序列二次规划法

合集下载

序列二次规划

序列二次规划
(****)
起作用集方法
起作用集方法
(*****)
起作用集方法
起作用集方法
起作用集方法
起作用集方法
Questions
如何得到(*******)?
Answer
起作用集方法
起作用集方法
Questions
起作用集方法
起作Байду номын сангаас集方法
起作用集方法
起作用集方法
起作用集方法
Algorithm
起作用集方法
(***)
Proof
起作用集方法
起作用集方法
(a)
起作用集方法
(b)
满足(a)的 x* 肯定满足(b),且为满足(b)的 x* 的
一部分,但满足(b)的解是唯一的,所以问题(b)的解 就是问题(a)的解。
Remark
起作用集方法
起作用集方法
Questions
起作用集方法
起作用集方法
序列二次规划法
A characteristic of a large class of early methods is the translation of the constrained problem to a basic unconstrained problem by using a penalty function for constraints that are near or beyond the constraint boundary. In this way the constrained problem is solved using a sequence of parameterized unconstrained optimizations, which in the limit (of the sequence) converge to the constrained problem.

序贯二次规划-西安交通大学

序贯二次规划-西安交通大学
T
(5-41a) (5-41b) (5-41c)
C=(c1 , c2 , , cn )T b=(b1 , b2 , , bm )T
q11 q12 , , q1n q q , , q 21 22 2n Q= M M M M qn1 qn2 , , qnn n a11 a12 , , a1n a a , , a 21 22 2n A= M M M M an1 an2 , , ann
5-53
5-54
Company name
jt2 j =0
i AiT bi 0 jxj 0
i 1, 2,..., m j 1, 2,..., n

2. 二次规划的求解--Lagrange乘子技术
这样函数L稳定点的必要条件可归纳为 c j j dij xi ij ai 0
(i 1, 2, L , m) ( j 1, 2, L , l )
(5-34)
约束条件是二次的
Company name
1. SQP法简介

x K 1 x K = x K 1 x K
i 1 n 2
Company name




5-43
函数L的稳定点的必要条件 : n L c j i aij j 0 x j j 1 L 2i si 0 s j L 2 j t j 0 t j L AiT x si2 bi 0 j L x j t2 j 0 j

1. 1 SQP法简介--只有等式约束
min s.t. 1 f ( x)T x+ xT Q k x 2 gi ( x K ) xT gi ( x K ) 0 hj ( x K ) xT hi ( x K ) 0

