用数学归纳法证明不等式
数学归纳法证明不等式
例4、已知x> 1,且x0,nN,n2. 求证:(1+x)n>1+nx.
证明: (1)当n=2时,左=(1+x)2=1+2x+x2
∵ x0,∴ 1+2x+x2>1+2x=右
∴n=1时不等式成立 (2)假设n=k时,不等式成立,即 (1+x)k>1+kx 当n=k+1时,因为x> 1 ,所以1+x>0,于是 左边=(1+x)k+1=(1+x)k(1+x)>(1+x)(1+kx)=1+(k+1)x+kx2; 右边=1+(k+1)x. 因为kx2>0,所以左边>右边,即(1+x)k+1>1+(k+1)x. 这就是说,原不等式当n=k+1时也成立. 根据(1)和(2),原不等式对任何不小于2的自然数n都成立.
1 1 1 1 2° 假设 n=k 时命题成立,即 1+ 2+ 2+„+ 2<2- 2 3 k k 1 1 1 1 当 n=k+1 时,1+22+32+„+k2+ 2< (k+1) 1 1 1 1 1 1 1 2- + <2- + =2- + - k (k+1)2 k k(k+1) k k k+1 1 =2- 命题成立. k+1 由 1° 、2° 知原不等式在 n≥2 时均成立.
2.数学归纳法适用范围,主要用于研究与正整数有关 的数学问题。 3. 数学归纳法的关键与难点: 在 “归纳递推 ” 中 , “证明当 n =k+1 时 命题也成立 ”, 必须利用归纳假设 :“当 n= k (k ≥n 0, k ∈ N *时命题成立 ” 否则便不是 , 数学归纳法。
如何通过数学归纳法证明不等式
如何通过数学归纳法证明不等式数学归纳法是一种证明数学命题的常用方法,其基本思想是利用已知的某些命题推出新的命题。
在数学证明中,常常使用归纳法来证明一些不等式,这种方法既简单又直观,下面我们来探讨如何通过数学归纳法证明不等式。
一、归纳法的基本思想首先,我们来了解一下归纳法的基本思想。
设P(n)是一个依赖于自然数n的命题,则通过归纳法证明P(n)对于所有自然数n成立的一般方法为:1.证明当n=1时P(1)成立;2.假设当n=k时P(k)成立,即前提条件为P(k)成立;3.证明当n=k+1时P(k+1)成立,即由前提条件P(k)可以导出P(k+1)。
这就是数学归纳法的基本思想。
二、通过数学归纳法证明不等式接下来我们探讨如何通过数学归纳法证明不等式。
对于一些不等式,我们可以通过归纳法来证明它们的成立性。
1. 首先,我们需要确定适用于归纳法的不等式类型。
一般来说,递推式、等差数列、等比数列等都是适用于归纳法的不等式类型。
2. 其次,我们需要证明当n=1时不等式成立。
通常情况下,我们可以通过代数化简或数值计算的方法证明不等式在n=1时成立。
3. 第三步是归纳假设。
假设当n=k时不等式成立,即前提条件为不等式在n=k时成立。
4. 第四步是证明当n=k+1时不等式成立。
通过推导得出不等式在n=k+1时成立。
5. 最后需要证明这个不等式在所有自然数下成立。
通常情况下,我们可以通过归纳证明法的反证法来证明,如果该不等式在某个自然数下不成立,那么其前面的所有自然数也不成立,即矛盾。
因此,该不等式在所有自然数下成立。
比如,对于一个递推式an=a(n-1)+n,我们可以通过数学归纳法证明其大于等于n(n+1)/2。
具体证明如下:当n=1时,an=1,n(n+1)/2=1,因此不等式在n=1时成立。
假设当n=k时,an大于等于k(k+1)/2成立。
当n=k+1时,an=a(k+1-1)+(k+1)=ak+k+1。
根据归纳假设,ak 大于等于k(k+1)/2,于是k+ak大于等于k(k+1)/2+k+1=(k+1)(k+2)/2,因此,an大于等于(k+1)(k+2)/2。
用数学归纳法证明不等式举例
用数学归纳法证明不等式举例使用数学归纳法证明不等式是一种常用的方法,它可以帮助我们证明一类问题的正确性。
在这篇文章中,我们将使用数学归纳法证明一个特定的不等式,并且详细解释这个过程。
这个不等式是一个经典的例子,在不等式理论中非常有用,它的证明将展示使用数学归纳法的步骤和思路。
要证明的不等式为:对于任意正整数n,有1+2+3+...+n≤n²/2我们将使用数学归纳法证明这个不等式。
数学归纳法分为两个步骤:基础步骤和归纳步骤。
一、基础步骤:首先,我们需要验证对于n=1时,不等式是否成立。
即:1≤1²/2通过计算可知,1≤1/2,显然成立。
因此,基础步骤得证。
二、归纳步骤:我们假设对于任意的k(k≥1)都有:1+2+3+...+k≤k²/2我们需要证明当n=k+1时,也就是将k+1代入不等式中,不等式仍然成立。
