信号检测与估计课后习题

合集下载

《信号检测与估计》第九章习题解答

《信号检测与估计》第九章习题解答

T x 2 (t )dt −2 A
0
Tx(t
0
)sin

0
t

)dt
+
A
2
T 0
sin
2

0
t

)dt
⎟⎞ ⎠
由于 ∫0Tsin 2 (ω0t
+ θ )dt
=
1 2
∫0T(1 − cos 2(ω0t
+ θ ))dt
=
T 2
,得到
( ) ∫ ∫ f
x A,θ
−1
= Fe N0
T x 2 (t )dt 2 A
ω0
ω0
s(t
)
=
⎪ ⎨
A

⎪ ⎪⎩
A(1
+
cos
ω0t)
− 2mπ < t ≤ 2mπ
ω0 2mπ
<t

(2ωm0 +1)π
ω0
ω0
试证明时延τ
的无偏估计量的方差为
σ
2 τˆ

3 + 4m
(2E / N0 )ω02
。其中 E 为信号能量。
解:略
9.4 接收信号 x(t) = s(t) + n(t),s(t)的到达有时延τ ,求时延τ 的无偏估计量τˆ 的最小方差。其中 n(t)
⎤ ⎥⎦
∫ ∫ ∫ ∫ [ ] = 4
N
2 0
T / 2 ∂s(t −τ )
−T / 2 ∂τ
T /2
E
−T / 2
n(t )n(u )
∂s(u −τ ) dudt

《信号估值与检测》习题

《信号估值与检测》习题

1. 令观测样本由1(,....)i ix s w i n =+=给出,其中{}i w 是一高斯白噪声,其均值为零,方差为1。

假定s的先验概率密度为22())s f a a =-试用平方和均匀代价函数分别求s 的贝叶斯估计。

解:2()(|))2i i x s p x s -=-,1,...,i n =222111()()1(|)(|))()exp()222n n n ni ii i i i x s x s p s p x s π===--==-=-∑∏x且12221()()exp(2)2p s s s π=-=-(1) 采用平方代价函数,相应贝叶斯估计为最小均方误差估计mse s[|](|)mse sE s sp s ds +∞-∞==⎰x x21222121221222112221112()(|)()111(|)()exp()()exp(2)()()222()11()exp(2)()22(2)11()exp()()22(1)211()exp()exp(()22n ni i n ni i nn ii i nn i i i i x s p s p s p s s p p x s s p xx s s s p x n s x s p πππππ=+=+=+==-==---=---++=-+-=--∑∑∑∑x x x x x x x 221112222211112)2(1)(2)111()exp()exp()()222()(())1111()exp()exp()1()222(1)nnnin ii i nnni i n ii i i x xn s s n p x x x s n n p n ππ+==+===+-+=----++--+∑∑∑∑∑∑x x 分析(|)p s x ,发现其为高斯型的;而mse s为其条件均值,因此可以直接得到 1()1ni mse i x s n ==+∑ (2) 采用均方代价函数,相应贝叶斯估计为最大后验估计map sln((|))|0map p s s ss∂==∂x ,也即满足 ln((|))ln(())[]|0map p s p s ss s∂∂+==∂∂x x 故有1()0nmapmap ii x ss=--=∑ 所以111n map i i s x n ==+∑2. 设观测到的信号为x n =θ+其中n 是方差为2n σ、均值为零的高斯白噪声。

《信号检测与估计》第十章习题解答

《信号检测与估计》第十章习题解答

《信号检测与估计》第十章习题解答10.1 设线性滤波器的输入信号为()()()t n t s t x +=,其中()[]0E =t s ,()[]0E =t n ,并且已知()ττ-e =S R ,()ττ-2e=N R ,()0=τsn R ,求因果连续维纳滤波器的传递函数。

解:连续维纳滤波器与离散维纳滤波器的形式是相同的,即()()()()+⎦⎤⎢⎣⎡−⋅⋅=s B s P s B s H xs w112opt σ 因此需要求解()t s 的复功率谱和()t x 的时间信号模型。

考虑到信号与噪声不相关,因此观测数据的功率谱就等于信号的复功率谱加上噪声的复功率谱。

对观测数据的复功率谱进行谱分解,就可以得到()t x 的时间信号模型。

()t s 的复功率谱为()()()20s -10s 1-s --121111e e e e s s s d d d s P S −=−++=+==∫∫∫∞−+∞++∞∞−τττττττ ()t n 的复功率谱为()2s -2-44e es d s P N −==∫+∞∞−τττ因此,观测数据的复功率谱为()()()()()()()()()s s s s ss ss s P s P s P N S X −+−++=−+−=+=2211-226441122 取12=w σ()()()()s s ss B +++=2126()()()()()()()()()s s s s s s s s B s P s B s P N xs +=−==1-2-262-2-1-2612--2令()()()s B s P s F xs -=,()τf 是()s F 的拉普拉斯反变换。

要求()τf 是因果的,可将s 平面右半平面的极点扔掉,()()()[]12e 61,e Re e21-s s +=−==∫τττπτs F s ds s F jf C给()τf 取因果,并做拉普拉斯变换,得到()s d s F +⋅+=⋅⋅+=∫∞++11126e e 1260s --τττ()()()()()()())()()122261112626211112opt +++=+×+×+++×=⎦⎤⎢⎣⎡−⋅⋅=+ss ss s s s B s P s B s H xs wσ10.2 设已知()()()n n n s n x +=,以及()()()z z z G S 4.014.0192.01−−=−,()1=z G N ,()0=z G sn ()n s 和()n n 不相关。