序列二次规划算法-10页文档资料

序列二次规划算法-10页文档资料

1.Legendre PolynomialsNamed in honor of Adrien-Marie (1752-1833) the mathematician, not Louis (1752-1797) the politician.1.1. IntroductionA polynomial is a finite sum of terms like a k x k, where k is a positive integer or zero. There are sets of polynomials such that the product of any two different ones, multiplied by a function w(x) called a weight function and integrated over a certain interval, vanishes. Such a set is called a set of orthogonal polynomials. Among other things, this property makes it possible to expand an arbitrary function f(x) as a sum of the polynomials, each multiplied by a coefficient c(k), which is easily and uniquely determined by integration. A Fourier series is similar, but the orthogonal functions are not polynomials. These functions can also be used to specify basis states in quantum mechanics, which must be orthogonal.1.2. Legendre Polynomials DenifitionThe Legendre polynomials P n(x), n = 0, 1, 2 ... are orthogonal on the interval from -1 to +1, which is expressed by the integralThe Kronecker delta is zero if n ≠ m, and unity if n = m. In most applications, x = cos θ, and θ varies from 0 to π. In this case, dx = sin θ dθ, of course. The Legendre polynomials are a special case of the more general Jacobi polynomials P(α,β)n(x) orthogonal on (-1,1). By a suitable change of variable, the range can be changed from (-1,1) to an arbitrary (a,b). The weight function w(x) of the Legendre polynomials is unity, and this is what distinguishes them from the others and determines them.1.3. ApplicationsThe Lengendre polynomials are very clearly motivated by a problem that often appears. For example, suppose we have an electric charge q at point Q in the figure at the left, one of a group whose positions are referred to an origin at O,and we desire the potential at some point P. The distance PO is taken asunity for convenience; simply multiply all distances by the actualdistance PO in any particular case. The potential due to this charge is q/R.We ca n find R as a function of r and θ by the Law of Cosines: R2 = 1 + r2- 2r cos θ = 1 - 2rx + r2, where x = cos θ. Now we expand 1/R in powersof r, finding 1/R = Σ P n(x)r n. The function 1/R is called the generatingfunction of the Legendre polynomials, and can be used to investigatetheir properties. Generating functions are available for most orthogonal polynomials, but only in the Legendre case does the generating function have a clear and simple meaning.If we let x = 1, we find that P n(1) = 1, and P n(-1) = (-1)n. By taking partialderivatives of 1/R with respect to x and r, and then considering the coefficients of individual powers of r, we can find a number of relations between the polynomials and their derivatives. These can be manipulated to find the recursion relation, (n + 1) P n+1(x) = (2n + 1)x P n(x) - n P n-1(x), and the differential equation satisfied by the polynomials, (1 - x2) P"n(x) -2x P'n(x) + n(n + 1) P n(x) = 0. The recurrence relation allows us to find all the polynomials, since it is easy to find that P0(x) = 1, P1(x) = x directly from the generating function, and this starts us off. The differential equation allows us to apply the polynomials to problems arising in mathematics and physics, among which is the important problem of the solution of Laplace's equation and spherical harmonics.The recurrence relation shows that the coefficient A n of the highest power of x satisfies the relation A n+1 = (2k + 1)/(k + 1) A n, and so from the known coefficients for n = 0, 1 we can find that the coefficient of the highest power of x in P n is 1.3.5...(2n-1)/n!.The polynomials can also be found by solving the differential equation by determining the coefficients of a power series substituted in the equation. This method was often used in quantum mechanics texts (see Reference 3), since the students were not usually acquainted with the mathematics of orthogonal polynomials. This method does not allow one to investigate the properties of the polynomials in any detail, however, yielding only the individual polynomials themselves.Consider the polynomials G n(x) = d n/dx n(x2- 1)n. The quantity to be differentiated is indeed a polynomial, of degree 2n, and consisting of only even powers. When differentiated n times, it becomes a polynomial of order n consisting of either all odd or all even powers of x, as n is odd or even. The coefficient of the highest power of x is 2n(2n-1)(2n-2)...(n+1), and the first two polynomials are 1 and 2x. If G(x) is substituted in the recurrence relation for the Legendre polynomials, it is found to satisfy it. If we divide G(x) by the constant 2n n!, then the first two polynomials are 1 and x. Therefore, P n(x) = (1/2n n!) d n/dx n(x2- 1)n. This is called Rodrigues's formula; similar formulas exist for other orthogonal polynomials.The great advantage of Rodrigues' formula is its form as an nth derivative. This means that in an integral, it can be used repeatedly in an integration by parts to evaluate the integral. The orthogonality of the Legendre polynomials follows very quickly when Rodrigues' formula is used. There is a Rodrigues' formula for many, but not all, orthogonal polynomials. It can be used to find the recurrence relation, the differential equation, and many other properties.For finding solutions to Laplace's equation in spherical coordinates, the Legendre polynomials are sufficient so long as the problem is axially symmetric, in which there is no φ-dependence. The more general problem requires the introduction of related functions called the associated Legendre functions that are actually built up from Jacobi polynomials, and can also be expressed in terms of derivatives of the Legendre polynomials. Physics texts generally approached the problem from first principles, never mentioning Jacobi polynomials, and thereby losing valuable insight.The Jacobi polynomials P(α,β)n(x) are orthogonal on (-1,1) with weight function w(x) = (1 - x)α(1 + x)β. Their Rodrigues' formula is P(α,β)n(x) = [(-1)n/2n n!] (1 - x)-α(1 +x)-β d n/dx n (1 - x)α+n(1 + x)β+n. The ordinary Legendre polynomial P n(x) = P(0,0)n(x). They satisfy the differential equation (1 - x2)P"(α,β)n+ [β - α - (α + β + 2)x] P'(α,β)n + n(α + β + n + 1) P(α,β)n = 0.In solving Laplace's equation by the method of separation of variables, one obtains for the θ dependence T(x), x = cos θ, the differential equationd/dx[(1 - x2)dT/dx] = [l(l+1) - m2/(1 - x2]T = 0 The substitution T(x) = (1 - x2)m/2y(x) now gives the equation(1-x2)y" - 2(m + 1)xy' + [l(l+1) - m(m+1)]y = 0, which we recognize as satisfied by the Jacobi polynomial P(m,m)l-m(x). Hence, T(x) = (1 - x2)m/2y(x) P(m,m)l-m(x). This is the associated Legendre function, often denoted P m l(x) in physics texts (e.g., Reference 4), and defined there as (-1)m(1 - x2)m/2 d m/dx m P l. The subscript is no longer the degree of the polynomial.All the above is for a positive m. Since the equation contains m2, the solution for negative m is essentially the same, except perhaps for a multiplicative factor. This is of little consequence for the traditional applications of spherical harmonics, but is critical for quantum mechanics, where relative phases matter. The choice in physics is that P-m l(x) = (-1)m[(l - m)!/(l + m)!] P m l(x), where m is always positive on the right. If you work the functions out explicitly, you will find that the functions for +m and -m are essentially the same, as might be expected, and differ at most by a factor of -1.For the same m, P m l(x) and P m l'(x) are orthogonal, and the integral of the square of P m l(x) is the same as for P l(x), multiplied by (l - m)!/(l + m)!. The functions are not orthogonal for different values of m; orthogonality of the spherical harmonics in this case depends on the φ functions.1.4. References1.M. Abramowitz and I. Stegun, Handbook of MathematicalFunctions (Washington, D.C.: National Bureau of Standards, AppliedMathematics Series 55, June 1964). Chapter 22.2. D. Jackson, Fourier Series and Orthogonal Functions(Mathematical Assoc. of America, Carus Mathematical Monographs No. 6,1941). Chapter X.3.L. Pauling and E. B. Wilson, Introduction to Quantum Mechanics(New York: McGraw-Hill, 1935). Chapter V.4.J. D. Jackson, Classical Electrodynamics, 2nd . ed. (New York:McGraw-Hill, 1975), Chapter III.2. Gauss 型积分2.1. Gauss 型求积公式的构造方法(1)求出区间[a,b]上权函数为W(x)的正交多项式pn(x)(2)求出pn(x)的n 个零点x1 , x2 , … xn 即为Gsuss 点.(3)计算积分系数2.2. 几种Gauss 型求积公式2.2.1. Gauss-Legendre 求积公式区间[-1,1]上权函数W(x)=1的Gauss 型求积公式,称为Gauss-Legendre 求积公式,其Gauss 点为Legendre 多项式的零点。

序列二次规划算法流程框图

序列二次规划算法流程框图

序列二次规划算法流程框图下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!1. 初始化:设置算法参数,如最大迭代次数、收敛精度等。

选择初始点$x_0$。

带约束的非线性优化问题解法小结

带约束的非线性优化问题解法小结

(1)带约束的非线性优化问题解法小结考虑形式如下的非线性最优化问题(NLP):min f(x)「g j (x )“ jI st 彳 g j (x)=O j L其 中, ^(x 1,x 2...x n )^ R n, f : R n > R , g j :R n > R(j I L) , I 二{1,2,…m }, L ={m 1,m 2...m p}。

上述问题(1)是非线性约束优化问题的最一般模型,它在军事、经济、工程、管理以 及生产工程自动化等方面都有重要的作用。

非线性规划作为一个独立的学科是在上世纪 50年 代才开始形成的。

到70年代,这门学科开始处于兴旺发展时期。

在国际上,这方面的专门性 研究机构、刊物以及书籍犹如雨后春笋般地出现,国际会议召开的次数大大增加。

在我国, 随着电子计算机日益广泛地应用,非线性规划的理论和方法也逐渐地引起很多部门的重视。

关于非线性规划理论和应用方面的学术交流活动也日益频繁,我国的科学工作者在这一领域 也取得了可喜的成绩。

到目前为止,还没有特别有效的方法直接得到最优解,人们普遍采用迭代的方法求解: 首先选择一个初始点,利用当前迭代点的或已产生的迭代点的信息,产生下一个迭代点,一 步一步逼近最优解,进而得到一个迭代点列,这样便构成求解( 1)的迭代算法。

