任意角和弧度制数学教案

合集下载

任意角弧度制市公开课获奖教案省名师优质课赛课一等奖教案

任意角弧度制市公开课获奖教案省名师优质课赛课一等奖教案

任意角弧度制教案一、教学目标:1. 了解角度的概念和表示方法;2. 掌握任意角的度数和弧度之间的转换方法;3. 能够使用任意角弧度制进行角度的计算和运算。

二、教学重点:1. 了解角度的概念和表示方法;2. 掌握任意角的度数和弧度之间的转换方法。

三、教学难点:1. 掌握任意角弧度制进行角度的计算和运算。

四、教学准备:黑板、白板、教具(量角器、圆规)、课件、练习题。

五、教学流程:步骤一:引入1. 引入角度的概念,让学生回顾并复习角度的定义。

角是由两条射线共同起源于同一点的图形,可以用度数来表示。

2. 提问:角的度数有哪几种表示方法?(学生回答度、分、秒。

)步骤二:学习任意角的度数表示1. 角的度数表示:一个完整的圆可以表示为360°,任意角的度数表示为一个小于或大于360°的数值。

2. 举例:角α的度数表示为120°,角β的度数表示为400°。

3. 提问:如何将一个角的度数表示为小于360°的数值?(学生回答取余数。

)步骤三:学习任意角的弧度表示1. 角的弧度表示:一个完整的圆可以表示为2π弧度,任意角的弧度表示为一个小于或大于2π的数值。

2. 提问:如何将一个角的弧度表示为小于2π的数值?(学生回答取余数。

)步骤四:学习度数到弧度的转换方法1. 角的度数转换为弧度:使用公式弧度 = 度数×π / 180;2. 举例:将30°转换为弧度的表示方法。

(教师出示计算过程)步骤五:学习弧度到度数的转换方法1. 角的弧度转换为度数:使用公式度数 = 弧度× 180 / π;2. 举例:将π/3弧度转换为度数的表示方法。

(教师出示计算过程)步骤六:练习与应用1. 收集一些角度计算的应用题,让学生尝试使用任意角弧度制进行计算和运算。

2. 鼓励学生在小组内合作解决问题,提高他们的角度计算能力。

六、课堂小结1. 总结任意角的度数和弧度的表示方法及转换公式;2. 强调任意角弧度制在角度计算和运算中的重要性。

高中数学教案《任意角和弧度制》

高中数学教案《任意角和弧度制》

教学计划:《任意角和弧度制》一、教学目标1.知识与技能:学生能够理解并掌握任意角的概念,熟悉角度制与弧度制的转换方法,掌握利用弧度制进行简单三角函数的计算。

2.过程与方法:通过直观演示和抽象概括,引导学生自主探究任意角与弧度制的定义及性质;通过例题解析和课堂练习,提高学生的逻辑思维能力和数学运算能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生严谨的科学态度和探究精神;通过学习任意角和弧度制,让学生体会到数学知识的连续性和统一性。

二、教学重点和难点●教学重点:任意角的概念,角度制与弧度制的转换,弧度制下三角函数的基本性质。

●教学难点:理解并接受弧度制作为角的另一种度量方式,以及利用弧度制进行三角函数的计算。

三、教学过程1. 引入新课(约5分钟)●情境导入:以生活中的实例(如钟表指针的转动、体操运动员的旋转动作)为例,引导学生思考角的度量不仅仅局限于0°到360°之间,从而引出任意角的概念。

●定义揭示:明确任意角的定义,包括正角、负角和零角,强调角的旋转方向和度量范围。

●激发兴趣:简述历史上角度制与弧度制的发展过程,引起学生对弧度制的好奇心。

2. 讲授新知(约15分钟)●弧度制介绍:详细介绍弧度制的定义,即弧长与半径的比值,强调弧度制在三角学和微积分中的重要性。

●转换方法:讲解角度制与弧度制之间的转换公式,并通过具体例子演示转换过程。

●性质探讨:引导学生探讨弧度制下三角函数的基本性质,如正弦、余弦和正切函数的周期性、奇偶性等。

3. 直观演示与操作(约10分钟)●单位圆与弧度制:利用多媒体或实物教具展示单位圆上的角度与弧度的对应关系,加深学生对弧度制的理解。

●互动操作:让学生在纸上绘制单位圆,并尝试用尺子量取特定弧长,计算对应的弧度值,以增强感性认识。

●小组讨论:组织学生讨论角度制与弧度制的优缺点,促进知识的内化和吸收。

4. 例题解析与练习(约15分钟)●例题解析:选取典型例题,如角度制与弧度制的转换、利用弧度制计算三角函数值等,进行详细解析,展示解题步骤和思路。

1.1任意角和弧度制教学设计教案

1.1任意角和弧度制教学设计教案

1.1任意角和弧度制教学设计教案第一篇:1.1 任意角和弧度制教学设计教案教学准备1.教学目标1、知识与技能(1)推广角的概念、引入正角和负角;(2)理解并掌握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4)掌握所有与角终边相同的角(包括角)的表示方法;(5)树立运动变化观点,深刻理解推广后的角的概念.2、过程与方法通过创设情境:“转体,逆(顺)时针旋转2周”,角有正角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示.3、情态与价值通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分.角的概念推广以后,知道角之间的关系.学会运用运动变化的观点认识事物.2.教学重点/难点重点: 理解正角、负角和零角的定义,掌握终边相同角的表示法.难点: 终边相同的角的表示.3.教学用具多媒体4.标签任意角教学过程【创设情境】思考:你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25小时,你应当如何将它校准?当时间校准以后,分针转了多少度?[取出一个钟表,实际操作]我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于之间,这正是我们这节课要研究的主要内容——任意角.【探究新知】1.初中时,我们已学习了角的概念,它是如何定义的呢?[展示投影]角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.如图1.1-1,一条射线由原来的位置,绕着它的端点按逆时针方向旋转到终止位置,就形成角.旋转开始时的射线叫做角的始边,叫终边,射线的端点叫做叫的顶点.2.如上述情境中所说的校准时钟问题以及在体操比赛中我们经常听到这样的术语:“转体”(即转体2周),“转体”(即转体3周)等,都是遇到大于的角以及按不同方向旋转而成的角.同学们思考一下:能否再举出几个现实生活中“大于的角或按不同方向旋转而成的角”的例子,这些说明了什么问题?又该如何区分和表示这些角呢? [展示课件]如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角, 这些都说明了我们研究推广角概念的必要性.为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角(positive angle),按顺时针方向旋转所形成的角叫负角(negative angle).如果一条射线没有做任何旋转,我们称它形成了一个零角(zero angle).[展示课件]如教材图1.1.3(1)中的角是一个正角,它等于;图1.1.3(2)中,正角,负角;这样,我们就把角的概念推广到了任意角(any angle),包括正角、负角和零角.为了简单起见,在不引起混淆的前提下,“角”或“”可简记为.3.在今后的学习中,我们常在直角坐标系内讨论角,为此我们必须了解象限角这个概念.角的顶点与原点重合,角的始边与轴的非负半轴重合。

