Catia链轮链条仿真运动教程

合集下载

CATIA装配运动仿真

CATIA装配运动仿真

CATIA装配运动仿真CATIA是一款广泛应用于机械设计领域的三维设计软件,它提供了丰富的功能和工具,可以帮助工程师们进行装配运动仿真分析。

本文将介绍CATIA装配运动仿真的基本原理和步骤,帮助读者了解如何利用CATIA进行装配运动仿真分析。

一、CATIA装配设计基础在进行装配运动仿真之前,首先要进行装配设计。

装配设计是将各个零部件组装在一起,形成一个完整的装配体。

在CATIA中,可以通过创建组合和约束来完成装配设计。

组合是指将零部件拖拽到装配环境中,并进行位置调整,使其符合实际要求。

约束是指通过添加关系和限制条件,确保各个零部件之间具有正确的运动关系。

二、CATIA装配约束设置在进行装配设计的同时,需要对各个零部件之间的运动关系进行约束设置,以确保装配体在仿真过程中符合实际工作要求。

CATIA提供了多种约束关系,如平行、垂直、配合等。

读者需要根据实际情况选择合适的约束关系,并添加到零部件之间。

三、CATIA运动仿真设置在进行装配设计和约束设置之后,就可以进行CATIA装配运动仿真的设置。

首先,需要添加运动学仿真模块,然后选择仿真类型,如运动分析、碰撞检测等。

接着,读者需要对仿真参数进行设置,如仿真时间、时间步长等。

还可以添加各种外部载荷和动力学约束,以模拟实际工况下的运动情况。

四、CATIA装配运动仿真分析设置好仿真参数后,就可以对装配体进行运动仿真分析了。

CATIA 会模拟装配体在仿真时间内的运动情况,并将结果以动画的形式展现出来。

读者可以观察装配体各个零部件之间的运动关系,检查装配是否符合要求。

同时,CATIA还提供了丰富的分析工具和图表,以帮助读者更深入地了解装配体的运动行为。

五、CATIA装配运动仿真优化通过装配运动仿真分析,读者可以获取装配体的运动数据和性能参数。

根据这些数据,可以进行装配设计的优化。

优化可以包括调整零部件的位置和约束关系,以改善装配体的运动性能。

CATIA提供了优化工具和功能,读者可以利用这些工具进行优化,并进行多次仿真分析,逐步改进装配体的运动行为。

catia建模单排链轮

catia建模单排链轮

catia建模单排链轮8.2 滚⼦链链轮在这⾥介绍链轮滚⼦直径为10.16mm 、链轮齿数为25的单排及双排链轮的三维实体建模的⽅法。

8.2.1 单排链轮产⽣成形特征后的单排链轮外形如图8.48所⽰。

其建模操作步骤如下:1.旋转成形链轮本体(1)单击如图8.49所⽰的“File (⽂件)”下拉菜单,选择“New …(新建)”命令,在如图8.50所⽰的对话框中选择“Part (零件)”选项,进⼊零件设计模块。

图8.48单排链轮外形图8.49“⽂件”下拉菜单图8.50 选择“零件”选项(2)在模型树上选择xy 平⾯,单击(草图绘制)⼯具,进⼊草图绘制模块。

单击草图绘制⼯具栏中的(⼏何约束)⼯具,启⽤⼏何约束。

单击轮廓⼯具栏中的(中⼼线)⼯具,画⽔平中⼼线。

单击(折线)⼯具,以坐标原点为起点绘制草图,双击⿏标左键完成草图绘制,绘制完成的草图如图8.51所⽰。

单击约束⼯具栏中的(约束)⼯具,标注尺⼨,结果如图8.52所⽰。

再双击尺⼨线修改尺⼨,结果如图8.53所⽰。

图8.51草图绘制图8.52标注尺⼨图8.53 修改尺⼨(3)草图绘制完成后,单击(退出)⼯具,退出草图绘制模块。

单击特征⼯具栏中的(旋转成形)⼯具,系统显⽰如图8.54所⽰的预览画⾯,并在窗⼝中显⽰如图8.55所⽰的对话框。

在对话框中设置“First angle (旋转⾓度)”为360°,单击“OK (确定)”按钮,完成旋转成形操作,结果如图8.56所⽰。

图8.54 旋转成形预览画⾯图8.55 “旋转成形”对话框图8.56 旋转成形结果 2.成形链轮轴⾯齿形(1)在模型树上选择xy 平⾯,单击(草图绘制)⼯具,进⼊草图绘制模块。

单击轮廓⼯具栏中的(矩形)⼯具,在界⾯上选定起点位置,拖曳⿏标⾄对⾓线上的⼀点,单击⿏标左键完成矩形草图绘制,结果如图8.57所⽰。

单击约束⼯具栏中的(约束)⼯具,标注尺⼨,再双击尺⼨线修改尺⼨,结果如图8.58所⽰。

CATIA V5 R20运动仿真

CATIA V5 R20运动仿真

运动仿真学习情况1——旋转副;可以单独驱动,驱动的是旋转角度;只能实现绕自身的轴旋转;√2——棱形副;可以单独驱动,驱动是滑动长度;只能实现沿着公共线滑动;√3——圆柱副;可以单独驱动,可以同时驱动是滑动长度和旋转角度,这两个驱动添加后就可以运动了;只能实现绕轴旋转并沿轴线滑动;√4——螺钉副;可以单独驱动,实现实体每转动1圈,就前进多少mm。

不一定非要是螺杆和螺母,其他的旋转前进仿真也可以使用该命令。

6——平面副;不可以单独驱动,约束一公共平面,具有除沿平面法向移动及绕平面坐标轴转动外的3个运动自由度√7——点曲线副;不可以单独驱动,只能由其他运动副带动起来;点必须在曲线的上面,不在就是不行,实现点在曲线,也就是点在轨迹线上走动。

√8——滑动曲线;不可以单独驱动,只能由其他运动副带动起来;约束两轨迹线相切,实现线在线上滑动;√9——滚动曲线;不可以单独驱动,只能由其他运动副带动起来;约束两轨迹线相切,实现线在线上滑动;√10——点曲面;√不知道他与点曲线有何区别?11——U形结合;√3条轴线相交且位于同一平面内,且输入、输出端轴线与中间轴轴线夹角相同时,可以使用该命令13——齿轮接合;注意齿轮接合的对象不一定是齿轮,只要是一个旋转体带动另一个旋转体的话,就可以使用齿轮接合。

14——齿轮齿条:对旋转副和棱形副进行约束,有个比率15——电缆;√16——刚性结合;√17——使用命令进行模拟√18——使用法则曲线进行模拟√19——机械装置修饰20——装配约束转换√22——分析机械装置23——模拟24——编辑模拟25——重放26——模拟播放器27——编辑序列28——扫略包络体29——轨迹30——重置位置:√仿真的注意点如下:1——驱动对象的选择是有原则的;不可以随便选择,必须符合实际的运动情况;当定义驱动对象时,驱动对象也是有原则的,比如我们在定义旋转副的驱动对象时,如果要求我们的驱动对象进行360度全周旋转的话,那么的我们的对象在实际情况中必须能够或者说可以旋转360度,在整个运动机构当中并不是所有的旋转副都可以旋转360度,有的只能旋转几度,,因此一定要搞清楚哪个对象可以旋转360度,搞清楚这个事情后在去将他定义为驱动对象,如果对象本身不可能旋转360度,而你要把他定义为驱动,还要他旋转360度的话,这样的运动仿真是不成功的。

链条仿真【图文】

链条仿真【图文】

链条仿真【图文】大家可自装链轮!链轮地址:/thread-6148 -1-1.html大家可以参考精华贴(带传动)安装链轮和链条!因为机子太卡,这里只讲链条仿真!以下内容需要回复才能看到1.新建一个组件:模板mmns命名为链节!a. 装链节轴,缺省安装!b.阵列:选用方向阵列,距离为一个链节!用销链接装轴套:装好一个销套以后同样阵列第二个销套:这次阵列时,3.0自动采用参照阵列!如果是2.0,那就用第一次阵列的方法阵列。

c.再装两边的,装这个的时候要保证和轴没有相对运动!d.同样的道理装对称部分!e. 装好这两个之后还得再装链接部分的两个:这次采用销链接,目的是和轴之间有相对运动。