利用间接法求解最优化问题的途径一般有:一是利用目标函数和约束条件构造增广目标 函数,借此将约束最优化问题转化为无约束最优化问题,然后利用求解无约束最优化问题的 方法间接求解新目标函数的局部最优解或稳定点,如人们所熟悉的惩罚函数法和乘子法;另 一种途径是在可行域内使目标函数下降的迭代点法,如可行点法。

此外,近些年来形成的序 列二次规划算法和信赖域法也引起了人们极大的关注。

在文献[1]中,提出了很多解决非线性 规划的算法。

下面将这些算法以及近年来在此基础上改进的算法简单介绍一下。

1. 序列二次规划法序列二次规划法,简称SQ 方法.亦称约束变尺度法。

规划数学最优性条件及二次规划

规划数学最优性条件及二次规划

判别条件
D 若
是 X (0) 的任一可行方向,则有 g j (X ) (0) T D 0, j J (X (0) ) (1)
3 下降方向 定义:
X (0) R, 0, [0,0] 时有 f (X (0) D) f (X (0) ) 称 D 为X (0)处的下降方向
判别条件
若 D 是 X (0) 的任一下降方向,则有 f ( X (0) )T D 0 (2) 若 D 既满足(1)式又满足(2)式则称 D 为 X (0)的下 降可行方向
*) 2*g2 ( X 1*g1( X *) 0 2*g2 ( X *) 0
*
)
3*g3
(
X
*
)
0
3*g3 ( X *) 0
1*, 2*, 3* 0
1
0
1*
3(1 x1* 1
)2
2*
1 0
3*
0 1
0 0
1*[(1 x1*)3 x2*] 0 2* x1* 0
(2)
x2
3, 1
1 6
X (0, 3)T 是K-T点
(iii)
1
0, 2
0
( 3),( 4 )
x12
x1
x22 x2
9 1
T
X
1
2
17
1 17 2
, 或X
1 17 2
(1) (2) 21(x1 x2 ) 1 2x1 (6)
T
1 17 2
将求出的 1 17 1 17 T
p
处起作用(紧)约束的下标集
记 R=X g j (X ) 0 j 1,..., p 或 R=X g j (X ) 0 j 1,..., p;hi (X ) 0,i 1,..., m

序列二次规划算法

序列二次规划算法

序列二次规划法求解一般线性优化问题:12min (x)h (x)0,i E {1,...,m }s.t.(x)0,i {1,...,m }i i f g I =∈=⎧⎨≥∈=⎩ (1.1) 基本思想:在每次迭代中通过求解一个二次规划子问题来确定一个下降方向,通过减少价值函数来获取当前迭代点的移动步长,重复这些步骤直到得到原问题的解。

1.1等式约束优化问题的Lagrange-Newton 法考虑等式约束优化问题min (x)s.t.h (x)0,E {1,...,m}j f j =∈=(1.2)其中:,n f R R →:()n i h R R i E →∈都为二阶连续可微的实函数. 记1()((),...,())T m h x h x h x =. 则(1.3)的Lagrange 函数为: 1(,)()*()()*()mT i i i L x u f x u h x f x u h x ==-=-∑(1.3)其中12(,,...,)T m u u u u =为拉格朗日乘子向量。

约束函数()h x 的Jacobi 矩阵为:1()()((),...,())T T m A x h x h x h x =∇=∇∇.对(1.3)求导数,可以得到下列方程组:(,)()A()*(,)0(,)()T x u L x u f x x u L x u L x u h x ∇⎡⎤⎡⎤∇-∇===⎢⎥⎢⎥∇-⎣⎦⎣⎦(1.4)现在考虑用牛顿法求解非线性方程(1.4).(,)L x u ∇的Jacobi 矩阵为:(,)()(,)()0T W x u A x N x u A x ⎛⎫-= ⎪-⎝⎭(1.5)其中221(,)L(,)()*()mxx iii W x u x u f x u h x ==∇=∇-∇∑是拉格朗日函数L(,)x u 关于x 的Hessen 矩阵.(,)N x u 也称为K-T 矩阵。

对于给定的点(,)k k k z x u =,牛顿法的迭代格式为:1k k k z z z +=+∆. 其中k k (d ,v )k z ∆=是线性方程组k k k k (,)()(x )A(x )u *()0(x )k k k k T T k k d W x u A x f A x v h ⎛⎫-⎛⎫-∇+⎛⎫= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭(1.6)的解。

最优化二次规划

最优化二次规划
对比分析不同二次规划算法(如梯度下降法、牛顿法、内 点法等)在求解这些问题时的迭代次数、计算时间、收敛 性等方面的表现。
实验结果分析
迭代次数与计算时间
收敛性
记录并分析不同算法在求解各个问题实例 时的迭代次数和计算时间,评估算法的收 敛速度和计算效率。
观察并记录算法的收敛情况,包括是否收 敛、收敛速度如何等,以评估算法的稳定 性和可靠性。
1 2 3
图像处理
在图像处理中,利用二次规划方法进行图像去噪 、增强和分割等操作,提高图像质量。
机器学习
在支持向量机(SVM)、逻辑回归等机器学习算 法中,运用二次规划求解最优分类超平面或回归 模型参数。
运筹学
在物流、供应链管理等运筹学问题中,通过二次 规划求解最优的运输路径、库存策略等方案。
05 二次规划的数值实验与案例分析
模型建立与求解
模型建立
根据实际问题背景,建立相应的二次规划数学模型,包括确定目标函数、约束条件以及决 策变量等。
求解方法
二次规划问题的求解方法主要包括解析法、数值法和智能优化算法等。其中解析法适用于 小规模问题,数值法如内点法、有效集法等适用于中等规模问题,智能优化算法如遗传算 法、粒子群算法等适用于大规模复杂问题。
06 二次规划的发展趋势与挑战
CHAPTER
研究现状与发展趋势
理论研究
随着计算机技术的发展,二次规划的理论研究不断深入,包括算法 的收敛性、稳定性、复杂性等方面的研究。
应用领域拓展
二次规划在金融、经济、工程、管理等领域的应用不断拓展,如投 资组合优化、生产计划安排、物流运输等问题中。
算法改进与优化
适用范围
适用于具有不等式约束的二次规划问题。
其他方法