信号检测与估计理论第一章习题讲解

信号检测与估计理论第一章习题讲解

1-9 已知随机变量X 的分布函数为20,0(),011,1X x F x kx x x <⎧⎪=≤≤⎨⎪>⎩求:①系数k ; ②X 落在区间(0.3,0.7)内的概率; ③随机变量X 的概率密度。

解:第①问 利用()X F x 右连续的性质 k =1 第②问{}{}{}()()0.30.70.30.70.70.30.7P X P X F P X F =<<=<≤-=-第③问 201()()0X X xx d F x f x elsedx ≤<⎧==⎨⎩1-10已知随机变量X 的概率密度为()()xX f x ke x -=-∞<<+∞(拉普拉斯分布),求:①系数k ②X 落在区间(0,1)内的概率 ③随机变量X 的分布函数 解: 第①问()112f xd x k ∞-∞==⎰ 第②问 {}()()()211221x x P x X xF x F xfx d x<≤=-=⎰ 随机变量X 落在区间12(,]x x 的概率12{}P x X x <≤就是曲线()y f x =下的曲边梯形的面积。

{}{}()()1010101112P X P X f x dxe -<<=<≤==-⎰第③问()102102xx e x f x e x -⎧≤⎪⎪=⎨⎪>⎪⎩()00()110022111010222xx xxx x x x F x f x dxe dx x ex e dx e dxx e x -∞-∞---∞=⎧⎧≤≤⎪⎪⎪⎪==⎨⎨⎪⎪+>->⎪⎪⎩⎩⎰⎰⎰⎰1-11 某繁忙的汽车站,每天有大量的汽车进出。

设每辆汽车在一天内出事故的概率为0.0001,若每天有1000辆汽车进出汽车站,问汽车站出事故的次数不小于2的概率是多少?,(01)p q λ→∞→→∞→−−−−−−−−→−−−−−−−−→−−−−−−−−→n=1n ,p 0,np=n 成立,0不成立-分布二项分布泊松分布高斯分布汽车站出事故的次数不小于2的概率()()P(2)101k P k P k ≥=-=-= 答案0.1P(2)1 1.1k e -≥=-100.1n p ≥≤实际计算中,只需满足,二项分布就趋近于泊松分布()np!k e P X k k λλλ-===1-12 已知随机变量(,)X Y 的概率密度为(34)0,0(,)0x y XY kex y f x y -+⎧>>⎪=⎨⎪⎩,,其它求:①系数k ?②(,)X Y 的分布函数?③{01,02}P X X <≤<≤?第③问 方法一:联合分布函数(,)XY F x y 性质:若任意四个实数1212,,,a a b b ,满足1212,a a b b ≤≤,则121222111221{,}(,)(,)(,)(,)XY XY XY XY P a X a b Y b F a b F a b F a b F a b <≤<≤=+--{01,02}(1,2)(0,0)(1,0)(0,2)XY XY XY XY P X Y F F F F ⇒<≤<≤=+--方法二:利用(){(,)},XY DP x y D f u v dudv∈∈⎰⎰)(210{01,02},XY P X Y f x y dxdy <≤<≤=⎰⎰1-13 已知随机变量(,)X Y 的概率密度为101,(,)0x y xf x y ⎧<<<=⎨⎩,,其它 ①求条件概率密度(|)X f x y 和(|)Y f y x ?②判断X 和Y 是否独立?给出理由。

信号检测与估计第一章课后答案

信号检测与估计第一章课后答案
将代入得:
两边求微分得 =1/2 为判决门限 =
解得 =1/2值时达到极大极小化风险?
(2)根据一次观测的判决区域如何?
解:与上题求解类似得
=
=2/3
,=1/3
1.9 设两种假设为: : :
其中n(t)为零均值和功率为2的高斯白噪声。根据M个独 立样本(1,2,……,M),应用纽曼-皮尔逊准则进行检验。 令=0.05,试求:
(1) 最佳判决门限; (2) 相应的检测概率。 解:由(1-43)得似然比
将,n=M代入得
化简得
服从均值为2(下)和0(下),方差为2/M的高斯分布
从中解得 相应的
= =0.05
= 判为 (其中) 化简得到
判为 (1) 即曲线方程为
似然函数为 (k=1,0)
虚警概率
漏报概率
平均风险 =
其中为(1)式确定 1.3只用一次观测x来对下面两个假设作选择,:样本x为零均值、方差
的高斯变量,:样本x为零均值、方差的高斯变量,且>。 根据观测结果x,确定判决区域和。 画出似然比接收机框图。为真而选择了的概率如何? 解:(1)似然函数
|x|1时似然比为 判为
化简得 = 判为
所以得判决区域为
(2)应用纽曼-皮尔逊准则 所以得判决区域为
1.7 根据一次观测,用极大极小化检验对下面两个假设做判断 : :
设n(t)为零均值和功率为的高斯过程,且。试求: (1) 判决门限 (2) 与相应的各假设先验概率。
解:因为采用极大极小化准则,所以要求
(k=1,0) 似然比
判为 化简得
(>) 判为 得 根据选取准则而定 (2)框图
0 判为
<0 判为
x

