专题3 直击函数压轴题中零点问题

合集下载

2018高考数学专题大讲堂-第六讲-压轴小题中的函数零点问题(PDF 含答案)

2018高考数学专题大讲堂-第六讲-压轴小题中的函数零点问题(PDF 含答案)

答案:
解析:分别画出函数

的图象.
由图象可知,函数
关于 对称, 又 也是函数
的对称轴,
所以函数 和 的交点也关于 对称,且两函数共有 个交点,所以所有零点之和为 .
变式:( ·全国Ⅱ)已知函数
满足
,若函数

图象的交点为
,则
()
答案: 变式:(2016·全国Ⅱ)已知函数
点为
,则
满足 ()
,若函数

图象的交
数形结合法:转化为两个函数的图象的交点个数问题.先画出两个函数的图象,看其交点的个数,其
中交点的横坐标有几个不同的值,就有几个不同的零点.
直接计算或判断零点
例 ( ·南通三模)设函数
内的所有零点的和为________. 答案:
解析:当
时,


时,

,则函数
在区间
,此时当
时,
;由此可得
; 时,
.
下面考虑
且 时, 的最大值的情况.

时,由函数 的定义知

因为
,所以
,此时当
时,


时,同理可知,
.
由此可得
且 时,
.
综上,对于一切的
,函数 在区间
上有 个零点,从而 在区间
上有 个零
点,且这些零点为
,所以当
时,所有这些零点的和为

变式:( ·天津二模)已知函数
在定义域
上单调递增,且对任意
,方程 和为( )
压轴小题中的函数零点问题
函数的零点问题是高考的重点和难点内容,由于其和函数、方程有着密切的联系,近几年在全国各地高考

高考数学压轴题之函数零点问题

高考数学压轴题之函数零点问题

专题二“构造函数”,巧求参数范围函数方程思想是一种重要的数学思想方法,函数问题可以利用方程求解,方程解的情况可借助于函数的图象和性质求解.高考命题常常以基本初等函数为载体,主要考查以下三个方面:(1)零点所在区间——零点存在性定理;(2)二次方程根的分布问题;(3)判断零点的个数问题;(4)根据零点的情况确定参数的值或范围;(5)根据零点的情况讨论函数的性质或证明不等式等.本专题围绕高考压轴题中求参数范围问题,构造函数,例题说法,高效训练.【典型例题】第一招参变分离,构造函数例1.【2019届高三第一次全国大联考】若函数恰有三个零点,则的取值范围为( ) A.B.()C.D.()【答案】D【解析】当时,为减函数,令易得,所以只需有两个零点,令则问题可转化为函数的图象与的图象有两个交点.求导可得,令,即,可解得;令,即,可解得,所以当时,函数单调递减;当时,函数单调递增,由此可知当时,函数取得最小值,即.在同一坐标系中作出函数与的简图如图所示,根据图可得故选D.第二招根据方程做差,构造函数例2.【东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)2019届高三第一次模拟】已知函数(为自然对数的底数),.(1)当时,求函数的极小值;(2)若当时,关于的方程有且只有一个实数解,求的取值范围.【答案】(1)0(2)【解析】(1)当时,,,令则列表如下:1单调递减所以.(2)设,,设,,由得,,,在单调递增,即在单调递增,,①当,即时,时,,在单调递增,又,故当时,关于的方程有且只有一个实数解,符合题意.②当,即时,由(1)可知,所以,又故,当时,,单调递减,又,故当时,,在内,关于的方程有一个实数解1.又时,,单调递增,且,令,,,故在单调递增,又在单调递增,故,故,又,由零点存在定理可知,,故在内,关于的方程有一个实数解.又在内,关于的方程有一个实数解1,不合题意.综上,.第三招求导转化,构造函数例3.【山东省菏泽市2019届高三下学期第一次模拟】已知函数.(1)设,求函数的单调区间;(2)若函数在其定义域内有两个零点,求实数的取值范围.【答案】(1)单调递增区间为,无单调递减区间.(2)【解析】(1)函数的定义域为,令,则令,得;令,得所以函数在区间上单调递减,在区间上单调递增.所以所以对任意恒成立,所以的单调递增区间为,无单调递减区间.(2)(法一):的定义域为,所以“函数在其定义域内有两个零点”等价于“方程在区间内有两个不同的实数根”即方程在区间内有两个不同的实数根故上述问题可以转化为函数与函数的图像在上有两个不同的交点,如图若令过原点且与函数图像相切的直线斜率为,由图可得令切点由,得,所以又,所以,解得:于是,所以故实数的取值范围是(法二)的定义域为,,当时,,所以在单调递增,所以在不会有两个零点,不合题意,当时,令,得,在上,,在上单调递增,在上,,在上单调递减,所以,又时,,时,,要使有两个零点,则有即所以所以,即实数的取值范围为.第四招换元转化,构造函数例4.【四川省高中2019届高三二诊】已知.求的极值;若有两个不同解,求实数的取值范围.【答案】(1)有极小值,为;无极大值;(2)【解析】的定义域是,,令,解得:,令,解得:,故在递减,在递增,故时,;记,,则,故可转化成,即:,令,,令,解得:,令,解得:,故在递增,在递减,且时,,时,故,由,,的性质有:,和有两个不同交点,,且,,各有一解,即有2个不同解,,和仅有1个交点,且,有2个不同的解,即有两个不同解,取其它值时,最多1个解,综上,的范围是【规律与方法】构造函数的几种常用的构造技巧:1.通过作差构造函数:作差构造新的函数,通过研究新函数的性质从而得出结论.当然,适合用这个方法解的题目中,构造的函数要易于求导,易于判断导数的正负.2.利用“换元法”构造函数,换元的目的是简化函数的形式.3.先分离参数再构造函数,将方程变形为m=h(x),构造函数h(x),研究h(x)的性质来确定实数m的取值范围.4.根据导函数的结构,构造函数.【提升训练】1.【福建省2019届备考关键问题指导适应性练习(四)】已知函数,,若关于的方程在区间内有两个实数解,则实数的取值范围是( )A.B.C.D.【答案】A【解析】易知当≤0时,方程只有一个解,所以>0.令,,令得,为函数的极小值点,又关于的方程=在区间内有两个实数解,所以,解得,故选A.2.【河北省唐山市2019届高三下学期第一次模拟】设函数,有且仅有一个零点,则实数的值为()A.B.C.D.【答案】B【解析】∵函数,有且只有一个零点,∴方程,,有且只有一个实数根,令g(x)=,则g′(x)=,当时,g′(x)0,当时,g′(x)0,∴g(x)在上单调递增,在上单调递减,当x=时,g(x)取得极大值g()=,又g(0)= g()=0,∴若方程,,有且只有一个实数根,则a=故选B.3. 【山东省济宁市2019届高三第一次模拟】已知当时,关于的方程有唯一实数解,则所在的区间是( )A.(3,4) B.(4,5) C.(5,6) D.(6.7)【答案】C【解析】由xlnx+(3﹣a)x+a=0,得,令f(x)(x>1),则f′(x).令g(x)=x﹣lnx﹣4,则g′(x)=10,∴g(x)在(1,+∞)上为增函数,∵g(5)=1﹣ln5<0,g(6)=2﹣ln6>0,∴存在唯一x0∈(5,6),使得g(x0)=0,∴当x∈(1,x0)时,f′(x)<0,当x∈(x0,+∞)时,f′(x)>0.则f(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增.∴f(x)min=f(x0).∵﹣4=0,∴,则∈(5,6).∴a所在的区间是(5,6).故选:C4.【天津市和平区2019届高三下学期第一次调查】已知函数,若关于的方程恰有三个不相等的实数解,则的取值范围是A.B.C.D.【答案】C【解析】关于的方程恰有三个不相等的实数解,即方程恰有三个不相等的实数解,即与有三个不同的交点.令,当时,,函数单调递减;当时,,函数单调递增;且当时,,当时,,,当时,,据此绘制函数的图像如图所示,结合函数图像可知,满足题意时的取值范围是 .本题选择C选项.5.【安徽省合肥市2019届高三第二次检测】设函数,若函数有三个零点,则实数的取值范围是()A.B.C.D.【答案】D【解析】设,则,在上递减,在上递增,,且时,,有三个零点等价于与的图象有三个交点,画出的图象,如图,由图可得,时,与的图象有三个交点,此时,函数有三个零点,实数的取值范围是,故选D.6.【江西省南昌市2019届高三第一次模拟】已知函数(为自然对数的底数),,直线是曲线在处的切线.(Ⅰ)求的值;(Ⅱ)是否存在,使得在上有唯一零点?若存在,求出的值;若不存在,请说明理由.【答案】(Ⅰ);(Ⅱ)存在k=0或2.【解析】(Ⅰ),由已知,有,即,解得.(Ⅱ)由(Ⅰ)知,,则令,则恒成立,所以在上单调递减,又因为,,所以存在唯一的,使得,且当时,,即,当时,,即.所以在上单调递增,在上单调递减.又因为当时,,,,,所以存在或,使得在上有唯一零点.7.【山东省青岛市2019届高三3月一模】已知函数,,为自然对数的底数.(1)当时,证明:函数只有一个零点;(2)若函数存在两个不同的极值点,,求实数的取值范围.【答案】(1)详见解析;(2).【解析】(1)由题知:,令,,当,,所以在上单调递减.因为,所以在上单调递增,在上单调递减,所以,故只有一个零点.(2)由(1)知:不合题意,当时,因为,;,;又因为,所以;又因为,因为函数,,,所以,即,所以存在,满足,所以,;,;,;此时存在两个极值点,0,符合题意.当时,因为,;,;所以;所以,即在上单调递减,所以无极值点,不合题意.综上可得:.8.【陕西省咸阳市2019年高考模拟检测(二)】已知函数. (1)当,求证;(2)若函数有两个零点,求实数的取值范围.【答案】(1)见证明;(2)【解析】(1)证明:当时,,得,知在递减,在递增,,综上知,当时,.(2)法1:,,即,令,则,知在递增,在递减,注意到,当时,;当时,,且,由函数有个零点,即直线与函数图像有两个交点,得.法2:由得,,当时,,知在上递减,不满足题意;当时,,知在递减,在递增.,的零点个数为,即,综上,若函数有两个零点,则.9.【湖南省怀化市2019届高三3月第一次模拟】设函数.(1)若是的极大值点,求的取值范围;(2)当,时,方程(其中)有唯一实数解,求的值.【答案】(1)(2)【解析】(1)由题意,函数的定义域为,则导数为由,得,∴①若,由,得.当时,,此时单调递增;当时,,此时单调递减.所以是的极大值点②若,由,得,或.因为是的极大值点,所以,解得综合①②:的取值范围是(2)因为方程有唯一实数解,所以有唯一实数解设,则,令,即.因为,,所以(舍去),当时,,在上单调递减,当时,,在单调递增当时,,取最小值则,即,所以,因为,所以(*)设函数,因为当时,是增函数,所以至多有一解因为,所以方程(*)的解为,即,解得10.【普通高中2019届高三质量监测(二)】已知函数.(1)讨论的单调性;(2)若方程有两个实数根,求实数的取值范围.【答案】(1)见解析;(2)【解析】(1)由题可得,当时,,在上单调递增;当时,,,在上单调递增;,,在上单调递减.(2)令,,易知单调递增且一定有大于0的零点,不妨设为,,即,,故若有有两个零点,需满足,即,令,,所以在上单调递减.,所以的解集为,由,所以.当时,,有,令,由于,所以,,故,所以,故,在上有唯一零点,另一方面,在上,当时,由增长速度大,所以有,综上,.11.【广东省汕头市2019年普通高考第一次模拟】已知.(1)讨论的单调性;(2)若存在3个零点,求实数的取值范围.【答案】(1)见解析;(2)【解析】(1)因为,由,得或.(i)当时,,在和上,,单调递增;在上,,单调递减,(ii)当时,,在上,,单调递增,(iii)当时,,在和上,,单调递增;在上,,单调递减,(2),所以有一个零点.要使得有3个零点,即方程有2个实数根,又方程,令,即函数与图像有两个交点,令,得的单调性如表:1-↘当时,,又,的大致图像如图,所以,要使得有3个零点,则实数的取值范围为12.【山东省淄博市2019届高三3月模拟】已知函数.(1)若是的极大值点,求的值;(2)若在上只有一个零点,求的取值范围.【答案】(1)(2)【解析】(1),因为是的极大值点,所以,解得,当时,,,令,解得,当时,,在上单调递减,又,所以当时,;当时,,故是的极大值点;(2)令,,在上只有一个零点即在上只有一个零点,当时,,单调递减;当时,,单调递增,所以.(Ⅰ)当,即时,时,在上只有一个零点,即在上只有一个零点.(Ⅱ)当,即时,取,,①若,即时,在和上各有一个零点,即在上有2个零点,不符合题意;②当即时,只有在上有一个零点,即在上只有一个零点,综上得,当时,在上只有一个零点.。