任意角和弧度制》优秀教学教案教学设计

任意角和弧度制》优秀教学教案教学设计

5.1.2 弧度制本节课是普通高中教科书人教A版必修第一册第五章第一节第二课,本节课起着承上启下的作用:在前面学生在初中已经学过角的度量单位“度”,并且上节课学了任意角的概念,将角的概念推广到了任意角;本节课作为三角函数的第二课时,该课的知识还是后继学习任意角的三角函数等知识的理论准备,因此本节课还起着启下的作用。

通过本节弧度制的学习,我们知道实数与角之间一一对应的关系,而且在弧度制下的弧长公式与扇形面积公式有了更为简单形式。

另外弧度制为今后学习三角函数带很大方便。

A.理解角集与实数集的一一对应,熟练掌握角度制与弧度制间的互相转化;B.能灵活运用弧长公式、扇形面积公式解决问题;C.找出弧度与角度换算的方法,领悟从特殊到一般的思想方法。

1.教学重点:角度制与弧度制间的互相转化,弧长公式及扇形的面积公式的推导与证明;2.教学难点:能灵活运用弧长公式、扇形面积公式解决问题。

多媒体任意角的集合 实数集R例3.利用弧度制证明下列扇形的公式:(1)2R 21S 2αα==)(R l lR 21S 3=)(。

(其中R 是扇形的半径,l 是弧长,为圆心角()20παα<<,S 是扇形的面积)。

三、达标检测由于弧度制是一个新的角单位制的概念,主要是让学生理解弧度制的意义,重点是让学生能正确进行弧度制与角度制的换算,并理解任意角的集合与实数集之间建立一一对应的关系,关键是让学生学会类比思想,并让学生学会在弧度制下的弧长公式,及扇形的面积公式。

学生在学习弧度制的时候主要是对弧度制理解的不够透彻,可能是因为新的概念,所以有大部分学生还不够熟悉,在讲解习题的时候我就逐层深入的讲解,所以学生反映还是不错。

只是学生的作业还是做得不太好。

所以在讲解作业的时候要继续加强弧度制的定义的理解。

任意角和弧度制教案

任意角和弧度制教案

任意角和弧度制教案教案标题:任意角和弧度制教案教案目标:1. 了解任意角的概念,能够在坐标系中表示和定位任意角。

2. 理解弧度制的概念,能够在弧度制和度数制之间进行转换。

3. 掌握任意角的三角函数值的计算方法。

教学准备:1. 教师准备:教学投影仪、白板、笔记本电脑、教学PPT等。

2. 学生准备:纸和铅笔。

教学过程:Step 1: 引入1. 教师通过展示一张钟表图,引导学生思考角度的概念。

提问:你们平时见过哪些角度的度量方式?2. 学生回答后,教师解释度数制的概念,并引出本节课学习的内容:任意角和弧度制。

Step 2: 任意角的表示和定位1. 教师通过示意图和坐标系,解释任意角的表示方法。

提醒学生注意正角、负角和零角的特点。

2. 学生跟随教师的指导,在纸上练习绘制不同角度的示意图,并用坐标系表示和定位这些角。

Step 3: 弧度制的介绍和转换1. 教师给出弧度制的定义:1弧度是半径等于1的圆的弧所对应的角。

2. 教师通过示意图和实际物体(如一根铁丝弯成的圆弧),展示弧度制的概念和计算方法。

3. 教师引导学生进行度数制和弧度制之间的转换练习,提供一些常见的转换例题。

Step 4: 任意角的三角函数值的计算1. 教师复习正弦、余弦和正切的定义,并介绍任意角的三角函数值的计算方法。

2. 教师通过示例演示三角函数值的计算步骤,引导学生进行练习。

Step 5: 拓展应用1. 教师提供一些与任意角和弧度制相关的实际问题,引导学生运用所学知识解决问题。

2. 学生个别或小组合作完成拓展应用题。

Step 6: 总结和归纳1. 教师带领学生总结本节课所学内容,并强调重点和难点。

2. 学生将所学知识进行整理和归纳,完成课堂笔记。

Step 7: 作业布置1. 教师布置相关的课后作业,包括练习题和思考题。

2. 学生完成作业,以便巩固所学知识。

教学评估:1. 教师观察学生在课堂上的参与度和理解程度。

2. 教师检查学生完成的课堂练习和作业,评估学生的掌握情况。

任意角与弧度制教案

任意角与弧度制教案

1、1任意角和弧度制一、教材说明:本节任意角和弧度制选自必修四第一章第一节二、三维目标(一)知识与技能(1)了解正、负角与零角的相关定义;(2)根据图形写出角及根据终边写出角的集合;(3)了解弧度制;(二)过程与方法(1)培养学生数型转化的思想;(2)训练学生思维活跃性,能够举一反三;(3)培养学生思维的抽象与具体转化的过程;(三)情感态度与价值观(1)增强学生观察生活中事物的规律能力;(2)在老师的引导下建立数学模型,把数学运用到生活中去;三、教学重难点(一)重点(1)根据图形写出任意角度数;(2)根据已知图形终边位置写出该终边所表示的角的集合;(二)难点根据终边写角的集合(三)教学设计(1)情境设计(2)教学过程(3)给出相关定义(4)举出例题,深化正负角定义(5)提出要点(6)提出关于终边相同,写出所有角所在集合(7)通过练习(教师引导,并作为主体练习),能够独立进行习题练习(8)学生自主练习、教师个别指导、师生互动(9)习题讲解(10)归纳总结(11)引出下堂课知识点:弧度制(12)布置作业四、教学过程(一)创设情境(1)墙上挂钟,在某段时间内,指针转过角度;(2)当手表不准时,我们旋转指针使之准时,这是指针转过的角度是多少?方向如何?(二)揭示课题(1)1、1任意角和弧度制(2)1、1、1任意角(三)复习旧知识顺时针、逆时针(四)给出例题(1)当指针快速顺时针由“12”调至“6”,指针转过多少度?(2)指针由“6”又调回到“12”是,转过角度如何?方向又怎样呢?(五)给出正角、负角定义(1)正角:逆时针方向旋转形成的角叫做正角;(2)负角:顺时针方向旋转形成的角叫做负角;(六)注意要点如果一条射线没有做任何旋转,则称它为零角。

(七)复习旧知识(1)0°—180°内所有角(2)周角(3)平角的整数倍所有角(八)新知识(1)任意角的表示方法;(2)判断当角的始变何种变相同时,角度是否相同.(九)给出任意角及象限角概念注意角的终边在轴上不叫做象限角。