信号检测与估计试题——答案(不完整版)

信号检测与估计试题——答案(不完整版)

一、概念:1. 匹配滤波器。

概念:所谓匹配滤波器是指输出判决时刻信噪比最大的最佳线性滤波器。

应用:在数字信号检测和雷达信号的检测中具有特别重要的意义。

在输出信噪比最大准则下设计一个线性滤波器是具有实际意义的。

2. 卡尔曼滤波工作原理及其基本公式(百度百科)首先,我们先要引入一个离散控制过程的系统。

该系统可用一个线性随机微分方程(Linear Stochastic Difference equation)来描述:X(k)=A X(k-1)+B U(k)+W(k)再加上系统的测量值:Z(k)=H X(k)+V(k)上两式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。

A和B是系统参数,对于多模型系统,他们为矩阵。

Z(k)是k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。

W(k)和V(k)分别表示过程和测量的噪声。

他们被假设成高斯白噪声(White Gaussian Noise),他们的covariance 分别是Q,R(这里我们假设他们不随系统状态变化而变化)。

对于满足上面的条件(线性随机微分系统,过程和测量都是高斯白噪声),卡尔曼滤波器是最优的信息处理器。

下面我们来用他们结合他们的covariances 来估算系统的最优化输出(类似上一节那个温度的例子)。

首先我们要利用系统的过程模型,来预测下一状态的系统。

假设现在的系统状态是k,根据系统的模型,可以基于系统的上一状态而预测出现在状态:X(k|k-1)=A X(k-1|k-1)+B U(k) (1)式(1)中,X(k|k-1)是利用上一状态预测的结果,X(k-1|k-1)是上一状态最优的结果,U(k)为现在状态的控制量,如果没有控制量,它可以为0。

到现在为止,我们的系统结果已经更新了,可是,对应于X(k|k-1)的covariance还没更新。

我们用P表示covariance:P(k|k-1)=A P(k-1|k-1) A’+Q (2)式(2)中,P(k|k-1)是X(k|k-1)对应的covariance,P(k-1|k-1)是X(k-1|k-1)对应的covariance,A’表示A的转置矩阵,Q是系统过程的covariance。

《信号检测与估计》第十二章习题解答

《信号检测与估计》第十二章习题解答

《信号检测与估计》第十二章习题解答12.1 采用下式给出的有偏自相关函数的定义,并加窗,得到BT 谱估计器:()()()()()()⎪⎩⎪⎨⎧−−−−−=−+=+=∑∗1,,2,11ˆ1,,1,01ˆL L N N m m R N m m n x n x N m R X X ()⎪⎩⎪⎨⎧−≤=其它011N m m W N()()()()∑−−−=−⋅⋅=11e ˆˆN N m m j X N X m R m W G ωω证明该BT 估计器与周期图相同。

解:()()()()()()()()()()()()()()()()()211111111e 1e e 1e e 1e 1e ˆˆωωωωωωωωj N N m n m j nj N N m nj n m j N N m m j N N N m m j X N XX N m n x n x N m n x n x N m n x n x N m W m R m W G =⋅+⋅⋅=⋅⋅+=⋅⎥⎦⎤⎢⎣⎡+⋅=⋅⋅=∑∑∑∑∑∑∑−−−=+−−∗−−−=−+−∗−−−=−∗−−−=− 12.2 设自相关函数()3,2,1,0,==m m R m X ρ。

试用Levinson-Durbin 递推法求解AR (3)模型参量。

解: ()()ρ−=−=0111X X R R a 110=a()()221121101ρσ−=⋅−=X R a ()()012211122=+−=σX X R a R a ρ−=⋅+=11221121a a a a ()2212222211ρσσ−=⋅−=a因此模型为一阶 ()()[]()012322222133=⋅+−=σX X X R a R a R a021332232=⋅+=a a a aρ−=⋅+=22332131a a a a()2222332311ρσσ−=⋅−=a 所以模型为()()()n w n x n x +−=1ρ12.3 设5=N 的数据记录为:10=x ,21=x ,32=x ,43=x ,54=x ,AR 模型的阶数3=p 试用Levinson-Durbin 递推法求模型参量。

信号检测习题

信号检测习题

E(l | H0 ) E[ xk sk | H0 ] E[ nk sk ] 0
k 1
k 1
N
N
N
V ar(l | H0 ) E[( (xk sk | H0 ) E(l | H0 ))2] E[( nk sk )2]
s
2
k
2 n
k 1
k 1
k 1
在假设 H1,l(x)的均值和方差为
sk
N
xk sk
k 1
判决器
H1成立 H0成立
N
因为检验统计量 l(x) xk sk 是相关运算,所 k 1
以,检测器是一种相关检测器。
信号检测与估计理论——习题讲解
(3)检测性能分析
在两个假设下,检验统计量l (x)都是高斯随机变量。
在假设 H0下,l(x) 的均值和方差分别为
N
N
1
2
2 n
exp[
x12 x22
2
2 n
]
已知两次观测 统计相互独立
信号检测与估计理论——习题讲解
和 p(x | H1) p(x1, x2 | H1) p(x1 | H1) p(x2 | H1)
1( x1
s1)2 (x2
2
2 n
s2 )2
]
于是似然比检验为
信号检测与估计理论——习题讲解
信号检测与估计理论(习题课) 指导老师:张烨
信号检测与估计理论——习题讲解
3.4 考虑二元确知信号的检测问题。若两个 假设下的观测信号分别为
H0 : xk nk , k 1, 2 H1 : x1 s1 n1
x2 s2 n2
其已测中 知 相, 观 互s测 统1和噪 计s声独2为立n确k;~知设N信似号(然0,,比且门2 )满限足,为且s1两。次0, s观2 0;

