称信道, 其信道容量:
r为输入符号集个数 即信道矩阵行数 准对称信道中的 行元素 第k个子矩阵 中行元素之和
第k个子矩阵 中列元素之和
第三章 信道和信道容量
例3-1:二元对称删除 信道如图,计算信道容量。
例3-2:准对称信道的信道矩阵为: P(y/x)= 0.5 0.3 0.2 0.3 0.5 0.2 当输入概率分布为p(x1)=ɑ,p(x2)=1-ɑ
且:p=0时,信道无干扰; P=1/2时,信道干扰最为严重。
第三章 信道和信道容量
二、二元删除信道
难以区分原发送信号时,不硬性
判断0或1,而作删除处理。 删除信道中,p=q时,则为 对称删除信道。 三、Z信道 信道特性:0错成1的概率为0, 1错成0有一定可能。
1
0 1 0
p
1-p
1
第三章 信道和信道容量

信道带宽和信道容量

信道带宽和信道容量

信道带宽模拟信道:模拟信道的带宽W=f2-f1其中f1是信道能够通过的最低频率,f2是信道能够通过的最高频率,两者都是由信道的物理特性决定的。

当组成信道的电路制成了,信道的带宽就决定了。

为了是信号的传输的失真小些,信道要有足够的带宽。

数字信道:数字信道是一种离散信道,它只能传送离散值的数字信号,信道的带宽决定了信道中能不失真的传输脉序列的最高速率。

一个数字脉冲称为一个码元,我们用码元速率表示单位时间内信号波形的变换次数,即单位时间内通过信道传输的码元个数。

若信号码元宽度为T秒,则码元速率B=1/T。

码元速率的单位叫波特(Baud),所以码元速率也叫波特率。

早在1924年,贝尔实验室的研究员亨利·尼奎斯特就推导出了有限带宽无噪声信道的极限波特率,称为尼奎斯特定理。

若信道带宽为W,则尼奎斯特定理指出最大码元速率为B=2W(Baud)尼奎斯特定理指定的信道容量也叫尼奎斯特极限,这是由信道的物理特性决定的。

超过尼奎斯特极限传送脉冲信号是不可能的,所以要进一步提高波特率必须改善信道带宽。

码元携带的信息量由码元取的离散值个数决定。

若码元取两个离散值,则一个码元携带1比特(bit)信息。

若码元可取四种离散值,则一个码元携带2比特信息。

总之一个码元携带的信息量n(bit)与码元的种类数N有如下关系:n=log2N单位时间内在信道上传送的信息量(比特数)称为数据速率。

在一定的波特率下提高速率的途径是用一个码元表示更多的比特数。

如果把两比特编码为一个码元,则数据速率可成倍提高。

我们有公式:R=B log2N=2W log2N(b/s)其中R表示数据速率,单位是每秒比特,简写为bps或b/s数据速率和波特率是两个不同的概念。

仅当码元取两个离散值时两者才相等。

对于普通电话线路,带宽为3000HZ,最高波特率为6000Baud。

而最高数据速率可随编码方式的不同而取不同的值。

这些都是在无噪声的理想情况下的极限值。

信道带宽与信道容量

信道带宽与信道容量

C
B
log2
1
S N
bit / s
(2-6-2)
例2.2 设一幅图片约有个像素,每个像素以后2个以等概率出 现的亮电平。若要求用3分钟传输这张图片,并且信噪比等于 30dB,试求所需的信道带宽。
解:由于每个像素有12个等概率出现的亮度电平,所以每个 像素的信息量为 I p log 2 12 3.585 b
每幅图像的信息量为 If 2.5106 Ip 8.963106 b 信息传输速率,即信道容量为