大家不要选错!f。

装对称部分。

这个部分不用可动链接连接。

我们将他和对面的片固定连接,也就是说他和对面的片保持运动一致,都可以转动!选面面对齐和两个轴对齐,保证两个片固连!2.新建一个组件:mmns模板这个组件是为了连接每个链节准备的!首先第一个连接部分,缺省安装!第二部分和第一部分之间采用销连接。

选的时候不要选错,你要用第二部分轴的轴和第一部分片的孔的轴对齐,而不是用第二部分孔的轴和第一部分片的孔的轴对齐。

面对齐同样是片的孔表面和轴的表面对齐!保证销连接建立在第二部分的轴和第一部分片的孔之间!这样就顺利装好了!同样的销连接可以装很多部分,这就不一一安装了!以下全部是销连接。

3.再新建一个组件,这个组件用来安装整个链条!A。

在新组件下,建立一个骨架模型!这个骨架模型用来安装链条,其实不画骨架模型也可以,你可以从外界重新装配一个进来!这里用骨架模型比较方便!进去之后就进入了零件设计界面。

界面下,我们随便做个曲线草绘如图所示!然后点确定就好了。

这样这个骨架模型就创建好了。

B。

装第2部分装好的链条。

首先是平面副连接,先选第2步装的链条的组件front基准面,再选第3部分组件的front基准面,让面面对齐完成约束!这样链条就可以在平面内自由转动了。

优选CATIA实用DMU运动仿真小教程

优选CATIA实用DMU运动仿真小教程
优选CATIA实用DMU运动仿真小教程
一、功能介绍
模块简介
功能键一览表
过程 将装配件导入DMU模块----建立机械装置----分析运动结合类型 ----建立运动结合----约束固定件----设置驱动形式----运动仿真
运动仿真有两种: 1、使用命令进行模拟 (可编辑传感器) 2、模拟 (可生成自动播放动画,也可编辑传感器)----可通 过编译模拟 ,生成重放 。
4. 固定零件
单机
中的 按钮,弹出右图所示窗口
,然后直接左键单击壳体part,这时系统会出现“可以模拟机
械装置”提示,点击确定
5、设置驱动形式
注意此时机械装置自由度=0,若不为0不能仿真 的,此项尤为重要。 修改: 下限改为-65°;上限改为0°
6、使用命令进行模拟
点击
中的 (使用命令
进行模拟)按钮,弹出右图所示窗口,电机“模
(4)其他约束 用旋转指令 将以下几个产品之间互相约束一起来。 ①、“波轮与连杆”;旋转副 ②、“连杆与风门连杆”;旋转副 ③、“风门连杆与壳体”;旋转副
壳体 波轮
连杆 命令在运动机构里面,点击其图标右下方的箭 头,点击后,选择图标
然后点击“风门连杆”跟“风门”
(3)约束 图中直线1、直线2、平面1、平面2,依次 选取壳体轴线、波轮轴线、壳体平面、波 轮平面,并单击“偏移”与“驱动角度”按 钮。单击确定
机械装置:运动机构名称 结合名称:运动副名称 直线1:波轮轴 直线2:壳体轴 平面1:破轮平面 平面2:壳体平面 驱动角度:点选可驱动波轮转动角度. (注意:驱动点选后自由度-1)
拟下的立刻”按钮,便可拖动上面的游标随意旋
转,也可使用“按需要”命令,修改一下右上角数
字框中的数据,就可点击下方的 箭头标示

CATIA-V5-运动仿真分析

CATIA-V5-运动仿真分析

第16章 CATIA 运动分析16.1 曲轴连杆运动分析四缸发动机曲轴、连杆和活塞的运动分析是较复杂的机械运动。

曲轴做旋转运动,连杆左做平动,活塞是直线往复运动。

在用CATIA作曲轴、连杆和活塞的运动分析的步骤如下所示。

(1)设置曲轴、连杆、活塞及活塞销的运动连接。

(2)创建简易缸套机座。

(3)设置曲轴与机座、活塞与活塞缸套之间的运动连接。

(4)模拟仿真。

(5)运动分析。

16.1.1 定义曲轴、连杆、活塞及活塞销的运动连接1.新建组文件(1)点击“开始”选取“机械设计”中的“装配件设计”模块,如图16-1所示。

图16-1 进入“装配件设计”模块(2)进入装配件设计模块后,点击添加现有组件图标,再点击模型树上的Product1图标,此时会出现文件选择对话框,按住Ctrl键,分别选取“Chapter16/huo-sai-xiao.CATPart、huo-sai.CATPart 、lianganzujian.CATproduct、quzhou.CATpart”,将这些零件体载入到Product1中。

(3)此时,零件体载入后重合到一起,点击分解图标,出现分解对话框如图16-2所示。

然后点击模型树上的Product1,点击确定,此时弹出警告对话框,如图16-3所示,警告各零件的位置会发生变,点击警告对话框的按钮“是”,我们会发现各个零件分解开来。