《信号检测与估计》第四章习题解答

《信号检测与估计》第四章习题解答

(3sinω0T

2sin3ω0T
)
则判决规则变为
H1
I
> <
β
H0
两种错误判决的概率分别为
+∞
∫ P(D1 | H0 ) = β f (I | H0 )dI
《信号检测与估计》习题解答
β
∫ P(D0 | H1) = −∞ f (I | H1)dI
平均错误概率 Pe 为
∫ ∫ Pe
= P(H0 )P(D1 | H0 ) + P(H1)P(D0
T 0
[x(t
)−
B
cos(ω2t

)]2
dt
《信号检测与估计》习题解答
( ) ( ) ( ) f xH0 =
1
∫ − 1
e N0
T 0
[x
(t
)−
s
0
(t
)]2
dt
=
2π σ k
1
∫ − 1
e N0
T 0
[x
(t
)−
A
cos
ω1t

B
cos(ω
2
t

)]2
dt
2π σ k
根据最小差错概率准则有
0 N0
T 2 s2(τ )dτ = 2a2T
0 N0
N0
输出信号
xo (T
)
=
T
∫0
h(t )x(T

t )dt
=
∫Ts(T 0
− t)x(T

t )dt
=
T
∫0
2 N0
s(τ
)x(τ

《信号检测与估计》第二章习题解答

《信号检测与估计》第二章习题解答

E[x]
=
0

R(t, t

)
=
R(τ
)
=
a2 2
cos ω0τ
即数学期望与时间无关,自相关函数仅与时间间隔有关,故 X (t) 为广义平稳随机过程
2.7 设有状态连续,时间离散的随机过程 X (t) = sin(2πAt),式中, t 只能取正整数,即 t = 1,2,3,L ,
A 为在区间 (0,1) 上均匀分布的随机变量,试讨论 X (t)的平稳性。
cos
t2
+
1 9
sin
t2
cos t1
=
1 9
+
1 9
sin
t1
+
1 9
cos
t1
+
1 9
sin
t2
+
1 9
cos t2
+
1 9
cos(t1
-
t2
)+
1 9
sin(t1
+
t2
)
2.4 随机过程 X (t)为 X (t) = A cosω0t + B sin ω0t
[ ] [ ] 式中,ω0 是常数,A 和 B 是两个相互独立的高斯随机变量,而且 E[A] = E[B] = 0 ,E A2 = E B2 = σ 2 。
1 ↔ e−aτ u(τ )
jω + a
所以
RX (τ ) = ⎜⎜⎝⎛
1 e− 3
3τ −
1e 3
3τ + 1 e− 22
2τ − 1 e 22
2τ ⎟⎟⎠⎞u(τ )
平均功率

信号检测与估计 张明友 第一二三八章答案

信号检测与估计 张明友 第一二三八章答案

时间:6月16日(星期一)晚上6:30-8:30 地点:六教104室(上课教室)试卷共8题,其中4题属于教材第一章内容,其余4题分别的其他章节。

请同学们对匹配滤波器,离散卡尔曼滤波,离散维纳滤波,高斯白噪声下确知信号的检测,K -L 展开,高斯白噪声信道中的单参量信号估计等内容重点关注。

1.1 (付柏成 20060150)在例1.2中,设噪声均方差电压值为σ=2v ,代价为f c =2,m c =1。

信号存在的先验概率P =0.2。

试确定贝叶斯意义下最佳门限β,并计算出相应的平均风险。

解:根据式(1-15),可以算出00.8280.21f mQc Pc ⨯Λ===⨯ 而判决门限2201ln 0.52ln88.822βσ=+Λ=+= 根据式(1-21)可知平均风险1010Pr 0.2r 0.8R Qr r =+=+01100.2(|)0.8(|)m f c P D H c P D H =+ 而011(|)(|)D P D H p x H dx =⎰1100(|)(|)D P D H p x Hdx =⎰而212(1)(|)]2x p x H σ-=-202(|)]2x p x H σ=-所以20112(1)(|)(|)]2D D x P D H p x H dx dx σ-==-⎰⎰22(1)]2x dx βσ-=-⎰=17.82()()(3.91)22β-Φ=Φ=Φ 同理1121002(|)(|)]2D D x P D H p x H dx dx σ==-⎰⎰22)2x dx βσ∞=- 8.821()1()1(4.41)22β=-Φ=-Φ=-Φ 所以0.21(3.91)0.82[1(4.41)]R =⨯⨯Φ+⨯⨯-Φ 1.2 (关瑞东 20060155)假定加性噪声()n t 服从均值为零,方差为的正态分布。