函数压轴题中的零点问题

函数压轴题中的零点问题

函数压轴题中的零点问题函数压轴题中的零点问题【真题感悟】例1.(2015年江苏⾼考)已知函数.(1)试讨论的单调性;(2)若(实数c 是a 与⽆关的常数),当函数有三个不同的零点时,a 的取值范围恰好是,求c 的值.例2. (2013年江苏⾼考)设函数()ln f x x ax =?,()x g x e ax =?,其中a 为实数.(1)若()f x 在(1,)+∞上是单调减函数,且()g x 在(1,)+∞上有最⼩值,求的取值范围;(2)若在上是单调增函数,试求的零点个数,并证明你的结论.例3. (2012年江苏⾼考)若函数在处取得极⼤值或极⼩值,则称为函数的极值点。

已知是实数,1和是函数的两个极值点.(1)求和的值;(2)设函数()g x 的导函数()()2g x f x '=+,求()g x 的极值点;(3)设,其中,求函数的零点个数.a ()g x (1,)?+∞()f x ab ,1?()32f x x ax bx =++a b ()()()h x ff x c =?[]22c ∈?,()y h x =【典题导引】命题规律:函数的零点问题是⾼考的重点和难点内容,题型以解答题为主,有时也在填空题中出现。

和函数、⽅程有着密切的联系,需要我们熟悉函数的图象与性质,需要我们理解函数与⽅程等思想。

其中函数的零点、⽅程的根、曲线的交点三个问题可以互相转化。

主要有以下命题⾓度:(1)判断函数零点个数或⽅程解的个数;(2)根据函数零点个数或⽅程解的个数求解参数;(3)已知函数零点范围或整数零点等求解参数。

⽅法总结:在使⽤函数零点存在性定理时要注意两点:⼀是当函数值在⼀个区间上不变号,⽆论这个函数单调性如何,这个函数在这个区间上都不会有零点;⼆是此定理只能判断函数在⼀个区间上是否存在零点,⽽不能判断这个区间上零点的个数。

研究函数零点的本质就是研究函数的极值的正负,其主要考查⽅式:(1) 确定函数的零点、图象交点的个数;(2) 由函数的零点、图象交点的情况求参数的取值范围.(1)当a =2时,求函数f(x)的零点;(2)当a >0时,求证:函数f(x)在内有且仅有⼀个零点;(3)若函数f(x)有四个不同的零点,求a 的取值范围。

专题02函数3函数的零点(3大重难点详细讲解)2024高考数学重难点及压轴题突破(原卷版)

专题02函数3函数的零点(3大重难点详细讲解)2024高考数学重难点及压轴题突破(原卷版)

第03讲 函数的零点难点1:零点的定义——求函数零点或方程根的个数考试时我们经常会遇到求函数的零点个数问题,这种题常作为选择的压轴题出现,因其具有很强的综合性,常常与函数奇偶性,单调性,周期性等性质结合起来,并与各种函数以及导数和在一起考查,学生往往很难搞明白零点的位置,造成丢分。

求函数零点或方程的根的个数问题的步骤:(1)将问题转化为求两个函数交点的问题;(2)分析两个函数的性质,并做出函数图象;(3)找到两个函数的交点,即为所求。

【例题】(宁夏吴忠市吴忠中学2024届高三上学期开学第一次月考数学(理)试题)已知()f x 是定义在R 上的奇函数,满足(1)()f x f x +=-,当10,2x ⎡⎤∈⎢⎥⎣⎦时,()91x f x =-,则()()2(1)h x x x f =--在区间[]20212023-,上所有零点个数为____________.【答案】4044【解析】由题意, 我们根据题目条件知道,函数是奇函数得出()()f x f x -=-,而且满足(1)()f x f x +=-,便可以得出函数的对称轴,我们用1x +替换原来的x ,与(1)()f x f x +=-与结合,即可得出(2)()f x f x +=,进而得到函数的周期。

∵()f x 是定义在R 上的奇函数,∴()()f x f x -=-,∵(1)()f x f x +=-,12x =是其中一条对称轴, ∴(2)(1)()f x f x f x +=-+=,∴()f x 的周期是2 ,在()(1)()2h x x f x =--中,化简函数,将函数的零点问题转化成求函数()y f x =与函数21y x 的交点的问题,当()(1)()20h x x f x =--=时,()21f x x =-, ∴求函数零点, 即为求()y f x =与21y x 的交点的横坐标, 作出函数图象,根据图象得出,在一个周期上,两个函数有2个交点,进而可以求出在区间[]20212023-,上所有交点个数,即可知道在区间[]20212023-,上函数()()2(1)h x x x f =--所有零点个数.作出()y f x =与21yx 图象如图所示,由图知:∴交点关于(1,0)对称,每个周期有2个交点∴[2021,1)-有1011个周期, (1,2023]有1011个周期, ∴在区间[]20212023-,上所有零点个数为:1011224044⨯⨯=, 故答案为:4044.【变式训练】(2023 ·福建泉州·统考模拟预测)(多选)设函数2()ln ()f x x x a =--,则下列判断正确的是A. ()f x 存在两个极值点B. 当73a >时,()f x 存在两个零点 C. 当1a ≤时,()f x 存在一个零点D. 若()f x 有两个零点12,x x ,则122x x a +>难点2:零点存在性定理零点存在定理:设函数()f x 在闭区间[],a b 上连续,且()()0f a f b ⋅<,则()f x 在开区间(,)a b 上存在零点。

专题03 直击函数压轴题中零点问题(解析版)

专题03 直击函数压轴题中零点问题(解析版)