高一数学任意角、弧度制教案

高一数学任意角、弧度制教案

1.1.1 任意角教学目标(一) 知识与技能理解任意角的概念(包括正角、负角、零角) 与区间角的概念. (二) 过程与方法会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写.(三) 情感与态度与价值观1. 提高学生的推理能力; 2.培养学生应用意识. 教学重点:任意角概念的理解;区间角的集合的书写.教学难点:终边相同角的集合的表示;区间角的集合的书写. 教学过程 一、引入:1.回顾角的定义①角的第一种定义是有公共端点的两条射线组成的图形叫做角.②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. 二、新课:1.角的有关概念: ①角的定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. ②角的名称:③角的分类: ④注意:⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”; ⑵零角的终边与始边重合,如果α是零角α =0°; ⑶角的概念经过推广后,已包括正角、负角和零角. ⑤练习:请说出角α、β、γ各是多少度? 2.象限角的概念:①定义:若将角顶点与原点重合,角的始边与x 轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角. 例1.如图⑴⑵中的角分别属于第几象限角?例2.在直角坐标系中,作出下列各角,并指出它们是第几象限的角.⑴ 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°;答:分别为1、2、3、4、1、2象限角. 3.探究:教材P3面正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角⑵B 1 y⑴O x45° B 2O x B 3y30°60o负角:按顺时针方向旋转形成的角 始边 终边顶点AO B终边相同的角的表示:所有与角α终边相同的角,连同α在内,可构成一个集合S ={ β | β = α + k ·360° ,k ∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和. 注意: ⑴ k ∈Z⑵ α是任一角;⑶ 终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差360°的整数倍;⑷ 角α + k ·720°与角α终边相同,但不能表示与角α终边相同的所有角. 例3.在0°到360°范围内,找出与下列各角终边相等的角,并判断它们是第几象限角.⑴-120°;⑵640°;⑶-950°12'.答:⑴240°,第三象限角;⑵280°,第四象限角;⑶129°48',第二象限角; 例4.写出终边在y 轴上的角的集合(用0°到360°的角表示) . 解:{α | α = 90°+ n ·180°,n ∈Z}.例5.写出终边在x y =上的角的集合S,并把S 中适合不等式-360°≤β<720°的元素β写出来. 三.课堂小结 ①角的定义; ②角的分类:③象限角;④终边相同的角的表示法. 四.课后作业:①阅读教材P 2-P 5; ②教材P 5练习第1-5题; ③教材P.9习题1.1第1、2、3题思考题:已知α角是第三象限角,则2α,2α各是第几象限角? 解:α 角属于第三象限,∴ k ·360°+180°<α<k ·360°+270°(k ∈Z)因此,2k ·360°+360°<2α<2k ·360°+540°(k ∈Z) 即(2k +1)360°<2α<(2k +1)360°+180°(k ∈Z)故2α是第一、二象限或终边在y 轴的非负半轴上的角. 又k ·180°+90°<2α<k ·180°+135°(k ∈Z) . 当k 为偶数时,令k=2n(n ∈Z),则n ·360°+90°<2α<n ·360°+135°(n ∈Z) , 此时,2α属于第二象限角 当k 为奇数时,令k=2n+1 (n ∈Z),则n ·360°+270°<2α<n ·360°+315°(n ∈Z) , 此时,2α属于第四象限角 因此2α属于第二或第四象限角. 正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角负角:按顺时针方向旋转形成的角五.板书设计六. 教学反思1.1.2弧度制(一)教学目标(一) 知识与技能理解弧度的意义;了解角的集合与实数集R 之间的可建立起一一对应的关系;熟记特殊角的弧度数. (二) 过程与方法能正确地进行弧度与角度之间的换算,能推导弧度制下的弧长公式及扇形的面积公式,并能运用公式解决一些实际问题 (三) 情感态度与价值观通过新的度量角的单位制(弧度制)的引进,培养学生求异创新的精神;通过对弧度制与角度制下弧长公式、扇形面积公式的对比,让学生感受弧长及扇形面积公式在弧度制下的简洁美. 教学重点弧度的概念.弧长公式及扇形的面积公式的推导与证明. 教学难点“角度制”与“弧度制”的区别与联系. 教学过程一、复习角度制:初中所学的角度制是怎样规定角的度量的? 规定把周角的3601作为1度的角,用度做单位来度量角的制度叫做角度制. 二、新课: 1.引 入:由角度制的定义我们知道,角度是用来度量角的, 角度制的度量是60进制的,运用起来不太方便.在数学和其他许多科学研究中还要经常用到另一种度量角的制度—弧度制,它是如何定义呢? 2.定 义我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下, 1弧度记做1rad .在实际运算中,常常将rad 单位省略.3.思考: (1)一定大小的圆心角α所对应的弧长与半径的比值是否是确定的?与圆的半径大小有关吗?(2)引导学生完成P6的探究并归纳: 弧度制的性质: ①半圆所对的圆心角为;ππ=rr②整圆所对的圆心角为.22ππ=rr③正角的弧度数是一个正数. ④负角的弧度数是一个负数.⑤零角的弧度数是零. ⑥角α的弧度数的绝对值|α|=. rl 4.角度与弧度之间的转换: ①将角度化为弧度:π2360=︒; π=︒180;rad 01745.01801≈=︒π;rad n n 180π=︒. ②将弧度化为角度:2360p = ;180p = ;1801()57.305718rad p¢=盎? ;180()nn p= . 5.常规写法:① 用弧度数表示角时,常常把弧度数写成多少π 的形式, 不必写成小数. ② 弧度与角度不能混用. 6.特殊角的弧度 角度 0° 30° 45° 60° 90° 120° 135° 150° 180° 270° 360° 弧度0 6π 4π 3π 2π 32π 43π 65π π23ππ2 7.弧长公式ll r ra a =?弧长等于弧所对应的圆心角(的弧度数)的绝对值与半径的积. 例1.把67°30'化成弧度. 例2.把rad 53π化成度. 例3.计算:4sin)1(π;5.1tan )2(.例4.将下列各角化成0到2π的角加上2k π(k ∈Z )的形式:319)1(π;︒-315)2(. 例5.将下列各角化成2k π + α(k ∈Z,0≤α<2π)的形式,并确定其所在的象限.319)1(π;631)2(π-. 解: (1),672319πππ+=而67π是第三象限的角,193p\是第三象限角.(2) 315316,666p p pp -=-+\- 是第二象限角. .,,216. 是圆的半径是扇形弧长其中积公式利用弧度制证明扇形面例R l lR S =证法一:∵圆的面积为2R π,∴圆心角为1rad 的扇形面积为221R ππ,又扇形弧长为l,半径为R,O R l∴扇形的圆心角大小为R l rad, ∴扇形面积lR R R l S 21212=⋅=. 证法二:设圆心角的度数为n ,则在角度制下的扇形面积公式为3602R n S π⋅=,又此时弧长180R n l π=,∴R l R R n S ⋅=⋅⋅=2118021π.可看出弧度制与角度制下的扇形面积公式可以互化,而弧度制下的扇形面积公式显然要简洁得多.22121:R lR S α==扇形面积公式三.课堂小结①什么叫1弧度角? ②任意角的弧度的定义③“角度制”与“弧度制”的联系与区别. 四.课后作业: ①阅读教材P 6 –P 8;②教材P 9练习第1、2、3、6题; ③教材P10面7、8题及B2、3题. 五.板书设计六.教学反思4-1.2.1任意角的三角函数(三)教学目标:(一) 知识与技能1.复习三角函数的定义、定义域与值域、符号、及诱导公式;2.利用三角函数线表示正弦、余弦、正切的三角函数值;3.利用三角函数线比较两个同名三角函数值的大小及表示角的范围。