基于序列二次规划算法的插电式混合动力汽车模型预测控制策略

基于序列二次规划算法的插电式混合动力汽车模型预测控制策略

文章编号:1671-7872(2023)03-0313-11基于序列二次规划算法的插电式混合动力汽车模型预测控制策略张代庆 ,俞 聪 ,牛礼民 ,汪 恒 ,张义奇(安徽工业大学 机械工程学院, 安徽 马鞍山 243032)摘要:为提升插电式混合动力汽车(PHEV)的车速预测精度和燃油经济性,提出基于序列二次规划(SQP)算法的模型预测控制能量管理策略。

以卷积神经网络(CNN)构建的车速预测模型为基础,选取三类典型历史工况数据作为CNN 车速预测模型的训练集,使用鲸鱼优化算法(WOA)优化CNN 参数,通过优化的WOA-CNN 模型预测未来时域内的车速;采用SQP 算法对模型预测控制策略进行求解,且与基于规则的电量消耗和电量保持(CD-CS)策略和基于全局优化的动态规划(DP)策略的控制结果进行对比分析,验证所提策略的有效性。

结果表明:通过WOA-CNN 模型可提高车速预测精度,为4.88%~8.39%;与DP 控制策略相比,本文提出策略的燃油消耗量高出1.98%,但计算时间减少了74.32%,能量管理的实时性得到大幅提升;与CD-CS 控制策略相比,提出策略的节油率为20.37%。

综合考虑,本文提出策略的整车能量消耗和计算成本较优,可合理实现对PHEV 转矩分配的智能控制。

关键词:能量管理策略;模型预测控制;卷积神经网络;鲸鱼优化算法;序列二次规划;混合动力汽车中图分类号:U 469.72 文献标志码:A doi :10.12415/j.issn.1671−7872.22264Predictive Control Strategy of PHEV Model Based on Sequential QuadraticProgramming AlgorithmZHANG Daiqing, YU Cong, NIU Limin, WANG Heng, ZHANG Yiqi(School of Mechanical Engineering, Anhui University of Technology, Maanshan 243032, China)Abstract :In order to improve the speed prediction accuracy and fuel economy of plug-in hybrid electric vehicle (PHEV), a model predictive control energy management strategy based on sequential quadratic programming (SQP)algorithm was proposed. Based on the speed prediction model constructed by convolutional neural network (CNN),three types of typical historical working conditions were selected as the training set of CNN speed prediction model.Whale optimization algorithm (WOA) was used to optimize CNN parameters, and the optimized WOA-CNN model was used to predict the future speed in the time domain. SQP algorithm was used to solve the model predictive control strategy, and the control results with the rule-based charge depleting and charge sustaining (CD-CS) control strategy and the global optimization based dynamic programming (DP) control strategy were compared and analyzed to verify the effectiveness of the proposed strategy. The results show that the prediction accuracy of vehicle speed收稿日期:2022-10-24基金项目:先进数控和伺服驱动技术安徽省高校重点实验室开放基金项目(XJSK202104);安徽工程大学电力驱动与控制安徽省重点实验室开放基金项目(DQKJ202204);安徽省大学生创新创业项目(S202110360259)作者简介:张代庆(1997—),男,黑龙江大庆人,硕士生,主要研究方向为新能源汽车控制技术。

船舶定位系统推力分配方法及策略研究

船舶定位系统推力分配方法及策略研究

科技与创新┃Science and Technology&Innovation ·116·2023年第17期文章编号:2095-6835(2023)17-0116-03船舶定位系统推力分配方法及策略研究余祥(安徽省淮河船舶检验局,安徽蚌埠233000)摘要:随着科技的发展,海洋资源的勘探、开发和利用从浅海拓展至深海。

在这种情况下,船舶动力定位和推力分配成为了船舶工程领域的研究热点。

动力定位系统是利用船舶或平台自身推进器产生的推力来抵消外部环境力的技术,以维持预定位置或轨迹[1]。

推力分配模块是该系统的关键组成部分,其主要功能是在有限时间内找到最优的推力和角度组合,以满足控制器对合力和力矩的要求。

首先,总结了国内外动力定位系统中推力分配的研究现状,并说明研究的目标;其次,引入了数学模型,以优化推力分配,该数学模型包括目标函数和约束条件;最后,介绍了2种不同的数学优化算法,即二次规划(Quadratic Programming,QP)算法和序列二次规划(Sequential Quadratic Programming,SQP)算法,并将它们应用于推力分配问题数学模型的求解[2]。

此外,还介绍了一种自适应组合偏置算法,该算法能够根据控制力的大小和方向自适应地调整偏置量的大小及全向推进器的组合方式。

关键词:动力定位;推力分配;数学模型;组合偏置算法中图分类号:U664.82文献标志码:A DOI:10.15913/ki.kjycx.2023.17.034船舶动力定位系统(Dynamic Positioning System,DP)是利用船舶自身设备和先进技术实现船舶在海上进行自主控制的技术[3]。

传统的推力分配方法无法考虑到海洋环境的变化和复杂性,不能实现最优的推力分配,从而影响了DP系统的性能和船舶的操作效率[4]。

推力分配方法和策略的研究可以为船舶动力定位系统的发展提供技术支持和理论指导,提高船舶的定位精度和控制效率,进一步提升海洋工程的安全性和可靠性。

【5A文】关于序列二次规划(SQP)算法求解非线性规划问题研究

【5A文】关于序列二次规划(SQP)算法求解非线性规划问题研究

关于序列二次规划(SQP)算法求解非线性规划问题研究兰州大学硕士学位论文关于序列二次规划(SQP)算法求解非线性规划问题的研究姓名:石国春申请学位级别:硕士专业:数学、运筹学与控制论指导教师:王海明20090602兰州大学2009届硕士学位论文摘要非线性约束优化问题是最一般形式的非线性规划NLP问题,近年来,人们通过对它的研究,提出了解决此类问题的许多方法,如罚函数法,可行方向法,Quadratic及序列二次规划SequentialProgramming简写为SOP方法。