一、解答题1.(2020·湖南省高三考试)设函数()()21f x x bx b R =-+∈,()()(),0,0f x x F x f x x ⎧>⎪=⎨->⎪⎩.(1)如果()10f =,求()F x 的解析式;(2)若()f x 为偶函数,且()()g x f x kx =-有零点,求实数k 的取值范围.【答案】(1)()2221,021,0x x x F x x x x ⎧-+>=⎨-+-<⎩(2)(][),22,k ∈-∞-+∞【解析】(1)因为()10f =,所以110b -+=,即2b =.所以()2221,021,0x x x F x x x x ⎧-+>=⎨-+-<⎩. (2)因为()21f x x bx =-+为偶函数,所以0b =,即()21f x x =+.因为()()g x f x kx =-有零点,所以方程210x kx +-=有实数根. 所以240k ∆=-≥, 所以(][),22,k ∈-∞-+∞.2.(2020·全国高三专题练习)已知函数3()sin f x x x =-,()f x '为()f x 的导函数.(1)求()f x 在0x =处的切线方程;(2)求证:()f x '在,22ππ⎛⎫- ⎪⎝⎭上有且仅有两个零点.【答案】(1)y x =;(2)证明见解析. 【解析】(1)()2cos 3,f x x x '=-()01f '=,又()00f =,所以切点为()0,0.故()f x 在0x =处的切线方程为y x =;(2)2()cos 3,f x x x '=-因为()f x '为偶函数,且()01f '=,则只需证明()f x '在0,2π⎛⎫⎪⎝⎭上有且仅有一个零点即可.()sin 6f x x x ''=--,当0,2x π⎛⎫∈ ⎪⎝⎭时()0f x ''<, 故()f x '在0,2π⎛⎫⎪⎝⎭上单调递减, 因为()010f '=>,23022f ππ⎛⎫⎛⎫'=-⨯< ⎪ ⎪⎝⎭⎝⎭, 由零点存在定理,可知存在00,2x π⎛⎫∈ ⎪⎝⎭使得()00f x '=, 所以()f x '在0,2π⎛⎫⎪⎝⎭上有且仅有一个零点, 因此()f x '在,22ππ⎛⎫- ⎪⎝⎭上有且仅有两个零点.3.(2020·安徽省高三期末)已知函数1()(2)xf x e a x x=+++在区间(1,0)-内存在零点. (1)求a 的范围; (2)设22ea >,1221,()x x x x <是()f x 的两个零点,求证:122x x -<. 【答案】(1)0a >(2)证明见解析【解析】(1)由题意,方程1e (2)0x a x x+++=在区间(1,0)-有解, 即方程2e (1)0x x a x ++=在区间(1,0)-有解,设函数2()e (1)x g x x a x =++,即g()x 在区间(1,0)-存在零点. 因为()(1()e )2x g x x a '=++,①若0a >,则e 20x a +>,10x +>,()0g x '>成立,g()x 在区间(1,0)-单调递增,(0)0g a =>,1(1)0eg -=-<,(0)(1)0g g ⋅-<,所以g()x 在区间(1,0)-存在零点;②若0a =,则()e 0x g x x '=<,g()x 在(1,0)-内单调递减,且()(0)0g x g a >==,所以g()x 在区间(1,0)-无零点; ③若0a <,则e 0x x <,2(1)0a x +<, 当(1,0)x ∈-时,()0g x '<,()(1)0g x g <-< 故g()x 在区间(1,0)-无零点; 综上所述,0a >. (2)由(1)可知, 22e a >时,g()x 在区间(,1)-∞-单调递减,在区间(1,)-+∞单调递增, 且g()x 在区间(1,0)-存在一个零点; 又22(2)0eg a -=-+>,(2)(1)0g g -⋅-<, 所以g()x 在区间(2,1)--也存在一个零点, 从而2120x x -<<<, 所以122x x -<,不等式得证.4.(2020·安徽省高三月考)已知函数()()()32111323a f x x a x x a R =-++-∈. (1)若1a >,求函数()f x 的极值;(2)当01a << 时,判断函数()f x 在区间[]0,2上零点的个数. 【答案】(1)详见解析;(2)详见解析. 【解析】(1)∵()()32111323a f x x a x x =-++-, ∴()()()21111f x ax a x a x x a ⎛⎫'=-++=-- ⎪⎝⎭,因为1a >,所以101a<<, 当x 变化时,()(),f x f x '的变化情况如下表:由表可得当1x a=时,()f x 有极大值,且极大值为2212316a a f a a -+-⎛⎫= ⎪⎝⎭,当1x =时,()f x 有极小值,且极小值为()()1116f a =--. (2)由(1)得()()11f x a x x a ⎛⎫=-- ⎝'⎪⎭. ∵ 01a <<,∴11a>. ① 当11202a a ≥<≤,即时,()f x 在()0,1上单调递增,在()1,2上递减 又因为()()()()()11100,110,2210363f f a f a =-=--=-≤ 所以()f x 在(0,1)和(1,2)上各有一个零点, 所以()[]0,2f x 在上有两个零点.② 当112a <<,即112a <<时,()f x 在()0,1上单调递增,在11,a ⎛⎫ ⎪⎝⎭上递减,在1,2a ⎛⎫ ⎪⎝⎭上递增, 又因为()()()()()221111100,110,0366a a f f a f a a ---⎛⎫=-=--=> ⎪⎝⎭所以()f x 在[]0,1上有且只有一个零点,在[]1,2上没有零点, 所以在[]0,2上有且只有只有一个零点. 综上:当102a <≤时,()f x 在[]0,2上有两个零点; 当112a <<时,()f x 在[]0,2上有且只有一个零点. 5.(2020·四川省棠湖中学高三月考)已知设函数()ln(2)(1)axf x x x e =+-+.(1)若0a =,求()f x 极值;(2)证明:当1a >-,0a ≠时,函数()f x 在(1,)-+∞上存在零点. 【答案】(1)()f x 取得极大值0,无极小值(2)见证明【解析】(1)当0a =时,()()()ln 21f x x x =+-+,定义域为()2,-+∞,由()102x f x x +'=-=+得1x =-.当x 变化时,()f x ', ()f x 的变化情况如下表:故当1x =-时,()f x 取得极大值()()()1ln 21110f -=---+=,无极小值. (2)()()1e 112ax f x a x x ⎡⎤=-++⎣+'⎦,2x >-. 当0a >时,因为1x >-,所以()()()21e 1202axf x a a x x ⎡⎤=--++⎣+'<⎦', ()f x '在()1,-+∞单调递减.因为()11e0af --=->',()1002f b -'=-<,所以有且仅有一个()11,0x ∈-,使()10g x '=,当11x x -<<时,()0f x '>,当1x x >时,()0f x '<, 所以()f x 在()11,x -单调递增,在()1,x +∞单调递减. 所以()()010f x f >-=,而()0ln210f =-<, 所以()f x 在()1,-+∞存在零点.当10a -<<时,由(1)得()()ln 21x x +≤+, 于是e 1x x ≥+,所以()e11axax a x -≥-+>-+.所以()()()()())e e ln 21e 1ln 21]ax ax axf x x x x a x -⎡⎤⎡=+-+>-+++⎣⎣⎦. 于是1111111e e e 1ln e 21]e e 1ln e 1]0a a a a af a a -------⎡⎫⎡⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫>+-+->+--=⎪⎪⎢⎢ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎪⎢⎢⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎭⎣⎭.因为()0ln210f =-<,所以所以()f x 在1e ,a -⎛⎫+∞ ⎪⎝⎭存在零点.综上,当1a >-,0a ≠时,函数()f x 在()1,-+∞上存在零点.6.(2020·湖南省高三期末)已知函数2()(2)ln 47()f x x x ax x a a =++-+∈R .(1)若12a =,求函数()f x 的所有零点; (2)若12a ≥,证明函数()f x 不存在的极值.【答案】(1) 1x = (2)见证明 【解析】(1)当1a 2=时,()()2172ln 422f x x x x x =++-+, 函数()f x 的定义域为()0,∞+,且()2ln 3f x x x x =++-'. 设()2ln 3g x x x x=++-,则()()()2222211221x x x x g x x x x x +-+-='=-+= 0x .当01x <<时,()0g x '<;当1x >时,()0g x '>,即函数()g x 在()0,1上单调递减,在()1,+∞上单调递增, 所以当0x >时,()()10g x g ≥=(当且仅当1x =时取等号). 即当0x >时,()0f x '≥(当且仅当1x =时取等号). 所以函数()f x 在()0,∞+单调递增,至多有一个零点. 因为()10f =,1x =是函数()f x 唯一的零点. 所以若12a =,则函数()f x 的所有零点只有1x =. (2)证法1:因为()()22ln 47f x x x ax x a =++-+, 函数()f x 的定义域为()0,∞+,且()2ln 24x f x x ax x++'=+-. 当12a ≥时,()2ln 3f x x x x≥++-',由(1)知2ln 30x x x++-≥. 即当0x >时()0f x '≥,所以()f x 在()0,∞+上单调递增. 所以()f x 不存在极值.证法2:因为()()22ln 47f x x x ax x a =++-+,函数()f x 的定义域为()0+∞,,且()2ln 24x f x x ax x++'=+-. 设()2ln 24x m x x ax x+=++-, 则()22212222ax x m x a x x x+-=-+=' 0x .设()()2220h x ax x x =+-> ,则()m x '与()h x 同号. 当12a ≥时,由()2220h x ax x =+-=,解得10x =<,20x =>.可知当20x x <<时,()0h x <,即()0m x '<,当2 x x >时,()0h x >,即()0m x '>, 所以()f x '在()20,x 上单调递减,在()2,x +∞上单调递增. 由(1)知2ln 30x x x++-≥. 则()()()2222222ln 321210f x x x a x a x x =++-+-≥-≥'. 所以()()20f x f x ''≥≥,即()f x 在定义域上单调递增. 所以()f x 不存在极值.7.(2020·河北省高三期末)已知函数()11xx f x e x +=--. (Ⅰ)讨论()f x 的单调性,并证明()f x 有且仅有两个零点;(Ⅱ)设0x 是()f x 的一个零点,证明曲线xy e =在点()00,x A x e处的切线也是曲线ln y x =的切线.【答案】(Ⅰ)()f x 在(),1-∞,()1,+∞单调递增,证明见解析;(Ⅱ)见解析. 【解析】(Ⅰ)()f x 的定义域为()(),11,-∞+∞,因为()()2201'x e x f x =+>-,所以()f x 在(),1-∞,()1,+∞单调递增.因为()212103f e --=<,()110f e-=>,所以()f x 在(),1-∞有唯一零点1x , 因为12532f e ⎛⎫⎪⎝⎭=-,由3322.8225e <<<,得302f ⎛⎫< ⎪⎝⎭; 因为()2230f e =->,所以()f x 在()1,+∞有唯一零点2x . 综上,()f x 有且仅有两个零点.(Ⅱ)由题设知()00f x =,即00011x x e x +=-, 由x y e =,得'xy e =,曲线x y e =在()00,x A x e处的切线1l 为:()000x x y e x x e =-+,即()0001x x y e x e x =+-.由ln y x =,得1'y x =,则曲线ln y x =的斜率为0e x 的切线的切点横坐标x 满足01xe x=,解得0x x e -=,代入ln y x =,得00ln x y ex -==-,故曲线ln y x =的斜率为0e x 的切线2l 方程为()0x x y e x e x -=--,即()001x y ex x =-+,由00011x x ex +=-,得()()00011xe x x -=-+,从而1l 与2l 为同一条直线. 8.(2020·重庆高三月考)已知函数()lnf x x ax a =-+(a 为常数)的最大值为0. (1)求实数a 的值;(2)设函数3()(1)ln ()1F x m x x f x e=--+-,当0m >时,求证:函数()F x 有两个不同的零点1x ,2x (12x x <),且121x x e e --<-.【答案】(1)1a =(2)见解析【解析】(1)函数()f x 的定义域为:(0,)+∞,1()axf x x-'=当0a ≤时,()0f x '>,则函数()f x 在(0,)+∞上单调递增,无最大值;当0a >时,令1()0ax f x x '-=>,即(1)0x ax -<,解得10x a <<, 所以函数()f x 在1(0,)a 上单调递增,1(,)a +∞上单调递减,max 11()()ln 10f x f a a a ==-+=,易知函数1ln y a=与函数1y a =-的图像相交于点(1,0),所以方程1ln 10a a-+=的解为1a =; (2)3()(1)ln ln F x m x x x x e=--+-2111()(ln 1)1()mx m F x m x F x x x x -++'''=++-+⇒=当0m >时()0F x ''>,则()F x '在(0,)+∞上单调递增,又因为()10F '=,所以()F x 在(0,1)上单调递减,在(1,)+∞上单调递增,又()1031e F =-<,112()(1)10F m e e e =-+->,23()(1)0e e F e m e e--=-+>所以函数()F x 有两个不同的零点11(,1)x e ∈,2(1,)x e ∈,故211x x e e-<-. 