图16-2 分解对话框图16-3 警告对话框(3)由于连杆体零件是装配体,各部分之间存在约束,点击“全部更新”按钮,我们会发现连杆体组件恢复装配后的样子。

(4)点击“约束”工具栏中的“相合约束”图标,分别选择活塞销中心线及活塞孔中心线,如图16-4所示。

然后点击“约束”工具栏中的“偏移约束”图标,选择活塞销的一个端面及活塞孔一侧的凹下去细环端面,如图16-5所示,此时出现“约束属性”对话框,如图16-6所示。

将对话框中的“偏移”一栏改为“3.75mm”,点击“确定”按钮,完成活塞销端面和活塞内凹孔细环端面之间的偏移约束关系。

CATIA运动仿真教程

CATIA运动仿真教程

Crankslider Mechanism TutorialProblem StatementThe purpose of this exercise is to use the IntelliMotion Builder to demonstrate the procedure for configuring the mechanism and to then check for interference.Arm Link1Link2CardanCollarThe mechanism comprises of a crank connected via link1 and a universal joint (cardan component) to the Arm component to provide an oscillatory motion. This in turn is connected via another link to a collar that slides back and forth on a shaft.Step 1 Open Model & Set WorkbenchYou will need to run the DDMV5R7 or DDMV5R8 profile shortcut to enable the Dynamic Designer Workbench.Open the product file crankslider_tutorial.CATProduct located in the crankslider sub-folder in the tutorials directory of the installation.If your workbench is not already set to Dynamic Designer (look at the Workbench icon at the top right hand side of the toolbar), then activate the Dynamic Designer Workbench under START – DIGITAL_MOCKUP – DYNAMIC DESIGNER.The Dynamic Designer commands can be accessed via the toolbar icons or the pull down menu (see below)Step 2 Create Mechanism from AssemblyTo auto create the mechanism from the assembly, click on the Convert Mechanism Icon . This will bring up a dialog box asking if you want to convert the assembly constraints when the mechanism is created. Make sure this option is selected before proceeding.The Screen should now look like that below where there are motion entity icons on the graphics screen.Expand the treeview to show the APPLICATIONS – DYNAMIC DESIGNER branches. You should see the following mechanism data:Note that the assembly constraints have been mapped to Dynamic Designer joints and that the grounded parts in the assembly have been automatically made grounded in Dynamic Designer.Step 2 Default Simulation SettingsThe Dynamic Designer Settings can be accessed from two locations.Global settings can be found in the Catia OPTIONS dialog (TOOLS – OPTIONS menu selection)These setting are applied to future mechanisms in different assemblies. We will not be changing these for this exercise, but this is useful to be aware of.Model specific settings can be found by expanding the APPLICATIONS BRANCH of the Catia Treeview, and under the Dynamic Designer Branch, right clicking on the MOTION MODEL branch and selecting the PROPERTIES option. This option can only be done once a mechanism has been started (i.e. a moving or ground part exist). You can also access mechanism settings from the MOTION – MECHANISM settings.We need to change the direction of gravity to match the orientation the model was built in. In this case gravity must act in the –X axis direction. To change this, click on the direction pull down list and select the Standard –X option.STEP 3 Define MotionThe complete mechanism is not designed to operate under gravity, so we need to provide input motion representing a motor connected to the system. Because the joints define how the parts move with respect to one another, we apply motion to the joints as it is clear in which directions the parts can move.To drive the crankslider, we are going to put a motion on the cylindrical joint connecting the Crank to the Crank Housing. In the image shown below, this is joint 4. Please expand the branch under the joint to verify the joint selected is the correct one.Do add a motion, double click on this joint (i.e. Joint.4 in above images) in either the treeview or in the graphics window.Change the MOTION ON from TRANSLATE Z to ROTATE ZChange the MOTION TYPE from FREE to VELOCITYSpecify a CONSTANT velocity of 360 DEG/SECMake sure you click on the RED tick to accept the value change.Press OK to accept the motion definition. You should now see an arrow on the joint in the graphics window.STEP 4 Run SimulationWe are ready to run the simulation. From the MOTION menu select the SIMULATE option to set the simulation settings and to run the solver. Alternatively, you can click on the toolbar icon.Leave the simulation time at 1 seconds and the number of frames at 60. Click on the START button to run the simulations.Once the simulation completes, the analysis dialog will close automatically.STEP 5 Review AnimationWe can now review the results. As part of the simulation, a replay object is automatically generated. You can view the replay by expanding the REPLAY branch at the bottom of the treeview, or by clicking on the toolbar icon.Once the Replay dialog appears, you can review the motion and do all the standard option available in replay like save the animation to file, add an interference analysis, or check for clearances.STEP 6 Interference DetectionInterference checking is done using the DMU utilities in Catia. The first step is to define a DMU Clash Analysis.From the MOTION menu, select the CLASH option. This will bring up the DMU Check Clash dialog.Leave Clash Type as Contact + Clash, but change the selection option to Between Two Selections.Select LINK1 for the Selection1, change focus to Selection 2 and select the ARM componentPress OK to accept and keep this.Arm – Selection 2Link1 –Selection 1To run the analysis, display the REPLAY object . You can view the replay by expanding the REPLAY branch at the bottom of the treeview, or by clicking on the toolbar icon.Click on the EDIT ANALYSIS optionClick on the ADD button to add an analysis to the replay object.Select the Interference.1 analysis to add and press OK. Press OK again to complete adding analyses. On the Replay dialog, change the Interference option from OFF to ON.Press the PLAY button to replay the motion and check for interference while animating (You may notice the parts highlighting while this is happening. This means that clash exists between the parts at that result frame). Once the animation has finished, you will find a new branch under the Replay object called Interference Results.1.You can Double click on this object to review the interference results.NOTE: In some versions of Catia, the interference is not being detected where the lugs are cutting into the side of the arm, even though these parts are highlighted while the analysis is being done.STEP 10 Change Geometry and Re-simulateTo correct the problem, we need to change the geometry of the arm. We will place fillets on the vertical edges of the arm between the two lugs.Double click on the arm to go into part edit mode.From the toolbar select the Edge Fillet icon.Specify a Fillet radius of 0.375 inches (or 9.525 mm)Pick on the 2 vertical edges shown below (you will see the proposed face edges in pink)Press OK to accept the fillets. The geometry should now look like:Return to the Dynamic Designer Workbench by double clicking on the PRODUCT level of the treeview. Repeat the interference check and you should now find that no interference occurs.This concludes the tutorial。

应用CATIA做运动仿真

应用CATIA做运动仿真

应用CATIA做运动仿真,按如下步骤做:1. 仿真之前的准备将要仿真的模型所需的部件在装配模式下按照技术要求进行装配。

装配时请注意,在能满足合理装配的前提下,尽量少用约束,以免造成约束之间互相干涉,影响下一步运动仿真。

2. 运动仿真通过“开始(S)”——“数字模拟”——“DMU Kinematics”进入到运动仿真的模式下,开始进行仿真设置:(1)先建立一个新机制(New Mechanism);命令在“插入(I)”菜单下,(2)对装配部件进行约束设置,命令在旋转铰里面,点击其图标右下方的箭头,点击后,出现所有铰定义图标按顺序分别是:旋转铰(Revolute joint),棱镜铰(prismatic joint),圆柱铰(Cylinderical joint),螺纹铰(Screw joint),球铰(Spherical joint),平面滑动铰(Planner joint),刚性连接(Rigid joint),点-线铰,滑动曲线铰,滚动曲线铰,点-曲面铰,万向节铰,双万向节铰,齿轮铰,齿轮-齿条铰,缆绳铰,坐标系铰。

各个铰接的的方法见文献《CATIA 机械运动分析与模拟实例》,上有很详细的介绍。

(3)设置固定件,点击固定零件图标,点击后出现New Fixed Part(新固定零件)对话框,不用理它,在图形区选择要固定的零件即可。

各种铰链设置合理,系统会自动提示:,也就是说,机制可以仿真了。

(a.)仿真使用“命令模拟”时,点击,就会出现运动模拟对话框,在对话框内拖动鼠标,由大到小或有小到大改变角和实数的范围,然后点击下面的黑色开始键,就可以看到仿真运动了。

对话框示例如下(b.)仿真采用“模拟”时,点击,即可进入和将动画视点和自动插入都选上后,用鼠标拖动command 后的命令块由大到小或由小到大改变角和实数的范围,然后点击下面的黑色开始键,就可以看到仿真运动了下面以齿轮运动仿真为例说明:装配过程不多说了,直接进入仿真模块下。

CATIA常见运动仿真机构命令详解

CATIA常见运动仿真机构命令详解

结合都是随动件。
模拟的,必须与其他形式的结合配合 通用结合是两个旋转结合的复合,将第一个旋转结合进行驱动的设置,第二个旋转不用设置驱动,通过通用结合,就是讲第二个旋转
、球面结合介绍(又名球面副)
仅直线移动运动
球面合
1、点击
按钮,弹出右图1窗口:
图1
2、点击 右上角“新机械装置”,弹出图2窗口: 图2
1、单击“确定” 按钮,弹出图3窗口:
图3
3、所有铰定义命令详解
、球面结合介绍(又名球面副)
4、在窗口中,点1点选球头面, 自动识别球心:点2点选球套面, 自动识别球心位置,如右图4所 示,也可现在part中建立球心点, 然后点选时只需只直接选取点 就行,选取完毕之后点击确定, 点击确定之后,两球心会相结 合在在一起。
1、点击 按钮,弹出右图1窗口:
一个圆柱结合限制2个移动副,2个旋转副。
接下来讲解的每个结合均是如此,不再反复强调))
5、单击
中的 按钮,此时系统并未自动弹出“可以模拟机械装置”窗口,在逻辑树种打开“机械装置”,发现此
时合滚的一动自 起由使曲度用=。线3,结并不合等于是0,指所一以只条有“点球面沿结合着”和另“固一定件条”的情况下,是不能进行仿真的,“球面结合”必须和其他带有驱动性质的结
直线移动和旋转移动
圆柱结合
1、点击
按钮,弹出右图1窗口:
图1
2、点击 右上角“新机械装置”,弹出图2窗口: 图2
1、单击“确定” 按钮,弹出图3窗口:
图3
3、所有铰定义命令详解
、圆柱结合介绍(又名圆柱副)
4、图中“直线1”、“直线2”分 别选取螺栓轴线、螺母轴线,并点 选“启动角度”、“启动长度”按 钮,如右图4所示,并单击“确定” (备注:圆柱结合从动件即可沿轴 向转动,也可同时沿轴向移动)

Catia链轮链条仿真运动教程

Catia链轮链条仿真运动教程

Catia链轮链条仿真运动教程PanyfCatia DMU 运动机构分析——链条链轮运动仿真网上关于catia做柔性零件的运动仿真的资料比较少,(也许我没找到吧)链条的模拟有看到过,但是都是单独做链条的模拟,没有加上链轮的一起仿真的。