C If t 8.963 10 6 (3 60) 4.98 10 4
信噪比为 S N 30 dB 1000 由于信道容量 C B log2(1 S N)
所以所需信道带宽为
B
C
4.98104 5 kHz
案例分析2
地震预警信息是由电脑自动发送,该预警信息可通过多种通 信手段进行传输发送,例如:网络微博发送,计算机、手机、 专用预警接收服务器、电视等实时同步发布,如图2.37所示。 由于地震预警系统传递信息时需要保证信息的可靠性,因此 可以通过多种通信手段保证信息的发布,所涉及到的信道方 式也可能有多种形式。
地震发生时,首先出现的是上下震动的P波,震动幅度较 小,要过大约10秒到1分钟时间,水平运动的S波才会到来, 造成严重破坏。地震预警就是利用地震发生后,P波与S波之 间的时间差。原理上,在距离震源50公里内的地区,会在地
案例分析2
地震前10秒收到预警信息;90-100公里内的地区,能提前 20多秒收到预警信息。根据数据准确估计震级、震中位置以 及快速估计地震对预警目标的影响等。例如:地震波从震中 传到北川县城大概需要25秒。如果您在发震5秒后感受到了地 震波,并花了15秒钟打电话告诉北川的朋友地震波即将来临, 那么您北川的朋友将会获得5秒的应急时间。

通信原理第八章-离散信道及信道容量

通信原理第八章-离散信道及信道容量
第八章 离散信道及信道容量
信道,顾名思义就是信号的通道。图 8.1 中位于调制器和解调器之间的信道指用来传 输电信号的传输介质,如电缆,光缆,自由空间等,我们把这样的信道称为狭义信道。狭 义信道的输入为波形信号,输出为连续信号。还有一种定义即凡是信号经过的路径都称为 信道,这就是广义信道的概念。如图 8.1 所示,由调制器,信道和解调器构成了一个广义 编码信道。编码信道的输入和输出均为数字信号,因此,我们也将这类信道称为离散信道。
P(a������b������) = P(a������)������(b������|a������) = P(b������)P(a������|b������)
(8.5)
其中 ������(b������|a������)是信道传递概率,即发送为a������,通过信道传输接收到为b������的概率。通常称为前向
(������ = 1,2, … , ������ ������ = 1,2, … ������) (8.7)
8.2 平均互信息及平均条件互信息 在阐明了离散单符号信道的数学模型,即给出了信道输入与输出的统计依赖关
系以后,我们将深入研究在此信道中信息传输的问题。
8.2.1 损失熵和噪声熵
信道输入信号 x 的熵为
I(X, Y) = ������(������) − H(������|������)
(8.12)
I(X, Y)称为 X 和 Y 之间的平均互信息。它代表接收到输出符号后平均每个符号获得的关于 X
的信息量。根据式(8.8)和式(8.11)得
I(X; Y)
=
∑������,������
������(������������)
H (Y
X)

信道、信道容量、数据传输速率

信道、信道容量、数据传输速率

信道、信道容量、数据传输速率简介:信道、信道容量、数据传输速率(⽐特率)、电脑装置带宽列表⼀、信道的概念信道,是信号在通信系统中传输的通道,是信号从发射端传输到接收端所经过的传输媒质,这是狭义信道的定义。