任意角和弧度制的教学设计

任意角和弧度制的教学设计

任意角和弧度制的教学设计5.1任意角和弧度制【考点梳理】大重点一:任意角考点一:任意角1.角的概念:角可以看成平面内一条射线绕着它的端点旋转所成的图形.2.角的表示:如图,OA是角α的始边,OB是角α的终边,O是角α的顶点.角α可记为“角α”或“∠α”或简记为“α”.3.角的分类:名称定义图示正角按逆时针方向旋转形成的角负角按顺时针方向旋转形成的角零角一条射线没有作任何旋转形成的角考点二角的加法与减法设α,β是任意两个角,-α为角α的相反角.(1)α+β:把角α的终边旋转角β.(2)α-β:α-β=α+(-β).考点三象限角把角放在平面直角坐标系中,使角的顶点与原点重合,角的始边与x轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.考点四终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.大重点二:弧度制考点五:度量角的两种单位制1.角度制:(1)定义:用度作为单位来度量角的单位制.(2)1度的角:周角的1360.2.弧度制:(1)定义:以弧度作为单位来度量角的单位制.(2)1弧度的角:长度等于半径长的圆弧所对的圆心角.考点六:弧度数的计算考点七:角度与弧度的互化角度化弧度弧度化角度360°=2πrad 2πrad=360°180°=πrad πrad=180°1°=π180 rad≈0.017 45 rad1 rad=180π°≈57.30°度数×π180=弧度数弧度数×180π°=度数考点八:弧度制下的弧长与扇形面积公式设扇形的半径为R,弧长为l,α(0<α<2π)为其圆心角,则(1)弧长公式:l=αR. (2)扇形面积公式:S=12lR=12αR2.课堂练习:P21,第1,2题作业:P22 第3题。

《任意角和弧度制》教案

《任意角和弧度制》教案

《任意角和弧度制》教案篇一:人教A版高中数学必修四教案教案教学目标 1.理解任意角的概念.2.学会建立直角坐标系讨论任意角,判断象限角,掌握终边相同角的集合的书写.3.了解弧度制,能进行弧度与角度的换算.4.认识弧长公式,能进行简单应用.对弧长公式只要求了解,会进行简单应用,不必在应用方面加深.5.了解角的集合与实数集建立了一一对应关系,培养学生学会用函数的观点分析、解决问题. 导入新课复习初中学习过的知识:角的度量、圆心角的度数与弧的度数及弧长的关系提出问题:1.初中所学角的概念.2.实际生活中出现一系列关于角的问题. 3.初中的角是如何度量的?度量单位是什么?°的角是如何定义的?弧长公式是什么?5.角的范围是什么?如何分类的?新授课阶段一、角的定义与范围的扩大1.角的定义:一条射线绕着它的端点O,从起始位置OA旋转到终止位置OB,形成一个角?,点O是角的顶点,射线OA,OB分别是角?的终边、始边. 说明:在不引起混淆的前提下,“角?”或“??”可以简记为?. 2.角的分类:正角:按逆时针方向旋转形成的角叫做正角;负角:按顺时针方向旋转形成的角叫做负角;零角:如果一条射线没有做任何旋转,我们称它为零角. 说明:零角的始边和终边重合. 3.象限角:在直角坐标系中,使角的顶点与坐标原点重合,角的始边与x 轴的非负轴重合,则(1)象限角:若角的终边(端点除外)在第几象限,我们就说这个角是第几象限角. 例如:30?,390?,?330?都是第一象限角;300?,?60?是第四象限角.(2)非象限角(也称象限间角、轴线角):如角的终边在坐标轴上,就认为这个角不属于任何象限.例如:90?,180?,270?等等.说明:角的始边“与x轴的非负半轴重合”不能说成是“与x 轴的正半轴重合”.因为x轴的正半轴不包括原点,就不完全包括角的始边,角的始边是以角的顶点为其端点的射线.4.终边相同的角的集合:由特殊角30看出:所有与30角终边相同的角,连同30角自身在内,都可以写成30?k?360??????k?Z?的形式;反之,所有形如30??k?360??k?Z?的角都与30?角的终边相同.从而得出一般规律:所有与角?终边相同的角,连同角?在内,可构成一个集合S|?k?360?,k?Z?,即:任一与角?终边相同的角,都可以表示成角?与整数个周角的和. 说明:终边相同的角不一定相等,相等的角终边一定相同.例1在0与360范围内,找出与下列各角终边相同的角,并判断它们是第几象限角?(1)?120;(2)640;(3)?95012?.?????解:(1)?120?240?360,所以,与?120角终边相同的角是240,它是第三象限角;(2)640?280?360,所以,与640角终边相同的角是280角,它是第四象限角;(3)?95012??12948??3?360,??????????所以,?95012?角终边相同的角是12948?角,它是第二象限角.??例 2 若??k?360??1575?,k?Z,试判断角?所在象限. 解:∵??k?360??1575?(k?5)?360??225?, (k?5)?Z ∴?与225终边相同,所以,?在第三象限.?例 3 写出下列各边相同的角的集合S,并把S中适合不等式?360720?的元素? 写出来:(1)60;(2)?21;(3)36314?.?????解:(1)S??|??60?k?360,k?Z,??S中适合?360720?的元素是60??1?360300?,60??0?360??60?,?60??1?360??420.??(2)S??|21?k?360,k?Z,??S中适合?360720?的元素是?21??0?36021?,?21??1?360??339?,?21??2?260??699???(3)S??|??36314??k?360,k?Z??S中适合?360720?的元素是363?14??2?360356?46?, 363?14??1?360??3?14?,?363?14??0?360??363?14.例4 写出第一象限角的集合M.分析:(1)在360内第一象限角可表示为090;(2)与0,90终边相同的角分别为0?k?360,90?k?360,(k?Z);(3)第一象限角的集合就是夹在这两个终边相同的角中间的角的集合,我们表示为:????????M|k?360?90??k?360?,k?Z?.学生讨论,归纳出第二、三、四象限角的集合的表示法:P|90??k?360?180??k?360?,k?Z?;N|90??k?360?180??k?360?,k?Z?;Q|270??k?360?360??k?360?,k?Z?.说明:区间角的集合的表示不唯一.例5写出y??x(x?0)所夹区域内的角的集合.??解:当?终边落在y?x(x?0)上时,角的集合为?|??45?k?360,k?Z;????当?终边落在y??x(x?0)上时,角的集合为?|45?k?360,k?Z;??所以,按逆时针方向旋转有集合:S??|?45?k?36045?k?360,k?Z.二、弧度制与弧长公式 1.角度制与弧度制的换算:∵360?=2?(rad),∴180?=? rad. ∴ 1?=?180rad???180 1rad??5718’.oSl2.弧长公式:l?r?. 由公式:?ln?r?l?r??.比公式l?简单. r1801lR,其中l是扇形弧长,R是圆的半径. 2弧长等于弧所对的圆心角(的弧度数)的绝对值与半径的积3.扇形面积公式 S?注意几点:1.今后在具体运算时,“弧度”二字和单位符号“rad”可以省略,如:3表示3rad , sin?表示?rad角的正弦;2.一些特殊角的度数与弧度数的对应值应该记住:3.应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系.任意角的集合实数集R例6 把下列各角从度化为弧度:(1)252?;(2)1115;(3) 30;(4)67?30’. 解:(1)/71? (2)? (3) ? (4) ? 56变式练习:把下列各角从度化为弧度:(1)22o30′;(2)-210o;(3)1200o. 解:(1) ?;(2)?18720?;(3)?. 63例7 把下列各角从弧度化为度:(1)?;(2) ;(3) 2;(4)35?. 4解:(1)108 o;(2);(3);(4)45o. 变式练习:把下列各角从弧度化为度:(1)?4?3?;(2)-;(3).12310解:(1)15 o;(2)-240o;(3)54o.例8 知扇形的周长为8cm,圆心角?为2rad,,求该扇形的面积. 解:因为2R+2R=8,所以R=2,S=4. 课堂小结1.弧度制的定义;2.弧度制与角度制的转换与区别;3.牢记弧度制下的弧长公式和扇形面积公式,并灵活运用;篇二:(教案3)任意角和弧度制任意角教学目标:要求学生掌握用“旋转”定义角的概念,理解任意角的概念,学会在平面内建立适当的坐标系来讨论角;并进而理解“正角”“负角”“象限角”“终边相同的角”的含义。