本文主要研究用序列二次规划SOP算法求解不等式约束的非线性规划问题。

SOP算法求解非线性约束优化问题主要通过求解一系列二次规划子问题来实现。

本文基于对大规模约束优化问题的讨论,研究了积极约束集上的SOP 算法。

我们在约束优化问题的s一积极约束集上构造一个二次规划子问题,通过对该二次规划子问题求解,获得一个搜索方向。

利用一般的价值罚函数进行线搜索,得到改进的迭代点。

本文证明了这个算法在一定的条件下是全局收敛的。

关键字:非线性规划,序列二次规划,积极约束集Hl兰州人学2009届硕二t学位论文AbstractNonlinearconstrainedarethemostinoptimizationproblemsgenericsubjectsmathematicalnewmethodsareachievedtosolveprogramming.Recently,Manyasdirectionit,suchfunction,feasiblemethod,sequentialquadraticpenaltyprogramming??forconstrainedInthisthemethodspaper,westudysolvinginequalityabyprogrammingalgorithm.optimizationproblemssequentialquadraticmethodaofSQPgeneratesquadraticprogrammingQPsequencemotivationforthisworkisfromtheofsubproblems.OuroriginatedapplicationsinanactivesetSQPandSQPsolvinglarge-scaleproblems.wepresentstudyforconstrainedestablishontheQPalgorithminequalityoptimization.wesubproblemsactivesetofthesearchdirectionisachievedQPoriginalproblem.AbysolvingandExactfunctionsaslinesearchfunctionsubproblems.wepresentgeneralpenaltyunderobtainabetteriterate.theofourisestablishedglobalconvergencealgorithmsuitableconditions.Keywords:nonlinearprogramming,sequentialquadraticprogrammingalgorithm,activesetlv兰州大学2009届硕士学位论文原创性声明本人郑重声明:本人所呈交的学位论文,是在导师的指导下独立进行研究所取得的成果。

序列二次规划法

序列二次规划法

序列二次规划法
序列二次规划法(Sequential Quadratic Programming,SQP)是一类用于求解非线性规划问题的迭代优化方法。

它可以用于求解含有约束的多元函数的极小值问题,而且它也可以求解只含有函数本身没有约束的无约束优化问题。

序列二次规划法在每次迭代中都会求解一个子问题,该子问题是一个二次凸优化问题,通常可以使用拉格朗日乘子法或者其他类似的技术快速求解。

然后根据求解出来的结果,采用类似牛顿法或者类牛顿法的方式更新搜索方向,不断更新搜索方向并重复求解子问题,直到满足收敛要求为止。

序列二次规划法的优点在于它仅需要少量的初始信息,而且具有较强的全局收敛性,因此在复杂的非线性优化问题中往往能够达到较好的效果。

第三章 (4)二次逼近法

第三章 (4)二次逼近法

min Q(x) 1 xTGx gT x
2
事先未知!
s.t. aiT x bi ,i A*
Gx* g i*ai i*ai 0

iE
iI
存在!
aiT x* bi 0,i E
Gx* g i*ai 0 iA*
aiiT*
等式约束二次规划问题求解 变量消去法 零空间法 Lagrange法 起作用集法
二、等式约束二次规划问题
等式约束二次规划问题求解-----变量消去法
思想:将设计变量分解成基本变量与非基本变量,
通过等式约束将基本变量用非基本变量线性表出,
将基本变量代入目标函数,问题转化为关于非基本
三、起作用集法
起作用集法的终止条件
定理 设 xk 是二次规划问题的一个可行点,集合 Ak A xk
,若等式约束二次规划问题
min f x 1 xTGx gT x
xRn
2
s.t. aiT x bi ,i Ak .
的解为 xk ,且相应的拉格朗日乘子 ik 满足