下面做个链条与链轮一起运动的仿真教程,希望对不会的朋友有有些帮助。

(做的不好也请见谅)(以下用两个链轮做例子)首先确定所用链轮的参数——节距,滚子直径,齿数z1.z2。

确定链条的运动轨迹。

将两链轮的分度圆定位好,然后用各种线条连接成自己需要的运动轨迹。

1、如果只需要几节链条的模拟,那么只需在运动轨迹绘制几个点,(轨迹上的点与滚子中心点相合)每两个点之间的距离为所选链轮参数中的节距。

这里强调一下,这里的距离是指两点间的直线距离。

2、如果需要安装整条链条,那就需要将整条运动轨迹标以节距为间距标注好n 个点,确保相邻两点间距为节距。

(这里说一下,由于之前两链轮已经约束了,所有点都约束后会出现过分约束,可以将其中一个链轮的其中一个约束去掉或者改为参考,比如将图中的103.165删除或者,这样就可以确保每个点之间的距离都为节距)制作好单节链条,一个内挡板,一个外挡板,两点为滚子中心,距离等于节距。

(我做的比较简单,只是个样子,把滚子和内挡板做一块了)进入装配设计,导入各个零件。

将链条一内一外安装在轨迹上的点上,最后头尾相接。

安装好链轮。

如图所示这里提醒下,做链条模拟每个链节都是独立的,都要进行接合定义,举个例子,如果你的整个链条由50节链节(即50个滚子)组成,那么你就得定义51个点曲线接合,49个旋转接合。

选的越多接合越多,如果你电脑牛X,那可以选多点,如果电脑一般,就尽量少点吧。

进入DMU 运动机构建立各种接合。

首先选择固定件,把运动轨迹做为固定件。

选平面接合。

选择内挡板与运动轨迹相合的两个面建立每节链条与运动轨迹的运动接合。

(我的方法是:此接合只要对内挡板和外挡板其中一个使用。

catia 参数化设计及机构运动仿真

catia 参数化设计及机构运动仿真

4 轮系的参数化建模与运动仿真
(1)自定义齿轮所需参数、公式和法则。
(2)根据上面的参数、公式和法则建立三维齿轮模型。
(3)根据创建好的单个齿轮,创建设计表。
(4)在设计表的基础上,创建齿轮零件库。
装配过程中,可直接调用零 件库内的零件模型,且根据需要 任意修改零件参数。
(5)在装配模块中,调入齿轮库中的零件,并对其进行相应约 束。
(1) 航空航天 (2) 汽车工业 (3) 造船工业 (4) 厂房设计 (5) 加工和装配 (6) 消费品
法国阵风
CATIA源于航空航天工业, 是业界无可争辩的老大
CATIA是汽车工业的事实标准,是欧洲、北 美和亚洲顶尖汽车制造商所用的核心系统
美国弗吉尼亚级攻击潜艇 CATIA 为造船工业提供了优秀的解决方 案,包括专门的船体产品和船载设备、 机械解决方案。
3.2 运动仿真 运动仿真是指通过构建运动机构模型,分析其运动 规律,进行机构的干涉分析,跟踪零件的运动轨迹,分 析机构中零件的速度、加速度和作用力、反作用力和力 矩等,其分析结果可以修改零件的结构设计或调整零件 材料。
• 3.3数字模型运动分析 CATIA数字模型运动分析单元,通过调用已有的多个种 类的运动副或者通过自动转换机械装配约束条件而产生的运 动副,依照运动学的原理,以约束自由度的方式,建立机构, 对各种规模的机构进行运动状态模拟,通过运动干涉检验和 校核最小间隙来进行机构运动状态分析!它还可以通过与其他 DUM 产品的集成做更多复杂组合的运动仿真分析!
参数化为产品模型的可变性、可重用性、 并行设计等提供了手段,使设计人员可以利 用以前的模型方便地进行模型的重建,并可以在 遵循原设计意图的情况下,方便地改动模型,生成系列化产品!

catia运动仿真模块讲析.

catia运动仿真模块讲析.

产品研发一部底盘室:马学超题目:CATIA的DMU运动机构模块功能介绍CATIA—DMU运动机构CATIA DMU 运动机构•对于产品的数字模型而言,进行准确的机构运动及状态分析,是十分基本并且重要的功能。