⼴义信道的定义除了包括传输媒质,还包括信号传输的相关设备。

信道容量是在通信信道上可靠地传输信息时能够达到的最⼤速率。

根据有噪信道编码定理,给定信道的信道容量是其以任意⼩的差错概率传输信息的极限速率。

信道容量的单位为⽐特每秒、奈特每秒等等。

⾹农在第⼆次世界⼤战期间发展出信息论,并给出了信道容量的定义和计算信道容量的数学模型。

他指出,信道容量是信道的输⼊与输出的互信息量的最⼤值,这⼀最⼤取值由输⼊信号的概率分布决定。

⼆、信道的分类(⼀)狭义信道的分类狭义信道,按照传输媒质来划分,可以分为有线信道、⽆线信道和存储信道三类。

1. 有线信道有线信道以导线为传输媒质,信号沿导线进⾏传输,信号的能量集中在导线附近,因此传输效率⾼,但是部署不够灵活。

这⼀类信道使⽤的传输媒质包括⽤电线传输电信号的架空明线、电话线、双绞线、对称电缆和同轴电缆等等,还有传输经过调制的光脉冲信号的光导纤维。

2. ⽆线信道⽆线信道主要有以辐射⽆线电波为传输⽅式的⽆线电信道和在⽔下传播声波的⽔声信道等。

⽆线电信号由发射机的天线辐射到整个⾃由空间上进⾏传播。

不同频段的⽆线电波有不同的传播⽅式,主要有:地波传输:地球和电离层构成波导,中长波、长波和甚长波可以在这天然波导内沿着地⾯传播并绕过地⾯的障碍物。

长波可以应⽤于海事通信,中波调幅⼴播也利⽤了地波传输。

天波传输:短波、超短波可以通过电离层形成的反射信道和对流层形成的散射信道进⾏传播。

短波电台就利⽤了天波传输⽅式。

天波传输的距离最⼤可以达到400千⽶左右。

电离层和对流层的反射与散射,形成了从发射机到接收机的多条随时间变化的传播路径,电波信号经过这些路径在接收端形成相长或相消的叠加,使得接收信号的幅度和相位呈随机变化,这就是多径信道的衰落,这种信道被称作衰落信道。

信道与信道容量(1)

信道与信道容量(1)
可编辑ppt 32
准对称信道的信道容量
• 例3-5 已知一个信道的信道转移矩阵为
P 00..53
0.3 0.5
0.2 0.2
• 由P可看出信道的输入符号有两个,可设
• p(a 1),p(a2)1。 信道的输出符号有3个,
用b1,b2,b3表示。由 合概率的矩阵为
p(ai,bj)p(ai)p(bj|ai)得联
• 将信道矩阵P的列划分成若干个互不相交的子 集mk,由mk为列组成的矩阵[P]k是对称矩阵。
1 1 1 1 1 1 1 1
P131
3 1
6 1
6113
16
13
16
6 3 6 3 6 3 3 6
• 它们满足对称性,所以P1所对应的信道为准对称
信道。
可编辑ppt
30
准对称信道的信道容量
• 准对称信道
串联信道
• 例3-4 设有两个离散BSC信道,串接如图,两个
BSC信道的转移矩阵为:
1-p Y 1-p
X0
0Z
1p p
P1 P2
p
1p
p p
• 串联信道的转移矩阵为: 1
1-p
1 1-p
1 pp 1 pp (1 p )2 p 2 2 p (1 p ) P P 1 P 2 p1 p p1 p 2 p (1 p ) (1 p )2 p 2
i
j
p(bj | ai)logp(bj | ai)
j
H(Y| ai) i 1,2,n
H ( Y |X ) H ( Y |a i) H 可( 编p 辑1 p,ptp 2 , p m ) 15
对称DMC信道
• 对称DMC信道的容量:

信道带宽和信道容量

信道带宽和信道容量

信道带宽模拟信道:模拟信道的带宽W=f2-f1其中f1是信道能够通过的最低频率,f2是信道能够通过的最高频率,两者都是由信道的物理特性决定的。

当组成信道的电路制成了,信道的带宽就决定了。

为了是信号的传输的失真小些,信道要有足够的带宽。

数字信道:数字信道是一种离散信道,它只能传送离散值的数字信号,信道的带宽决定了信道中能不失真的传输脉序列的最高速率。

一个数字脉冲称为一个码元,我们用码元速率表示单位时间内信号波形的变换次数,即单位时间内通过信道传输的码元个数。

若信号码元宽度为T秒,则码元速率B=1/T。

码元速率的单位叫波特(Baud),所以码元速率也叫波特率。

早在1924年,贝尔实验室的研究员亨利·尼奎斯特就推导出了有限带宽无噪声信道的极限波特率,称为尼奎斯特定理。

若信道带宽为W,则尼奎斯特定理指出最大码元速率为B=2W(Baud)尼奎斯特定理指定的信道容量也叫尼奎斯特极限,这是由信道的物理特性决定的。

超过尼奎斯特极限传送脉冲信号是不可能的,所以要进一步提高波特率必须改善信道带宽。

码元携带的信息量由码元取的离散值个数决定。

若码元取两个离散值,则一个码元携带1比特(bit)信息。

若码元可取四种离散值,则一个码元携带2比特信息。

总之一个码元携带的信息量n(bit)与码元的种类数N有如下关系:n=log2N单位时间内在信道上传送的信息量(比特数)称为数据速率。

在一定的波特率下提高速率的途径是用一个码元表示更多的比特数。

如果把两比特编码为一个码元,则数据速率可成倍提高。

我们有公式:R=B log2N=2W log2N(b/s)其中R表示数据速率,单位是每秒比特,简写为bps或b/s数据速率和波特率是两个不同的概念。

仅当码元取两个离散值时两者才相等。

对于普通电话线路,带宽为3000HZ,最高波特率为6000Baud。

而最高数据速率可随编码方式的不同而取不同的值。

这些都是在无噪声的理想情况下的极限值。

第三章 信道与信道容量 习题解答

第三章 信道与信道容量 习题解答
但与理论不矛盾因为信息速率不光与信源熵有关还与每秒发送的符号数有关该信源的两个消息是非同价代码每个码元消息的时间长度不同等概率时信源熵提高了但每秒发送的符号数下降了因此才有此结果
第三章 信道与信道容量 习题解答
1.设信源
通过一干扰信道,接收符号为
信道传递矩阵为
(1) 信源 中符号 和 分别含有的自信息量。
(4)说明如果信噪比降低,则为保持信道容量不变,必须加大信道带宽。反之加大信道带宽,则可降低对信 噪比的要求。如果信道带宽降低,则为保持信道容量不变,必须加大信号功率信噪比。反之加大信号功率信 噪比,则可降低对信道带宽的要求。
12.在一个理想通信系统中,已知信道中功率信噪比为 10分贝,为了使功率节省一半又不损失信息量,有 几种办法?请计算并讨论各自的优缺点。

将各数据代入: 解得:
如果

将各数据代入: 解得:
14.在理想系统中,若信道带宽与消息带宽的比为 10,当接收机输入端功率信噪比分别为 0.1和 10时,试
比较输出端功率信噪比的改善程度,并说明

之间是否存在阀值效应。
解:已知
根据公式:
前者改善不明显,后者改善明显,故存在阀值效应。 15.设加性高斯白噪声信道中,信道带宽 3kHz,又设
解:设将电阻按阻值分类看成概率空间 X:

按功耗分类看成概率空间 Y:
已知:

通过计算
, ,


通过测量阻值获得的关于瓦数的平均信息量:
6.有一以“点”和“划”构成的老式电报系统,“点”的长度为 30毫秒,“划”的长度为 150毫秒,“点”和“划”出现的
4
概率分别为 0.8和 0.2,试求信息速率为多少?“点”、“划”出现的概率相等时,信息速率为多少?是否“点”、“划” 出现的概率相等时信息速率一定最高?是否和理论相矛盾?为什么? 解:

信道及信道容量

信道及信道容量

第5章 信道及信道容量教学内容包括:信道模型及信道分类、单符号离散信道、多符号离散信道、多用户信道及连续信道5.1信道模型及信道分类教学内容:1、一般信道的数学模型2、信道的分类3、信道容量的定义1、 一般信道的数学模型影响信道传输的因素:噪声、干扰。

噪声、干扰:非函数表述、随机性、统计依赖。

信道的全部特性:输入信号、输出信号,以及它们之间的依赖关系。

信道的一般数学模型:2、 信道的分类输出随机信号输入、输出随机变量个数输入和输出的个数信道上有无干扰有无记忆特性3、信道容量的定义衡量一个信息传递系统的好坏,有两个主要指标:图5.1.1 一般信道的数学模型离散信道、连续信道、半离散或半连续信道 单符号信道和多符号信道 有干扰信道和无干扰信道有记忆信道和无记忆信道单用户信道和多用户信道 速度指标质量指标速度指标:信息(传输)率R ,即信道中平均每个符号传递的信息量;质量指标:平均差错率e P ,即对信道输出符号进行译码的平均错误概率;目标:速度快、错误少,即R 尽量大而e P 尽量小。