高中数学必修4《任意角和弧度制》教案

高中数学必修4《任意角和弧度制》教案

高中数学必修4《任意角和弧度制》教案一、教学目标1. 理解任意角的概念,掌握任意角的几何性质;2. 理解弧度制的概念,掌握弧度制的基本用法;3. 掌握任意角的三角函数及其基本性质。

二、教学内容1. 任意角的定义和性质;2. 弧度制的概念和计算公式;3. 三角函数的定义、性质及其图象。

三、教学方法1. 归纳法、演示法、讨论法;2. 短片展示、综合练习。

四、教学步骤步骤一:导入新课1. 充分利用素材,抛出有关问题,启发学生思考,激发探究兴趣,从而引出新课。

2. 展示台湾百事可乐的广告,提问:“你们觉得这是哪种角度?”3. 解释任意角的概念,举一些例子,使学生了解不同角度的概念。

步骤二:学习任意角的定义和性质1. 任意角的定义和表示方法。

2. 讲解任意角的性质。

步骤三:学习弧度制的概念和计算公式1. 弧度的概念和推导过程。

2. 弧度与角度的换算公式及例题。

步骤四:学习三角函数的定义、性质及图象1. 正弦函数、余弦函数、正切函数的定义和图象。

2. 三角函数的性质及相互关系。

步骤五:练习讲解1. 小组讨论,练习几何问题。

2. 练习弧度制的换算,解答相关问题。

3. 课后作业:巩固基础知识,拓展思维应用。

五、教学反思本节课的核心是任意角和弧度制,由于任意角和弧度制是高中数学必修课程,因此教学难度较大,需要遵循步步深入的原则,先从角度和任意角说起,再讲述弧度制及其换算公式,最后介绍三角函数及其相关性质。

在教学过程中,教师应运用多种教学方法,使学生更直观地理解这些概念和公式,同时也需要拓展学生的思维应用,使他们发现数学的应用价值,激发学生的学习兴趣。

任意角的概念与弧度制教案

任意角的概念与弧度制教案

任意角的概念与弧度制教案一、任意角的概念:1.任意角的定义:在坐标平面上,如果将终边与正半轴之间的交点记作点A,即A=(1,0),以正向旋转方向将终边与正半轴旋转到位时所转过的角叫做任意角。

任意角由初始边和终边两部分构成。

2.任意角的位置:任意角不限于0到360度之间,可以是任意大小的角度。

旋转方向可以是正向(逆时针)或反向(顺时针)。

3.任意角的度数:任意角的度数即为终边与正半轴的夹角的度数,用角度符号°表示。

4.任意角的象限:根据终边在哪个象限上,可以将任意角分为一、二、三、四象限。

二、弧度制的概念:1.弧度的定义:将半径等于1的圆的周长分成等份,每份叫做一个弧度。

如果圆上的一段弧的长度等于半径的长度,则该弧对应的角叫做一弧度。

2.弧度与度数的关系:360°对应的弧度为2π,即一周对应2π弧度。

所以,任意角对应的弧度数等于该角度数乘以π/180。

3.弧度制的优势:在三角函数的计算中,弧度制比度数制更为方便和精确,有利于进行各种数学计算。

三、教学步骤:教学目标:学生了解任意角的概念与弧度制的定义,掌握任意角的度数与弧度的转化关系。

教学步骤:Step 1:导入新知识通过出示一个角的图片,提问学生这个角是什么角,是否为任意角。

引导学生思考任意角的含义与特点。

Step 2:任意角的概念解释与举例教师对任意角的概念进行解释,并用实际生活中的例子来说明。

比如:针对绕场地跑的运动员,可以将终点的方向与正北方向之间的夹角视为任意角。

Step 3:弧度制的引入教师让学生回忆以前学过的圆的知识,引出弧度的概念。

通过实际的展示,向学生展示单位圆上的一个弧度与该弧度对应的角。

Step 4:弧度与度数的转化通过一个表格或示例,教师向学生解释弧度与度数之间的转化关系。

提醒学生要掌握好π、角度、弧度之间的换算。

Step 5:练习与巩固提供一些练习题,让学生进行弧度与度数之间的互相转化,巩固所学知识。

Step 6:拓展应用教师提出一些与弧度制相关的实际问题,让学生运用所学知识解决问题。

任意角的概念与弧度制教案

任意角的概念与弧度制教案

任意角的概念与弧度制教案一、概念解释任意角是指角的顶点可以位于坐标系中的任意位置,而不仅仅局限于角的顶点位于原点或坐标轴上。

在平面直角坐标系中,如果将角的顶点放在原点上,且不在坐标轴上,则该角为任意角。

在数学中,角的度量方式有两种,分别是度度量和弧度度量。

本教案将重点介绍弧度制的概念与应用。

二、弧度制的定义弧度制是一种用弧长来度量角的单位制度。

弧度制中,角的度量用弧长与半径相等的弧所对应的弧度数表示。

三、弧度制与度度量的转换1. 弧度制转度度量:角度(度) = 弧度数× (180°/π)2. 度度量转弧度制:弧度数 = 角度(度) × (π/180°)四、弧度制的优点1. 精确性:弧度制可以更精确地表示小角度,保证计算结果的准确性。

2. 便利性:在三角函数的计算中,弧度制更便于推导与计算,使得计算过程更加简洁。

3. 单位统一:由于弧度制是用弧长来度量角度的单位制度,使得角度和长度的单位得到了统一。

五、任意角的弧度表示在任意角中,以顺时针为正方向,角的弧度表示为正角度的弧度数。

六、弧度制在三角函数中的应用在三角函数中,弧度制是最常用的单位制度。

以下是几个常用三角函数值对应的弧度制表示:1. 正弦函数:sin(30°) = sin(π/6) = 0.52. 余弦函数:cos(45°) = cos(π/4) = 0.7073. 正切函数:tan(60°) = tan(π/3) = √3七、弧度制的练习与应用1. 练习一:求解以下各角的弧度制表示:a) 45°b) 60°c) 90°2. 练习二:根据题意求解下列三角函数的值(保留两位小数):a) sin(π/4)b) cos(π/3)c) tan(π/6)3. 应用一:计算角度为45°的正弦值解答:sin(45°) = sin(π/4) = 0.7074. 应用二:计算角度为60°的余弦值解答:cos(60°) = cos(π/3) = 0.5八、总结通过本教案的学习,我们了解了任意角的概念以及其中的弧度制度量方式。