在DMU运动机构系统中,我们可以依照运十分基本并且重要的功能在运动机构系统中我们可以依照运动学的原理,通过约束自由度的方式建立机构,并且分析机构的运动状态与移动轨迹;态与轨•本文主要提供几种基本的结合,使我们建立机构运动,并且可以本文主要提供几种基本的结合使我们建立机构运动并且可以进行动态仿真,记录运动情形,制作成影片播放;CATIA DMU运动机构CATIA—DMU 运动机构•模块简介:CATIA—DMU运动机构CATIA DMU 运动机构•功能键一览:功能键览CATIA DMU 运动机构CATIA—DMU运动机构•过程:—————将装配件导入DMU模块建立机械装置分析运动结合类型—建立运动结合——约束固定件——设置驱动形式——(两种做法运动仿真):运动仿真)1、使用命令进行模拟(可编辑传感器,导出数据,并绘制图形);2、模拟(可生成自动播放动画,也可编辑传感器)——可通过编译模拟,生成重放,——生成包络体;CATIA DMU 运动机构CATIA—DMU运动机构•运动结合点:运动结合点从左至右结合类型依次为::旋转结合;:棱形结合;:圆柱结合;:螺钉结合;:球面结合:平面结合;:刚性结合;:点线结合;:滑动曲线结合;:滚动曲线结合;:点面结合;:通用结合;:CV结合;:齿轮结合;:架子结合;:电缆结合;:基于轴的结合;CATIA—DMU 运动机构CATIA DMU 运动机构•:旋转结合1、点击按钮,弹出右图1窗口;图12、点击右上角“新机械装置”,弹出图2窗口;图23、单击“确定”按钮,弹出图1窗口图3CATIA DMU 运动机构CATIA—DMU运动机构4、图中“直线1”、“直线2”、“平面1”、“平面2”依次选取螺栓轴线、螺母轴线、螺栓垂直轴线平面、螺母垂直轴线平面,螺栓一垂直轴线平面、螺母一垂直轴线平面,并点击“偏移”与“驱动角度”按钮,如右图4显示,并单击“确定”图4CATIA DMU 运动机构CATIA—DMU运动机构5、单击中的按钮,弹出右图所示窗口,然后直接左键单击螺弹出右图所示窗然后直接左键单击螺栓part,这时系统会出现“可以模拟机械装置”提示,点击确定CATIA—DMU运动机构CATIA DMU 运动机构6、在左侧树中双击图中高亮显示的旋转结合,在左侧树中双击图中高亮显示的“旋转”结合,便会弹出如右图5所示窗口,在窗口‐360deg和+360deg处可修改角度范围,修改完点击确定;(注意此时机械装置自由度=0,若不为0是不能仿真的,此项尤为重要,下述每个结合均是如此,不再反复强调)图5CATIA—DMU运动机构CATIA DMU 运动机构点中使用7、点击中的(使用命令进行模拟)按钮,弹出右图6所示窗口,点击“模拟”下的“立刻”按钮,便可拖动上面的游标随意旋转;也可使用“按需要”命令,修改一下右上角数字框中的数据,就可点击下方的箭头标示,使构件自行转动;图6箭头标示使构件自行转动CATIA—DMU运动机构CATIA DMU 运动机构•:棱形结合棱形结合1、单击(棱形结合)按钮,弹出如右图1所示窗口单击(棱形结合)按钮弹出如右图图12、点击右上角“新机械装置”按钮,弹出图2所示窗口图2 3、单击确定按钮,图1窗口变为图3所示窗口,图3CATIA—DMU运动机构CATIA DMU 运动机构4、窗口中“直线1”、“直线2”、“平面1”、“平面2”、分别选择螺栓轴线、螺母轴线、螺栓中的zx平面、螺母中的zx平面(所选平面必须与所选直线平行),并点选“驱动长度”按钮,如右图4所示,并单击确定;图4CATIA DMU 运动机构CATIA—DMU运动机构5、单击中的按钮,弹出右图所示窗口,然后直接左键单击螺弹出右图所示窗然后直接左键单击螺栓part,这时系统会出现“可以模拟机械装置”提示,点击确定CATIA—DMU 运动机构CATIA DMU 运动机构6、在左侧树中双击图中高亮显示的“棱形”结合,所示窗在窗便会弹出如右图5所示窗口,在窗口‐100mm 和100mm 处可修改长度范围,修改完点击确定;图5CATIA—DMU运动机构CATIA DMU 运动机构点中使用7、点击中的(使用命令进行模拟)按钮,弹出右图6所示窗口,点击“模拟”下的“立刻”按钮,便可拖动上面的游标随意移动;也可使用“按需要”命令,修改一下右上角数字框中的数据,就可点击下方的箭头标示,使构件自行移动;图6箭头标示使构件自行移动CATIA—DMU 运动机构CATIA DMU 运动机构•圆柱结合单击(圆柱结合)按钮弹出如右图图11、单击(圆柱结合)按钮,弹出如右图1所示窗口图22、点击右上角“新机械装置”按钮,弹出图2所示窗口3、单击确定按钮,图1窗口变为图3所示窗口,图3CATIA—DMU 运动机构CATIADMU 运动机构线、螺母轴线,并点选“驱动角度”、“驱动长度”按钮如右图所示并单击确定圆长度”按钮,如右图4所示,并单击确定;(圆图4柱)结合从动件既可沿轴向转动,也可同时沿轴向移动);CATIA DMU 运动机构CATIA—DMU运动机构5、单击中的按钮,弹出右图所示窗口,然后直接左键单击螺弹出右图所示窗然后直接左键单击螺栓part,这时系统会出现“可以模拟机械装置”提示,点击确定CATIA DMU 运动机构CATIA—DMU运动机构6、在左侧树中双击图中高亮显示的“圆柱面”结合,便会弹出如右图5所示窗口,在窗口‐100mm和所示窗在窗100mm处可修改长度范围,在窗口‐360deg和360deg处可修改角度范围,修改完点击确定;图5CATIA—DMU运动机构CATIA DMU 运动机构点中使用7、点击中的(使用命令进行模拟)按钮,弹出右图6所示窗口,点击“模拟”下的“立刻”按钮,便可拖动上面的游标随意移动和转动;也可使用“按需要”命令,修改一下右上角数字框中的数据,就可点击下方的箭头标示,使构件自行移动和转动;图6据就可点击下方的箭头标示使构件自行移动和转动CATIA—DMU 运动机构CATIA DMU 运动机构•螺钉结合单击(螺钉结合)按钮弹出如右图图11、单击(螺钉结合)按钮,弹出如右图1所示窗口图22、点击右上角“新机械装置”按钮,弹出图2所示窗口3、单击确定按钮,图1窗口变为图3所示窗口,图3CATIA—DMU运动机构CATIA DMU 运动机构4、窗口中“直线1”、“直线2”分别选择螺栓轴线、螺母轴线,并点选“驱动角度”、或“驱动长度”按钮,如右图4所示,并单击确定;(螺钉结合可通过驱动角度和螺距的设置控制运动,也可通过驱动长度的设置控制运动);动也可通过驱动长度的设置控制运动)图4CATIA—DMU运动机构CATIA DMU 运动机构5、单击中的按钮,单击弹出右图所示窗口,然后直接左键单击螺栓part,这时系统会出现“可以模拟机械装提示点击确定;装置”提示,点击确定;CATIA DMU 运动机构CATIA—DMU运动机构6、在左侧树中双击图中高亮显示的“螺钉”结合,便会弹出如右图5所示窗口,在窗口“螺距”处所示窗在窗“螺距”处可修改螺栓螺母的螺距,在窗口‐360deg和360deg处可修改角度范围,修改完点击确定;图5CATIA—DMU运动机构CATIA DMU 运动机构点中使用7、点击中的(使用命令进行模拟)按钮,弹出右图6所示窗口,点击“模拟”下的“立刻”按钮,便可拖动上面的游标随意移动和转动;也可使用“按需要”命令,修改一下右上角数字框中的数据,就可点击下方的箭头标示,使构件自行移动和转动;图6据就可点击下方的箭头标示使构件自行移动和转动CATIA—DMU 运动机构CATIA DMU 运动机构•球面结合(球头连接)单击(螺钉结合)按钮弹出如右图图11、单击(螺钉结合)按钮,弹出如右图1所示窗口图22、点击右上角“新机械装置”按钮,弹出图2所示窗口3、单击确定按钮,图1窗口变为图3所示窗口,图3CATIA—DMU 运动机构CATIA DMU 运动机构4、在窗口中,点1点选球头面,自动识别球心;在窗口中,点点2点选球套面,自动识别球心位置,如右图所示可先在p中建球点4所示,也可先在part 中建立球心点,前后然后点选时只需直接选取点就行,选选取完之后点击确定,点击确定之后,两球心会相合在一起;4图CATIA DMU 运动机构CATIA—DMU运动机构5、单击中的按钮,此时系统并未自动弹出“可以模拟机械装置”窗口,在树中打开“机械装置”,发现此时的自由度=3,并不等于0,所以只有球面结合和固定件的情况下,是“球面结合”和“固定件”的情况下是不能进行仿真的,“球面结合”必须和其他带有驱动性质的结合一起使用;CATIA DMU 运动机构CATIA—DMU运动机构•平面结合平面结合和球面结合的步骤基本一样,并且只是约束平面结合和固定件的话机械装置的自由度也不为0,需要和别需要和别的带有驱动性质的结合在一起使用;的带有驱动性质的结合在起使用CATIA—DMU运动机构CATIA DMU 运动机构•刚性结合刚性结指将零件具有动式零件刚性结合是指将零件与已经具有运动形式的零件固定在一起,与其做相同的运动,或是与固定件绑定在一起不做运动;窗口中的“零件1”选择已经具有运动形式零件,“零件2”选择要与之刚性结合的零件;CATIA—DMU运动机构CATIA DMU 运动机构•点曲线结合点曲线结合是指一个part以本身的一个点与另外一各part点曲线结合是指个t以本身的个点与另外各t 中的一条曲线连接点沿着曲线方向移动中的一条曲线连接,点沿着曲线方向移动;CATIA—DMU运动机构CATIA DMU 运动机构将曲线固定后,这时系统并不会提示“可以模拟机械装置”,如右图所示,机械装置的自由度=3,并不为0,因为点所在的part并没限制本身的旋转自由度,所以点曲面结合也需要与其他具有驱动特性的结合配合使用;CATIA DMU 运动机构CATIA—DMU运动机构•滑动曲线结合滑动曲线结合,顾名思义就是一条曲线沿着另一条曲线滑动,但仅仅曲线沿着另一条曲线滑动但仅仅约束滑动结合,机械装置的自由度还不为0,必须要与其他形式的结合配合使用;CATIA DMU 运动机构CATIA—DMU运动机构•滚动曲线结合滚动曲线结合,顾名思义就是一条曲线沿着另一条曲线滚动,但仅仅曲线沿着另一条曲线滚动但仅仅约束滚动结合,机械装置的自由度还不为0,必须要与其他形式的结合配合使用;CATIA DMU 运动机构CATIA—DMU运动机构•点曲面结合点曲面结合,顾名思义就是一个点在一个曲面上运动,但这是远远不够的,无论是方向还是转动的自由度都没有约束完全,方向还是转动的自由度都没有约束完全所以是不能够模拟仿真,也需要与其他形式的结合一起使用;CATIA DMU 运动机构CATIA—DMU运动机构•通用结合通用结合是两个旋转结合的复合,将第一个旋转结合进行驱动的设置,第二个旋转不用设置驱动,通过通用结合,就是将第二个旋转结合的旋转零件的轴线与第个旋转结合的旋转零件的轴线连接起来,成为第个旋转件的轴线与第一个旋转结合的旋转零件的轴线连接起来成为第一个旋转零件的从动件;具体操作如下:CATIA DMU 运动机构CATIA—DMU运动机构1、在蓝色零件和灰色零件之间建立旋转结合,命名为“旋转1”,并设置“驱动角度”;CATIA DMU 运动机构CATIA—DMU运动机构2、分别在绿色零件与灰色零件、浅蓝色零件和灰色零件之间建立旋转分别在绿色零件与灰色零件浅蓝色零件和灰色零件之间建立旋转结合,分别命名为“旋转2”、“旋转3”,这两个旋转都不设置“驱动角度”,并将灰色零件设置为固定件;旋转2旋转3CATIA DMU 运动机构CATIA—DMU运动机构3、点击(通用结合)按钮,出现如下图所示窗口,“旋转1”处选择蓝色零件轴线,“旋转2”处选择绿色零件轴线,“十字销轴线方向”选择“垂直于旋转2”,点击确定;CATIA DMU 运动机构CATIA—DMU运动机构4、重复使用通用结合,如下图所示:“旋转1”选择绿色零件轴线,“旋”选择浅蓝色零件“十字销轴线”选择“垂直于旋转”点击确转2选择浅蓝色零件,十字销轴线选择垂直于旋转1,点击确定之后,系统便会提示“可以模拟机械装置”;CATIA—DMU运动机构CATIA DMU 运动机构操作完成后,具体树的情况见右图,图中两个U形接合右图,图中两个“形接合”便是通用结合;CATIA DMU 运动机构CATIA—DMU运动机构•CV结合CV结合与通用结合一样,CV结合只是可以同时识别连接三个旋转结合,并且也是只需第一个旋转结合设置驱动角度就行,后两个旋转结合都是随动件;CATIA DMU 运动机构CATIA—DMU运动机构展开左边的树可以发现展开左边的树,可以发现,cv结合就是两个通用结合的复合,而通用结合就是两个旋转结合的复合;CATIA DMU 运动机构CATIA—DMU运动机构•齿轮结合齿轮结合也是复合结合,也要识别两个旋转结合,所以首先要在两个齿轮和支座之间建立旋转结合;CATIA—DMU运动机构CATIA DMU 运动机构点击齿轮结合,窗口中的旋转结合1、口中的“旋转结合”“旋转结合2”分别要在树中选取;比率填写小齿轮与大齿轮的分度圆直径比;旋转方向,紧挨着的两个齿轮方向相反,若两齿轮间默认有中间齿轮话,则方向相同;驱动角度依据具体情况选取主从动关系;CATIA—DMU运动机构CATIA DMU 运动机构•架子结合架子结指就轮架子结合指的就是齿轮齿条的运动结合,也是复合结合,首先要在齿条和支座之间建立棱形结合,在齿轮和支座之间建立旋转结合,建立完成之后,如右图树中所示;CATIA DMU 运动机构CATIA—DMU运动机构点击架子结合,弹出右上图,“棱形结合”处在树中选择“棱形.1”,“旋转结合”选择“旋转.2”;比率处选择定义,弹出右中图所示窗口,“半径”处选取齿轮分度圆直径,窗口会自动生成比率,点击确定,会转至右图下所示窗口;驱动方式的地方,根据具体情况选取“棱形的驱动长度”或是“旋转示窗口驱动方式的地方根据具体情况选取“棱形的驱动长度”或是“旋转的驱动角度”,点击确定完成,即可模拟仿真;CATIA—DMU运动机构CATIA DMU 运动机构•电缆结合电缆结合是指将两个滑块用虚拟滑轮通过虚拟滑轮连接起来,所以要先在绿色滑块与支撑座、蓝色滑块与支撑座之间建立棱形结合,并在“棱形1”结合中设置驱动长度,将支撑座设置为固定件;CATIA DMU 运动机构CATIA—DMU运动机构点击按钮,弹出如右上图所示窗口,图中“棱形结合1”在左边树中选取“棱形.1”,“棱形结合2”在树中选取“棱形.2”,比率根据实际数据进行填写,驱动方式选取“棱形1的”驱动长度,设置完之后点击确定,会提示“可驱动长度设置完之后点击确定会提示“可以模拟机械装置”;。