9.(2020·安徽省高三期末)已知函数()()2e 12e x xf x a a x =+--.(1)当0a <时,讨论()f x 的单调性;(2)若()f x 有两个不同零点1x ,2x ,证明:1a >且120x x +<. 【答案】(1)分类讨论,详见解析;(2)详见解析.【解析】(1)()()()()22e 12e 1e 12e 1x x x x f x a a a '=+--=-+.因为0a <,由()0f x '=得,0x =或1ln 2x a ⎛⎫=- ⎪⎝⎭.i )1ln 02a ⎛⎫-< ⎪⎝⎭即12a <-时,()f x 在1,ln 2a ⎛⎫⎛⎫-∞- ⎪ ⎪⎝⎭⎝⎭单调递减,在1ln ,02a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭单调递增,在()0,∞+单调递减;ii )1ln 02a ⎛⎫-= ⎪⎝⎭即12a =-时,()f x 在(),-∞+∞单调递减;iii )1ln 02a ⎛⎫-> ⎪⎝⎭即102a -<<时,()f x 在(),0-∞单调递减,在10,ln 2a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭单调递增,在1ln ,2a ⎛⎫⎛⎫-+∞ ⎪⎪⎝⎭⎝⎭单调递减.(2)由(1)知,12a <-时,()f x 的极小值为111ln 1ln 10242f a a a ⎛⎫⎛⎫⎛⎫-=--->> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,102a -<<时,()f x 的极小值为()0110f a =->>, 12a =-时,()f x 在(),-∞+∞单调,故0a <时,()f x 至多有一个零点.当0a ≥时,易知()f x 在(),0-∞单调递减,在()0,∞+单调递增.要使()f x 有两个零点,则()00f <,即120a a +-<,得1a >.令()()()F x f x f x =--,(0x >),则()()()F x f x f x '''=+-()()22e 12e 1x xa a =+--()()22e 12e 1x x a a --++--()()()2e e 1e e 2e e 20x x x x x x a ---=+++-++-≥,所以()F x 在0x >时单调递增,()()00F x F >=,()()f x f x >-.不妨设12x x <,则10x <,20x >,20x -<, ()()()122f x f x f x =>-. 由()f x 在(),0-∞单调递减得,12x x <-,即120x x +<.10.(2020·新疆维吾尔自治区高三月考)已知函数221()ln ()x f x a x a R x-=-∈(1)若0a >时,讨论()f x 的单调性;(2)设()()2g x f x x =-,若()g x 有两个零点,求a 的取值范围 【答案】(1)答案不唯一,具体见解析(2)a e >【解析】(1)易知()f x 的定义域为(0,)+∞,且2221()x ax f x x'-+=, 对于222108x ax a -+=∆=-,,又0a >,①若0a <≤0,()0f x '∆≤≥,()f x ∴在(0,)+∞上是增函数;②若a >()0f x '=,得120,0x x =>=>,()f x ∴在()10,x 和()2,x +∞上是增函数,在()12,x x 上是减函数.(2)由1()ln g x a x x=--, ∴定义域为(0,)+∞且222111()a ax ax g x x x x x'--=-=-= ①当0a ≤时,()0g x '>恒成立,()g x 在(0,)+∞上单调递增,则()g x 至多有一个零点,不符合题意; ②当0a >时,()0g x '=得1x a =, ()g x ∴在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a⎛⎫+∞ ⎪⎝⎭上单调递减max 1()ln g x g a a a a ⎛⎫∴==-+ ⎪⎝⎭∴要使()g x 有两个零点,则ln 0a a a -+>,由0a >解得a e >此时11,(1)10g a>=-< 易知当a e >时()211,,ln aaa a a a e a eg e a e e a a e ----><=--=-+, 令2(),(,),()2xx m x e x x e m x e x '=-∈+∞=-,令()2xh x e x =-,所以()2xh x e '=-,(,)x e ∴∈+∞时()0h x '<,()m x '∴在(,)x e ∈+∞为增函数,2()()20m x m e e e ''>=-> ()m x ∴在(,)x e ∈+∞为增函数,2()()0e m x m e e e >=->,所以()2,0a a e a g e -><∴函数()g x 在1,a e a -⎛⎫ ⎪⎝⎭与1,1a ⎛⎫ ⎪⎝⎭各存在一个零点综上所述,a e >.11.(2020·全国高三专题练习)已知函数()2cos 1.f x x ax =+- (1)当12a =时,证明:()0f x ; (2)若()f x 在R 上有且只有一个零点,求a 的取值范围. 【答案】(1)见解析; (2)()1,0,.2⎡⎫-∞+∞⎪⎢⎣⎭. 【解析】(1)当12a =时,()21cos 12f x x x =+-,所以()f x 的定义域为R ,且()(),f x f x -=故()f x 为偶函数.当0x 时,()sin f x x x '=-+,记()()sin g x f x x x '==-+,所以()cos 1g x x '=-+. 因为()0g x '≥,所以()g x 在[)0,+∞上单调递增, 即()f x '在[)0,+∞上单调递增, 故()()00f x f ''≥=,所以()f x 在[)0,+∞上单调递增,所以()()00f x f ≥=, 因为()f x 为偶函数,所以当x ∈R 时,()0f x ≥.(2)①当0a =时,()cos 1f x x =-,令cos 10x -=,解得()2x k k =π∈Z , 所以函数()f x 有无数个零点,不符合题意;②当0a <时,()22cos 10f x x ax ax =+-≤≤,当且仅当0x =时等号成立,故0a <符合题意;③因为()()f x f x -=,所以()f x 是偶函数, 又因为()00f =,故0x =是()f x 的零点.当0a >时,()sin 2f x x ax '=-+,记()()sin 2g x f x x ax '==-+,则()cos 2g x x a '=-+. 1)当12a ≥时,()cos 2cos 10g x x a x '=-+≥-+≥, 故()g x 在()0,∞+单调递增,故当0x >时,()()00.g x g >=即()0f x '>, 故()f x 在()0,∞+单调递增,故()()00.f x f >= 所以()f x 在()0,∞+没有零点.因为()f x 是偶函数,所以()f x 在R 上有且只有一个零点.2)当102a <<时,当(]0,2x π∈时,存在10,2x π⎛⎫∈ ⎪⎝⎭,使得1cos 2x a =,且当10x x <<时,()g x 单调递减,故()()00g x g <=,即()10,x x ∈时,()0f x '<,故()f x 在()10,x 单调递减,()()100f x f <=,又()()222cos 22140f a a π=π+π-=π>,所以()()120f x f π<,由零点存在性定理知()f x 在()1,2x π上有零点,又因为0x =是()f x 的零点, 故102a <<不符合题意; 综上所述,a 的取值范围为()1,0,.2⎡⎫-∞+∞⎪⎢⎣⎭12.(2020·天津南开中学高三月考)已知函数有两个零点.(Ⅰ)求a 的取值范围; (Ⅱ)设x 1,x 2是的两个零点,证明:.【答案】(Ⅰ);(Ⅱ)见解析【解析】(Ⅰ).(Ⅰ)设,则,只有一个零点.(Ⅱ)设,则当时,;当时,.所以在单调递减,在单调递增. 又,,取满足且,则,故存在两个零点.(Ⅲ)设,由得或.若,则,故当时,,因此在单调递增.又当时,所以不存在两个零点.若,则,故当时,;当时,.因此在单调递减,在单调递增.又当时,,所以不存在两个零点.综上,的取值范围为.(Ⅱ)不妨设,由(Ⅰ)知,,在单调递减,所以等价于,即.由于,而,所以.设,则.所以当时,,而,故当时,.从而,故.13.(2020·广东省执信中学高三月考)已知函数()()1xf x alnx x e =--,其中a 为非零常数.()1讨论()f x 的极值点个数,并说明理由;()2若a e >,()i 证明:()f x 在区间()1,+∞内有且仅有1个零点;()ii 设0x 为()f x 的极值点,1x 为()f x 的零点且11x >,求证:0012x lnx x +>.【答案】(1)见解析;(2)(i )证明见解析;(ii )证明见解析. 【解析】()1解:由已知,()f x 的定义域为()0,+∞,()2x xa a x e f x xe x x-=-=', ①当0a <时,20x a x e -<,从而()'0f x <, 所以()f x 在()0,+∞内单调递减,无极值点; ②当0a >时,令()2xg x a x e =-,则由于()g x 在[)0,+∞上单调递减,()00g a =>,(10aag a a aea e=-=-<,所以存在唯一的()00,x ∈+∞,使得()00g x =,所以当()00,x x ∈时,()0g x >,即()'0f x >;当()0,x x ∈+∞时,()0g x <,即()'0f x <, 所以当0a >时,()f x 在()0,+∞上有且仅有一个极值点.综上所述,当0a <时,函数()f x 无极值点;当0a >时,函数()f x 只有一个极值点;()2证明:()i 由()1知()2xa x e f x x-'=. 令()2xg x a x e =-,由a e >得()10g a e =->,所以()0g x =在()1,+∞内有唯一解,从而()'0f x =在()0,+∞内有唯一解, 不妨设为0x ,则()f x 在()01,x 上单调递增,在()0,x +∞上单调递减, 所以0x 是()f x 的唯一极值点.令()1h x lnx x =-+,则当1x >时,()1'10h x x=-<, 故()h x 在()1,+∞内单调递减,从而当1x >时,()()10h x h <=,所以1lnx x <-. 从而当a e >时,1lna >,且()()()()()1110lnaf lna aln lna lna e a lna lna a =--<---=又因为()10f =,故()f x 在()1,+∞内有唯一的零点.()ii 由题意,()()0100f x f x ⎧=⎪⎨='⎪⎩即()012011010x x a x e alnx x e ⎧-=⎪⎨--=⎪⎩,从而()0120111x x x e lnx x e =-,即1011201x x x lnx e x --=. 因为当11x >时,111lnx x <-,又101x x >>,故10112011x x x e x x --<-,即1020x x e x -<,两边取对数,得1020x x lnelnx -<,于是1002x x lnx -<,整理得0012x lnx x +>.14.(2020·河南省高三开学考试)已知函数()ln 2f x x x a =-+(a R ∈). (1)若函数()f x 有两个零点,求实数a 的取值范围(2)证明:1212ln ln 22x x x x e -+⎛⎫-≥++ ⎪⎝⎭【答案】(1)()1ln 2,++∞;(2)证明见解析.【解析】(1)由题意,函数()ln 2f x x x a =-+的定义域为()0,∞+, 令()ln 20f x x x a =-+=,则2ln a x x =-,记()2ln g x x x =-,0x >, 则()1212x g x x x ='-=-,令()0g x '=,得12x =, 当10,2x ⎛⎫∈ ⎪⎝⎭时,()0g x '<,()g x 单调递减, 当1,2x ⎛⎫∈+∞⎪⎝⎭时,()0g x '>,()g x 单调递增, 所以()g x 有最小值,且为11ln 22g ⎛⎫=+⎪⎝⎭, 又当0x →时,()g x →+∞;当x →+∞时,()g x →+∞,所以要使函数()f x 有两个零点,则函数()g x 的图象与y a =有两个不同的交点, 则1ln 2a >+,即实数a 的取值范围为()1ln 2,++∞. (2)由(1)知,函数()g x 有最小值为11ln 22g ⎛⎫=+ ⎪⎝⎭,可得2ln 1ln 2x x -≥+, 当且仅当12x =时取等号, 因此要证明1212ln e ln 22x x x x -+⎛⎫-≥++ ⎪⎝⎭,即只需要证明121e 12x x -+⎛⎫+≤ ⎪⎝⎭,记()121e 2x x x ϕ-+⎛⎫=+ ⎪⎝⎭,则()11221e e 2x x x x ϕ-+-+⎛⎫'=-+ ⎪⎝⎭121e 2x x -+⎛⎫=- ⎪⎝⎭,令()0x ϕ'=,得12x =. 当10,2x ⎛⎫∈ ⎪⎝⎭时,()0x ϕ'>,()x ϕ单调递增, 当1,2x ⎛⎫∈+∞⎪⎝⎭时,()0x ϕ'<,()x ϕ单调递减, 所以()1122111e1222x ϕϕ-+⎛⎫⎛⎫≤=+= ⎪ ⎪⎝⎭⎝⎭,即121e12xx-+⎛⎫+≤⎪⎝⎭恒成立,当且仅当12x=时取等号,所以1212ln e ln22xx x x-+⎛⎫-≥++⎪⎝⎭,当且仅当12x=时取等号.。