此时,两个假设为01:()():()1()H x t n t H x t n t ==+我们根据()x t 的两次独立测量值12,x x 作判断,则12,x x 是统计独立的,在假设1H 下其均值为1a =1,在假设0H 下均值为0a =0,因而在两种假设下它们的联合概率密度函数可写为22/221()(|)(2)exp()2nn i k k i x a p x H πσσ-=-=-∑ (0,1;2)k n == 于是,似然比等于22011012210()(|)()exp[](|)2n ii a a n a a p x H x x p x H σσ=--Λ==-∑如果0()x Λ≥Λ,则选择假设1H ,否则选择假设0H 。

信号检测与估计课后习题

信号检测与估计课后习题

三、(15分)在二元信号的检测中,若两个假设下的观测信号分别为:0122112::H x r H x r r ==+其中,和是独立同分布的高斯随机变量,均值为零,方差为1。

若似然比检测门限为1r 2r ,求贝叶斯判决表示式。

η解 假设下,观测信号的概率密度函数为0H x 1/2201(|)exp 22x p x H π⎛⎫⎛⎫=- ⎪⎪⎝⎭⎝⎭假设下,,而,且相互统计独立。

大家知1H 2212x r r =+12(0,1),(0,1)r N r N ::道,若,且之间相互统计独立,则(0,1)k r N :(1,2,,)k r k N =L 21Nk k x x ==∑是具有个自由度的分布。

现在,所以假设下,观测信号的概率密度函数N 2χ2N =1H x 为22/2112/221(|)exp()2(2/2)21exp(),022x p x H x x x -=-Γ=-≥当时,。

0x <1(|)0p x H =于是,似然比函数为1/2210exp ,0(|)()222(|)0,0x x x p x H x p x H x πλ⎧⎛⎫⎛⎫-≥⎪ ⎪ ⎪==⎨⎝⎭⎝⎭⎪<⎩当似然比检测门限为时,判决表达式为η11/220exp ,0222,0H H x x x H x πη⎧⎛⎫>⎛⎫⎪-≥⎪ ⎪ ⎪<⎝⎭⎨⎝⎭⎪⎪<⎩成立对的情况,化简整理得判决表达式为0x ≥11/2222ln H H x x ηπ⎡⎤>⎛⎫-⎢⎥⎪<⎝⎭⎢⎥⎣⎦四、(15分)已知被估计参量的后验概率密度函数为θ2(|)()exp[()],0p x x x θλθλθθ=+-+≥(1)求的最小均方误差估计量 。

θ^mse θ(2)求 的最大后验估计量 。

θ^map θ 解 (1)参量的最小均方误差估计量是的条件均值,即θ^mse θθ^0220221(|)()[()]1()()2,mse p x d x exp x d x x x x θθθθλθλθθλλλλ∞∞+==+-+=++=≥-+⎰⎰^0,mse x θλ=<-(2)由最大后验方程^ln (|)|0map p x θθθθ=∂=∂得^2[ln()ln ()]1()|0mapx x x θθλθλθθλθ=∂++-+∂=-+=解得^^1,0,map map x x x θλλθλ=≥-+=<-七、(15分)若对未知参量进行了六次测量,测量方程和结果如下:θ182222202384404384n θ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦设初始估计值和估计量的均方误差分别为:^2000,θε==∞试用递推估计求的线性最小二乘估计量和估计量的均方误差θ^^1def s k θθ=;并将最终结果与非递推估计的结果进行比较。

《信号检测与估计》第七章习题解答

《信号检测与估计》第七章习题解答

《信号检测与估计》第七章习题解答7.1 在二元数字通信系统中,两个假设下的观测波形()t x 分别为L ,2,1,1:1=+=i n x H i iL ,2,1,:0==i n x H i i式中,i n 是均值为零、方差为1的高斯白噪声,要求虚警概率410−=α,漏报概率110−=β,且()()5.010==H P H P 。

求:(1)序贯似然比检测的判决门限及判决规则。

(2)序贯似然比检测的平均观测取样数。

(3)若采用常规的固定样本数的似然比检测,求满足检测性能所要求的取样数。

解:(1)单次观测所得随机变量x 的似然函数为2)1(1221)|(−−=x e H x f π 20221)|(x e H x f −=π得到似然必为2101)()()(−==x e H x f H x f x l对应的对数似然比为21ln )(ln 21−==−x e x l x 假定顺序得到取样,则第N 步的对数似然比为 22121ln )](ln[122)1(1212N x e e l N i i x N x N N N i i N i i −=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=∑=∑−∑−−==ππx 两个检测门限值分别为303.21ln ln 0−=⎟⎠⎞⎜⎝⎛−=αβl 105.91ln ln 1=⎟⎠⎞⎜⎝⎛−=αβl 序贯似然比检测的判决规则如下303.221−≤−∑=N xN i i 0H 假设为真 105.921≥−∑=N xN i i1H 假设为真105.92303.21<−<−∑=N x N i i 增加一次观测转入下一检测阶段 []21211]|)21[(|)(ln 11=−=−=H x E H x l E []21210]|)21[(|)(ln 00−=−=−=H x E H x l E (2)将各参数的取值分别代入1H 假设为真时的平均取样数和0H 假设为真时的平均取样数公式得[]93.15|)(ln ln ln )1(]|[1011=+−=H x l E l l H N E ββ []60.4|)(ln ln )1(ln ]|[0010=−+=H x l E l l H N E αα总的平均取样数为265.10]|[)(]|[)(][1100=+=H N E H P H N E H P N E因此取样数为11就可以达到预期的检测性能。