即:1+2+3+...+k+(k+1)≤(k+1)²/2接下来,我们将左右两边进行推导。
我们已经假设对于任意k都有不等式成立,所以可以得到:1+2+3+...+k≤k²/2我们可以将左右两边分别加上(k+1),得到:1+2+3+...+k+(k+1)≤k²/2+(k+1)接下来,我们需要对右侧进行变换,目的是能够使用归纳假设。
我们注意到,k²/2+(k+1)=(k²+2(k+1))/2=(k²+2k+2)/2我们知道(k+1)²=k²+2k+1,所以(k+1)²/2=(k²+2k+1)/2我们可以将这个等式代入之前的不等式:1+2+3+...+k+(k+1)≤(k²+2k+1)/2对于右边的分数1+2+3+...+k+(k+1)≤(k²+2k+1)/2=(k²+2k)/2+1/2由于我们已经假设1+2+3+...+k≤k²/2,所以可以用k²/2替换分子中的1+2+3+...+k:1+2+3+...+k+(k+1)≤(k²+2k)/2+1/2≤k²/2+1/2+1/2我们可以对右边的不等式相加得到:1+2+3+...+k+(k+1)≤(k²+2k)/2+1/2≤k²/2+1我们将右侧简化得到(k²+2k)/2+1/2=(k²+2k+1)/2,因为1/2可以写成1/2的分数。
数学归纳法证明不等式
数学归纳法证明不等式数学归纳法是一种证明数学命题的重要方法,它基于数学归纳的思想,通过证明一个命题在一些特定条件下成立,并且在此条件下该命题的下一步也具有同样的性质,从而证明该命题对于一切满足该条件的情况都成立。
在这里,我们将使用数学归纳法来证明一个不等式。
不等式是数学中常见的一种关系式,它描述了两个数或者更多数之间大小关系的性质。
在这里,我们将使用数学归纳法来证明一个形如:$2^n>n^2$的不等式,其中$n$是一个正整数。
首先,我们需要证明当$n=1$时,不等式$2^n>n^2$成立。
当$n=1$时,不等式变为$2^1>1^2$,显然成立。
其次,我们需要证明对于任意一个正整数$k$,如果当$n=k$时不等式$2^k>k^2$成立,那么当$n=k+1$时,不等式$2^{k+1}>(k+1)^2$也成立。
也就是说,我们需要证明如果$2^k>k^2$,那么$2^{k+1}>(k+1)^2$。
根据我们的假设,我们知道$2^k>k^2$。
将不等式两边都乘以2,我们得到$2^{k+1}>2k^2$。
由于$k$是一个正整数,所以$k^2>k$。
将这个不等式代入前面的结果中,我们得到$2^{k+1}>2k^2>k^2+k^2>k^2+k>(k+1)^2$。
也就是说,如果$2^k>k^2$,那么$2^{k+1}>(k+1)^2$。
通过对$n=1$和$n=k+1$的情况都进行证明,我们完成了对于任意正整数$n$的证明。
根据数学归纳法的原理,这意味着不等式$2^n>n^2$对于一切$n$都成立。
综上所述,我们使用数学归纳法成功地证明了不等式$2^n>n^2$,其中$n$是一个正整数。
4.2 用数学归纳法证明不等式 课件(人教A选修4-5)
考查学生推理论证的能力.
[解]
(1)用数学归纳法证明:2≤xn<xn+1<3.
①当 n=1 时,x1=2,直线 PQ1 的方程为 f2-5 y-5= (x-4), 2-4 11 令 y=0,解得 x2= ,所以 2≤x1<x2<3. 4 ②假设当 n=k 时,结论成立,即 2≤xk<xk+1<3. 直线 PQk+1 的方程为 fxk+1-5 y-5= (x-4), xk+1-4 3+4xk+1 令 y=0,解得 xk+2= . 2+xk+1
则当 n=k+1 时,有 1 1 1 1 1 + +„+ + + + k+1+1 k+1+2 3k+1 3k+2 3k+3 1 3k+1+1 1 1 1 1 1 1 =( + +„+ )+( + + - k+1 k+2 3k+1 3k+2 3k+3 3k+4 1 25 1 1 2 )> +[ + - ]. k+1 24 3k+2 3k+4 3k+1 6k+1 1 1 2 ∵ + = 2 > , 3k+2 3k+4 9k +18k+8 3k+1
lg3 lg3 =k(k+1)· +2(k+1)· 4 4 1 k+1 >lg(1· 3· k)+ lg3 2· „· 2 1 >lg(1· 3· k)+ lg(k+1)2 2· „· 2 =lg[1· 3· k· 2· …· (k+1)].命题成立. 由上可知,对一切正整数 n,命题成立.
本课时考点常与数列问题相结合以解答题的形式考 查数学归纳法的应用.2012年全国卷将数列、数学归纳法 与直线方程相结合考查,是高考模拟命题的一个新亮点.