函数零点相关问题(解析版)高考数学选填压轴题 第3讲

函数零点相关问题(解析版)高考数学选填压轴题  第3讲

第3讲解密函数零点相关问题一、方法综述新课标下的高考越来越注重对学生的综合素质的考察,函数的零点问题便是一个考察学生综合素质的很好途径,它主要涉及到基本初等函数的图象,渗透着转化、化归、数形结合、函数与方程等思想方法,在培养思维的灵活性、创造性等方面起到了积极的作用.近几年的数学高考中频频出现零点问题,其形式逐渐多样化,但都与函数、导数知识密不可分.根据函数零点的定义:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点.即:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点的横坐标⇔函数)(x f y =有零点.围绕三者之间的关系,在高考数学中函数零点的题型主要①函数的零点的分布;②函数的零点的个数问题;③利用导数结合图像的变动将两个函数的图像的交点问题转化成函数的零点的个数问题.二、解题策略类型一:函数零点的分布问题例1.【2020·河南高考模拟】已知单调函数()f x 的定义域为(0,)+∞,对于定义域内任意x ,[]2()log 3f f x x -=,则函数()()7g x f x x =+-的零点所在的区间为()A .(1,2)B .(2,3)C .(3,4)D .(4,5)【答案】C【解析】根据题意,对任意的(0,)x ∈+∞,都有[]2()log 3f f x x -=,又由()f x 是定义在()0+∞,上的单调函数,则2()log f x x -为定值,设2()log t f x x =-,则()2log f x x t =+,又由()3f t =,∴()2log 3f t t t =+=,所以2t =,所以()2log 2f x x =+,所以()2log 5g x x x =+-,因为()()()()()1020304050g g g g g <<<>>,,,,,所以零点所在的区间为(3,4).【解题秘籍】判断函数零点所在区间有三种常用方法:①直接法,解方程判断;②定理法;③图象法.【举一反三】函数f (x )=ln x +x -12,则函数的零点所在区间是()A .21,41(B .13(,24C .3(,1)4D .(1,2)【答案】C【解析】函数f (x )=ln x +x -12的图象在(0,+∞)上连续,且3()4f =ln 34+34-12=ln 34+14<0,f (1)=ln 1+1-12=12>0,故f (x )的零点所在区间为3(,1)4.学科$网类型二函数零点的个数问题例2.【2020·陕西高考模拟】已知函数()()12,2311,2f x x f x x x ⎧->⎪=⎨⎪--≤⎩,则函数g(x)=xf(x)﹣1的零点的个数为()A .2B .3C .4D .5【答案】B【解析】由g (x )=xf (x )﹣1=0得xf (x )=1,当x =0时,方程xf (x )=1不成立,即x ≠0,则等价为f (x )=1x,当2<x ≤4时,0<x ﹣2≤2,此时f (x )=13f (x ﹣2)=13(1﹣|x ﹣2﹣1|)=13﹣13|x ﹣3|,当4<x ≤6时,2<x ﹣2≤4,此时f (x )=13f (x ﹣2)=13[13﹣13|x ﹣2﹣3|]=19﹣19|x ﹣5|,作出f (x )的图象如图,则f (1)=1,f (3)=13f (1)=13,f (5)=13f (3)=19,设h (x )=1x ,则h (1)=1,h (3)=13,h (5)=15>f (5),作出h (x )的图象,由图象知两个函数图象有3个交点,即函数g (x )的零点个数为3个,故选:B.【点睛】函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.【举一反三】【2020·安徽高考模拟】已知函数e ,0()21,0x x x f x x x ⎧≤⎪=⎨-->⎪⎩若函数()()g x f x m =-有两个零点1x ,2x ,则12x x =+()A .2B .2或12e+C .2或3D .2或3或12e+【答案】D【解析】当0x ≤时,()()'1xf x x e =+,当1x <-时,()'0f x <,故()f x 在(),1-∞-上为减函数,当10x -<<时,()'0f x >,故()f x 在()1,0-上为增函数,所以当0x ≤时,()f x 的最小值为()11f e-=-.又在R 上,()f x 的图像如图所示:因为()g x 有两个不同的零点,所以方程()f x m =有两个不同的解即直线y m =与()y f x =有两个不同交点且交点的横坐标分别为12,x x ,故12m <<或0m =或1m e=-,若12m <<,则122x x +=,故0m =,则123x x +=,若1m e =-,则1211132x x e e+=-++=+.综上,选D .类型三已知函数零点求参数例3.【2020·天津高考模拟】已知函数()ln f x x =,20,01,()42,1x g x x x <≤⎧⎪=⎨-->⎪⎩若关于x 的方程()()f x m g x +=恰有三个不相等的实数解,则m 的取值范围是A .[0,ln 2]B .(2ln 2,0)--C .(]2ln 2,0--D .[)0,2ln 2+【答案】C【解析】关于x 的方程()()f x m g x +=恰有三个不相等的实数解,即方程()()m g x f x =-恰有三个不相等的实数解,即ym =与2224b k -=有三个不同的交点.令22ln ,01()()()2ln ,12ln 6,2x x h x g x f x x x x x x x <≤⎧⎪=-=--<<⎨⎪--≥⎩,当12x <<时,2121()20x h x x x x+'=--=-<,函数单调递减;当2x ≥时,2121()20x h x x x x-=-=>,函数单调递增;且当1x =时,22ln 1x x --=,当2x =时,22ln 2ln 2x x --=--,2ln 62ln 2x x --=--,当3x =时,2ln 63ln 31x x --=->,据此绘制函数()h x的图像如图所示,结合函数图像可知,满足题意时m 的取值范围是(]2ln 2,0--.本题选择C 选项.【举一反三】【2020·江苏高考模拟】已知函数4()3f x a x a x=++-+有且仅有三个零点,并且这三个零点构成等差数列,则实数a 的值为_______.【答案】116或1--【解析】函数()43f x a x a x =++-+=0,得|x +a |4x--a =3,设g (x )=|x +a |4x --a ,h (x )=3,则函数g (x )424x a x a xx x ax ⎧---≤-⎪⎪=⎨⎪--⎪⎩,,>,不妨设f (x )=0的3个根为x 1,x 2,x 3,且x 1<x 2<x 3,当x >﹣a 时,由f (x )=0,得g (x )=3,即x 4x-=3,得x 2﹣3x ﹣4=0,得(x +1)(x ﹣4)=0,解得x =﹣1,或x =4;若①﹣a ≤﹣1,即a ≥1,此时x 2=﹣1,x 3=4,由等差数列的性质可得x 1=﹣6,由f (﹣6)=0,即g (﹣6)=3得646+-2a =3,解得a 116=,满足f (x )=0在(﹣∞,﹣a ]上有一解.若②﹣1<﹣a ≤4,即﹣4≤a <1,则f (x )=0在(﹣∞,﹣a ]上有两个不同的解,不妨设x 1,x 2,其中x 3=4,所以有x 1,x 2是﹣x 4x--2a =3的两个解,即x 1,x 2是x 2+(2a +3)x +4=0的两个解.得到x 1+x 2=﹣(2a +3),x 1x 2=4,又由设f (x )=0的3个根为x 1,x 2,x 3成差数列,且x 1<x 2<x 3,得到2x 2=x 1+4,解得:a =﹣1332+(舍去)或a =﹣1332-.③﹣a >4,即a <﹣4时,f (x )=0最多只有两个解,不满足题意;综上所述,a 116=或﹣12-.三、强化训练1.已知函数2,0(),0x x e x f x e x -⎧-≥=⎨-<⎩,若函数()()1g x f x ax =-+有3个零点,则实数a 的取值范围是()A .()1,+∞B .()2,+∞C .()1,2D .()2,4【来源】四川省成都市南开为明学校2020-2021学年高三上学期第二次调研考试数学(理)试题【答案】A【解析】令()()10g x f x ax =-+=,则()1f x ax =-,则函数()()1g x f x ax =-+有3个零点即直线1y ax =-与函数()y f x =有3个交点,将直线1y ax =-与函数()y f x =的图像分别沿y 轴的正方向上移1个单位,即直线y ax =与函数1,0()1,0x x e x h x e x -⎧-≥=⎨-+<⎩的图像有3个交点,因为1,0()1,0x x e x h x e x -⎧-≥=⎨-+<⎩,满足()()h x h x -=-,所以函数()y h x =是奇函数,因为直线y ax =过点()0,0,所以只需满足直线y ax =与()()10xh x e x =-≥刚好有除点()0,0外的另一个交点即可,()x h x e '=,0(0)10h e =-=,01(0)h e '==,故()()10xh x e x =-≥在点()0,0处的切线方程为y x =,如图,将直线y x =绕原点逆时针旋转,显然()1y ax a =>与()()10xh x e x =->只有一个交点,故实数a 的取值范围是()1,+∞,故选:A.2.已知函数()f x x a =--,若函数()f x 在R 上恒有两个零点,则实数a 的取值范围为()A .0a ≤B .0a <或14a =C .0a ≤或14a =D .104a <<【来源】百师联盟2020-2021学年高三上学期一轮复习联考(四)全国卷I 文科数学试题【答案】B【解析】作出y =和y x =,如图所示,要使函数()f x 在R 上恒有两个零点,即函数()g x =()h x x a =+的图象有两个交点,易知当0a <时,满足题意;当0a =时,有三个交点,不满足题意;当0a >时,考虑y x a =+与y =相切时,设切点坐标为()00,x x a +,所以01x a ⎧+=⎪=,解得01414x a ⎧=⎪⎪⎨⎪=⎪⎩,所以当14a =时,有两个交点,满足题意;当104a <<时,有四个交点,不满足题意;当14a >时,无交点,不满足题意综上,实数a 的取值范围为0a <或14a =,故选B .3.已知函数()f x kx =,21x e e ⎛⎫≤≤⎪⎝⎭,()121x g x e +-=+,若()f x 与()g x 的图象上分别存在点M 、N ,使得M 、N 关于直线1y x =+对称,则实数k 的取值范围是()A .1,e e ⎡⎤-⎢⎥⎣⎦B .24,2e e ⎡⎤-⎢⎥⎣⎦C .2,2e e ⎡⎤-⎢⎥⎣⎦D .3,3e e ⎡⎤-⎢⎥⎣⎦【来源】四川省内江市高中2020-2021学年高三上学期第一次模拟考试数学理科试题【答案】C【解析】设()00,x y 是函数()g x 的图象上的任意一点,其关于1y x =+对称的点的坐标为(),x y ,所以001,1x y y x =-=+,所以函数()g x 关于1y x =+对称的函数为()=2ln h x x -.由于()f x 与()g x 的图象上分别存在点M 、N ,使得M 、N 关于直线1y x =+对称,故函数()=2ln h x x -与函数()f x kx =图象在区间21,e e⎡⎤⎢⎥⎣⎦有交点,所以方程2ln kx x =-在区间21,e e ⎡⎤⎢⎥⎣⎦上有解,所以42kx -≤≤,即42k x x -≤≤,所以22k e e-≤≤.故选:C.4.已知函数()()23,03,0x x x f x f x x ⎧--<⎪=⎨-≥⎪⎩,以下结论正确的是()A .()f x 在区间[]4,6上是增函数B .()()220206f f -+=C .若方程()1f x kx =+恰有3个实根,则{}11,13k ⎛⎫∈-- ⎪⎝⎭D .若函数()y f x b =-在(),6-∞上有个零点()1,2,3,4,5,6i x i =,则616ii x==∑【来源】四川省师范大学附属中学2020-2021学年高三上学期期中数学(理)试题【答案】C【解析】由题意,作出函数()()23,03,0x x x f x f x x ⎧--<⎪=⎨-≥⎪⎩的图象,如图所示,对于A 中,当0x ≥,若30x -<,即03x ≤<,可得()()()223333f x x x x x =----=-+,当0x ≥时,()f x 为周期为3的函数,作出()f x 在区间(,6]-∞的函数,可知()f x 在区间[]4,6上先增后减,所以A 错误;对于B 中,因为0x ≥时,函数()f x 为周期为3的函数,又由202067331=⨯+,所以()()()20201,2462f f f =-=-+=,()1132f =-+=,所以()()220204f f -+=,所以B 错误;对于C 中,直线1y kx =+恒过定点()0,1,函数()f x 的图象和函数1y kx =+的图象有三个交点,当0k >,设y 与()f x 相切于点()00,x y ,则020002313k x kx x x =-+⎧⎨+=-+⎩,解得011k x =⎧⎨=⎩,当0k <,根据对称性可知,当()f x 与y 相切时,1k =-,则1310k k >-⎧⎨+<⎩,即113k -<<-,综上可得,当函数()f x 的图象和函数1y kx =+的图象有三个交点时,{}11,13k ⎛⎫∈-- ⎪⎝⎭,所以C 正确.对于D 中,又由函数()y f x b =-在(),6-∞上有个零点()1,2,3,4,5,6i x i =,故直线y b =与()y f x =在(),6-∞上由6个交点,不妨设1,1,2,3,4,5i i x x i <+=,由图象可知12,x x 关于直线32x =对称,34,x x 关于直线32x =对称,56,x x 关于直线92x =对称,所以613392229222i i x ==⨯+⨯+⨯=∑,所以D 错误.故选:C.5.x 为实数,[]x 表示不超过x 的最大整数.()[]f x x x =-,若()f x 的图像上恰好存在一个点与()2(1)(20)g x a x x +--≤≤=的图像上某点关于y 轴对称,则实数a 的取值范围为___________.【答案】()10,11,4⎛⎫--⎪⎝⎭【解析】设02x ≤≤,点()()()(),,,x f x x g x --关于y 轴对称,由题意可知2[](1)x x x a -=-+-在02x ≤≤有一个解,故[][]22(1)31x x x x a x x +-=-++-+=在02x ≤≤有一个解设()[]231h x x x x =-++,02x ≤≤写成分段函数形式即为()()()()22231013212332x x x h x x x x x x x ⎧-+≤<⎪=-+≤<⎨⎪-+=⎩作出函数图象可知y a =与()[]231h x x x x =-++,02x ≤≤只有一个交点,由图象可知,a 的取值范围为114a -<<-或01a <<故答案为:()10,11,4⎛⎫--⎪⎝⎭6.已知()32f x x x =+,()2,01ln ,02x e x g x x x ⎧≤⎪=⎨+>⎪⎩,若函数()()y f g x m =+(m 为实数)有两个不同的零点1x ,2x ,且12x x <,则21x x -的最小值为___________.【答案】11ln 22+【解析】()32f x x x =+Q ,求导()2320f x x '=+>,()f x ∴在R 上单调递增.函数()()y f g x m =+有两个不同零点,等价于方程()()0f g x m +=有两个不等实根.设()g x t =,则()f t m =-,又()f x 在R 上单调递增,作出函数()g x的图像,则问题转化为()g x t =在(]0,1t ∈上有两个不同的实根1x ,2x ,12x x <则1221ln 2x ex t =+=,则11ln 2x t =,122t x e -=,12211ln 2t x x e t --=-.设121()ln 2t h t et -=-,(]0,1t ∈,则()1212t h t e t -'=-,()122102t h t e t -''=+>()h t '∴在(]0,1t ∈上单调递增,且102h ⎛⎫'= ⎪⎝⎭,由零点存在性定理知,()0h t '=在(]0,1t ∈上有唯一零点,故()h t 在10,2⎛⎫ ⎪⎝⎭上单调递减,在1,12⎛⎫⎪⎝⎭上单调递增,所以()min 111ln 222h t h ⎛⎫==+ ⎪⎝⎭.7.已知函数()4ln 2ln f x e x mx x e x=-+-存在4个零点,则实数m 的取值范围是__________.【来源】江西宜春市2021届高三上学期数学(理)期末试题【答案】10,2⎛⎫ ⎪⎝⎭【解析】令()0f x =,可得4ln 4ln 12ln ln 1e x x e x m e x x e x x x x-=+=+--,令ln 1e xt x=-,()4ln 1144ln 1e x g t t e x x t x =+=++-,()21ln e x t x-'=,令0t '=,可得x e =,列表如下:x ()0,e e (),e +∞t '+0-t极大值所以,函数ln 1e x t x =-在x e =处取得最大值,即max ln 10e et e =-=.当1x >时,ln 11e xt x=->-.所以,函数()144g t t t =++的定义域为(),0-∞,()2221414t g t t t -'=-=,令()0g t '=,由于0t <,解得12t =-,列表如下:t1,2⎛⎫-∞- ⎪⎝⎭12-1,02⎛⎫- ⎪⎝⎭()g t '+0-()g t极大值所以,函数()g t 在12t =-处取得最大值,即()max 142402g t ⎛⎫=⨯--+= ⎪⎝⎭,若使得函数()4ln 2ln f x e x mx x e x=-+-存在4个零点,则直线2y m =-与函数()g t 的图象恰有两个交点,设交点的横坐标分别为1t 、2t ,作出函数()ln 1e xt x e x=-≠的图如下图所示:由图象可知,12121010t t t t -<<⎧⎪-<<⎨⎪≠⎩.作出函数2y m =-与函数()g t 在(),0-∞上的图象如下图所示:由图象可知,当120m -<-<时,即当102m <<时,直线2y m =-与函数()g t 在()1,0t ∈-上的图象有两个交点,综上所述,实数m 的取值范围是10,2⎛⎫ ⎪⎝⎭.8.已知函数222,()2,.x x x a f x x x x a ⎧-≥=⎨--<⎩,给出下列四个结论:①存在实数a ,使函数()f x 为奇函数;②对任意实数a ,函数()f x 既无最大值也无最小值;③对任意实数a 和k ,函数()y f x k =+总存在零点;④对于任意给定的正实数m ,总存在实数a ,使函数()f x 在区间(1,)m -上单调递减.其中所有正确结论的序号是______________.【来源】中国人民大学附属中学2021届高三3月开学检测数学试题【答案】①②③④【解析】如上图分别为0a =,0a >和0a <时函数()f x 的图象,对于①:当0a =时,222,0()2,0x x x f x x x x ⎧-≥=⎨--<⎩,()f x 图象如图1关于原点对称,所以存在0a =使得函数()f x 为奇函数,故①正确;对于②:由三个图知当x →-∞时,y →-∞,当x →+∞时,y →+∞,所以函数()f x 既无最大值也无最小值;故②正确;对于③:如图2和图3中存在实数k 使得函数()y f x =图象与yk =-没有交点,此时函数()y f x k=+没有零点,所以对任意实数a 和k ,函数()y f x k =+总存在零点不成立;故③不正确对于④:如图2,对于任意给定的正实数m ,取1a m =+即可使函数()f x 在区间(1,)m -上单调递减,故④正确;故答案为:①②④9.已知()y f x =是奇函数,定义域为[]1,1-,当0x >时,211()12x f x x α-⎛⎫=-- ⎪⎝⎭(0,Q αα>∈),当函数()()g x f x t =-有3个零点时,则实数t 的取值范围是__________.【答案】{}111,0,122⎛⎤⎡⎫-- ⎪⎥⎢⎝⎦⎣⎭【解析】当(]0,1x ∈时,易知函数2112x y x α-⎛⎫=- ⎪⎝⎭单调递减,且0x →时,2y →,1x =时,12y =-,其大致图象如下,()21112x f x x α-⎛⎫∴=-- ⎪⎝⎭在(]0,1的大致图象如下,又函数()f x 是定义在[]1,1-上的奇函数,故函数()f x 的图象如下,要使函数()()g x f x t =-有3个零点,只需函数()y f x =的图象与直线y t =有且仅有3个交点,由图象可知,{}111,0,122t ⎛⎤⎡⎫∈-- ⎪⎥⎢⎝⎦⎣⎭.10.设函数lg ,010(){2lg ,10x x f x x x <<=-≥,若b ,c ,d 分别为函数()()g x f x a =-的三个不同零点,则abcd 的最大值是_______.【答案】100ln10e 【解析】()()g x f x a =-有三个不同的零点,即y a =与()y f x =有三个不同交点,如图可知,01,01,110,10100a b c d <<<<<<<<,2lg lg 2lg ,1,10ab c d a bc d --==-=∴==所以210(01)a abcd ad a a -==<<g设2222()10(01),'()1010ln1010(1ln10)x x x x h x x x h x x x ----=<<=-=-gg 令1'()0ln10h x x =⇒=当1(0,'()0,()ln10x h x h x ∈>单调递增;当1(1),'()0,()ln10x h x h x ∈<,单调递减;12ln10max1lg ln101111001100100()(10ln10ln10ln10ln1010ln1010e g x g e -∴=====g g g 故答案为:100ln10e。