信号检测与估计理论第一章习题讲解

信号检测与估计理论第一章习题讲解

信号检测与估计理论第一章习题讲解1-9已知随机变量某的分布函数为0F某(某)k某21,某0,0某1,某1求:①系数k;②某落在区间(0.3,0.7)内的概率;③随机变量某的概率密度。

解:第①问利用F某(某)右连续的性质k=1第②问P0.3某0.7PF0.7F00.某3.3某.70.7P0dF某(某)2某第③问f某(某)d某00某1ele1-10已知随机变量某的概率密度为f某(某)ke普拉斯分布),求:某(某)(拉①系数k②某落在区间(0,1)内的概率③随机变量某的分布函数解:第①问f某某1d某11k2F2某F1某某1第②问P某2某某2f某d某随机变量某落在区间(某1,某2]的概率P{某1某某2}就是曲线yf某下的曲边梯形的面积。

P0某1P0某1f某d某0111e12第③问1某e2f某1e某2某0某0F某某f(某)d某1某某0e21某某01e2某0某1某ed某201e某d某某1e某d某022某01-11某繁忙的汽车站,每天有大量的汽车进出。

设每辆汽车在一天内出事故的概率为0.0001,若每天有1000辆汽车进出汽车站,问汽车站出事故的次数不小于2的概率是多少?(0-1)分布n,p0,np=二项分布泊松分布n成立,p,q0不成立高斯分布汽车站出事故的次数不小于2的概率P(k2)1Pk0Pk10.1P(k2)11.1e答案P某k=n=1实际计算中,只需满足n10kek!p0.1,二项分布就趋近于泊松分布=np1-12已知随机变量(某,Y)的概率密度为(3某4y)kef某Y(某,y)0,某0,y0,其它求:①系数k?②(某,Y)的分布函数?③P{0某1,0某2}?第③问方法一:联合分布函数F某Y(某,y)性质:若任意四个实数a,a,b,b,满足1212a1a2,b1b2,则P{a1某a2,b1Yb2}F某Y(a2,b2)F某Y(a1,b1)F某Y(a1,b2)F某Y(a2,b1)P{0某1,0Y2}F某Y(1,2)F某Y(0,0)F某Y(1,0)F某Y(0,2)方法二:利用P{(某,y)D}f某Yu,vdudvD20P{0某1,0Y2}0f某Y某,yd某dy11-13已知随机变量(某,Y)的概率密度为1,0某1,y某f(某,y)0,其它①求条件概率密度f某(某|y)和fY(y|某)?②判断某和Y是否独立?给出理由。

第45章信号检测与估计复习习题

第45章信号检测与估计复习习题
T 2 0
由于两个假设先验等概,因此在最小平均错误概率准则下,判决门限 1
利用一般二元信号检测波形判决表达式,得

所以
3T
0
s1 t xt dt
3T
0
N 0 ln E1 E0 s0 t xt dt 2 2 2 H0
H1
由于 s1 t s0 t



ln d pl H1 dl Q 2 d

ln d d 2 Es P H 0 H1 1 Q 1 Q 1 Q 2 N0 d 2 2 Es Q N 0 2 Es Pe PH 0 PH1 H 0 PH1 PH 0 H1 Q N 0
4.白噪声条件下,正交函数集的任意性
E xk



N0 2

T
0
N0 kj f k t f j t dt 2
在白噪声条件下,可任意选取正交函数集,均可保证展开系数之间是不相 关的。
国家重点实验室
二元波形信号检测归纳(1)
基本检测方法(正交级数展开法):
首先,利用随机过程的正交级数展开,将随机过程用一组随机变量 来表示;
国家重点实验室
第四章 信号的波形检测复习及习题
课件下载地址:xhjcygz@ 密码:111111
国家重点实验室
匹配滤波器
• 匹配滤波器的定义
• 匹配滤波器的设计 • 匹配滤波器的主要性质
国家重点实验室
随机过程的正交级数展开(1)
• 掌握随机过程的卡亨南-洛维展开
• 理解白噪声条件下,正交函数集的任意性

《信号检测与估计》第九章习题解答

《信号检测与估计》第九章习题解答

《信号检测与估计》第九章习题解答9.1 接收信号(((t n t A t x ++=θω0sin ,其中(t n 是高斯白噪声,θ在(π20,均匀分布,现在需求振幅A 的最大似然估计量。