(1)当n=1时,由f(x)为增函数,且f(1)<1,得
a1=f(b1)=f(1)<1, b2=f(a1)<f(1)<1, a2=f(b2)<f(1)=a1, 即a2<a1,结论成立. (2)假设n=k时结论成立,即ak+1<ak. 由f(x)为增函数,得f(ak+1)<f(ak)即bk+2<bk+1,
数学归纳法证明不等式
数学归纳法证明不等式归纳法由有限多个个别的特殊事例得出一般结论的推理方法。
那怎么用归纳法来证明不等式呢? 接下来店铺为你整理了数学归纳法证明不等式,一起来看看吧。
数学归纳法证明不等式的基本知识数学归纳法的基本原理、步骤和使用范围(1)在数学里,常用的推理方法可分为演绎法和归纳法,演绎法一般到特殊,归纳法是由特殊到一般.由一系列有限的特殊事例得出一般结论的推理方法,通常叫归纳法。
在归纳时,如果逐个考察了某类事件的所有可能情况,因而得出一般结论,那么结论是可靠的.这种归纳法叫完全归纳法(通常也叫枚举法)如果考察的只是某件事的部分情况,就得出一般结论,这种归纳法叫完全归纳法.这时得出的结论不一定可靠。
数学问题中,有一类问题是与自然数有关的命题,因为自然数有无限多个,我们不可能就所有的自然数一一加以验证,所以用完全归纳法是不可能的.然而只就部分自然数进行验证所得到的结论,是不一定可靠的例如一个数列的通项公式是an=(n2-5n+5)2容易验证a1=1,a2=1,a3=1,a4=1,如果由此作出结论——对于任何n∈N+, an=(n2-5n+5)2=1都成立,那是错误的.事实上,a5=25≠1.因此,就需要寻求证明这一类命题的一种切实可行、比较简便而又满足逻辑严谨性要求的新的方法——数学归纳法.(2)数学归纳法是一种重要的数学证明方法,其中递推思想起主要作用。
形象地说,多米诺骨牌游戏是递推思想的一个模型,数学归纳法的基本原理相当于有无限多张牌的多米诺骨牌游戏,其核心是归纳递推.一般地,当要证明一个命题对于不小于某正整数n0的所有正整数n都成立时,可以用一下两个步骤:(1)证明当n=n0(例如n0=1或2等)时命题成立;(2)假设当n=k(k∈N+,且k≥n0)时命题成立,证明当n=k+1时命题也成立.在完成了这两个步骤以后,就可以断定命题对于不小于n0所有自然数都成立.这种证明方法称为数学归纳法.自然数公理(皮亚诺公理)中的“归纳公理”是数学归纳法的理论根据,数学归纳法的两步证明恰是验证这条公理所说的两个性质.数学归纳法的适用范围仅限于与自然数n有关的命题.这里的n是任意的正整数,它可取无限多个值.附录:下面是自然数的皮亚诺公理,供有兴趣的同学阅读.任何一个象下面所说的非空集合N的元素叫做自然数,在这个集合中的某些元素a与b之间存在着一种基本关系:数b是数a后面的一个“直接后续”数,并且满足下列公理:①1是一个自然数;②在自然数集合中,每个自然数a有一个确定“直接后续”数a’;③a’≠1,即1不是任何自然数的“直接后续”数;④由a’ =b’推出a=b,这就是说,每个自然数只能是另一个自然数的“直接后续”数;⑤设M是自然数的一个集合,如果它具有下列性质:(Ⅰ)自然数1属于M,(Ⅱ)如果自然数a属于M,那么它的一个“直接后续”数a’也属于M,则集合M包含一切自然数.其中第5条公理又叫做归纳公理,它是数学归纳法的依据.(3)数学归纳法可以证明与自然数有关的命题,但是,并不能简单地说所有涉及正整数n的命题都可以用数学归纳法证明.例如用数学归纳法证明(1+1)n(n∈N+)的单调性就难以实现.一般来说,n从k=n到k=n+1时,如果问题中存在可利用的递推关系,则数学归纳法有用武之地,否则使用数学归纳法就有困难.数学归纳法证明不等式例题。
数学归纳法证明不等式的两个技巧
数学归纳法证明不等式的两个技巧数学归纳法是一种数学证明方法,常用于证明自然数的性质。
它的基本思想是:首先证明当n为一些特定的自然数时,不等式成立;然后假设当n为一些自然数时,不等式也成立;最后利用这个假设证明当n为n+1时,不等式仍然成立。
下面将介绍两种常用的数学归纳法证明不等式的技巧。
技巧一:基础情况的证明在使用数学归纳法证明不等式时,首先需要证明基础情况,即当n为一些特定的自然数时,不等式是否成立。
例如,我们想要证明对于任意的正整数n,都有1+2+3+...+n≤n²。
基础情况是n=1时,不等式左边为1,右边为1²=1,不等式成立。
技巧二:归纳假设的运用假设当n为一些自然数时,不等式也成立,即假设1+2+3+...+n≤n²成立。
然后我们要利用这个假设来证明当n为n+1时,不等式仍然成立。
例如,我们要证明对于任意的正整数n,都有1+2+3+...+n+(n+1)≤(n+1)²。
根据归纳假设,我们可以得到1+2+3+...+n≤n²,所以我们可以将不等式右边的(n+1)²展开为n²+2n+1现在,我们需要证明1+2+3+...+n+(n+1)≤n²+2n+1、我们可以逐步将左边拆分成两部分,即(1+2+3+...+n)+(n+1)。
根据归纳假设,我们知道前一部分不大于n²,所以该不等式可以进一步简化为n²+(n+1)≤n²+2n+1最后,可以发现左边的n²+(n+1)小于等于右边的n²+2n+1,因为(n+1)小于等于2n+1、所以,我们得到了当n为n+1时,不等式仍然成立。
综上所述,通过基础情况的证明和归纳假设的运用,可以使用数学归纳法证明不等式。
这两个技巧可以帮助我们在证明过程中合理利用已有的条件和假设,从而简化证明的过程。
用数学归纳法证明不等式举例
第17页/共39页
【自主解答】 当n=1时,1+1 1+1+1 2+3×11+1>2a4, 则2264>2a4, ∴a<26. 又a∈N*, ∴取a=25.
第18页/共39页
下面用数学归纳法证明n+1 1+n+1 2+…+3n1+1>2254.
(1)n=1时,已证.
(2)假设当n=k时(k≥1,k∈N*),
(1)当n=2时,S22=1+
1 2
+
1 3
+
1 4
=
25 12
>1+
22,
即n=2时命题成立.
(2)假设n=k(k≥2,k∈N*)时命题成立,即S2k=1+
1 2
+
1 3
+…+21k>1+2k.
第5页/共39页
当n=k+1时, S2k+1=1+12+13+…+21k+2k+1 1+…+2k1+1 >1+2k+2k+1 1+2k+1 2+…+2k1+1 >1+2k+2k+2k 2k=1+2k+12=1+k+2 1. 故当n=k+1时,命题也成立. 由(1)、(2)知,对n∈N*,n≥2,S2n>1+n2都成立.
不等式1<an<1-1 a成立.