高考复习:导数压轴题零点问题中如何找点

高考复习:导数压轴题零点问题中如何找点

∴a>2 时, g x 有两个零点,即 f x 有两个零点。
点评:本题解答的第一步利用函数的零点与方程的根把 f x 的零点问题转化为 g x 的 零点问题,使得在导数中不含参数;在找点环节,找左边为正的点时,选择
舍弃ex−1
是为了构造一个减函数,而在找右边为正点时选择舍弃1是为了构造一个增函
x
数,使得放缩以后的函数大于零都有解。
比如在本例中,寻找 x=lna 右边的零点时,如果我么利用不等式ex > x 进行放缩,
则f x
=
ex

ax
>
x

ax,x

ax
=
0
无解,放缩失败,若利用不等式ex
>
1 x
进行放缩,则 f x
=
ex

ax
>
1 x

ax,令
1 x

ax
=
0,则
x
=
1 a
<
lna, 放缩失败.我们发现函数 y = ax 本身就是一条斜率可以无穷大的直线,故我
①a ≤ e + 1 时,r' t > 0 恒成立,r t 在 0, + ∞ 单增,r t > r 0 = 0,r t 无零点;

1 x2
,由
1
可知 xex−1
+1
>
0,故 x <
0 时,
ex−1
+
1 x
<
0,又
a
>
0,
∴g x
=
ex−1
−a+
1 x

高考数学二轮复习 特色专题训练 专题03 直击函数压轴题中零点问题 理

高考数学二轮复习 特色专题训练 专题03 直击函数压轴题中零点问题 理

专题03 直击函数压轴题中零点问题一、解答题1.已知函数()()()2ln 10f x x a x a =+->.(1)讨论()f x 的单调性;(2)若()f x 在区间()0,1内有唯一的零点0x ,证明: 3120e x e --<<.【答案】(1)答案见解析;(2)证明见解析.【解析】试题分析:(1)求出函数的导数,通过讨论a 的范围,求出函数的单调区间即可; (2)依题可知()10f =,若()f x 在区间()0,1内有唯一的零点0x ,由(1)可知2a >, 且0110,2x x ⎛⎫=∈ ⎪⎝⎭,于是: ()20010lnx a x +-= ①,2002210ax ax -+= ② 由①②得0001ln 02x x x --=,设g (x )=lnx −12x x -,(x ∈(0,1)),求出函数的导数,根据函数的单调性证明即可.(2)依题可知()10f =,若()f x 在区间()0,1内有唯一的零点0x ,由(1)可知2a >,且0110,2x x ⎛⎫=∈ ⎪⎝⎭. 于是: ()20010lnx a x +-= ①2002210ax ax -+= ②由①②得0001ln 02x x x --=,设()()()1ln ,0,12x g x x x x -=-∈, 则()2212x g x x '-=,因此()g x 在10,2⎛⎫⎪⎝⎭上单调递减, 又3322402e g e -⎛⎫-=> ⎪⎝⎭, ()11302e g e ---=< 根据零点存在定理,故3120ex e --<<.点睛:本题考查了函数的单调性,零点问题,考查导数的应用以及不等式的证明,零点存在性定理,考查分类讨论思想,转化思想,构造函数的解题方法. 2.设函数f (x )=x 2+bx -1(b ∈R ). (1)当b =1时证明:函数f (x )在区间1,12⎛⎫⎪⎝⎭内存在唯一零点; (2)若当x ∈[1,2],不等式f (x )<1有解.求实数b 的取值范围. 【答案】(1)见解析;(2)(),1-∞【解析】试题分析:(1)先根据对称轴与定义区间位置关系确定函数f (x )在区间1,12⎛⎫⎪⎝⎭单调性,再根据区间端点函数值异号,结合零点存在定理确定零点个数(2)先分离变量化为对应函数最值问题: 2b x x<- ,再根据函数单调性确定函数最小值,即得实数b 的取值范围.(2)由题意可知x2+bx-1<1在区间[1,2]上有解,所以b<=-x在区间[1,2]上有解.令g(x)=-x,可得g(x)在区间[1,2]上递减,所以b<g(x)max=g(1)=2-1=1 ,从而实数b的取值范围为(-∞,1).点睛:利用零点存在性定理不仅要求函数的图象在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点3.已知函数()()210f x ax mx m a =++-≠.(1)若()10f -=,判断函数()f x 的零点个数;(2)若对任意实数m ,函数()f x 恒有两个相异的零点,求实数a 的取值范围; (3)已知12,x x R ∈R 且12x x <, ()()12f x f x ≠,求证:方程()()()1212f x f x f x ⎡⎤=+⎣⎦ 在区间()12,x x 上有实数根.【答案】⑴见解析;⑵01a <<;⑶见解析.【解析】试题分析:(1)利用判别式定二次函数的零点个数:(2)零点个数问题转化为图象交点个数问题,利用判别式处理即可;(3)方程()()()1212f x f x f x ⎡⎤=+⎣⎦在区间()12,x x 上有实数根,即()()()()1212g x f x f x f x ⎡⎤=-+⎣⎦有零点,结合零点存在定理可以证明. 试题解析: ⑴()10,10,1f a m m a -=∴-+-=∴=()21f x x mx m ∴=++-()()22412m m m ∆=--=-,当2m =时, 0∆=,函数()f x 有一个零点; 当2m ≠时, 0∆> ,函数()f x 有两个零点⑶设()()()()1212g x f x f x f x ⎡⎤=-+⎣⎦,则()()()()()()1112121122g x f x f x f x f x f x ⎡⎤⎡⎤=-+=-⎣⎦⎣⎦ ()()()()()()2212211122g x f x f x f x f x f x ⎡⎤⎡⎤=-+=-⎣⎦⎣⎦ ()()12f x f x ≠()()()()21212104g x g x f x f x ⎡⎤∴⋅=--<⎣⎦,()0g x ∴=在区间()12,x x 上有实数根,即方程()()()1212f x f x f x ⎡⎤=+⎣⎦在区间()12,x x 上有实数根. 点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.4.已知函数()2ln f x a x bx =-图象上一点()()2,2P f 处的切线方程为32ln22y x =-++.(1)求,a b 的值;(2)若方程()0f x m +=在1,e e⎡⎤⎢⎥⎣⎦内有两个不等实根,求m 的取值范围(其中e 2.71828=为自然对数的底).【答案】(1)a =2,b =1.(2) 2112em <≤+. 【解析】试题分析:本题考查函数与方程,函数与导数的综合应用.(1)根据导数的几何意义,得出两个方程,然后求解.(2)先利用导数研究函数h (x )=f (x )+m =2lnx ﹣x 2+m 的单调性,根据单调性与极值点确定关系然后求解.(2)由(1)得f (x )=2lnx ﹣x 2, 令h (x )=f (x )+m =2lnx ﹣x 2+m ,则()()22122x h x x x x='-=-,令h '(x )=0,得x =1(x =﹣1舍去).故当x ∈11e ⎡⎫⎪⎢⎣⎭,时,h '(x )>0,h (x )单调递增; 当x ∈(1,e ]时,h '(x )<0,h (x )单调递减. ∵方程h (x )=0在1e e⎡⎤⎢⎥⎣⎦,内有两个不等实根,∴()()221120e e {110 20h m h m h e e m ⎛⎫=--+≤ ⎪⎝⎭=-+>=-+≤,解得2112e m <≤+.∴实数m 的取值范围为211,2e ⎛⎤+ ⎥⎝⎦. 点睛:根据函数零点求参数取值或范围的方法 (1)利用零点存在的判定定理构建不等式求解;(2)分离参数后转化为函数的值域(最值)问题求解,如果涉及由几个零点时,还需考虑函数的图象与参数的交点个数;(3)利用方程根的分布求解,转化为不等式问题.(4)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解. 5.已知函数()1xf x e ax =--,其中e 为自然对数的底数, a R ∈(I )若a e =,函数()()2g x e x =- ①求函数()()()h x f x g x =-的单调区间 ②若函数()()(),{,f x x m F x g x x m≤=>的值域为R ,求实数m 的取值范围(II )若存在实数[]12,0,2x x ∈,使得()()12f x f x =,且121x x -≥,求证: 21e a e e -≤≤-【答案】(1)①详见解析②实数m 的取值范围是10,2e ⎡⎤⎢⎥-⎣⎦;(2)21e a e e -≤≤-;试题解析:(1)当a e =时, ()1xf x e ex =--.①()()()()21,'2xxh x f x g x e x h x e =-=--=-.由()'0h x >得ln2x >,由()'0h x <得ln2x <.所以函数()h x 的单调增区间为()ln2,+∞,单调减区间为(),ln2-∞. ②()'xf x e e =-当1x <时, ()'0f x <,所以()f x 在区间(),1-∞上单调递减; 当1x >时, ()'0f x >,所以()f x 在区间()1,+∞上单调递增.()()2g x e x =-在(),m +∞上单调递减,值域为()(),2e m -∞-,因为()F x 的值域为R ,所以12)m e em e m --≤-,即210m e m --≤. *()(2)()'xf x e a =-.若0a ≤时, ()'0f x >,此时()f x 在R 上单调递增. 由()()12f x f x =可得12x x =,与121x x -≥相矛盾, 同样不能有[)12,ln ,x x a ∈+∞.不妨设1202x x ≤<≤,则有120ln 2x a x ≤<<≤.因为()f x 在()1,ln x a 上单调递减,在()2ln ,a x 上单调递增,且()()12f x f x =, 所以当12x x x ≤≤时, ()()()12f x f x f x ≤=. 由1202x x ≤<≤,且121x x -≥,可得[]121,x x ∈ 故()()()121f f x f x ≤=.又()f x 在(],ln a -∞单调递减,且10ln x a ≤<,所以()()10f x f ≤,所以()()10f f ≤,同理()()12f f ≤. 即210,{122e a e a e a --≤--≤--,解得211e a e e -≤≤--, 所以21e a e e -≤≤-.点睛:本题考查函数的单调性极值及恒成立问题,涉及函数不等式的证明,综合性强,难度大,属于难题.处理导数大题时,注意分层得分的原则,力争第一二问答对,第三问争取能写点,一般涉及求函数单调性及极值时,比较容易入手,求导后注意分类讨论,对于恒成立问题一般要分离参数,然后利用函数导数求函数的最大值或最小值,对于含有不等式的函数问题,一般要构造函数,利用函数的单调性来解决,但涉及技巧比较多,需要多加体会. 6.已知函数()1xxf x ax e =-+. (1)当1a =时,求()y f x =在[]1,1x ∈-上的值域; (2)试求()f x 的零点个数,并证明你的结论.【答案】(1)[]2,1e -(2)当0a ≤时, ()f x 只有一个零点;当0a >时, ()f x 有两个零点.(2)原方程等价于10x e a x --=实根的个数,原命题也等价于()1x h x e a x=--在(),0)(0,x ∈-∞⋃+∞上的零点个数,讨论0a =, 0a <, 0a >,三种情况,分别利用导数研究函数的单调性,结合函数图象与零点存在定理可得结果.试题解析:(1)当1a =时, ()1x x f x ax e =-+,则()()11xxf xg x e -'-==, 而()20xx g x e -'=<在[]1,1-上恒成立,所以()()g x f x ='在[]1,1-上递减, ()()max 1210f x f e =-=-'>', ()()min 110f x f ''==-<,所以()f x '在[]1,1-上存在唯一的00x =,使得()00f '=,而且当()1,0x ∈-时, ()0f x '>, ()f x 递增;当()0,1x ∈时()0f x '<, ()f x 递减; 所以,当0x =时, ()f x 取极大值,也是最大值,即()()max 01f x f ==,()()(){}()min min 1,112f x f f f e =-=-=-,所以, ()f x 在[]1,1-上的值域为[]2,1e -.(I )若0a =,则当(),0x ∈-∞时, ()10xh x e x=->恒成立,则没有零点;当()0,x ∈+∞时, ()110h e =->, 1202h ⎛⎫=< ⎪⎝⎭,又()h x 在()0,+∞上单调递增的,所以有唯一的零点。