CATIA关于三圆弧一直线链轮的参数化建模

CATIA关于三圆弧一直线链轮的参数化建模

CATIA关于三圆弧一直线链轮的参数化建模教程先看看完成后的数模:教程重点介绍参数的设置及建立,面对有一定实体建模基础的人。

链轮的轮体形式有很多种,选个简单的单体链轮,复杂的也是由简单的形式演化来的。

查手册“滚子链轮的基本参数和主要尺寸,GB/T1243-1997”:分度圆直径:)/180sin(/z P d ︒=齿顶圆直径:)/180cot(54.0(z p d a ︒+=齿根圆直径:1d d d f -=齿侧凸缘直径:76.004.1)/180cot(--︒<h z p d g h :内链板高度k d 由设计产生,x L 也是设计需要的,就不加到链轮参数里了。

查手册“轴向齿廓及尺寸,GB/T1243-1997”:选单排,忽略B 型,因为不常用。

齿宽:)7.12(93.011≤=p b b f 或者)7.12(95.011>=p b b f 1b :链条内节内宽齿侧半径:pr x =齿侧凸缘圆角半径:pr a 04.0=a b 参数建模时不需要,因为可以通过齿顶圆a d 和齿侧半径x r 确定出来。

三圆弧一直线齿槽形状:这里必须挑挑拣拣一下,建模的时候用不了这么多的参数。

只要知道1r 、2r 、3r 、c b 和它们对应的角度2/α、β、2/γ、轮齿就可以生成了。

手册上为什么给这么多的参数,我个人理解,应该是给当年用图板、圆规、直尺制图的时候准备的。

齿沟圆弧半径:05.05025.011+=d r 1d :滚子直径齿沟半角:z ︒-︒=60552α工作圆弧半径:05.03025.112+=d r 工作圆弧角:z︒-︒=5618β齿形半角:z︒-︒=64172γ齿顶圆弧半径:05.0)3025.1cos 8.0)2cos(3.1(13--+=βγd r 工作直线长度:))sin(8.0)2sin(3.1(1βγ-=d b c 先确定一个链条的基本参数,用来建立链轮数模:齿数z :20;查手册选择20A 链条的参数:节距p :31.75mm ;滚子直径d1:19.05mm ;内节内宽b1:18.9mm ;内链板高度h2:30.18;其他的参数可以通过公式计算求得。

catia运动仿真模块讲析

catia运动仿真模块讲析

产品研发一部底盘室:马学超题目:CATIA的DMU运动机构模块功能介绍CATIA—DMU 运动机构•对于产品的数字模型而言,进行准确的机构运动及状态分析,是十分基本并且重要的功能。