第15页/共39页
(2)假设n=k(k≥1 ,k∈N*)时,命题成立,即1<ak<1-1 a. 当n=k+1时,由递推公知,知 ak+1=a1k+a>(1-a)+a=1, 同时,ak+1=a1k+a<1+a=11--aa2<1-1 a, 因此当n=k+1时,1<ak+1<1-1 a,命题也成立. 综合(1)、(2)可知,对一切正整数n,有1<an<1-1 a.
1.贝努利(Bernoulli)不等式
:数学归纳法证明不等式
第四讲:数学归纳法证明不等式数学归纳法证明不等式是高中选修的重点内容之一,包含数学归纳法的定义和数学归纳法证明基本步骤,用数学归纳法证明不等式。
数学归纳法是高考考查的重点内容之一,在数列推理能力的考查中占有重要的地位。
本讲主要复习数学归纳法的定义、数学归纳法证明基本步骤、用数学归纳法证明不等式的方法:作差比较法、作商比较法、综合法、分析法和放缩法,以及类比与猜想、抽象与概括、从特殊到一般等数学思想方法。
在用数学归纳法证明不等式的具体过程中,要注意以下几点:(1)在从n=k 到n=k+1的过程中,应分析清楚不等式两端(一般是左端)项数的变化,也就是要认清不等式的结构特征;(2)瞄准当n=k+1时的递推目标,有目的地进行放缩、分析; (3)活用起点的位置;(4)有的试题需要先作等价变换。
例题精讲例1、用数学归纳法证明n n n n n 212111211214131211+++++=--++-+-分析:该命题意图:本题主要考查数学归纳法定义,证明基本步骤 证明:1︒当n=1时,左边=1-21=21,右边=111+=21,所以等式成立。
2︒假设当n=k 时,等式成立,即k k k k k 212111211214131211+++++=--++-+-。
那么,当n=k+1时,221121211214131211+-++--++-+-k k k k 221121212111+-+++++++=k k k k k )22111(1212131214131211+-+++++++++=++-+-k k k k k k )1(21121213121+++++++++=k k k k k这就是说,当n=k+1时等式也成立。
综上所述,等式对任何自然数n 都成立。
点评:数学归纳法是用于证明某些与自然数有关的命题的一种方法.设要证命题为P (n ).(1)证明当n 取第一个值n 0时,结论正确,即验证P (n 0)正确;(2)假设n=k (k ∈N 且k≥n 0)时结论正确,证明当n=k+1时,结论也正确,即由P (k )正确推出P (k+1)正确,根据(1),(2),就可以判定命题P (n )对于从n 0开始的所有自然数n 都正确.要证明的等式左边共2n 项,而右边共n 项。
数学归纳法证明不等式
二.用数学归纳法证明几何问题
例2.平面上有n( n N , n 3)个点, 其中任何三点都不在 同一条直线上, 过这些点中任意两点作 直线, 这样的直线 共有多少条? 证明你的结论.
特别提示:
用数学归纳法证几何问题,应特别注意语言叙述正确,清 楚,一定要讲清从n=k到n=k+1时,新增加量是多少.一般 地,证明第二步常用的方法是加一法,即在原来的基础上, 再增加一个,也可以从k+1个中分出一个来,剩下的k个利 用假设.
例2.证明不等式sin n n sin ( n N )
例3.证明贝努利不等式: 如果x是实数, 且x 1, x 0, n为大于1的自然数, 那么有 (1 x ) 1 nx
n
注: 事实上, 把贝努利不等式中的正整数 n 改为实数 仍有 类似不等式成立 . 当 是实数,且 或 0 时 ,有 (1 x ) ≥ 1 x ( x 1) 当 是实数,且 0 1 时 ,有 (1 x ) ≤ 1 x ( x 1)
若 k 1 个正数 a1 , a2 , , ak , ak 1 都相等 ,则它们都是 1. 其和为 k 1 ,命题成立.
若这 k 1 个正数 a1 , a2 , , ak , ak 1 不全相等 , 则其中 必有大于 1 的数,也有小于 1 的数(否则与 a1a2 ak ak 1 1 矛盾).不妨设 a1 1, a2 1 „„
一.用数学归纳法证明等式问题
通过计算下面的式子, 猜想出 1 3 5 ( 1)n ( 2n 1) 的结果, 并加以证明. 1 3 _____;1 3 5 ______ 1 3 5 7 ______;1 3 5 7 9 _______
如何应用数学归纳法证明不等式
如何应用数学归纳法证明不等式数学归纳法是一种常见的数学证明方法,通过证明初始情况成立和任意情况都成立,来证明一般情况成立。
在不等式证明中,也可以应用数学归纳法。
本文将介绍如何应用数学归纳法证明不等式。
第一步,证明初始情况成立。
通常,需要选取一个最小的自然数来作为初始情况,然后证明不等式在该自然数下成立。
以证明$a^n-1$能够被$(a-1)$整除为例。
当$n=1$时,$a^1-1=a-1$,由于$a-1$显然能够整除$a-1$,因此初始情况成立。
第二步,假设任意情况成立。
即假设当$n=k(k \in N^*)$时,$a^k-1$能够被$(a-1)$整除。
第三步,证明一般情况也成立。
即证明当$n=k+1$时,$a^{k+1}-1$也能够被$(a-1)$整除。
由于$a^{k+1}-1 = a^k \cdot a - 1 = (a^k-1) \cdot a + (a-1)$,而根据假设,$a^k-1$能够被$(a-1)$整除,因此$a^{k+1}-1$也能够被$(a-1)$整除。
通过上述三步,我们得到了$a^n-1$能够被$(a-1)$整除。
类似的,可以应用数学归纳法证明其他的不等式。
例如证明$1+2+...+n=\frac{n(n+1)}{2}$,我们可以选取$1$作为初始情况;假设当$n=k(k \in N^*)$时,$1+2+...+k=\frac{k(k+1)}{2}$;然后证明当$n=k+1$时,$1+2+...+k+(k+1)=\frac{(k+1)(k+2)}{2}$。
当然,在进行数学归纳法证明时,选择初始情况和需要证明的语句都需要谨慎选择。
总结一下,数学归纳法是一种常见的数学证明方法,可以应用在不等式证明当中。
通过证明初始情况成立、假设任意情况成立、证明一般情况也成立这三步,可以有效地证明不等式。
5.3数学归纳法证明不等式 课件(人教A版选修4-5)
因为kx2>0,所以左边>右边,即(1+x)k+1>1+(k+1)x.