函数的零点问题PPT课件

函数的零点问题PPT课件
(2) f (2) 0
f (1) 0
f (0) 0,解得a的取值范围是(0,1). 3
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The
More You Know, The More Powerful You Will Be
函数与方程

数 零
函数
使 f ( x) 0的实数 x

数形结合
图象 与x 轴交点的横坐标
零点的存在性定理
f (x)在a,b上连续
f ( x)在 a, b上单调
f (a) f (b) 0
f ( x)在a, b 有唯一
零点
一、直接求函数的零点
求根定零点
[例1](2012湖北)函数 f (x) x cos x2 在区间[0,4]
函数的零点问题
高考地位
函数零点是新课标教材的 新增内容之一,纵观近几年全国 各地的高考试题,经常出现一些 与零点有关的问题,它可以以选 择题、填空题的形式出现,也 可以在解答题中与其它知识交 汇后闪亮登场,可以说”零点” 成为了高考新的热点、亮点和 生长点.
方程 方程 f ( x) 0的实数根
上的零点的个数为
(C )
A.4 B.5
C.6
D.7
f (x) x cos x2 0 x 0或 cos x2 0
x 0或2x k , k .
x
0或x
k
2
0, 2
. k
0,1, 2,3
24
B
二、确定零点的大致位置
异号定零点位置
A
f (a) f (b) 0 f (b) f (c) 0 [练习]若函数 f (x)的零点与g( x) 4x 2x 2的零点

高考数学函数零点问题3类题型4种方法讲解!你觉得零点问题难吗?

高考数学函数零点问题3类题型4种方法讲解!你觉得零点问题难吗?

高考数学函数零点问题3类题型4种方法讲解!你觉得零点问题难吗?函数零点问题的4种解题方法一、依据概念化为方程求根对于函数y=f(x),我们把f(x)=0使的实数x叫做函数y=f(x)的零点,因此,该方法就是将函数的零点问题转化为方程f(x)=0的问题来解答。

二、由数到形实现零点交点的互化函数y=f(x)的零点,即函数y=f(x)的图像与x轴的交点的横坐标。

因此,求函数的零点问题可转化为函数y=f(x)图像与x轴的交点的横坐标,或将方程f(x)=0整理成f1(x)=f2(x)形式,然后在同一直角坐标系下,画出两函数的图像,交点的横坐标即为函数的零点,交点的个数即为函数的零点个数。

注:在解题中,若遇到函数形式复杂难以作图时,则不妨先整理表达式,一般以所涉及的函数能作其图像为整理要求。

接着在同一坐标系下,规范作图,然后确定交点的位置或个数,特别在部分区间上是否存在交点,要细心对待,有时还需计算相关的函数值(函数值的趋势)来确定是否有交点。

三、依存定理凭号而论如果函数y=f(x)在区间[a,b]上的图像时联系不断的一条曲线,并且有f(a)f(b)<0,那么函数y=f(x)在区间(a,b)内有零点。

即存在c∈(a,b),使得f(c)=0。

通常将此论述称为零点存在性定理。

因此,该解题策略就是将函数零点分布问题转化为判断不等式f(a)f(b)<0是否成立。

四、借助单调确定问题如果函数y=f(x)在区间[a,b]上的图像时连续不断的一条具有单调性曲线,并且有f(a)f(b)<0,那么函数y=f(x)在区间(a,b)内有唯一零点,即存在唯一的c∈(a,b),使得f(c)=0。

通常将此论述称为零点唯一性定理。

因此,该策略解题需要考虑两个条件:条件一是f(a)f(b)<0是否成立;条件二是否具有单调性。

题型一:已知零点个数求参数范围题型二:求零点所在区间题型三:求零点个数。

高考数学总复习---压轴题之函数零点问题(解析版)

高考数学总复习---压轴题之函数零点问题(解析版)

整体的代换和过渡,再结合其他条件,从而最终解决问题.我们称这类问题为“隐零
点”问题.处理此类问题的策略可考虑“函数零点存在定理”、“构造函数”、利用“函
数方程思想”转化等,从操作步骤看,可遵循如下处理方法:
第一步:用零点存在性定理判定导函数零点的存在性,列出零点方程 f′(x0)=0,并
结合 f(x)的单调性得到零点的范围;这里应注意,确定隐性零点范围的方式是多种多
故 f (x) 在 (0, x0 ) 单调递减,在 ( x0 ,1] 单调递增,
所以当 x = x0 时, f (x) 取得最小值,最小值为 f (x0 ) = e2x0 − a ln x0 ,
由 2x0e2x0
−a
=
0 ,即 e2x0
=
a 2 x0
,两边去对数得 ln
x0
= ln
a 2
− 2x0
2 / 22
零点的情况讨论函数的性质或证明不等式等.本专题围绕利用函数的“隐零点”,破解
导数压轴问题,例题说法,高效训练.
【典型例题】
类型一 挖掘“隐零点”,求参数的最值或取值范围
例 1.【浙江省杭州第十四中学 2019 届高三 12 月月考】设函数
,曲线 y=f(x)在 x=1 处的切线与直线 y=3x 平行.
(1)求 a;
﹣2
﹣2
(2)证明:f(x)存在唯一的极大值点 x0,且 e <f(x0)<2 .
【答案】(1)1;(2)见解析.
2
【解析】(1)因为 f(x)=ax ﹣ax﹣xlnx=x(ax﹣a﹣lnx)(x>0),则 f(x)≥0 等
价于
1 h(x)=ax﹣a﹣lnx≥0,求导可知 h′(x)=a﹣ .则当 a≤0 时 h′(x)<0,即 y=h

高考常考题-函数的零点问题(含解析)

高考常考题-函数的零点问题(含解析)

函数的零点问题一、题型选讲 题型一、运用函数图像判断函数零点个数可将零点个数问题转化成方程,进而通过构造函数将方程转化为两个图像交点问题,并作出函数图像。

作图与根分布综合的题目,英中作图是通过分析函数的单调性和关键点来进行作图,在作图的过程中还要 注意渐近线的细节,从而保证图像的准确。

例1、(2019苏州三市、苏北四市二调)立义在R 上的奇函数金)满足Λx+4)=Λx),且在区间[2, 4)上例3、【2018年高考全国III 卷理数】函数/(x) = COS^3Λ + ^ ∣^[0,π]的零点个数为 ______ 题型二、函数零点问题中参数的范围已知函数零点的个数,确定参数的取值范围,常用的方法和思路:(1) 直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范囤.(2) 分离参数法:先将参数分离,转化成求函数值域问题加以解决,解法2就是此法.它的本质就是将 函数转化为一个静函数与一个动函数的图像的交点问题来加以处理,这样就可以通过这种动静结合来方便 地研究问题.(3) 数形结合法:先对解析式变形,在同一平面直角坐标系中,画岀函数的图像,然后数形结合求解.1∏Λ∖X≥ 1例4. (2020届山东省枣庄.滕州市髙三上期末)已知/(X) = {…、f ,若函数y = ∕(x)-l 恰有f(2-x) + k,x<∖一个零点,则实数A ∙的取值范围是( )A. (l,4∙s) B ・ ILC. (YU)D ・(Y M]Z、21og^ x,x≥∖. Z 、例5、(2020全国高三专题练习(文))函数/(M = [f(w]) JI yl ,若方程f(x) = ~2x + m 有且只有两个不相等的实数根,则实数加的取值范围是()A. (-oo,4)B. (Y ,4]C. (-2,4)D. (-2,4]2-x,2≤x<3x-4,3≤x<4则函数y=∕ω-iog s H 的零点的个数为 ____________x<b例2、(2017苏锡常镇调研)若函数Λx)=≤ IInx<x>l, )则函数y=^χ)∣~∣的零点个数为 ______若函数F(X) =/(x)-g(x)在[0,2)上只有两个零点,则实数R 的值不可能为A.丄 3 3 C.——4例6、[2020年高考天津】已知函数f(x) = < Λ j'0,若函数g(γ) =γ,(j).∣AΛ^2点,则k 的取值范围是A. (→>,-∣)U(2√2,+oo)B ∙ U(0,2√Σ)c ・(Y,0)U(0,2√Σ) D ・ YO)U(2√Σ,S例7. [2019年髙考浙江】已知t 函数f(x) = < 1x,x < O1 c ・若函数一F --(α + l)f +ax.x≥O 13 2y = f(x)-cιx -b 恰有3个零点,则A. Λ<-L b<0B. αv -l, b>0C. α>-l, XoD ・ α>-l, b>Q例8. (2020浙江学军中学髙三3月月考)已知函数/(X)=(A -÷4)V5≤X <-3J 若函数 /(x-2),x≥-3g(x) = ∕α)-W(X+ 1)1有9个零点,则实数M 的取值范围是()A.[科丿B.1 1)匕'FD.1 1 <55例9.(2020届浙江省杭州市第二中学髙三3月月考)已知函数/(X)=2/V 『心2'B- 4D ・-1-2彳伙WR)恰有4个零二、达标训练1、(2019 IlJ 东师范大学附中高三月考)函数/(x) = √-W 的零点所在区间为()A- (一 1'O)B- [θ,^j C - (Al D- (1'2)e 丫 X V 02、 【2018年髙考全国I 卷理数】已知函数/(X)=g(χ) = f(χ) + x + a •若g(x)存在2个lnx, x>O,零点,则α的取值范用是A. [一 1, 0)B. [0, +∞)C. [-1, +oo)D. [1, +∞)3、 (2020届浙江省“山水联盟"髙三下学期开学)已知αbwR,函数f(x) = <(A+(l)e +αr "≤°,若函x,x>0数y = f{x)-ax-b 恰有3个零点,则()A. a>∖J)>OB. d>l,D<0C. a<tb>OD. a<^b<O4. (2020届山东实验中学髙三上期中)设定义在/?上的函数/(X)满足/(→) + /(X) = X 2,K 当X WO 时,__________ ・若函数沧)恰有2个零点,则2的取值范圉是 _____________≥∕(1~x ))2}且★为函数 g(x) = e λ-y[ex-aZR 疋为自然对数的底数)的一个零点,则实数α的取值可能是()A. 1√E 2D ・√72√7(0<x≤l)5、(2020届山东师范大学附中髙三月考)已知函数fW = ∖2—(X > DIX若方程/(兀)=一力+ α有三个不同的实根,则实数α的取值范围是 _______6、[2018年髙考浙江】已知z∈R.函数沧)=<X - 4, % ≥ Λ X 2-4x + 3,x<2,当z=2时,不等式√(x)vθ的解集是广(X)Vx .己知存在如Λ 2+2ax + a,x ≤ O 74202O届江苏省南通市如皋市高三下学期二模】已知函数f(x) = \e x_ex I ,,若存在实数+-a2,x>O X 3使得函数y = f(χ)-k有6个零点,则实数。

函数零点问题在高考压轴题的解法探讨-学案A3

函数零点问题在高考压轴题的解法探讨-学案A3
湘西州黄宏清高中数学名师工作室学案
执笔:黄宏清
授课:黄宏清ຫໍສະໝຸດ 审核:黄宏清名师工作室课题
函数零点问题在高考压轴题的解法探讨
课型 复习课 姓名
1.函数零点的概念:对于函数 y f (x) ,我们把 f (x) 0 的
叫做函数 y f (x) 的零点。
2.等价性:

方程 f (x) 0 有
函数 y f (x) 的图象与 x 轴有
函数 y f (x) 有零点

识 梳
3.零点存在定理:

如果函数 y f (x) 在区间[a,b]上的图象是
的一条曲线,并且有
,那么函数 y f (x)



在区间
内有零点,即存在 c (a,b) ,使得 f (c) 0 ,这个 c 也就是方程 f (x) 0 的根。


4.二分法:通过不断地把函数 f (x) 的零点区间
(Ⅰ)证明:
f
n
(
x
)
在区间
(
1 2
,1)
内存在唯一的零点
(Ⅱ)设
xn

f
n
(
x
)