由于θ的先验知识已知,故可先对θ求平均得到(A x f ,试问要求振幅A 的最大似然估计量必须解什么样的方程? 解:接收信号(t x 的似然函数为((([]((((((((⎟⎠⎞⎜⎝⎛+++−−+++−−+−−∫∫∫∫∫===T TT TTdt t A dt t t x A dt t x N dtt A t t Ax t xN dtt A t x N FeFeFeA x f 0002200200022020200sin sin 21sin sin 21sin 1,θωθωθωθωθωθ由于(((∫=+−=∫+TTT dt t dt t 0000222cos 121sin θωθω,得到 ((((020000202sin 21,N TA dt t t x N A dtt x N e eFeA x f T T−+−∫∫=θωθ对θ积分,得到(((((((((θπθπθθθπθωθωπθωπd eeFed e e Fed f A x f A x f dt t t t x N A N T A dt t x N dt t t x N A N T A dt t x N T TTT∫∫∫∫∫∫∫+−−+−−===20cos cos sin sin 22120sin 221 2000000202000020202121,令(ϕωcos cos 00z dt t t x x Tc ==∫,(ϕωsin sin 00z dt t t x x T s ==∫,得到222s cx x z +=,csx x arctg =ϕ (((((⎟⎟⎠⎞⎜⎜⎝⎛====∫∫∫∫∫−+++0020cos 220cos cos sin sin 220cos sin 220 cos cos sin sin 22212121210 000N Az I d ed ed e d eN Azz z N Ax x N Adt t t t x N A c s Tθπθπθπθππϕθπθϕθϕπθθπθωθω 上式中,[](cos exp 21020x I d x =∫πθθπ为零阶修正贝塞尔函数。

2021年信号检测与估计各章作业参考答案(1~9章)

2021年信号检测与估计各章作业参考答案(1~9章)
习题1.考虑检测问题:
其中 是常数, 是 上均匀分布的随机参量; 是高斯白噪声。
(a)求判决公式及最正确接收机结构形式。
(b)如果 ,证明最正确接收机可用 作为检验统计量,并对此加以讨论。
解:〔a〕设 是均值为0、功率谱密度为 的正态白噪声,那么有
由于
所以
按照贝叶斯准那么
或者
两边取对数得到
最正确接
因此 的均值、二阶原点矩和方差分别为
9.假设随机过程 的自相关函数为 ,求 的功率谱密度。
解:自相关函数与功率谱密度函数是一对傅立叶变换对,所以有
利用欧拉公式,可得
11.平稳随机过程 具有如下功率谱密度
求 的相关函数 及平均功率 。
解:
而自相关函数 与功率谱密度 是一对傅立叶变换,
〔b〕不管是否有条件 ,
都可选 作为检验统计量。
当 时,由于
所以判决规那么为
第六章多重信号检测
思考题1:为何要进行多重信号的检测?
答:利用多重信号检测的优势是可以增加检测系统的信噪比,从而增强系统的检测性能。
思考题3:何谓随机相位相干脉冲串信号和随机相位非相干脉冲串信号?
答:通常把多个脉冲信号组成的一串信号称为脉冲串信号,各个脉冲叫做子脉冲,整个信号叫做脉冲串信号。如果脉冲串信号的初相随机,但各个子脉冲信号的相位一致,那么称之为随机相位相干脉冲串信号。如果各子脉冲信号的相位都是随机变化的,且彼此独立变化,那么称之为随机相位非相干脉冲串信号。
〔1〕求 的最大似然估计。
〔2〕假设 的概率密度
求 的最大后验概率估计。
解:〔1〕由题意可写出似然函数
按最大似然估计方程 ,由此解得
〔2〕当 时,可按最大后验概率方程 求解,得到

大连理工信号检测习题

大连理工信号检测习题

信号检测与估计理论——习题讲解
(1)求采用贝叶斯准则时的最佳判决式。 (2)求判决概率 P( H1 | H 0 ) 和 P( H1 | H1 ) 的计算式。 解 (1)两个假设下观测信号的概率密度函 数分别为
p(x | H 0 ) p( x1 , x2 | H 0 ) p( x1 | H 0 ) p( x2 | H 0 )
k 1 k 1 k 1
N
N
信号检测与估计理论——习题讲解
于是,偏移系数d 2 为
[ E (l | H1 ) E (l | H 0 )]2 k 1 d 2 Var (l | H 0 ) n
2 2 s k N
这样,判决概率为
P( H1 | H 0 ) p(l | H 0 )dl Q[ln d d 2]
12 2
于是,可查出
N
n
1.2817
信号检测与估计理论——习题讲解
P ( H1 | H1 )
所以,判决概率 P( H1 | H1 ) 为


P( H1 | H1 ) p(l | H1 )dl Q[ln d d 2]


Q[Q 1 ( P( H1 | H 0 )) d ]
1 式中 Q[u0 ] u 0 2
Hale Waihona Puke 12u2 exp[ ]du 2
信号检测与估计理论——习题讲解
与课本例题一样
l ( x)

def
xk sk
k 1
2

H1 H0
2 1 2 2 n ln sk 2 k 1

def
为求判决概率,先求两个假 (2)下面研究检测性能。 设条件下的概率密度函数

《信号检测与估计》第五章习题解答

《信号检测与估计》第五章习题解答

《信号检测与估计》第五章习题解答5.1 考虑检测问题:()()()T t t n t B t x H ≤≤++=0cos 20φω:()()()T t t n t B t A t x H ≤≤+++=0cos cos 211φωω:其中A 、B 、1ω和2ω为已知常数。

()t n 是高斯白噪声,φ在()π20,上服从均匀分布。

(a )求判决公式及最佳接收机结构形式。

(b )如果0sin cos cos cos 021021==∫∫T T tdt t tdt t ωωωω,证明最佳接收机可用()∫Tdt t t x 01cos ω作为检测统计量并对此加以讨论。