这就是说,原不等式当n=k+1时也成立. 根据(1)和(2),原不等式对任何不小于2的自然数n都成立.
1 1 1 1 1 1 1 2 2 2 2 2 2 3 k ( k 1) k ( k 1)2
2.当 n≥ 2 时,求证: 1
1 2
1
1 3
1 n
n
2 . 证明: (1) 当n 2 时,左式 1 1 17 2 右式 2 2
若 k 1 个正数 a1 , a2 ,, ak , ak 1 都相等,则它们都是 1. 其和为 k 1 ,命题成立.
若这 k 1 个 正数 a1 , a2 ,, ak , ak 1 不全 相等,则 其中 必有大于 1 的数,也有小于 1 的数(否则与 a1a2 ak ak 1 1 矛盾).不妨设 a1 1, a2 1 .
证明:⑴当 n 1 时,有 a1 1 ,命题成立. ⑵ 设 当 n k (k≥1) 时 , 命 题 成 立 , 即 若 k 个 正数 a1 , a2 ,, ak 的乘积 a1a2 ak 1,那么它们的和 a1 a2 ak ≥ k . 那么当 n k 1 时 ,已知 k 1 个正 数 a1 , a2 ,, ak , ak 1 满 足 a1a2 ak ak 1 1 .
数学归纳法证明不等式
01
02
03
例子一:n=5时的情况
假设n=10时,不等式成立,即$a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 + a_8 + a_9 + a_{10} geq b_1 + b_2 + b_3 + b_4 + b_5 + b_6 + b_7 + b_8 + b_9 + b_{10}$。
02
CHAPTER
数学归纳法证明不等式的步骤
验证基础情况
首先验证n=1时,不等式是否成立。
基础情况成立
如果基础情况成立,则可以继续进行归纳步骤。
初始步骤
归纳步骤
归纳假设
假设当n=k时,不等式成立,即$P(k)$成立。
归纳推理
基于归纳假设,推导当n=k+1时,不等式也成立,即$P(k+1)$成立。
应用归纳假设
在归纳推理过程中,需要利用归纳假设$P(k)$来推导$P(k+1)$。
要点一
要点二
完成归纳
当归纳步骤完成后,可以得出结论,对于任意正整数n,不等式都成立。
归纳假设的应用
03
CHAPTER
应用数学归纳法证明不等式的例子
假设n=5时,不等式成立,即$a_1 + a_2 + a_3 + a_4 + a_5 geq b_1 + b_2 + b_3 + b_4 + b_5$。
确定数列的通项公式
通过数学归纳法,可以证明数列的通项公式,进而研究数列的性质和规律。
用数学归纳法证明不等式课件 选修4-5
2k+1 2k+3 357 ··· „· · 246 2k 2k+1 2k+3 > k+1· = 2k+1 = k+2 2k+32 4k+1
4k2+12k+9 > k+2. 4k2+12k+8
2n+1 357 因此不等式2··· 2n > n+1 4 6 „· 对于一切 n∈N*都成立.
n+1(n∈N*).
[思维启迪] 由条件第一问可通过数列的有关知识来证明进而 求出an通项公式,然后求bn的通项公式,最后用数学归纳法 证明要证的结论即可.
解 (1)由an+1=an+2n+1得 (an+1-2n+1)-(an-2n)=1, 因此{an-2n}成等差数列.
(2)an-2n=(a1-2)+(n-1)=n-1,即an=2n+n-1,
任意n都成立.n=1、2时也成立即可解得第一问,并归纳出
通项公式,然后用数学归纳法证明之.第二问列出式子发现 用裂相法与放缩法即可证明.比用数字归纳法简便.
(1)解 由条件得 2bn=an+an+1,a2+1=bnbn+1. n 由此可得 a2=6,b2=9,a3=12,b3=16,a4=20,b4=25. 猜测 an=n(n+1),bn=(n+1)2. 用数学归纳法证明: ①当 n=1 时,由上可得结论成立. ②假设当 n=k 时,结论成立, 即 ak=k(k+1),bk=(k+1)2,那么当 n=k+1 时,
自学导引 1.贝努利不等式:设x>-1,且x≠0,n为大于1的自然数, 则 (1+x)n>1+nx . 2.贝努利不等式的更一般形式: 当α为实数,并且满足α>1或者α<0时,有(1+x)α≥1+ αx(x>-1);
当α为实数,并且满足0<α<1时,有(1+x)α≤1+αx(x>
-1).
基础自测 1.用数学归纳法证明3n≥n3(n≥3,n∈N)第一步应验证 ( ).
3.2用数学归纳法证明不等式贝努利不等式课件人教新课标B版
1
3
1
+…+
+…+
1
3
+
1−
3
1
1
利用 ③,得 11
1
3 1- 3
1
1-3
1
3
D典例透析 S随堂演练
IANLITOUXI
UITANGLIANXI
+1 +
3
= 1−
1
32
1
2
1
+1
3
1
1
1
+ 2+…+
3 3
3
1
1
1
· + 2+…+
3 3
3
1-
1
3+1
≥1−
.
3+1
1-
≥ 1-
3+1
1
即当 n=k+1 时,③式也成立.