信道容量:信息率R 能大到什么程度; )/()()/()();(X Y H Y H Y X H X H Y X I R -=-==若信道平均传送一个符号所需时间为t 秒,则);(1Y X I t R t =(bit/s )称t R 为信息(传输)速率。

分析:对于给定的信道,总存在一个信源(其概率分布为*)(X P ),会使信道的信息率R 达到最大。

();(Y X I 是输入概率)(X P 的上凸函数,这意味着);(Y X I 关于)(X P 存在最大值)每个给定的信道都存在一个最大的信息率,这个最大的信息率定义为该信道的信道容量,记为C ,即);(max max Y X I R C XXP P ==bit/符号 (5.1.3)信道容量也可以定义为信道的最大的信息速率,记为t C⎭⎬⎫⎩⎨⎧==);(1max max Y X I t R C XX P t P t (bit /s ) (5.1.4) 解释:(1)信道容量C 是信道信息率R 的上限,定量描述了信道(信息的)最大通过能力; (2)使得给定信道的);(Y X I 达到最大值(即信道容量C )的输入分布,称为最佳输入(概率)分布,记为*)(X P ;(3)信道的);(Y X I 与输入概率分布)(X P 和转移概率分布)/(X Y P 两者有关,但信道容量C 是信道的固有参数,只与信道转移概率)/(X Y P 有关。

信道与信道容量

信道与信道容量

4.2 多维无记忆加性连续信道
多维无记忆高斯加性信道可等价成 L 个独立的并联高
斯连续单符号加性信道
47
当且仅当输入随机矢量 X 中各分量统计独立,且是均值 为零、方差为 P l 的高斯变量时,才能达到此信道容量
噪声均值为零、方差相同
噪声均值为零、方差不同,输入总平均功率受限
48
4.3 限时限频限功率加性高斯白噪声信道
转移概率满足:
信道无记忆
只需分析单个符号的转移概率 p (yj|xi)
– 二进制离散信道
– 离散无记忆信道 – 离散输入、连续输出信道 – 波形信道
7
二进制离散信道
信道转移概率 p (yj|xi) :
传输发生错误的概率 无错误传输的概率
二进制对称信道( BSC )
8
离散无记忆信道 (DMC)
9
转移概率矩阵
m = n ,信道矩阵为非奇异阵
3 离散序列信道及其容量
无记忆离散序列信道 信道转移概率
仅与当前输入有关
进一步信道是平稳的
40
扩展信道 如果对离散单符号信道进行 L 次扩展,就形成了 L 次离散无记忆序列信道 --- 离散无记忆 L 次扩展信道 例: BSC 的二次扩展信道
2次扩展信道的信道容量:
到的值是其信道容量的下限值。
50
香农公式的讨论
1 带宽一定时,信噪比与信道
容量成对数关系
2 当输入信号功率一定,增加带
宽,容量可以增加 即使带宽无限,信 道容量仍是有限
当 C∞=1bit / s , PS/N0 =-1.6dB ,即当带宽不受限制时, 传送 1 比特信息,信噪比最低只需 -1.6dB ( 香农限 )
频带利用率:单位频带的信息传输速率