在DMU运动机构系统中,我们可以依照运动学的原理,通过约束自由度的方式建立机构,并且分析机构的运动状态与移动轨迹;•本文主要提供几种基本的结合,使我们建立机构运动,并且可以进行动态仿真,记录运动情形,制作成影片播放;CATIA—DMU 运动机构•模块简介:CATIA—DMU 运动机构•功能键一览:CATIA—DMU 运动机构•过程:将装配件导入DMU模块——建立机械装置——分析运动结合类型——建立运动结合——约束固定件——设置驱动形式——(两种做法运动仿真):1、使用命令进行模拟(可编辑传感器,导出数据,并绘制图形);2、模拟(可生成自动播放动画,也可编辑传感器)——可通过编译模拟,生成重放,——生成包络体;CATIA—DMU 运动机构•运动结合点:从左至右结合类型依次为::旋转结合;:棱形结合;:圆柱结合;:螺钉结合;:球面结合:平面结合;:刚性结合;:点线结合;:滑动曲线结合;:滚动曲线结合;:点面结合;:通用结合;:CV结合;:齿轮结合;:架子结合;:电缆结合;:基于轴的结合;CATIA—DMU 运动机构•:旋转结合1、点击按钮,弹出右图1窗口;图12、点击右上角“新机械装置”,弹出图2窗口;图23、单击“确定”按钮,弹出图1窗口图3CATIA—DMU 运动机构4、图中“直线1”、“直线2”、“平面1”、“平面2”依次选取螺栓轴线、螺母轴线、螺栓一垂直轴线平面、螺母一垂直轴线平面,并点击“偏移”与“驱动角度”按钮,如右图4显示,并单击“确定”图4CATIA—DMU 运动机构5、单击中的按钮,弹出右图所示窗口,然后直接左键单击螺栓part,这时系统会出现“可以模拟机械装置”提示,点击确定CATIA—DMU 运动机构6、在左侧树中双击图中高亮显示的“旋转”结合,便会弹出如右图5所示窗口,在窗口‐360deg和+360deg处可修改角度范围,修改完点击确定;(注意此时机械装置自由度=0,若不为0是不能仿真的,此项尤为重要,下述每个结合均是如此,不再反复强调)图5CATIA—DMU 运动机构7、点击中的(使用命令进行模拟)按钮,弹出右图6所示窗口,点击“模拟”下的“立刻”按钮,便可拖动上面的游标随意旋转;也可使用“按需要”命令,修改一下右上角数字框中的数据,就可点击下方的箭头标示,使构件自行转动;6图CATIA—DMU 运动机构•:棱形结合1、单击(棱形结合)按钮,弹出如右图1所示窗口图12、点击右上角“新机械装置”按钮,弹出图2所示窗口图2 3、单击确定按钮,图1窗口变为图3所示窗口,图3CATIA—DMU 运动机构4、窗口中“直线1”、“直线2”、“平面1”、“平面2”、分别选择螺栓轴线、螺母轴线、螺栓中的zx平面、螺母中的zx平面(所选平面必须与所选直线平行),并点选“驱动长度”按钮,如右图4所示,并单击确定;图4CATIA—DMU 运动机构5、单击中的按钮,弹出右图所示窗口,然后直接左键单击螺栓part,这时系统会出现“可以模拟机械装置”提示,点击确定CATIA—DMU 运动机构6、在左侧树中双击图中高亮显示的“棱形”结合,便会弹出如右图5所示窗口,在窗口‐100mm和100mm处可修改长度范围,修改完点击确定;图5CATIA—DMU 运动机构7、点击中的(使用命令进行模拟)按钮,弹出右图6所示窗口,点击“模拟”下的“立刻”按钮,便可拖动上面的游标随意移动;也可使用“按需要”命令,修改一下右上角数字框中的数据,就可点击下方的箭头标示,使构件自行移动;6图CATIA—DMU 运动机构•圆柱结合1、单击(圆柱结合)按钮,弹出如右图1所示窗口图12、点击右上角“新机械装置”按钮,弹出图2所示窗口图2 3、单击确定按钮,图1窗口变为图3所示窗口,图3CATIA—DMU 运动机构4、窗口中“直线1”、“直线2”分别选择螺栓轴线、螺母轴线,并点选“驱动角度”、“驱动长度”按钮,如右图4所示,并单击确定;(圆图4柱)结合从动件既可沿轴向转动,也可同时沿轴向移动);CATIA—DMU 运动机构5、单击中的按钮,弹出右图所示窗口,然后直接左键单击螺栓part,这时系统会出现“可以模拟机械装置”提示,点击确定CATIA—DMU 运动机构6、在左侧树中双击图中高亮显示的“圆柱面”结合,便会弹出如右图5所示窗口,在窗口‐100mm和100mm处可修改长度范围,在窗口‐360deg和360deg处可修改角度范围,修改完点击确定;图5CATIA—DMU 运动机构7、点击中的(使用命令进行模拟)按钮,弹出右图6所示窗口,点击“模拟”下的“立刻”按钮,便可拖动上面的游标随意移动和转动;也可使用“按需要”命令,修改一下右上角数字框中的数据,就可点击下方的箭头标示,使构件自行移动和转动;6图CATIA—DMU 运动机构•螺钉结合1、单击(螺钉结合)按钮,弹出如右图1所示窗口图12、点击右上角“新机械装置”按钮,弹出图2所示窗口图2 3、单击确定按钮,图1窗口变为图3所示窗口,图3CATIA—DMU 运动机构4、窗口中“直线1”、“直线2”分别选择螺栓轴线、螺母轴线,并点选“驱动角度”、或“驱动长度”按钮,如右图4所示,并单击确定;(螺钉结合可通过驱动角度和螺距的设置控制运动,也可通过驱动长度的设置控制运动);图4CATIA—DMU 运动机构5、单击中的按钮,弹出右图所示窗口,然后直接左键单击螺栓part,这时系统会出现“可以模拟机械装置”提示,点击确定;CATIA—DMU 运动机构6、在左侧树中双击图中高亮显示的“螺钉”结合,便会弹出如右图5所示窗口,在窗口“螺距”处可修改螺栓螺母的螺距,在窗口‐360deg和360deg处可修改角度范围,修改完点击确定;图5CATIA—DMU 运动机构7、点击中的(使用命令进行模拟)按钮,弹出右图6所示窗口,点击“模拟”下的“立刻”按钮,便可拖动上面的游标随意移动和转动;也可使用“按需要”命令,修改一下右上角数字框中的数据,就可点击下方的箭头标示,使构件自行移动和转动;6图CATIA—DMU 运动机构•球面结合(球头连接)1、单击(螺钉结合)按钮,弹出如右图1所示窗口图12、点击右上角“新机械装置”按钮,弹出图2所示窗口图2 3、单击确定按钮,图1窗口变为图3所示窗口,图3CATIA—DMU 运动机构4、1在窗口中,点点选球头面,自动识别球心;点2点选球套面,自动识别球心位置,如右图4所示,也可先在part中建立球心点,前后然后点选时只需直接选取点就行,选选取完之后点击确定,点击确定之后,两球心会相合在一起;图4CATIA—DMU 运动机构5、单击中的按钮,此时系统并未自动弹出“可以模拟机械装置”窗口,在树中打开“机械装置”,发现此时的自由度=3,并不等于0,所以只有“球面结合”和“固定件”的情况下,是不能进行仿真的,“球面结合”必须和其他带有驱动性质的结合一起使用;CATIA—DMU 运动机构•平面结合平面结合和球面结合的步骤基本一样,并且只是约束平面结合和固定件的话机械装置的自由度也不为0,需要和别的带有驱动性质的结合在一起使用;CATIA—DMU 运动机构•刚性结合刚性结合是指将零件与已经具有运动形式的零件固定在一起,与其做相同的运动,或是与固定件绑定在一起不做运动;窗口中的“零件1”选择已经具有运动形式零件,“零件2”选择要与之刚性结合的零件;CATIA—DMU 运动机构•点曲线结合点曲线结合是指一个part以本身的一个点与另外一各part 中的一条曲线连接,点沿着曲线方向移动;CATIA—DMU 运动机构将曲线固定后,这时系统并不会提示“可以模拟机械装置”,如右图所示,机械装置的自由度=3,并不为0,因为点所在的part并没限制本身的旋转自由度,所以点曲面结合也需要与其他具有驱动特性的结合配合使用;CATIA—DMU 运动机构•滑动曲线结合滑动曲线结合,顾名思义就是一条曲线沿着另一条曲线滑动,但仅仅约束滑动结合,机械装置的自由度还不为0,必须要与其他形式的结合配合使用;CATIA—DMU 运动机构•滚动曲线结合滚动曲线结合,顾名思义就是一条曲线沿着另一条曲线滚动,但仅仅约束滚动结合,机械装置的自由度还不为0,必须要与其他形式的结合配合使用;CATIA—DMU 运动机构•点曲面结合点曲面结合,顾名思义就是一个点在一个曲面上运动,但这是远远不够的,无论是方向还是转动的自由度都没有约束完全,所以是不能够模拟仿真,也需要与其他形式的结合一起使用;CATIA—DMU 运动机构•通用结合通用结合是两个旋转结合的复合,将第一个旋转结合进行驱动的设置,第二个旋转不用设置驱动,通过通用结合,就是将第二个旋转结合的旋转零件的轴线与第一个旋转结合的旋转零件的轴线连接起来,成为第一个旋转零件的从动件;具体操作如下:CATIA—DMU 运动机构1、在蓝色零件和灰色零件之间建立旋转结合,命名为“旋转1”,并设置“驱动角度”;CATIA—DMU 运动机构2、、分别在绿色零件与灰色零件浅蓝色零件和灰色零件之间建立旋转结合,分别命名为“旋转2”、“旋转3”,这两个旋转都不设置“驱动角度”,并将灰色零件设置为固定件;旋转2旋转3CATIA—DMU 运动机构3、点击(通用结合)按钮,出现如下图所示窗口,“旋转1”处选择蓝色零件轴线,“旋转2”处选择绿色零件轴线,“十字销轴线方向”选择“垂直于旋转2”,点击确定;CATIA—DMU 运动机构4、重复使用通用结合,如下图所示:“旋转1”选择绿色零件轴线,“旋转2选择浅蓝色零件,十字销轴线选择垂直于旋转1,点击确”“”“”定之后,系统便会提示“可以模拟机械装置”;CATIA—DMU 运动机构操作完成后,具体树的情况见右图,图中两个“U形接合”便是通用结合;CATIA—DMU 运动机构•CV结合CV结合与通用结合一样,CV结合只是可以同时识别连接三个旋转结合,并且也是只需第一个旋转结合设置驱动角度就行,后两个旋转结合都是随动件;CATIA—DMU 运动机构展开左边的树,可以发现,cv结合就是两个通用结合的复合,而通用结合就是两个旋转结合的复合;CATIA—DMU 运动机构•齿轮结合齿轮结合也是复合结合,也要识别两个旋转结合,所以首先要在两个齿轮和支座之间建立旋转结合;CATIA—DMU 运动机构点击齿轮结合,窗口中的“旋转结合1”、“旋转结合2”分别要在树中选取;比率填写小齿轮与大齿轮的分度圆直径比;旋转方向,紧挨着的两个齿轮方向相反,若两齿轮间默认有中间齿轮话,则方向相同;驱动角度依据具体情况选取主从动关系;CATIA—DMU 运动机构•架子结合架子结合指的就是齿轮齿条的运动结合,也是复合结合,首先要在齿条和支座之间建立棱形结合,在齿轮和支座之间建立旋转结合,建立完成之后,如右图树中所示;CATIA—DMU 运动机构点击架子结合,弹出右上图,“棱形结合”处在树中选择“棱形.1”,“旋转结合”选择“旋转.2”;比率处选择定义,弹出右中图所示窗口,“半径”处选取齿轮分度圆直径,窗口会自动生成比率,点击确定,会转至右图下所示窗口;驱动方式的地方,根据具体情况选取“棱形的驱动长度”或是“旋转的驱动角度”,点击确定完成,即可模拟仿真;CATIA—DMU 运动机构•电缆结合电缆结合是指将两个滑块用虚拟滑轮通过虚拟滑轮连接起来,所以要先在绿色滑块与支撑座、蓝色滑块与支撑座之间建立棱形结合,并在“棱形1”结合中设置驱动长度,将支撑座设置为固定件;CATIA—DMU 运动机构点击按钮,弹出如右上图所示窗口,图中“棱形结合1”在左边树中选取“棱形.1”,“棱形结合2”在树中选取“棱形.2”,比率根据实际数据进行填写,驱动方式选取“棱形1的”驱动长度,设置完之后点击确定,会提示“可以模拟机械装置”;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Catia链轮链条仿真运动教程
Panyf
Catia DMU 运动机构分析——链条链轮运动仿真
网上关于catia做柔性零件的运动仿真的资料比较少,(也许我没找到吧)
链条的模拟有看到过,但是都是单独做链条的模拟,没有加上链轮的一起仿真的。