故对一切 n∈N*,③式都成立.
=1 −
HONGNANJUJIAO
题型三
则当 n=k+1 时,
1-
Z 知识梳理 Z 重难聚焦
目标导航
… 11-
1
3
1
3
≥1 −
=
1
1
+ 2
3 3
1 1 1
+
2 2 3
>
+…+
1
3
1
, 即②式成立.
2
故原不等式成立.
3.了解贝努利不等式的应用条件.
-2-
3.2
用数学归纳法证明不等式,
贝努利不等式
用数学归纳法证明不等式-高中数学知识点讲解
用数学归纳法证明不等式1.用数学归纳法证明不等式【知识点的认识】1.数学归纳法一般地,当要证明一个命题对于不小于某正整数n0 的所有正整数n 都成立时,可以用以下两个步骤:(1)证明当n=n0 时命题成立;(2)假设当n=k(k∈N+,且k≥n0)时命题成立,证明n=k+1 时命题也成立.在完成了这两个步骤后,就可以断定命题对于不小于n0 的所有正整数都成立.这种证明方法称为数学归纳法.2.用数学归纳法证明时,要分两个步骤,两者缺一不可.(1)证明了第一步,就获得了递推的基础,但仅靠这一步还不能说明结论的正确性.在这一步中,只需验证命题结论成立的最小的正整数就可以了,没有必要验证命题对几个正整数成立.(2)证明了第二步,就获得了推理的依据.仅有第二步而没有第一步,则失去了递推的基础;而只有第一步而没有第二步,就可能得出不正确的结论,因为单靠第一步,我们无法递推下去,所以我们无法判断命题对n0+1,n0+2,…,是否正确.在第二步中,n=k 命题成立,可以作为条件加以运用,而n=k+1 时的情况则有待利用命题的已知条件,公理,定理,定义加以证明.完成一,二步后,最后对命题做一个总的结论.3.用数学归纳法证明恒等式的步骤及注意事项:①明确初始值n0 并验证真假.(必不可少)②“假设n=k 时命题正确”并写出命题形式.③分析“n=k+1 时”命题是什么,并找出与“n=k”时命题形式的差别.弄清左端应增加的项.④明确等式左端变形目标,掌握恒等式变形常用的方法:乘法公式、因式分解、添拆项、配方等,并用上假设.1/ 2【解题方法点拨】1、观察、归纳、猜想、证明的方法:这种方法解决的问题主要是归纳型问题或探索性问题,结论如何?命题的成立不成立都预先需要归纳与探索,而归纳与探索多数情况下是从特例、特殊情况下入手,得到一个结论,但这个结论不一定正确,因为这是靠不完全归纳法得出的,因此,需要给出一定的逻辑证明,所以,通过观察、分析、归纳、猜想,探索一般规律,其关键在于正确的归纳猜想,如果归纳不出正确的结论,那么数学归纳法的证明也就无法进行了.在观察与归纳时,n 的取值不能太少,否则将得出错误的结论.例如证明n2>2n 只观察前 3 项:a1=1,b1=2⇒a1<b1;a2=4,b2=4⇒a2=b2,a3=9,b3=8⇒a3>b3,就此归纳出n2>2n(n∈N+,n≥3)就是错误的,前n 项的关系可能只是特殊情况,不具有一般性,因而,要从多个特殊事例上探索一般结论.2.从“n=k”到“n=k+1”的方法与技巧:在用数学归纳法证明不等式问题中,从“n=k”到“n=k+1”的过渡中,利用归纳假设是比较困难的一步,它不像用数学归纳法证明恒等式问题一样,只需拼凑出所需要的结构来,而证明不等式的第二步中,从“n=k”到“n=k+1”,只用拼凑的方法,有时也行不通,因为对不等式来说,它还涉及“放缩”的问题,它可能需通过“放大”或“缩小”的过程,才能利用上归纳假设,因此,我们可以利用“比较法”“综合法”“分析法”等来分析从“n=k”到“n=k+1”的变化,从中找到“放缩尺度”,准确地拼凑出所需要的结构.2/ 2。
2014年人教A版选修4-5课件 2.用数学归纳法证明不等式
1 (2) 求满足不等式 (1 + )n n 的正整数 n 的范围. 2. n 解: (2) 经计算, (1 + 1 )3 = 64 3, 3 27 1 猜想: 当 n≥3 时, (1 + )n n. n 证明: ① 当 n=3 时, 已验证不等式成立. ② 假设 n=k (k≥3) 时, 不等式成立, 那么当 n=k+1 时, (1 + 1 )k +1 = (1 + 1 )k (1 + 1 ) k +1 k +1 k +1 (1 + 1 )k (1 + 1 ) (放缩) k k +1 k(1 + 1 ) (假设) k +1 =k+ k k +1
(2) 假设 n=k 时, 2k≥2k 成立,
(下面是要用这个假设推出 2k+1≥2(k+1). )
那么当 n=k+1 时, 2k+1=22k ≥2(2k) =2(k+k)≥2(k+1). (这里用了放缩: k≥1) 注意适当放缩. 即 n=k+1 时, 不等式也成立. 由(1)(2)知, 对一切正整数 n, 2n≥2n 都成立. (与等式证明相比较, 你认为证明不等式应注意什么?)
一 数学归纳法 二 用数学归纳法证明不等式
(第一课时)
第一课时 第二课时
1. 数学归纳法证明不等式与证明等式有 什么不同? 2. 与等式证明相比, 数学归纳法证明不 等式的+) 成立与否? 能对你的判断 进行证明吗? n=1 时, 左边=2, 右边=2, 不等式成立. n=2 时, 左边=4, 右边=4, 不等式成立.
第 2 题.