Gˆ N1hˆN

对应的Lagrange乘子
GBB GNB
GBN GNN


xB* x*N


hB hN



AB AN


*
*

AB1 ( hB

GBB xB*

GBN
x
* N
)
方法缺点:AB 接近奇异矩阵,数值过程不稳定!
设A列满秩,简约Hesse矩阵 Z TGZ R(nm)(nm) 正定,

序列二次规划算法

序列二次规划算法

1.Legendre PolynomialsNamed in honor of Adrien-Marie (1752-1833) the mathematician, not Louis (1752-1797) the politician.1.1. IntroductionA polynomial is a finite sum of terms like a k x k, where k is a positive integer or zero. There are sets of polynomials such that the product of any two different ones, multiplied by a function w(x) called a weight function and integrated over a certain interval, vanishes. Such a set is called a set of orthogonal polynomials. Among other things, this property makes it possible to expand an arbitrary function f(x) as a sum of the polynomials, each multiplied by a coefficient c(k), which is easily and uniquely determined by integration. A Fourier series is similar, but the orthogonal functions are not polynomials. These functions can also be used to specify basis states in quantum mechanics, which must be orthogonal.1.2. Legendre Polynomials DenifitionThe Legendre polynomials P n(x), n = 0, 1, 2 ... are orthogonal on the interval from -1 to +1, which is expressed by the integral()()12211+=⎰-n dx x P x P mn m n δ. The Kronecker delta is zero if n ≠ m, and unity if n = m. In most applications, x = cos θ, and θ varies from 0 to π. In this case, dx = sin θ dθ, of course. The Legendre polynomials are a special case of the more general Jacobi polynomials P (α,β)n (x) orthogonal on (-1,1). By a suitable change of variable, the range can be changed from (-1,1) to an arbitrary (a,b). The weight function w(x) of the Legendre polynomials is unity, and this is what distinguishes them from the others and determines them.1.3. ApplicationsThe Lengendre polynomials are very clearly motivated by a problem that often appears. For example, suppose we have an electric charge q at point Q in the figure at the left, one of a group whose positions are referred to an origin at O,and we desire the potential at some point P. The distance PO is taken asunity for convenience; simply multiply all distances by the actualdistance PO in any particular case. The potential due to this charge is q/R.We can find R as a functi on of r and θ by the Law of Cosines: R 2 = 1 + r 2- 2r cos θ = 1 - 2rx + r 2, where x = cos θ. Now we expand 1/R in powersof r, finding 1/R = Σ P n (x)r n . The function 1/R is called the generatingfunction of the Legendre polynomials, and can be used to investigatetheir properties. Generating functions are available for most orthogonalpolynomials, but only in the Legendre case does the generating function have a clear and simple meaning.If we let x = 1, we find that P n (1) = 1, and P n (-1) = (-1)n . By taking partial derivatives of 1/R with respect to x and r, and then considering the coefficients of individual powers of r, we can find a number of relations between the polynomials and their derivatives. These can be manipulated to find the recursion relation, (n + 1) P n+1(x) = (2n + 1)x P n (x) - n P n-1(x), and the differential equation satisfied by the polynomials, (1 - x 2) P"n (x) -2x P'n (x) + n(n + 1) P n (x) = 0. The recurrence relation allows us to find all the polynomials, since it is easy to find that P 0(x) = 1, P 1(x) = x directly from the generating function, and this starts us off. The differential equation allows us to apply the polynomials to problems arising in mathematics and physics, among which is the important problem of the solution of Laplace's equation and spherical harmonics.The recurrence relation shows that the coefficient A n of the highest power of x satisfies the relation A n+1 = (2k + 1)/(k + 1) A n , and so from the known coefficients for n = 0, 1 we can find that the coefficient of the highest power of x in P n is1.3.5...(2n-1)/n!.The polynomials can also be found by solving the differential equation by determining the coefficients of a power series substituted in the equation. This method was often used in quantum mechanics texts (see Reference 3), since the students were not usually acquainted with the mathematics of orthogonal polynomials. This method does not allow one to investigate the properties of the polynomials in any detail,however, yielding only the individual polynomials themselves.Consider the polynomials G n(x) = d n/dx n(x2- 1)n. The quantity to be differentiated is indeed a polynomial, of degree 2n, and consisting of only even powers. When differentiated n times, it becomes a polynomial of order n consisting of either all odd or all even powers of x, as n is odd or even. The coefficient of the highest power of x is 2n(2n-1)(2n-2)...(n+1), and the first two polynomials are 1 and 2x. If G(x) is substituted in the recurrence relation for the Legendre polynomials, it is found to satisfy it. If we divide G(x) by the constant 2n n!, then the first two polynomials are 1 and x. Therefore, P n(x) = (1/2n n!) d n/dx n(x2- 1)n. This is called Rodrigues's formula; similar formulas exist for other orthogonal polynomials.The great advantage of Rodrigues' formula is its form as an nth derivative. This means that in an integral, it can be used repeatedly in an integration by parts to evaluate the integral. The orthogonality of the Legendre polynomials follows very quickly when Rodrigues' formula is used. There is a Rodrigues' formula for many, but not all, orthogonal polynomials. It can be used to find the recurrence relation, the differential equation, and many other properties.For finding solutions to Laplace's equation in spherical coordinates, the Legendre polynomials are sufficient so long as the problem is axially symmetric, in which there is no φ-dependence. The more general problem requires the introduction of related functions called the associated Legendre functions that are actually built up from Jacobi polynomials, and can also be expressed in terms of derivatives of the Legendre polynomials. Physics texts generally approached the problem from first principles, never mentioning Jacobi polynomials, and thereby losing valuable insight.The Jacobi polynomials P(α,β)n(x) are orthogonal on (-1,1) with weight function w(x) = (1 - x)α(1 + x)β. Their Rodrigues' formula is P(α,β)n(x) = [(-1)n/2n n!] (1 - x)-α(1 + x)-β d n/dx n (1 - x)α+n(1 + x)β+n. The ordinary Legendre polynomial P n(x) = P(0,0)n(x). They satisfy the differential equation (1 - x2)P"(α,β)n+ [β - α - (α + β + 2)x] P'(α,β)n + n(α + β + n + 1) P(α,β)n = 0.In solving Laplace's equation by the method of separation of variables, one obtains for the θ dependence T(x), x = cos θ, the differential equationd/dx[(1 - x2)dT/dx] = [l(l+1) - m2/(1 - x2]T = 0 The substitution T(x) = (1 - x2)m/2y(x) now gives the equation(1-x2)y" - 2(m + 1)xy' + [l(l+1) - m(m+1)]y = 0, which we recognize as satisfied by the Jacobi polynomial P(m,m)l-m(x). Hence, T(x) = (1 - x2)m/2y(x) P(m,m)l-m(x). This is the associated Legendre function, often denoted P m l(x) in physics texts (e.g., Reference 4), and defined there as (-1)m(1 - x2)m/2 d m/dx m P l. The subscript is no longer the degree of the polynomial.All the above is for a positive m. Since the equation contains m2, the solution for negative m is essentially the same, except perhaps for a multiplicative factor. This is of little consequence for the traditional applications of spherical harmonics, but is critical for quantum mechanics, where relative phases matter. The choice in physics isthat P -m l (x) = (-1)m [(l - m)!/(l + m)!] P m l (x), where m is always positive on the right. If you work the functions out explicitly, you will find that the functions for +m and -m are essentially the same, as might be expected, and differ at most by a factor of -1.For the same m, P m l (x) and P m l'(x) are orthogonal, and the integral of the square of P m l (x) is the same as for P l (x), multiplied by (l - m)!/(l + m)!. The functions are not orthogonal for different values of m; orthogonality of the spherical harmonics in this case depends on the φ functions.1.4. References1. M. Abramowitz and I. Stegun, Handbook of MathematicalFunctions (Washington, D.C.: National Bureau of Standards, AppliedMathematics Series 55, June 1964). Chapter 22.2. D. Jackson, Fourier Series and Orthogonal Functions(Mathematical Assoc. of America, Carus Mathematical Monographs No. 6,1941). Chapter X.3. L. Pauling and E. B. Wilson, Introduction to Quantum Mechanics(New York: McGraw-Hill, 1935). Chapter V .4. J. D. Jackson, Classical Electrodynamics , 2nd . ed. (New York:McGraw-Hill, 1975), Chapter III.2. Gauss 型积分2.1. Gauss 型求积公式的构造方法(1)求出区间[a,b]上权函数为W(x)的正交多项式pn(x)(2)求出pn(x)的n 个零点x1 , x2 , … xn 即为Gsuss 点.(3)计算积分系数2.2. 几种Gauss 型求积公式2.2.1. Gauss-Legendre 求积公式区间[-1,1]上权函数W(x)=1的Gauss 型求积公式,称为Gauss-Legendre 求积公式,其Gauss 点为Legendre 多项式的零点。