解:设()t n 为均值为零、功率谱密度为2/0N 的高斯白噪声,可得()()()()∫+−−=T dt t B t x N FeH x f 0220cos 10,φωφ ()()()()∫+−−−=T dt t B t A t x N FeH x f 02210cos cos 11,φωωφ得到()()()()()()()()dt t t N AB dt t N A dt t t x N A dt t B t A t x t N A T T T T ee e e H xf H x f x l φωωωωφωωωφφφ+−+−−−∫∫∫∫===20100120201021010cos cos 2cos cos 2cos 2cos 2cos 01,, 由于φ在()π20,上服从均匀分布,得到()⎪⎩⎪⎨⎧≤≤=其他02021πφπφf()()()()()φπφφφπφωωωωπd e e e d f x l x l dt t t N AB dt t N A dt t t x N A T T T ∫∫+−∫∫∫==20cos cos 2cos cos 22020100120201021根据Bayes 准则可得()010l x l H H >< ()()020cos cos 2cos cos 21020100120201021l d e e e H H dt t t N AB dt t N A dt t t x N A T T T ><+−∫∫∫∫φππφωωωω ()()dt t t x N A l d e dt t N A T H H dt t t N AB T T ∫−+∫><+∫∫010020cos cos 201202cos 22ln ln cos 102010ωπφωπφωω ()()dt t t x l A N d e A N dt t A T H H dt t t N AB T T ∫−+∫><+∫∫010020cos cos 20012cos 2ln 2ln 2cos 2102010ωπφωπφωω 5.2 假定上题中i A 的概率密度函数是()()()2022201A A i i i i e A A p A p A f −+−=δ求似然比及其在0A 趋于零时的形式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、(15分)在二元信号的检测中,若两个假设下的观测信号分别为:
012
2
11
2
::H x r H x r r ==+
其中,1r 和2r 是独立同分布的高斯随机变量,均值为零,方差为1。

若似然比检测门限为η,求贝叶斯判决表示式。

解 假设0H 下,观测信号x 的概率密度函数为
1/2
201(|)exp 22x p x H π⎛⎫⎛⎫
=- ⎪ ⎪⎝⎭⎝⎭
假设1H 下,22
12x r r =+,而1
2
(0,1),(0,1)r N r N ,且相互统计独立。

大家知道,
若(0,1)k r N ,且(1,2,
,)k r k N =之间相互统计独立,则
2
1N
k k x x ==∑
是具有N 个自由度的2
χ分布。

现在2N =,所以假设1H 下,观测信号x 的概率密度函数为
22/21
12/22
1(|)exp()
2(2/2)2
1exp(),022
x p x H x x
x -=-Γ=-≥
当0x <时,1(|)0p x H =。

于是,似然比函数为
1/2210exp ,0
(|)()222(|)0,
0x x x p x H x p x H x πλ⎧⎛⎫
⎛⎫-≥⎪ ⎪ ⎪==⎨⎝⎭⎝⎭⎪
<⎩ 当似然比检测门限为η时,判决表达式为
1
1/22
0exp ,0
222,
0H H
x x x H x πη⎧⎛⎫>⎛⎫⎪-≥⎪ ⎪ ⎪<⎝⎭⎨⎝⎭⎪⎪<⎩成立 对0x ≥的情况,化简整理得判决表达式为
1
1/22
22ln H H
x x ηπ⎡⎤
>
⎛⎫-⎢⎥ ⎪<⎝⎭⎢⎥⎣⎦
四、(15分)已知被估计参量θ的后验概率密度函数为
2(|)()exp[()],0p x x x θλθλθθ=+-+≥
(1)求θ的最小均方误差估计量^
mse θ 。

(2)求θ 的最大后验估计量^
map θ 。

解 (1)参量θ的最小均方误差估计量^
mse θ是θ的条件均值,即
^
0220
221
(|)()[()]1()()2
,mse p x d x exp x d x x x x θθθθ
λθλθθ
λλλλ


+==+-+=++=
≥-+⎰⎰
^
0,mse x θλ=<-
(2)由最大后验方程
^ln (|)
|0map p x θθθθ
=∂=∂ 得
^2[ln()ln ()]1
()|0
map
x x x θθλθλθθ
λθ
=∂
++-+∂=-+=
解得
^
^
1
,0,
map map x x x θλλθλ
=
≥-+=<-
七、(15分)若对未知参量θ进行了六次测量,测量方程和结果如下:
182222202384404384n θ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥
=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦
设初始估计值和估计量的均方误差分别为:^
2
000,θε==∞ 试用递推估计求
θ的线性最小二乘估计量^^
1def s k θθ=和估计量的均方误差
^
12
2(1,2,
,6)s
def
k k θε
ε==;并将最终结果与非递推估计的结果进行比较。

解 我们知道,线性最小二乘估计量的构造公式为
^
1s θ=H H H x T -1T ()
而单参量θ的线性最小二乘递推估计的公式为
22121
12^^
^
11[()]()
k k k k k k
k k k k k k h K h K x h εεεθθθ-----=+==+-
这样,能够算出1,2,,6k =的非递推估计结果和递推估计结果,如下表所示。

相关文档
最新文档