第四讲 数学归纳法证明不等式 知识归纳 课件(人教A选修4-5)
bk 1
a
… a k a k 1 ≤a1b1+a2b2+…+akbk+ak+1bk+1,
故当 n=k+1 时,③成立. 由(1)(2)可知,对一切正整数 n,所推广的命题成立. 说明:(3)中如果推广形式中指出③式对 n≥2 成立,则后续证明 中不需讨论 n=1 的情况.
不完全归纳的作用在于发现规律,探求结论,但结论
a4=S3=a1+a2+a3=5+5+10=20,
猜想an=5×2n-2(n≥2,n∈N+). (2)①当n=2时,a2=5×22-2=5,公式成立. ②假设n=k时成立,即ak=5×2k-2(k≥2.k∈N+), 当n=k+1时,由已知条件和假设有
ak+1=Sk=a1+a2+…+ak =5+5+10+…+5×2k
反复运用③式,得 c-xn≤(1- c)n-1( c-x1)<(1- c)n-1. xn<1- c和 c-xn<(1- c)n-1 两式相加, 知 2 c-1<(1- c)n-1 对任意 n≥1 成立. 根据指数函数 y=(1- c)n 的性质,得 2 c-1≤0, 1 1 c≤ ,故 0<c≤ . 4 4 1 (ii)若 0<c≤ ,要证数列{xn}为递增数列, 4 即 xn+1-xn=-x2 +c>0. n 即证 xn< c对任意 n≥1 成立.
考情分析
通过分析近三年的高考试题可以看出,不但考查用数
学归纳法去证明现成的结论,还考查用数学归纳法证明新 发现的结论的正确性.数学归纳法的应用主要出现在数列
解答题中,一般是先根据递推公式写出数列的前几项,通
过观察项与项数的关系,猜想出数列的通项公式,再用数 学归纳法进行证明,初步形成“观察—归纳—猜想—证明”
b1
b2
-
数列不等式的证明方法
数列不等式的证明方法一、数学归纳法:数学归纳法是一种证明数学命题的方法,常用于证明数列不等式的成立。
1.基本思路:数学归纳法证明数列不等式的基本思路如下:(1)首先,证明当n=1时命题成立;(2)然后,假设当n=k时命题成立,即假设P(k)成立;(3)最后,证明当n=k+1时命题也成立,即证明P(k+1)成立。
2.具体操作步骤:(1)证明当n=1时命题成立;(2)假设当n=k时命题成立,即假设P(k)成立;(3)证明当n=k+1时命题也成立,即证明P(k+1)成立。
3.举例说明:以证明斐波那契数列F(n)的递推形式F(n)=F(n-1)+F(n-2)为例。
(1)首先,证明当n=1时命题成立。
易知F(1)=1,F(0)=0,F(1)=F(0)+F(-1)成立。
(2)假设当n=k时命题成立,即假设F(k)=F(k-1)+F(k-2)成立。
(3)证明当n=k+1时命题也成立,即证明F(k+1)=F(k)+F(k-1)成立。
根据假设,F(k+1)=F(k)+F(k-1)成立,所以命题成立。
二、递推法:递推法的证明思路是通过已知条件和递推关系来逐步推导出结论。
1.基本思路:递推法证明数列不等式的基本思路如下:(1)首先,根据数列的递推关系列出递推式;(2)然后,推导出递推式的通项公式;(3)最后,利用递推式的通项公式证明数列不等式的成立。
2.具体操作步骤:(1)根据数列的递推关系列出递推式;(2)推导出递推式的通项公式;(3)利用递推式的通项公式证明数列不等式的成立。
3.举例说明:以证明斐波那契数列F(n)的递推式F(n)=F(n-1)+F(n-2)为例。
(1)根据递推关系列出递推式:F(n)=F(n-1)+F(n-2);(2)推导出递推式的通项公式:解这个递推方程得到F(n)=A*φ^n+B*λ^n,其中A、B为常数,φ和λ为一元二次方程x^2-x-1=0的两个根,φ≈1.618,λ≈-0.618;(3)利用递推式的通项公式证明数列不等式的成立:证明F(n)>n,通过证明A*φ^n+B*λ^n>n,根据递推式的通项公式可得证。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版选修4—5不等式选讲
课题:用数学归纳法证明不等式
教学目标:
1、牢固掌握数学归纳法的证明步骤,熟练表达数学归纳法证明的过程。
2、通过事例,学生掌握运用数学归纳法,证明不等式的思想方法。
3、培养学生的逻辑思维能力,运算能力和分析问题,解决问题的能力。
重点、难点:
1、巩固对数学归纳法意义和有效性的理解,并能正确表达解题过程,以及掌握用数学归纳法证明不等式的基本思路。
2、应用数学归纳法证明的不同方法的选择和解题技巧。
教学过程:
一、复习导入:
1、上节课学习了数学归纳法及运用数学归纳法解题的步骤,请同学们回顾,说出数学归纳法的步骤?
(1)数学归纳法是用于证明某些与自然数有关的命题的一种方法。
(2)步骤:1)归纳奠基;
2)归纳递推。
2、作业讲评:(出示小黑板)
习题:用数学归纳法证明:2+4+6+8+……+2n=n(n+1)
如采用下面的证法,对吗?