isight优化算法

isight优化算法

iSIGHT里面的优化方法大致可分为三类:1 数值优化方法数值优化方法通常假设设计空间是单峰值的,凸性的,连续的。

iSIGHT中有以下几种:(1)外点罚函数法(EP):外点罚函数法被广泛应用于约束优化问题。

此方法非常很可靠,通常能够在有最小值的情况下,相对容易地找到真正的目标值。

外点罚函数法可以通过使罚函数的值达到无穷值,把设计变量从不可行域拉回到可行域里,从而达到目标值。

(2)广义简约梯度法(LSGRG2):通常用广义简约梯度算法来解决非线性约束问题。

此算法同其他有效约束优化一样,可以在某方向微小位移下保持约束的有效性。

(3)广义虎克定律直接搜索法:此方法适用于在初始设计点周围的设计空间进行局部寻优。

它不要求目标函数的连续性。

因为算法不必求导,函数不需要是可微的。

另外,还提供收敛系数(rho),用来预计目标函数方程的数目,从而确保收敛性。

(4)可行方向法(CONMIN):可行方向法是一个直接数值优化方法,它可以直接在非线性的设计空间进行搜索。

它可以在搜索空间的某个方向上不断寻求最优解。

用数学方程描述如下:Design i = Design i-1 + A * Search Direction i方程中,i表示循环变量,A表示在某个空间搜索时决定的常数。

它的优点就是在保持解的可行性下降低了目标函数值。

这种方法可以快速地达到目标值并可以处理不等式约束。

缺点是目前还不能解决包含等式约束的优化问题。

(5)混合整型优化法(MOST):混合整型优化法首先假定优化问题的设计变量是连续的,并用序列二次规划法得到一个初始的优化解。

如果所有的设计变量是实型的,则优化过程停止。

否则,如果一些设计变量为整型或是离散型,那么这个初始优化解不能满足这些限制条件,需要对每一个非实型参数寻找一个设计点,该点满足非实型参数的限制条件。

这些限制条件被作为新的约束条件加入优化过程,重新优化产生一个新的优化解,迭代依次进行。

在优化过程中,非实型变量为重点考虑的对象,直到所有的限制条件都得到满足,优化过程结束,得到最优解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
I k j 1
n
(1-10)
其中, E 代表等式约束下的集合, I k 代表不等式约束中起作用约束的下标 集合。
此式即式 (1-8) , 可以用同样的方法求解。 在求得式 (1-10) 的解 [ S
k 1
, k 1]T
之后,根据 k-t 条件,若解中对应原等式约束条件的乘子不全为零,对应起作用 约束条件的乘子不小于零,则 S 最优解 S * 。 综上所述,在迭代点 X 上先进行矩阵 H 的变更,在构造和求解相应的二 次规划子问题,并该子问题最优解 S * 作为下一次迭代的搜索方向 S 。然后在 该方向上对原非线性最优化问题目标函数进行约束一维搜索, 得到下一个迭代点
此问题是原约束最优化问题的近似问题,但其解不一定是原问题的可行点。 为此,令
S X Xk
将上述二次规划问题变成关于变量的 S 的问题,即
1 min f ( X ) S T 2 f ( X k ) S f ( X k )T S 2 s. t. gu ( X k )T S gu ( X k ) 0 (u 1,2,..., p) hv ( X k )T S hv ( X k ) 0
T
等于 n m 。由线性代数知,此方程要么无解,要么有惟一解。如果有解,利用 消元变换可以方便的地求出该方程的惟一解, 记作 [ S 若此解中的乘子向量
k 1
k 1
根据 k-t 条件, , k 1]T 。
不全为零, 则S 。
k 1
就是等式约束二次规划问题式 (1-8)
的最优解 S * ,即 S* S
2 序列二次规划的研究
最优化理论及方法是一个具有广泛应用背景的研究领域。 它研究诸如从众多 的方案中选出最优方案等问题,常见的各种模型如线性规划,二次规划,非线性 规划, 多目标规划等。 最优化理论及方法已经在经济计划, 工程设计, 生产管理,
交通运输等领域得到了广泛的应用,吸引了很多学者的研究。 一般非线性约束的数学规划问题是:
1 min f ( X ) [ X X k ]T 2 f ( X k )[ X X k ] f ( X k )T [ X X k ] 2 s. t. gu ( X k )T [ X X k ] gu ( X k ) 0 (u 1,2,..., p) (1-2) hv ( X k )T [ X X k ] hv ( X k ) 0 (v 1,2,..., m)
k 1
k
。反复这一过程,就可以求得原问题的最优解。
上述思想得以实现的关键在于如何计算函数的二阶导数矩阵 H ,如何求解 式(1-5)所示的二次规划问题。
3.2 二阶导数矩阵的计算
二阶导数矩阵的近似计算可以利用拟牛顿(变尺度)法中变尺度矩阵计算的 DFP 公式
H
k 1
X k [X k ]T H k q k [q k ]T H k H [q k ]T X k [q k ]T H k q k
由多元函数的极值条件 L(S, ) 0 得
T HS C Aeq 0
Aeq S Beq 0
写成矩阵形式,即
T H Aeq S C B Aeq 0 eq
(1-9)
式(1-9)其实就是以 [ S , ] 为变量的线性方程组,而且变量数和方程数都
n
的正定矩阵去逼近解 [S*, *] 处的既约 Hessian 矩阵。 Noeedal 和 Overton (1985) 提出了单边及双边的投影 Hessian 方法。在单边投影 Hessian 方法中证明了局部 1-步超线性收敛性而在双边投影 Hessian 方法中证明了在某种假设条件下的 2-步 超线性收敛性质。但他的 BFGS 修正公式是在满足一定的修正准则才进行修正。 Xie 和 Byrd (1999) 在 RHSQP 方法的基础上加上线性搜索得到全局收敛性算法。 他并且把 Nocedal 和 Overton 的修正法则改为了一种新的修正法则一正曲率法则。 这样能得到更好的数值结果。并且证明了当利用两个常用的效益函数,Flether 效益函数和 l1 精确罚函数进行线性搜索时, 算法具有全局收敛性和 R-线性收敛性。 R.Fontecilla(1988)提出了一种 2-步超线性收敛算法。与 Coleman 和 Conn 不同之处在于他将步长犷分为互相垂直的两个向量:即水平方向的步长 hk 和垂 直方向的步长 vk 。且仅利用水平方向的步长 hk 对 H 进行修正。与 coleman 和 Conn 不同之处在于对 S 进行分解时他使用了一个正交投影算子而不是标准正 交基,比较容易满足连续性条件。比前者适用的范围更广。而且,他把这一方法 用在了几种不同的乘子修正公式中。 在二阶充分条件下, 证明了该算法是 2-步超 线性收敛的。 若在每一次迭代中再计算一次约束函数的值, 则算法为 1-步超线性 收敛。但没有全局收敛性研究。
min f ( X ) s. t. gu ( X ) 0 (u 1,2,..., p) hv ( X ) 0 (v 1,2,..., m)
(1-1)
利用泰勒展开把非线性约束问题式(1-1)的目标函数在迭代点 Xk 简化成二 次函数,把约束函数简化成线性函数后得到的就是如下的二次规划问题:
将式(1-4)变成二次规划问题的一般形式,即 (1-4)
min
1 T S HS C T S 2 s. t. AS B Aeq S Beq
(1-5)
求解此二次规划问题,将其最优解 S * 作为原问题的下一个搜索方向 S , 并在该方向上进行原约束问题目标函数的约束一维搜索, 就可以得到原约束问题 的一个近似解 X
k
k
k
k 1
就是所求一般约束二次规划问题式(1-5)的
X k 1 ,并判断收敛精度是否满足。重复上述过程,直到迭代点 X k 1 最终满足终