信道容量

信道容量

3. 信道容量信道容量指信道所能承受的最大数据传输速率,单位为bps或b/s。

信道容量受信道的带宽限制,信道带宽越宽,一定时间内信道上传输的信息就越多。

带宽指物理信道的频带宽度,即信道允许的最高频率和最低频率之差。

按信道频率范围的不同,通常可将信道分为窄带信道(0~300Hz)、音频信道(300~3400Hz)和宽带信道(3400Hz以上)三类。

信道容量有两种衡量的方法:奈奎斯特公式和香农公式。

(1) 奈奎斯特公式(Nyquist)对有限带宽无噪声信道,信道容量可用如下公式计算:其中,C —最大数据速率(信道容量)H —信道的带宽(Hz)N —一个脉冲所表示的有效状态数,即调制电平数例如,若某信道带宽为4kHz,任何时刻信号可取0、1、2和3四种电平之一,则信道容量为:奈奎斯特公式表明,对某一有限带宽无噪声信道,带宽固定,则调制速率也固定。

通过提高信号能表示的不同的状态数,可提高信道容量。

(2) 香农公式(Shannon)对有限带宽随机噪声(服从高斯分布)信道,信道容量可用如下公式计算:其中,H —信道的带宽(Hz)S —信道内信号的功率N —信道内服从高斯分布的噪声的功率S/N是信噪比,通常用表示,单位dB(分贝)例如,计算信噪比为30dB,带宽为4kHz的信道最大容量:由,得出S/N=1000 则,C=4k×log2(1+1000)≈40kbps表示无论采用何种调制技术,信噪比为30dB,带宽为4kHz的信道最大的数据速率约为40kbps。

4. 三个指标之间的关系从上面的分析可以看出,数据速率用于衡量信道传输数据的快慢,是信道的实际数据传输速率;信道容量用于衡量信道传输数据的能力,是信道的最大数据传输速率;而误码率用于衡量信道传输数据的可靠性。

信道带宽与信道容量的区别是什么?增加带宽是否一定能增加信道容量?带宽:信道可以不失真地传输信号的频率范围。

为不同应用而设计的传输媒体具有不同的信道质量,所支持的带宽有所不同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

证明:I (X ;Y )是 Qk 的上凸函数,故必有最大值,由K-T条件,
Qk 为最佳分布的充要条件是
I ( X ;Y ) Qk
I ( X ;Y ) Qk
k, Qk 0 k, Qk 0
为常数
I (X ;Y )
Qk
Qk
j
p( j m)
Qm p( j m) log K1
m
Qi p( j i)
– 时间离散的离散信道(离散信道) – 时间离散的连续信道(连续信道) – 时间连续的离散信道 – 时间连续的连续信道(波形信道)
信道分类
• 按输入输出之间关系的记忆性来划分:
– 无记忆信道 信道的输出只与信道该时刻的输入有关,而与其它 时刻的输入无关
– 有无记忆信道 信道的输出不但与信道现在时刻的输入有关,而且 还与以前时刻的输入有关
– 已知X,信道输出Y表现出来的统计特性
– 完全描述了信道的统计特性,其中有些概率是信道干扰 引起的错误概率,有些是正确传输的概率
m
p(bj | ai ) 1 i 1,2,n
j 1
二元对称信道(BSC)
– 输入符号X取值{0,1}
1-p
0
0
p
– 输出符号Y取值{0,1}
p
– 信道转移概率
1
1
i0
ji
j
p
j
k
log
pj k
K1 Qi p j
i0
i
log
e
m
Qm
p
j
m
pj k
K1 Qi p j
i0
i
j
p
j
k
log
pj k K1
Qi p j
i
log
e
j
p
j
k
I (x k;Y ) log e
i0
从而充要条件为
I (x k;Y ) log e k,Qk 0
为常数
i0
Qk
p jk
p jm
j
Qk p
jk
log K 1 Qi p
i0
ji
Qm p
mk
j m log K1 Qi p
i0
ji
Qk
p jk
p jm
j
Qk p
jk
log K 1 Qi p