任意角和弧度制数学教案

任意角和弧度制数学教案

任意角和弧度制数学教案第一课时1.1.1任意角教学要求:理解任意大小的角正角、负角和零角,掌握终边相同的角、象限角、区间角、终边在坐标轴上的角.教学重点:理解概念,掌握终边相同角的表示法.教学难点:理解角的任意大小.教学过程:一、复习准备:1.提问:初中所学的角是如何定义?角的范围?(角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;0°~360°)2.讨论:实际生活中是否有些角度超出初中所学的范围?→说明研究推广角概念的必要性(钟表;体操,如转体720°;自行车车轮;螺丝扳手)二、讲授新课:1.教学角的概念:①定义正角、负角、零角:按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,未作任何旋转所形成的角叫零角.②讨论:推广后角的大小情况怎样?(包括任意大小的正角、负角和零角)③示意几个旋转例子,写出角的度数.④如何将角放入坐标系中?→定义第几象限的角.(概念:角的顶点与原点重合,角的始边与轴的非负半轴重合.那么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角.)⑤练习:试在坐标系中表示300°、390°、-330°角,并判别在第几象限?⑥讨论:角的终边在坐标轴上,属于哪一个象限?结论:如果角的终边在坐标轴上,就认为这个角不属于任何一个象限,称为非象限角.口答:锐角是第几象限角?第一象限角一定是锐角吗?再分别就直角、钝角来回答这两个问题.⑦讨论:与60°终边相同的角有哪些?都可以用什么代数式表示?与α终边相同的角如何表示?⑧结论:与α角终边相同的角,都可用式子k×360°+α表示,k∈Z,写成集合呢?⑨讨论:给定顶点、终边、始边的角有多少个?注意:终边相同的角不一定相等;但相等的角,终边一定相同;终边相同的角有无数多个,它们相差360°的整数倍2.教学例题:①出示例1:在0°~360°间,找出下列终边相同角:-150°、1040°、-940°.(讨论计算方法:除以360求正余数→试练→订正)②出示例2:写出与下列终边相同的角的集合,并写出-720°~360°间角.120°、-270°、1020°(讨论计算方法:直接写,分析k的取值→试练→订正)③讨论:上面如何求k的值?(解不等式法)④练习:写出终边在x轴上的角的集合,y轴上呢?坐标轴上呢?第一象限呢?⑤出示例3:写出终边直线在y=x上的角的集合S,并把S中适合不等式的元素写出来.(师生共练→小结)3.小结:角的推广;象限角的定义;终边相同角的表示;终边落在坐标轴时等;区间角表示.三、巩固练习:1.写出终边在第一象限的角的集合?第二象限呢?第三象限呢?第四象限呢?直线y=-x 呢?2.作业:书P6练习3③④、4、5题.第二课时:1.1.2弧度制(一)教学要求:掌握弧度制的定义,学会弧度制与角度制互化,并进而建立角的集合与实数集R一一对应关系的概念.教学重点:掌握换算.教学难点:理解弧度意义.教学过程:一、复习准备:1.写出终边在x轴上角的集合.2.写出终边在y轴上角的集合.3.写出终边在第三象限角的集合.4.写出终边在第一、三象限角的集合.5.什么叫1°的角?计算扇形弧长的公式是怎样的?二、讲授新课:1.教学弧度的意义:①如图:∠AOB所对弧长分别为L、L’,半径分别为r、r’,求证:=.②讨论:是否为定值?其值与什么有关系?→结论:==定值.③讨论:在什么情况下为值为1?是否可以作为角的度量?④定义:长度等于半径长的弧所对的圆心角叫1弧度的角.用rad表示,读作弧度.⑤计算弧度:180°、360°→思考:-360°等于多少弧度?⑥探究:完成书P7表1.1-1后,讨论:半径为r的圆心角α所对弧长为l,则α弧度数=?⑦规定:正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0.半径为r的圆心角α所对弧长为l,则α弧度数的绝对值为|α|=.用弧度作单位来度量角的制度叫弧度制.⑧讨论:由弧度数的定义可以得到计算弧长的公式怎样?⑨讨论:1度等于多少弧度?1弧度等于多少度?→度表示与弧度表示有啥不同?-720°的圆心角、弧长、弧度如何看?2.教学例题:①出示例1:角度与弧度互化:;.分析:如何依据换算公式?(抓住:180°=prad)→如何设计算法?→计算器操作:模式选择MODEMODE1(2);输入数据;功能键SHIFTDRG1(2)=②练习:角度与弧度互化:0°;30°;45°;;;120°;135°;150°;③讨论:引入弧度制的意义?(在角的集合与实数的集合之间建立一种一一对应的关系)④练习:用弧度制表示下列角的集合:终边在x轴上;终边在y轴上.3.小结:弧度数定义;换算公式(180°=prad);弧度制与角度制互化.三、巩固练习:1.教材P10练习1、2题.2.用弧度制表示下列角的集合:终边在直线y=x;终边在第二象限;终边在第一象限.3.作业:教材P115、7、8题.第三课时:1.1.2弧度制(二)教学要求:更进一步理解弧度的意义,能熟练地进行弧度与角度的换算.掌握弧长公式,能用弧度表示终边相同的角、象限角和终边在坐标轴上的角.掌握并运用弧度制表示的弧长公式、扇形面积公式教学重点:掌握扇形弧长公式、面积公式.教学难点:理解弧度制表示.教学过程:一、复习准备:1.提问:什么叫1弧度的角?1度等于多少弧度?1弧度等于多少度?扇形弧长公式?2.弧度与角度互换:-π、π、-210°、75°3.口答下列特殊角的弧度数:0°、30°、45°、60°、90°、120°、135°、…二、讲授新课:1.教学例题:①出示例:用弧度制推导:S=LR;.分析:先求1弧度扇形的面积(πR)→再求弧长为L、半径为R的扇形面积?方法二:根据扇形弧长公式、面积公式,结合换算公式转换.②练习:扇形半径为45,圆心角为120°,用弧度制求弧长、面积.③出示例:计算sin、tan1.5、cos(口答方法→共练→小结:换算为角度;计算器求)②练习:求、、的正弦、余弦、正切.2.练习:①.用弧度制写出与下列终边相同的角,并求0~2π间的角.π、-675°②用弧度制表示终边在x轴上角的集合、终边在y轴上角的集合?终边在第三象限角的集合?③讨论:α=k×360°+与β=2kπ+30°是否正确?④α与-的终边相同,且-2π<α<2π,则α=.⑤已知扇形AOB的周长是6cm,该扇形的中心角是1弧度,求该扇形的面积.解法:设扇形的半径为r,弧长为l,列方程组而求.3.小结:扇形弧长公式、面积公式;弧度制的运用;计算器使用.三、巩固练习:1.时间经过2小时30分,时针和分针各转了多少弧度?2.一扇形的中心角是54°,它的半径为20cm,求扇形的周长和面积.3.已知角α和角β的差为10°,角α和角β的和是10弧度,则α、β的弧度数分别是.4.作业:教材P10练习4、5、6题.感谢您的阅读。