(1-3)
(v 1,2,..., m)
H 2 f ( X k ) C f ( X k ) Aeq [h1 ( X k ), h2 ( X k ),..., hm ( X k )]T A [g1 ( X k ), g 2 ( X k ),..., g p ( X k )]T Beq [h1 ( X k ), h2 ( X k ),..., hm ( X k )]T B [ g1 ( X k ), g 2 ( X k ),..., g p ( X k )]T
序列二次规划算法
1 序列二次规划法简介
非线性规划问题是目标函数或约束条件中包含非线性函数的规划问题。 一般 说来,解非线性规划要比解线性规划问题困难得多。而且,也不像线性规划有单 纯形法这一通用方法, 非线性规划目前还没有适于各种问题的一般算法,各个方 法都有自己特定的适用范围。 当目标函数和约束条件具有良好的分析性质时,人 们喜欢用间接法分析与求解约束最优化问题。 利用间接法求解最优化问题的途径 一般有两种, 另一种途径是在可行域内使目标函数下降的迭代点法, 如可行点法。 另一种是利用目标函数和约束条件构造增广目标函数, 借此将约束最优化问题转 化为无约束最优化问题, 然后利用求解无约束最优化问题的方法间接求解新目标 函数的局部最优解或稳定点, 如人们所熟悉的惩罚函数法, 乘子法和序列二次规 划等。 序列二次规划算法是目前公认的求解约束非线性优化问题的最有效方法之 一,与其它优化算法相比,其最突出的优点是收敛性好、计算效率高、边界搜索 能力强, 受到了广泛重视及应用。但其迭代过程中的每一步都需要求解一个或多 个二次规划子问题。 一般地, 由于二次规划子问题的求解难以利用原问题的稀疏 性、对称性等良好特性,随着问题规模的扩大,其计算工作量和所需存贮量是非 常大的。因此,目前的序列二次规划方法一般只适用于中小型问题。另外,由于 大型二次规划问题的求解通常使用迭代法,所需解的精度越高,花费的时间就越 多,稳定性也就越差,相对线性方程组的求解理论来说,二次规划的求解是不完 善的。
min f ( X ) s. t. gu ( X ) 0 (u 1,2,..., p) hv ( X ) 0 (v 1,2,..., m)
其中 X R 是决策变量, f ( X ) 是目标函数, gu ( X ) , hv ( X ) 分别是不等 式约束函数和等式约束函数。 在求解上述问题的诸多算法中序列二次规划 (SQP)是最有效的一类方法之一 "由 于它具有超线性收敛速度,对它的研究一直是非线性规划的一个热点,许 多学者对它进行了研究和改进" 序列二次规划( SQP )算法最早由 Wilson ( 1963 )提出。 Wilson 提出了 Newton-SQP 方法。60 年代末和 70 年代初,随着解无约束优化问题的拟 Newton 法 的 发 展 , 拟 Newton-SQP 算 法 的 研 究 引 起 了 学 者 们 的 高 度 重 视 。 Polomares-Mangasarian (1976) 提出了一类拟 Newton-SQP 方法。 在该类方法中, 他采用对 Lagrange 函数的整体 Hesse 矩阵 (即既对 x 又对 Lagrange 乘子的 Hesse 矩阵)的近似进行修正的方法来修正。Han(1976,1977)证明了 PSB-SQP 和 BFGS-SQP 方法的局部收敛性。而且,若采用精确罚函数进行搜索,则算法具有 全局收敛性。自此,SQP 算法的研究受到了广泛的重视。迄今为止,SQP 算法 的研究工作已取得了丰硕的成果。 SQP 算法的主要优点之一是它的全局收敛性和局部超线性收敛性。 为使算法 具有全局收敛性,通常要求子问题(QP)中的矩阵 H 对称正定。使得(QP)产 生的方向 S 是某个效益函数的下降方向。另一方面,若矩阵 H 对称正定,则子 问题(QP)是一个严格凸二次规划。此时,该问题有唯一解。而且,其求解也 相对容易。因此,研究矩阵 H 的对称正定性是一项非常重要的工作。并己引起 了学者们的重视。Powell(1976)提出了一个修正的 BFGS 公式。该公式可保证 产生的矩阵是对称正定的。数值计算的结果表明利用该修正公式的 SQP 算法的 数值效果较好。然而该算法的局部收敛性质尚不清楚。 Coleman 和 Conn(1984)提出了一种既约 Hessian-SQP 方法。即用一系列
相关文档
最新文档