ji
Qm p
mk
j m log K 1 Qi p
K 1 J 1
P(xy) log
p(x |
y)
K 1 J 1
P(xy) log
p(y |
x)
x0 y0
p(x) x0 y0
p( y)
K 1 J 1
p(x) p( y | x) log K1
p(y | x)
x0 y0
q(z) p(y | z)
z0
信道容量
回顾 给定转移概率P后,平均互信息I(X;Y)是输入信源的概 率分布p(x)的上凸函数。
(优选)信道与信道容量
信道数学模型
设信道的输入X=(X1, X2 … XN), Xi ∈{0,1… K-1} 输出Y= (Y1, Y2 … YN), Yj ∈{0,1… J-1}
信道转移概率矩阵p(Y|X):
– 描述输入和输出的统计依赖关系,反映信道统计关系
p(Y|X)
X
Y
信道
信道分类
• 按信道的输入和输出在幅度和时间上的取值
定义 离散无记忆信道的信道容量定义为
C max I(X ;Y ) q{q( x),x{0,1,,K 1}}
即为改变输入分布时,使每个符号所能含有的平均互 信息量的最大值,相应的输入分布称为最佳分布。
信道容量C与信源无关,只是信道转移概率的函数, 不同的信道就有不同的信道容量,它反映了信道 本身的传信能力。
pK 1,1
p0,J 1
p1,J 1
pK
1,
J
1
0
1 信道转移矩阵
K 1
信道转移矩阵
b1
b2
bm
a1 p(b1 | a1) p(b2 | a1) p(bm | a1)
P
a2
p(b1 |
a2
)
p(b2 | a2)
p(bm | a2)
an
p(b1
|
an
)
p(b2 | an)
p(bm | an)
概念一致
信息大于其它任一输入与所有输出之间的平均互信息,我们就
可以通过更经常采用这个输入k(即加大Qk)来增大。但这样做 会改变每个输入与所有输出之间的平均互信息量(由概率归一
性约束)。通过足够多次的调整输入概率分布,就可使每个概
率不为零的输入与所有输出之间的平均互信息量任意接近。
达到C的充要条件
p(0|0) = 1-p p(1|1) = 1-p
1-p
p(0|1) = p
p(1|0) = p 无错误传输的0 概率1 传输发P生 错1p误p 的1p概p率10
二元删除信道(BEC)
– 输入符号X取值{0,1} – 输出符号Y取值{0,1,2} – 转移矩阵
p(0|0) = 1-p p(0|1) = 0 p(2|0) = p p(2|1) = p p(1|0) = 0 p(1|1) = 1-p
达到C的充要条件
输入概率矢量 Q Q0,Q1,,QK 达到转移概率为p( j k)
的DMC的容量C的充要条件为
I (x k;Y ) C k, Qk 0
I (x k;Y ) C k, Qk 0
其中,
I
(x
k;Y
)
j
p(
j
k)
log
p(
Qi
j k) p( j
i)
i
定理与直观 在给定输入分布下,若某个输入k与所有输出事件之间的平均互
1-p
0
0
p
2
p
1
1-p
1
1 p p 0
P
0
p 1 p
信道容量
• 我们研究信道的目的是要讨论信道中平均每个符号所能 传送的信息量,即信道的信息传输率
• 平均互信息I (X;Y)
– 接收到符号Y后平均每个符号获得的关于X的信息量。 – 每传递一个符号流经信道的信息量,即信息传输率
I (X ;Y )
I (x k;Y ) log e k,Qk 0
从而充要条件为
I (x k;Y ) log e k,Qk 0
I (x k;Y ) log e k,Qk 0
信道分类
• 按输入输出信号之间的关系是否是确定关系
– 无干扰信道: 输入和输出符号之间有确定的一一对应关系
– 有干扰信道: 输入和输出之间关系是一种统计依存的关系
• 输入和输出的统计关系:
– 恒参信道和随参信道 – 对称信道和非对称信道
离散无记忆信道
X 0,1,2,, K 1
信道
Y 0,1,2,, J 1
x1,x2,,xN
pN (y | x)
y1, y2,, yN
pN (y | x) p( y1, y2, , yN | x1, x2, , xN )
p( y1 | x1) p( y2 | x2 ) p( yN | xN )
0
1 J 1
p( yn
| xn )
P
p0,0
p1,0
pK
1,0
p0,1 p1,1
相关文档
最新文档