任意角的概念与弧度制教案

任意角的概念与弧度制教案

任意角的概念与弧度制教案导言:任意角是初中数学中一个重要的概念,它是我们研究三角函数的基础。

为了更好地理解任意角,我们需要引入弧度制这一概念。

本教案将从任意角的定义开始,逐步介绍弧度制的概念以及如何进行角度与弧度的转换,帮助学生深入理解和掌握这两个概念。

一、任意角的定义在平面直角坐标系中,通过原点O以及一条射线OA,可以确定一个角,这个角叫做任意角。

其中,射线OA称为角的始边,射线OB (OB ≠ OA)称为角的终边,O点叫做角的顶点。

二、弧度制的概念角度制是我们最常用的一种角度单位,但在一些高级数学和物理问题中,常常使用弧度制来度量角的大小。

弧度制定义如下:当半径为r 的圆的圆心角所对的弧长等于半径时,这个角的度数为1弧度,记作1 rad。

三、角度与弧度的转换1. 角度转弧度:已知角的度数α,可以使用如下公式将其转化为弧度:弧度数 = 角度数× π/1802. 弧度转角度:已知角的弧度数β,可以使用如下公式将其转化为角度:角度数 = 弧度数× 180/π四、任意角的性质1. 一个任意角可绘制无数个与之终边相同的角。

2. 一个任意角的终边在平面直角坐标系中的位置决定了该角在坐标系中的唯一性。

3. 弧度制中的任意角大小范围为0≤θ<2π,其中2π的意义相当于360°。

五、任意角的相关公式在三角函数的研究中,任意角的概念是非常重要的。

以下是一些与任意角相关的基本公式。

1. sin任意角和cos任意角的定义:在平面直角坐标系中,给定角θ的终边上的点P(x,y),则有:sinθ = y/rcosθ = x/r其中,r为OP的长度。

2. tan任意角的定义:在平面直角坐标系中,给定角θ的终边上的点P(x,y),则有:tanθ = y/x注:当x=0时,tanθ不存在。

3. 值域:在上述公式中,可以发现sinθ、cosθ、tanθ的值与终边上的坐标有关,因此它们的值域都在[-1,1]之间。

高二数学必修四《任意角和弧度制》教案

高二数学必修四《任意角和弧度制》教案

高二数学必修四《任意角和弧度制》教案教学目标•了解任意角的概念•掌握角度和弧度之间的换算关系•理解任意角的三角函数定义•能够求解给定任意角的三角函数值•能够应用任意角的三角函数解决相关问题教学准备•教材:《高中数学必修四》•教辅资料:《高二数学必修四导学案》、《高二数学必修四课后习题精选》•工具:投影仪、黑板、彩色粉笔教学内容和步骤第一节:引入任意角的概念(15分钟)1.引入:通过一个例子引导学生思考角是什么,并介绍角的常用表示方法。

–例子:一个人站在原地,从开始向东边走了一段距离,然后又向南边走了一段距离,最后按照顺时针方向转了一个角度,最后停在了某个位置上。

请问,这个人所走过的路径可以用什么来描述?2.概念解释:引导学生理解角的概念。

–角度:以一段线段的端点为顶点,将线段旋转形成的图形。

–角的表示:使用小写字母加上顶角符号“∠”表示角,例如∠ABC。

3.讨论:与学生一起讨论不同角的分类和性质,并引入本节课的重点——任意角。

第二节:任意角的弧度制(20分钟)1.导入:引导学生回顾整周角的概念,然后扩展到任意角的概念。

2.弧度制介绍:–弧度:从原点出发,逆时针转一周,形成弧长等于半径的角度被定义为1弧度。

–弧度制的计算:弧长(s)等于半径(r)乘以角度(θ),公式为:s = rθ。

–弧度转角度:角度(θ)等于弧长(s)除以半径(r),公式为:θ = s/r。

3.实例演示:通过实例计算角度和弧度互相转换的问题,加深学生对弧度制的理解。

4.练习:让学生在课堂上完成一些练习题,巩固弧度制的计算方法。

第三节:任意角的三角函数(30分钟)1.回顾:复习学生已经学过的整数角的三角函数定义和图像。

2.任意角的三角函数定义:–以点P(x, y)为单位圆上的点,作从圆心O到该点的线段OP,与x轴正半轴的夹角为θ,那么点P的坐标(x, y)分别对应于角度θ的三角函数值。

–定义正弦函数:sinθ = y。

–定义余弦函数:cosθ = x。

(教案5)1.1任意角和弧度制

(教案5)1.1任意角和弧度制

1.1.2弧制度教学目的:要求学生掌握弧度制的定义,学会弧度制与角度制互化,并进而建立角的 集合与实数集R 一一对应关系的概念。

教学重点:会将一个角度制的角化为弧度制,将弧度制角化为角度制角。

教学难点:1弧度角化为角度,1度角化为弧度角的理解。

教学过程一、复习提问任意角包括哪些角?有最大角、最小角吗?终边相同的角的集合如何表示?二、新课1、提出课题:弧度制-—另一种度量角的单位制定义:长度等于半径长的弧所对的圆心角称为1弧度的角。

它的单位是rad 读作 弧度。

如图:∠AOB=1rad ,∠AOC=2rad 周角=2πrad (1)正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是0(2)角α的弧度数的绝对值 rl=α(l 为弧长,r为半径)(3)用角度制和弧度制来度量零角,单位不同,但数量相同(都是0),用角度制和 弧度制来度量任一非零角,单位不同,量数也不同。

2、角度制与弧度制的换算抓住:360︒=2πrad ∴180︒=π rad ∴ 1︒=rad rad 01745.0180≈π'185730.571801=≈⎪⎭⎫ ⎝⎛=πrad例1、 把'3067 化成弧度o r C2rad 1rad r l=2r oAAB解:⎪⎭⎫⎝⎛=2167'3067 ∴ rad rad ππ832167180'3067=⨯=例2、 把rad π53化成度。

解: 1081805353=⨯=rad π注意几点:1.度数与弧度数的换算也可借助“计算器”《中学数学用表》进行; 2.今后在具体运算时,“弧度”二字和单位符号“rad ”可以省略 如:3表示3rad sin π表示πrad 角的正弦3.一些特殊角的度数与弧度数的对应值应该记住(见课本P9表) 4.应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系。

任意角的集合 实数集R 3、练习例3、 用弧度制表示:1︒终边在x 轴上的角的集合;2︒终边在y 轴上的角的集合3︒终边在坐标轴上的角的集合.解:1︒终边在x 轴上的角的集合 {}Z k k S ∈==,|1πββ2︒终边在y 轴上的角的集合 ⎭⎬⎫⎩⎨⎧∈+==Z k k S ,2|2ππββ3︒终边在坐标轴上的角的集合 ⎭⎬⎫⎩⎨⎧∈==Z k k S ,2|3πββ 4、 小结:1.弧度制定义 2.与弧度制的互化 5、作业:。

任意角弧度制教案

任意角弧度制教案

任意角弧度制教案教案标题:任意角弧度制教案教案目标:1. 理解任意角的概念和弧度制的基本原理。

2. 掌握任意角与弧度之间的转换关系。

3. 能够在解决相关问题时使用弧度制进行计算。

教学准备:1. 教师准备:黑板、白板、彩色粉笔/白板笔、教学投影仪等。

2. 学生准备:教科书、笔记本、计算器等。

教学过程:引入活动:1. 教师可以通过提问来引导学生思考:你们知道什么是角度吗?我们平时常用的角度单位是什么?有没有其他表示角度的方法呢?2. 学生回答后,教师可以简要介绍一下角度的概念和常用的度数制。