(
1 2
,
1)
内的零点,判断数列
x2 , x3 ,
, xn ,
的增减性
例 4、已知函数 f (x) xcos x sin x 1(x 0) (Ⅰ)求 f ( x) 的单调区间
(Ⅱ)记 xi 为 f ( x) 的从小到大的第 i(i N ) 个零点,证明:对一切 n N 有:
,使区间的两个端点逐步逼近零点,进而得
到零点近似值的方法。
5.函数的极值点一定是

高中数学压轴题系列——导数专题——函数零点或交点问题

高中数学压轴题系列——导数专题——函数零点或交点问题

(Ⅲ)证明:函数 h(x)=f(x)﹣x2=lnx﹣ x2,h′(x)= ﹣3x=
,(x>0),
当 0<x< 时,h′(x)>0,h(x)递增;当 x> 时,h′(x)<0,h(x)递减.
即有 x≥1 时,h(x)递减,即 h(x)≤h(1)=ln1﹣ <0,则 lnx< x2,即为 3x2>lnx2.
【解答】(1)解:f′(x)=
,∵在 x=0 处取得极值,∴f′(0)=0,∴ ﹣1=0,解得 a=1.
经过验证 a=1 时,符合题意. (2)证明:当 a=1 时,f(x)=ln(x+1)﹣x2﹣x,其定义域为{x|x>﹣1}.f′(x)=
=

令 f′(x)=0,解得 x=0. 当 x>0 时,令 f′(x)<0,f(x)单调递减;当﹣1<x<0 时,令 f′(x)>0,f(x)单调递增. ∴f(0)为函数 f(x)在(﹣1,+∞)上的极大值即最大值. ∴f(x)≤f(0)=0,∴ln(x+1)≤x2+x,当且仅当 x=0 时取等号. (3)解:f(x)=﹣ x+b 即 ln(x+1)﹣x2+ x﹣b=0,
高中数学压轴题系列——导数专题——函数零点或交点问题
头条号:延龙高中数学 微信:gyl_math123
1.已知函数 f(x)=ln(x+a)﹣x2﹣x(a∈R)在 x=0 处取得极值. (1)求实数 a 的值; (2)证明:ln(x+1)≤x2+x; (3)若关于 x 的方程 f(x)=﹣ x+b 在区间[0,2]上恰有两个不同的实数根,求实数 b 的取值范围.
是曲线 y=f(x)的
一条切线. (1)求 a 的值;(2)设函数 g(x)=xex﹣2x﹣f(x﹣a)﹣a+2,证明:函数 g(x)无零点. 解:(1)函数 f(x)=ln(x+a)﹣x(a∈R)的导数为 f′(x)= ﹣1,

专题03 直击函数压轴题中零点问题-2021版高人一筹之高三数学(理)二轮复习特色专题训练(原卷版)

专题03 直击函数压轴题中零点问题-2021版高人一筹之高三数学(理)二轮复习特色专题训练(原卷版)

一、解答题1.已知函数()()()2ln 10f x x a x a =+->.(1)讨论()f x 的单调性;(2)若()f x 在区间()0,1内有唯一的零点0x ,证明: 3120e x e --<<.2.设函数f (x )=x 2+bx -1(b ∈R ). (1)当b =1时证明:函数f (x )在区间1,12⎛⎫⎪⎝⎭内存在唯一零点; (2)若当x ∈[1,2],不等式f (x )<1有解.求实数b 的取值范围. 3.已知函数()()210f x ax mx m a =++-≠.(1)若()10f -=,判断函数()f x 的零点个数;(2)若对任意实数m ,函数()f x 恒有两个相异的零点,求实数a 的取值范围; (3)已知12,x x R ∈R 且12x x <, ()()12f x f x ≠,求证:方程()()()1212f x f x f x ⎡⎤=+⎣⎦ 在区间()12,x x 上有实数根.4.已知函数()2ln f x a x bx =-图象上一点()()2,2P f 处的切线方程为32ln22y x =-++.(1)求,a b 的值;(2)若方程()0f x m +=在1,e e⎡⎤⎢⎥⎣⎦内有两个不等实根,求m 的取值范围(其中e 2.71828=为自然对数的底).(I )若a e =,函数()()2g x e x =- ①求函数()()()h x f x g x =-的单调区间 ②若函数()()(),{,f x x m F x g x x m≤=>的值域为R ,求实数m 的取值范围(II )若存在实数[]12,0,2x x ∈,使得()()12f x f x =,且121x x -≥,求证: 21e a e e -≤≤-6.已知函数()1x xf x ax e=-+. (1)当1a =时,求()y f x =在[]1,1x ∈-上的值域; (2)试求()f x 的零点个数,并证明你的结论. 7.已知函数()1ln f x ax x =-+(1)若不等式()0f x ≤恒成立,则实数a 的取值范围;(2)在(1)中, a 取最小值时,设函数()()()()122g x x f x k x =--++.若函数()g x 在区间182⎡⎤⎢⎥⎣⎦,上恰有两个零点,求实数k 的取值范围;8.已知函数()()ln 1axf x e x =+,其中a R ∈.(1)设()()axF x ef x -=',讨论()F x 的单调性;(2)若函数()()g x f x x =-在()0,+∞内存在零点,求a 的范围. 9.设函数()ln f x x =, ()bg x ax c x=+-(,,a b c R ∈). (1)当0c =时,若函数()f x 与()g x 的图象在1x =处有相同的切线,求,a b 的值;(2)当3b a =-时,若对任意()01,x ∈+∞和任意()0,3a ∈,总存在不相等的正实数12,x x ,使得()()()120g x g x f x ==,求c 的最小值;(3)当1a =时,设函数()y f x =与()y g x =的图象交于()11,,A x y ()2212,()B x y x x <两点.求证:122121x x x b x x x -<<-.10.已知函数()f x lnx ax =-. (Ⅰ)讨论()f x 的单调性;(Ⅱ)当函数()f x 有两个不相等的零点12,x x 时,证明: 212x x e ⋅>.11.已知()()()3231ln ,2x f x x e e x g x x x a =--=-++. (1)讨论()f x 的单调性;(2)若存在()10,x ∈+∞及唯一正整数2x ,使得()()12f x g x =,求a 的取值范围. 12.设函数()()2ln 2f x x a x a x =---.(1)求函数()f x 的单调区间;(2)若存在1x 、2x 满足()()12f x f x =.求证: 122'03x x f +⎛⎫> ⎪⎝⎭(其中()'f x 为()f x 的导函数) 13.已知函数()()22ln R f x a x x ax a =-+∈.(Ⅰ)求函数()f x 的单调区间;14.已知函数()()21xf x e a x b =---,其中e 为自然对数的底数.(1)若函数()f x 在区间[]0,1上是单调函数,试求实数a 的取值范围;(2)已知函数()()211xg x e a x bx =----,且()10g =,若函数()g x 在区间[]0,1上恰有3个零点,求实数a 的取值范围.15.已知函数()()ln 1axf x e x =+,其中a R ∈.(1)设()()axF x ef x -=',讨论()F x 的单调性;(2)若函数()()g x f x x =-在()0,+∞内存在零点,求a 的范围. 16.已知函数()ln 3f x a x bx =--(R a ∈且0a ≠) (1)若a b =,求函数()f x 的单调区间;(2)当1a =时,设()()3g x f x =+,若()g x 有两个相异零点12,x x ,求证: 12ln ln 2x x +>. 17.设函数()()()22ln 11f x x x =---.(2)若关于x 的方程()230f x x x a +--=在区间[]24,内恰有两个相异的实根,求实数a 的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、解答题1.已知函数()()
()2
ln 10f x x a x a =+->.
(1)讨论()f x 的单调性;(2)若()f x 在区间()0,1内有唯一的零点0x ,证明:312
0e x e --<<.
2.设函数f (x )=x 2
+bx -1(b ∈R ).
(1)当b =1时证明:函数f (x )在区间1,12⎛⎫
⎪⎝⎭
内存在唯一零点;(2)若当x ∈[1,2],不等式f (x )<1有解.求实数b 的取值范围.3.已知函数()()2
10f x ax mx m a =++-≠.
(1)若()10f -=,判断函数()f x 的零点个数;
(2)若对任意实数m ,函数()f x 恒有两个相异的零点,求实数a 的取值范围;(3)已知12,x x R ∈R 且12x x <,()()12f x f x ≠,求证:方程()()()121
2f x f x f x ⎡⎤=+⎣
⎦在区间()12,x x 上有实数根.
4.已知函数()2
ln f x a x bx =-图象上一点()()
2,2P f 处的切线方程为32ln22y x =-++.
(1)求,a b 的值;
(2)若方程()0f x m +=在1,e e ⎡⎤⎢⎥⎣

内有两个不等实根,求m 的取值范围(其中e 2.71828= 为自然对数的底).
5.已知函数()1x
f x e ax =--,其中e 为自然对数的底数,a R
∈(I )若a e =,函数()()2g x e x
=-①求函数()()()h x f x g x =-的单调区间②若函数()()(),{
,f x x m F x g x x m
≤=>的值域为R ,求实数m 的取值范围
(II )若存在实数[]
12,0,2x x ∈,使得()()12f x f x =,且121x x -≥,求证:2
1e a e e
-≤≤-6.已知函数()1x
x
f x ax e =
-+.(1)当1a =时,求()y f x =在[]
1,1x ∈-上的值域;(2)试求()f x 的零点个数,并证明你的结论.7.已知函数()1ln f x ax x
=-+(1)若不等式()0f x ≤恒成立,则实数a 的取值范围;
(2)在(1)中,a 取最小值时,设函数()()()
()122g x x f x k x =--++.若函数()g x 在区间182⎡⎤
⎢⎥⎣⎦
,上恰有
两个零点,求实数k 的取值范围;
(3)证明不等式:()221
2ln 234n n n n
-+⨯⨯⨯⨯> (*n N ∈且2n ≥).
8.已知函数()()ln 1ax
f x e x =+,其中a R ∈.
(1)设()()ax
F x e
f x -=',讨论()F x 的单调性;
(2)若函数()()g x f x x =-在()0,+∞内存在零点,求a 的范围.9.设函数()ln f x x =,()b
g x ax c x
=+
-(,,a b c R ∈).(1)当0c =时,若函数()f x 与()g x 的图象在1x =处有相同的切线,求,a b 的值;
(2)当3b a =-时,若对任意()01,x ∈+∞和任意()0,3a ∈,总存在不相等的正实数12,x x ,使得
()()()120g x g x f x ==,求c 的最小值;
(3)当1a =时,设函数()y f x =与()y g x =的图象交于()11,,A x y ()2212,()B x y x x <两点.求证:
122121x x x b x x x -<<-.
10.已知函数()f x lnx ax =-.
(Ⅰ)讨论()f x 的单调性;(Ⅱ)当函数()f x 有两个不相等的零点12,x x 时,证明:212x x e ⋅>.
11.已知()()()3
2
31ln ,2
x
f x x e e x
g x x x a =--=-+
+.(1)讨论()f x 的单调性;(2)若存在()10,x ∈+∞及唯一正整数2x ,使得()()12f x g x =,求a 的取值范围.12.设函数()()2
ln 2f x x a x a x =---.
(1)求函数()f x 的单调区间;
(2)若存在1x 、2x 满足()()12f x f x =.求证:122'03x x f +⎛⎫
> ⎪⎝⎭
(其中()'f x 为()f x 的导函数)13.已知函数()()2
2
ln R f x a x x ax a =-+∈.
(Ⅰ)求函数()f x 的单调区间;(Ⅱ)当0a >时,若()f x 在()1,e 上有零点,求实数a 的取值范围.14.已知函数()()21x
f x e a x b =---,其中e 为自然对数的底数.
(1)若函数()f x 在区间[]
0,1上是单调函数,试求实数a 的取值范围;
(2)已知函数()()2
11x
g x e a x bx =----,且()10g =,若函数()g x 在区间[]
0,1上恰有3个零点,求实数
a 的取值范围.
15.已知函数()()ln 1ax
f x e x =+,其中a R ∈.
(1)设()()ax
F x e
f x -=',讨论()F x 的单调性;
(2)若函数()()g x f x x =-在()0,+∞内存在零点,求a 的范围.16.已知函数()ln 3f x a x bx =--(R a ∈且0a ≠)(1)若a b =,求函数()f x 的单调区间;
(2)当1a =时,设()()3g x f x =+,若()g x 有两个相异零点12,x x ,求证:12ln ln 2x x +>.17.设函数()()()2
2ln 11f x x x =---.
(1)求函数()f x 的单调递减区间;
(2)若关于x 的方程()2
30f x x x a +--=在区间[]
24,
内恰有两个相异的实根,求实数a 的取值范围.。

相关文档
最新文档