证明:①当n=1时,左边=2=右边,则等式成立。
②假设n=k时,(k∈N,k≥1)等式成立,
即2+4+6+8+……+2k=k(k+1)
当n=k+1时,
2+4+6+8+……+2k+2(k+1)
∴ n=k+1时,等式成立。
由①②可知,对于任意自然数n,原等式都成立。
(1)学生思考讨论。
(2)师生总结:1)不正确
2)因为在证明n=k+1时,未用到归纳假设,直接用等差数列求和公式,违背了数学归纳法本质:递推性。
二、新知探究
明确了数学归纳法本质,我们共同讨论如何用数学归纳法证明不等式。
(出示小黑板)
例1 观察下面两个数列,从第几项起a n始终小于b n?证明你的结论。
{a n=n2}:1,4,9,16,25,36,49,64,81, ……
{b n=2n}:2,4,8,16,32,64,128,256,512,……
(1)学生观察思考
(2)师生分析
(3)解:从第5项起,a n< b n,即 n²<2n,n∈N+(n≥5)
证明:(1)当 n=5时,有52<25,命题成立。
即k2<2k
当n=k+1时,因为
(k+1)2=k2+2k+1<k2+2k+k=k2+3k<k2+k2=2k2<2×2k=2k+1
所以,(k+1)2<2k+1
即n=k+1时,命题成立。
由(1)(2)可知n²<2n(n∈N+,n≥5)
学生思考、小组讨论:①放缩技巧:k2+2k+1<k2+2k+k;k2+3k<k2+k2
②归纳假设:2k2<2×2k
例2证明不等式│Sin nθ│≤n│Sinθ│(n∈N+)
分析:这是一个涉及正整数n的三角函数问题,又与绝对值有关,在证明递推关系时,应注意利用三角函数的性质及绝对值不等式。
证明:(1)当 n=1时,上式左边=│Sinθ│=右边,不等式成立。
(2)假设当n=k(k≥1)时命题成立,
即有│Sin kθ│≤k│Sinθ│
当n=k+1时,
│Sin (k +1)θ│=│Sin k θCos θ+Cos k θSin θ│ ≤│Sin k θCos θ│+│Cos k θSin θ│ =│Sin k θ││Cos θ│+│Cos k θ││Sin θ│ ≤│Sin k θ│+│Sin θ│ ≤k │Sin θ│+│Sin θ│ =(k +1)│Sin θ│
所以当n=k+1时,不等式也成立。
由(1)(2)可知,不等式对一切正整数n 均成立。
学生思考、小组讨论:①绝对值不等式: │a+b │≤ │a │+│b │
②三角函数的有界性:│Sin θ│≤1,│Cos θ│≤1 ③三角函数的两角和公式。
(板书)例3 证明贝努力(Bernoulli )不等式:
如果x 是实数且x >-1,x ≠0,n 为大于1的自然数,那么有(1+x )n
>1+nx 分析:①贝努力不等式中涉几个字母?(两个:x,n )
②哪个字母与自然数有关? (n 是大于1的自然是数)
(板书)证:(1)当n=2时,左边=(1+x )2
=1+2x+x 2
,右边=1+2x ,因x 2
>0,则原不等式成立.
(在这里,一定要强调之所以左边>右边,关键在于x 2
>0是由已知条件x ≠0获得,为下面证明做铺垫)
(2)假设n=k 时(k ≥2),不等式成立,即(1+x )k >1+kx . 师:现在要证的目标是(1+x )k+1
>1+(k+1)x ,请同学考虑.
生:因为应用数学归纳法,在证明n=k+1命题成立时,一定要运用归纳假设,所以当
n=k+1时.应构造出归纳假设适应的条件.所以有:(1+x )k+1=(1+x )k
(1+x ),因为x >
-1(已知),所以1+x >0于是(1+x )k
(1+x )>(1+kx )(1+x ).
师:现将命题转化成如何证明不等式 (1+kx )(1+x )≥1+(k+1)x . 显然,上式中“=”不成立.
故只需证:(1+kx)(1+x)>1+(k+1)x.
提问:证明不等式的基本方法有哪些?
生:证明不等式的基本方法有比较法、综合法、分析法.
(提问的目的是使学生明确在第二步证明中,合理运用归纳假设的同时,其本质是不等式证明,因此证明不等式的所有方法、技巧手段都适用)
生:证明不等式(1+kx)(1+x)>1+(k+1)x,可采用作差比较法.
(1+kx)(1+x)-[1+(k+1)x]
=1+x+kx+kx2-1-kx-x
=kx2>0(因x≠0,则x2>0).
所以,(1+kx)(1+x)>1+(k+1)x.
生:也可采用综合法的放缩技巧.
(1+kx)(1+x)=1+kx+x+lx2=1+(k+1)x+kx2.
因为kx2>0,所以1+(k+1)x+kx2>1+(k+1)x,即(1+kx)(1+x)>1+(1+k)x 成立.
生:……
(学生可能还有其他多种证明方法,这样培养了学生思维品质的广阔性,教师应及时引导总结)
师:这些方法,哪种更简便,更适合数学归纳法的书写格式?学生用放缩技巧证明显然更简便,利于书写.
(板书)将例3的格式完整规范.
证明:(1)当n=2时,由x≠0得(1+x)2=1+2x+x2>1+2x,不等式成立。
(2)假设n=k(k≥2)时,不等式成立,
即有(1+x)k>1+kx
当n=k+1时,
(1+x)k+1=(1+x)(1+x)k>(1+x)(1+kx)
=1+x+kx+ k x2>1+x+kx=1+(k+1)x
所以当n=k+1时,不等式成立
由①②可知,贝努力不等式成立。
(通过例题的讲解,在第二步证明过程中,通常要进行合理放缩,以达到转化目的)
三、课堂小结
1.用数学归纳法证明,要完成两个步骤,这两个步骤是缺一不可的.但从证题的难易来分析,证明第二步是难点和关键,要充分利用归纳假设,做好命题从n=k到n=k+1的转化,这个转化要求在变化过程中结构不变.
2.用数学归纳法证明不等式是较困难的课题,除运用证明不等式的几种基本方法外,经常使用的方法就是放缩法,针对目标,合理放缩,从而达到目标.
四、课后作业
1.课本P53:1,3,5
2.证明不等式:。