概念讲解:1. 教师通过示意图和实例,引导学生理解任意角的概念:任意角是指角的两条边可以是任意长度的角。

2. 教师引导学生思考:在解决一些数学问题时,角度单位常常不够灵活,有时候我们需要更精确的表示角度的方法。

这时,我们就可以使用弧度制。

3. 教师简要介绍弧度制的基本原理:弧度是角度的一种度量方式,表示角所对应的圆的弧长与半径的比值。

一个完整的圆周对应的弧度为2π。

转换关系讲解:1. 教师引导学生思考:如何将角度转换为弧度?如何将弧度转换为角度?2. 教师通过示意图和实例,讲解角度与弧度之间的转换关系:- 角度转弧度:弧度 = 角度× π / 180- 弧度转角度:角度 = 弧度× 180 / π练习活动:1. 学生进行练习题,巩固角度与弧度之间的转换关系。

2. 学生解决一些实际问题,应用弧度制进行计算。

总结:1. 教师对本节课的内容进行总结,强调任意角的概念和弧度制的重要性。

2. 学生回答问题,进行互动讨论。

拓展活动:1. 学生自主学习相关知识,扩展弧度制的应用领域。

2. 学生可以进行小组讨论,分享自己在实际生活中发现的弧度制的应用案例。

评估方式:1. 教师观察学生在课堂上的参与情况和回答问题的准确性。

2. 教师布置作业,检验学生对角度与弧度之间转换关系的掌握程度。

拓展阅读:1. 推荐学生阅读相关教材或网络资料,进一步了解角度与弧度制的应用。

任意角与弧度制 教学设计-2023-2024学年高一上学期数学人教A版(2019)必修第一册

任意角与弧度制 教学设计-2023-2024学年高一上学期数学人教A版(2019)必修第一册

任意角与弧度制课时教学设计课题5.1任意角与弧度制授课时间: 年 月 日课型:新授课课时:第一课时数学核心素养目标1.通过探索让学生掌握用“旋转”定义角的概念,理解并掌握“正角”、“负角”、“象限角”、“终边相同的角”的含义。

2.培养学生判断推理和化归转化能力,加强数形结合思想的运用。

3. 培养学生观察、类比、辨析、运用的综合思维能力,体会化归与转化、类比 等数学思想,提高学生数学运算和逻辑推理能力。

学习重点难点教学重点:理解并掌握正角、负角、零角的定义,掌握终边相同的角的表示方法; 教学难点: 终边相同的角的表示; 教学准备教学方法:以学生为主体,采用诱思探究式教学,精讲多练。

教学工具:多媒体课件,三角尺,直尺 学习活动设计环节一:情景引入,温故知新 一、问题情境:1.思考:你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25小时,你应当如何将它校准?当时间校准以后,分针转了多少度?2.复习:初中是如何定义角的?从一个点出发引出的两条射线构成的几何图形.3.情境:生活中很多实例不在范围]360,0[00内. 体操运动员转体720º,跳水运动员向内、向外转体1080º经过1小时时针、分针、秒针转了多少度?4.问题:这些例子不仅不在范围]360,0[00,而且方向不同,有必要将角的概念推广到任意角,想想用什么办法才能推广到任意角?(二)教授新课 二、建构理论: 1.角的概念的推广 ⑴“旋转”形成角一条射线由原来的位置OA ,绕着它的端点O 按逆时针方向旋转到另一位置OB ,就形成角α.旋转开始时的射线OA 叫做角α的始边,旋转终止的射线OB 叫做角α的终边,射线的端点O 叫做角α的顶点.突出“旋转” 注意:“顶点”“始边”“终边”ABαO⑵“正角”与“负角”、“0角”我们把按逆时针方向旋转所形成的角叫做正角,把按顺时针方向旋转所形成的角叫做负角,特别地,当一条射线没有作任何旋转时,我们也认为这时形成了一个角,并把这个角叫做零角.记法:角α或α∠ 可以简记成α.⑶意义:用“旋转”定义角之后,角的范围大大地扩大了. 1︒ 角有正负之分 如:α=210︒β=-150︒γ=660︒ 2︒ 角可以任意大3︒ 还有零角: 一条射线,没有旋转.要注意:正角和负角是表示具有相反意义的旋转量,它的正负规定纯属习惯,就好象与正数、负数的规定一样,零角无正负,就好象数零无正负一样.2.“象限角”为了研究方便,我们往往在平面直角坐标系中来讨论角. 角的顶点合于坐标原点,角的始边合于x 轴的正半轴,这样一来,角的终边落在第几象限,我们就说这个角是第几象限的角(角的终边落在坐标轴上,则此角不属于任何一个象限).例如:30︒、390︒、-330︒是第象一限角,300︒、-60︒是第四象限角,585︒、1180︒是第三象限角,-2000︒是第二象限角等.3.终边相同的角观察:390︒,-330︒角,它们的终边都与30︒角的终边相同⑵探究:终边相同的角都可以表示成一个0︒到360︒的角与)(Z k k ∈个周角的和: 390︒=30︒+360︒)1(=k -330︒=30︒-360︒)1(-=k30︒=30︒+0×360︒)0(=k 1470︒=30︒+4×360︒)4(=k -1770︒=30︒-5×360︒)5(-=k⑶结论:所有与α终边相同的角连同α在内可以构成一个集合:{}Z k k S ∈⋅+==,360| αββ即:任何一个与角α终边相同的角,都可以表示成角α与整数个周角的和. ⑷注意以下四点: ①Z k ∈②α是任意角;③0360⋅k 与α之间是“+”号,如︒-⋅303600k ,应看成)30(3600︒-+⋅k .④终边相同的角不一定相等,但相等的角,终边一定相同,终边相同的角有无数多个,它们相差360°的整数倍.教师活动:通过对问题情景中4个问题的引入,让学生思考并从实际问题中抽象找出其中的角的关系,教师进行补充说明;通过现实生活中的问题,引导学生进一步的观察,研究。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

任意角和弧度制数学教案
第一课时1.1.1任意角
教学要求:理解任意大小的角正角、负角和零角,掌握终边相同的角、象限角、区间角、终边在坐标轴上的角.
教学重点:理解概念,掌握终边相同角的表示法.
教学难点:理解角的任意大小.
教学过程:
一、复习准备:
1.提问:初中所学的角是如何定义?角的范围?
(角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;0°~360°) 2.讨论:实际生活中是否有些角度超出初中所学的范围?→说明研究推广角概念的必要性(钟表;体操,如转体720°;自行车车轮;螺丝扳手)
二、讲授新课:
1.教学角的概念:
①定义正角、负角、零角:按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,未作任何旋转所形成的角叫零角.
②讨论:推广后角的大小情况怎样?(包括任意大小的正角、负角和零角)
③示意几个旋转例子,写出角的度数.
④如何将角放入坐标系中?→定义第几象限的角.
(概念:角的顶点与原点重合,角的始边与轴的非负半轴重合.那么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角.)
⑤练习:试在坐标系中表示300°、390°、-330°角,并判别在第几象限?
⑥讨论:角的终边在坐标轴上,属于哪一个象限?
结论:如果角的终边在坐标轴上,就认为这个角不属于任何一个象限,称为非象限角.
口答:锐角是第几象限角?第一象限角一定是锐角吗?再分别就直角、钝角来回答这两个问。

相关文档
最新文档