下面做个链条与链轮一起运动的仿真教程,希望对不会的朋友有有些帮助。

(做的不好也请见谅)
(以下用两个链轮做例子)
首先确定所用链轮的参数——节距,滚子直径,齿数z1.z2。

确定链条的运动轨迹。

将两链轮的分度圆定位好,
然后用各种线条连接成自己需要的运动轨迹。

1、如果只需要几节链条的模拟,那么只需在运动轨迹绘制几个点,(轨迹上的点与滚子中心点相合)每两个点之间的距离为所选链轮参数中的节距。

这里强调一下,这里的距离是指两点间的直线距离。

2、如果需要安装整条链条,那就需要将整条运动轨迹标以节距为间距标注好n 个点,确保相邻两点间距为节距。

(这里说一下,由于之前两链轮已经约束了,所有点都约束后会出现过分约束,
可以将其中一个链轮的其中一个约束去掉或者改为参考,比如将图中的103.165
删除或者,这样就可以确保每个点之间的距离都为节距)
制作好单节链条,一个内挡板,一个外挡板
,两点为滚子中心,距离等于节距。

(我做的比较简单,只是个样子,把滚子和内挡板做一块了)
进入装配设计,导入各个零件。

将链条一内一外安装在轨迹上的点上,最后头尾相接。

安装好链轮。

如图所示
这里提醒下,做链条模拟每个链节都是独立的,都要进行接合定义,举个例子,如果你的整个链条由50节链节(即50个滚子)组成,那么你就得定义51个点曲线接合,49个旋转接合。

选的越多接合越多,如果你电脑牛X,那可以选多点,如果电脑一般,就尽量少点吧。

进入DMU 运动机构建立各种接合。

首先选择固定件,把运动轨迹做为固定件。

选平面接合。

选择内挡板与运动轨迹相合的两个面
建立每节链条与运动轨迹的运动接合。

(我的方法是:此接合只要对内挡板和外挡板其中一个使用。

但是需要对其所有的内挡板或者外挡板使用此接合。

举个例子,我选择对内挡板使用约束,外挡板就不需要是用此接合------------还有一种方法就是:第一个点选择内挡板的,下一个点就是外挡板的,其实效果一样。

),
选择点与曲线接合,选择单节链条作为开始端,选择其中一个滚子中心与运动轨迹,
另一个滚子中心也采用此接合
然后选择其中一个接合作为驱动长度。

我有30个滚子,由于末端的滚子也需要连接起来,所以这就相当于有31个滚子(把整条链条断开平铺,末端也相当于一个滚子,只不过当连接起来时两个滚子重合了而已)。

所以最末端还得做一个点曲线接合,与第一个位子一样,不过点一个取自外挡板,一个取自内挡板。

接着选择旋转接合对外挡板进行
选择旋转接合。

作为开始端的那接链节的第一个滚子不需要旋转接合,从第二个开始,选择外挡板与内挡板相合的轴线,
一个30个滚子,除去第一个,一个29个旋转接合(不需要驱动角度)
做完上面的这些自由度应该为0,并且可以模拟了。

下面做链轮的模拟,这个很简单了,一个齿轮接合就可以了
选择齿轮接合,创建两个旋转接合,分别为两个链轮对运动轨迹的旋转接合
比率就是旋转接合1的链轮的齿数与旋转接合2的链轮齿数之比。

方向相同旋转一个旋转作为驱动角度。

此时在命令应该有两个命令
为了时两个运动结合起来,就运用到法则曲线,通过函数把两者联系起来。

步骤1:选中点击公式编辑器,出现
第一个时装置模拟时间,第二个是链条模拟运动的长度,第三个是链轮主动轮转过的角度
步骤2:选中第三个,点击添加公式,
输入公式
`机械装置.1\KINTime` /1s*18deg
表示链轮主动轮一秒钟转过的角度为18度(18可以自己更改),完成后确定退出。

步骤3:按步骤1再次进入公式编辑器。

选择第二个,点击添加公式,
输入公式
PI*`链轮\分度圆直径d` /360deg*`机械装置.1\命令\命令.2\Angle1`
此公式表示链条的移动长度等于链轮主动轮转过的周长。

现在可以仿真了。

点击,出现
更改下模拟持续时间就可以了
完成!
(教程做的不咋地,不好的地方请见谅,希望对大家有点帮助,不理解可以留言给我,多谢支持)
Panyf。

相关文档
最新文档